
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Adaptive Hybrid Composition Based Super-Resolution Network via

Fine-Grained Channel Pruning

Peer-reviewed author version

CHEN, Siang; Huang, Kai; LI, Bowen; Xiong, Dongliang; Jiang, Haitian & CLAESEN,

Luc (2021) Adaptive Hybrid Composition Based Super-Resolution Network via

Fine-Grained Channel Pruning. In: Lecture notes in computer science, 12537,  p.

119 -135.

DOI: 10.1007/978-3-030-67070-2_7

Handle: http://hdl.handle.net/1942/33257



000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV

#52
ECCV

#52

Adaptive Hybrid Composition based
Super-Resolution Network via Fine-grained

Channel Pruning

Siang Chen1[0000−0003−2846−781X], Kai Huang1[0000−0003−2295−5433]⋆, Bowen
Li1[0000−0001−7525−9672], Dongliang Xiong1[0000−0002−4882−7504], Haitian

Jiang1[0000−0001−8215−166X], and Luc Claesen2[0000−0003−0405−6290]

1 Zhejiang University, Hangzhou, China
{11631032, huangk, 11631033, xiongdl, jianghaitian}@zju.edu.cn

2 Hasselt University, 3590 Diepenbeek, Belgium
luc.claesen@uhasselt.be

Abstract. In recent years, remarkable progress has been made in single
image super-resolution due to the powerful representation capabilities
of deep neural networks. However, the superior performance is at the
expense of excessive computation costs, limiting the SR application in
resource-constrained devices. To address this problem, we firstly pro-
pose a hybrid composition block (HCB), which contains asymmetric and
shrinked spatial convolution in parallel. Secondly, we build our baseline
model based on cascaded HCB with a progressive upsampling method.
Besides, feature fusion method is developed which concatenates all of
the previous feature maps of HCB. Thirdly, to solve the misalignment
problem in pruning residual networks, we propose a fine-grained channel
pruning that allows adaptive connections to fully skip the residual block,
and any unimportant channel between convolutions can be pruned in-
dependently. Finally, we present an adaptive hybrid composition based
super-resolution network (AHCSRN) by pruning the baseline model. Ex-
tensive experiments demonstrate that the proposed method can achieve
better performance than state-of-the-art SR models with ultra-low pa-
rameters and Flops.

Keywords: single image super-resolution, efficient model, channel prun-
ing

1 Introduction

Single image super-resolution (SISR) is a classic computer vision task that re-
constructs a high-resolution (HR) image from its degraded low-resolution (LR)
version. It has broad applications in photo editing, medical imaging and object
detection. Although numerous methods have been proposed for SISR, it is still
an active and challenging task as an ill-posed problem.

⋆ Corresponding author
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Recently, deep learning based methods have shown superior performance
compared with previous example-based methods. After [3] first developed a con-
volutional neural network (CNN) to establish a mapping between LR and HR
images, various networks have been proposed to boost the overall performance of
image super-resolution. However, the significant improvement always comes at
the expense of a large amount of parameters and high computation cost, which
is not suitable to be deployed on resource-limited devices.

To tackle this problem, a natural idea is designing light-weight neural netorks.
For example, FSRCNN [4] and ESPCN [26] reduce model size by building shallow
network models, [1] and [26] utilize squeeze and group operations to construct
efficient super-resolution blocks. Another trend is to use recursive operators or
parameter sharing strategy, such as DRCN [18],DRRN [28].

In addition to designing efficient networks, compressing pre-trained deep neu-
ral networks is also helpful in deriving the optimal architectures. Pruning is an
effective method to reduce the redundancy in networks by removing those unim-
portant individual neurons with negligible performance degradation. While doing
this reduces the theoretical size of the model, it does not result in real compu-
tation cost or memory footprint reduction unless special hardware and software
are designed. Therefore, channel pruning [23, 33, 15] is proposed to implement
real speed up and memory footprint reduction on general hardwares(CPU/GPU)
by removing the whole filters in networks. While this compression method has
shown state-of-the-art accuracy on image classification problems, channel prun-
ing has rarely been investigated for the efficient image super-resolution task. In
addition, residual learning has been widely employed by SR models, which ease
the task by learning only the residuals between input and output images, and
alleviate the vanishing problem as well. However, pruning residual networks is
challenging due to the constraints induced by the cross layer connections. Recent
works [2, 7, 34] propose to assign channels connected by skip connections in the
same group and prune them simultanesly, while solving the constraint problem,
the pruning ratio on these troublesome filters is limited.

In this paper, we firstly propose a hybrid composition based super-resolution
neural network (HCSRN). To leverage the efficiency of different kernel size and
resolution, we design a hybrid composition block (HCB) which contains asym-
metric convolution and shrinked spatial convolution, and then construct HC-
SRN based on HCB via a progressive upsampling method. Secondly, we take
HCSRN as our baseline model and apply pruning on it to further reduce param-
eters and FLOPs. To solve the constraint that the pruning problem encounters
when pruning residual blocks, we propose a novel fine-grained channel pruning
strategy that allows any channel to be pruned independently, which breaks the
monotonous design constraint in residual neural networks. Finally, we obtain
an efficient pruned model called AHCSRN based on adaptive hybrid compo-
sition blocks with different weights for asymmetric convolution and shrinked
spatial convolution blocks, as well as adaptive local feature fusion connection-
s. Extensive experiments show that the proposed AHCSRN can achieve better
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performance with ultra-low parameters and FLOPs compared to state-of-the-art
methods.

In summary, the main contributions of this paper are as follows:

1)We propose HCSRN for image super-resolution, a basic neural network
based on the hybrid composition modules (HCB), thanks to the efficient com-
positions in hybrid modules, our HSRN achieves high performance on SR task
with a modest number of parameters.

2)We propose the adaptive hybrid composition based super-resolution net-
work (AHCSRN) with ultra-low parameters and FLOPs while still keeping high
performance. By applying fine-grained channel pruning (FCP) on HCSRN, we
not only reduce channels, but also derive adaptive hybrid modules with different
weights on asymmetric and shrinked spatial convolutions. Moreover, the pro-
posed FCP avoids the misalignment problem for pruning residual networks, and
results in a novel efficient residual architecture.

3)Experimental results show that the proposed lightweight AHCSRN achieves
superior performance than the state-of-the-art methods with ultra-low parame-
ters and computation cost.

2 Related Work

2.1 Deep Learning Based Super-Resolution

Convolutional Neural Network (CNN) has shown great success in image super-
resolution. [3] firstly employ CNN with tree layers (SRCNN) to learn the SR
task, which achieves superior performance than previous example-based meth-
ods [5, 6, 30]. After that, various improved algorithms have been proposed. [17]
explore a deeper network named VDSR with 20 convolution layers, whichs show
noticeable progress than SRCNN. [22] utilize residual network to ease the train-
ing of deep networks and make the neural network go deeper which is denoted
as EDSR. RCAN [36] even built an SR network with more than 400 layers with
channel attention mechanisms to further improve performance. However, with
the networks going deeper, the number of parameters and Flops are also dramati-
cally increasing, which limits the real-world applications on resource-constrained
devices. Therefore, there is an urgent need to design light-weight SR networks.

FSRCNN [4] reduces the computation cost of SRCNN by removing the pre-
processing bicubic interpolation and upscales the image at the end of the net-
work. DRRN [28], MemNet [29] share parameters through recursive mechanism
to avoid introducing new parameters while improving the reconstruction quali-
ty. [1] propose a cascading residual network (CARN) to learn the LR-HR map-
ping more efficiently. Recently, [16] propose a light-weight information multi-
distillation network by constructing the cascaded information multi-distillation
blocks, which shows a better tradeoff between computation cost and perfor-
mance. And [31] design an architecture that makes full use of the features by
adaptive weighted residual connections.
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2.2 Channel Pruning

Model pruning is a predominant approach in learning compressed light-weight
neural networks by removing unimportant neurons. Early works [9, 8] propose
to remove individual weight values, despite the deep compression of parameter-
s, such pruning strategy results in non-structured sparsity in the network, and
practical runtime acceleration cannot be achieved unless special custom software
and hardware are designed. Therefore recent works focus more on filter pruning
(a.k.a. channel pruning) which is a universal technique that can be applied to
various types of CNN models, and benefits from inference speedup and memory
saving as well. Some leverage heuristic metric to evaluate the importance such as
the magnitude of filters [12], the average percentage of zero activations [14], and
the geometric median criterion [13]. Some methods add a regularization function
such as L1 [24], Group LASSO [32] to the loss function to induce sparsity. How-
ever, due to the cross layer connections in residual neural networks, methods for
pruning plain networks such as VGG and AlexNet cannot be applied directly. To
address the misalignment problem of feature maps in the shortcut connection,
several solutions have been proposed. [11] only prune internal channels layers
in residual blocks. [24] place a channel selection layer before the first convolu-
tion in each residual block to mask out insignificant channels, and leave the last
convolution layer unpruned, which only works for pre-activation networks. [20]
use a mixed block connectivity to avoid redundant computation. Recently, [2,
7, 34] propose to assign the layers connected by pure skip connections into the
same group, thus the filters in the same group can be pruned simultaneously.
However, although the above methods avoid the misalignment problem, pruning
ratios on these troublesome filters are still limited, which results in non-optimal
neural network structures.

3 Approach

3.1 Compression Flow

Fig. 1. The overall flow to obtain the light-weight model.

The goal of efficient super-resolution challenge in the 2020 ECCV AIM work-
shop is to devise a network that reduces one or several aspects such as runtime,
parameters, FLOPs, activations, and depth while at least maintaining PSNR of
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MSRResNet. Directly applying pruning on MSRResNet to reduce model size is
not a reasonable choice, because the performance of the pruned model will be
lower than the baseline model especially when the pruning ratio is large. There-
fore, as shown in Figure 1 we should firstly design a larger but more efficient
baseline model before pruning, then employ the pruning method to compress the
model to get a better tradeoff between performance and model size. To reduce
the model size as much as possible while keeping the performance higher than
MSRResNet during validation, we utilize an iterative pruning and fine-tuning
strategy to get the final model.

Fig. 2. The architecture of hybrid composition based super-resolution neural network
(HCSRN)

3.2 Architecture of HCSRN

In this section, we describe our proposed baseline model, a hybrid composition
based super-resolution neural network (HCSRN) in detail. Figure 2 shows the
architecture of HCSRN. We employ the progressive upsampling strategy that
decomposes the image space in HCSRN into low-resolution (LR, H×W), middle-
resolution (MR, 2H × 2W) and high resolution (HR, 4H × 4W), which is divided
by two upsampling modules. HCSRN consists of five modules, namely the feature
extraction module, the LR hybrid composition module, the first upsampling
module, the MR hybrid composition module and the second upsampling module.

The feature extraction module is a convolution layer with kernel size of 3×3,
which can be formulated as

LHBF0 = fFE(ILR) (1)

where ILR is the input LR image, fFE denotes the feature extraction function,
and LHBF0 is the output feature map from the first convolution layer.

In the LR hybrid composition module (LRHCM), there are n numbers of
the proposed sequential hybrid composition blocks (HCB), the function can be
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expressed as

LHBFi = fLHBi(LHBFi−1) (2)

where i is 1,2,...,n, LHBFi is the output of ith hybrid block, fLHBi denotes the
corresponding function, of which the details will be described in section 3.3.

For the upsampling module, assume the input feature size to be H × W ×
C, and scaling factor to be s2, the first upsampling module reshapes the image
size to be sH × sW × C.

MHBF0 = fLRUM (LHBF1, LHBF2, ..., LHBFn) (3)

where MHBF0 is the upscaled feature, fLRUM denotes the function of the LR
upsampling module (LRUM). Specifically, we firstly employ the feature fusion
method that concates all of the previous feature maps output by each LHBF in
the channel dimension. Secondly, we perform a convoltuion with kernel size 1x1
that reduces the channel number from n × C to s2 × C. Thirdly, the channel
shuffle layer proposed in ShuffleNet [35] is used to perform a channel reorder
operation. Finally, the pixel shuffle layer upscales feature maps to sH × sW ×
C.

In the MR hybrid composition module (MRHCM), there arem hybrid blocks,
and the architecture is the same as LRHCM except that the feature map is of
size sH × sW × C.

MHBFi = fMHBi(MHBFi−1) (4)

where i is 1, 2,...,m.
To further compress the model size, instead of upsampling feature maps and

follows a reconstruction module that reshapes the image to the final HR size, our
MR upsampling module (MRUM) upscales features of size sH × sW × C to the
final HR image size directly. In addition, we apply the global residual learning
and bilinear upsampling operator, the output of the HCSRN is the element-wise
sum of MRUM’s output and the interpolated image.

ISR = fMRUM (MHBF1,MHBF2, ...,MHBFm) + fBilinear(ILR) (5)

where fMRUM and fBilinear are the function of the MR upsampling module
and bilinear upsampling operator respectively, and ISR denotes the output of
HCSRN.

3.3 Basic Hybrid Block

As depicted in Figure 3, our hybrid composition block is constructed by three
parallel blocks, of which the element-wise sum operation is utilized for local
feature fusion. The whole block adopts the residual connection. The main idea
of this module is extracting useful features by different efficient blocks.

One of the methods to depress the computation of networks is reducing the
kernel size of convolutions. We adopt the same idea as [27] that employ the
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Fig. 3. The architecture of our proposed hybrid composition block (HCB).

asymmetric kernel. However, instead of using 5×1 and 1×5 kernels, we aggres-
sively use smaller kernel size that factorizes the normal 3×3 Conv into an 3×1
Conv followed by a 1×3 Conv, thus the parameters and operations decrease
dramatically from O(32) to O(2×3). To extract different features without signif-
icant performance drop, two asymmetric blocks with inversed kernel orders are
utilized.

Another way is reducing the scale of features. Assume the input feature is
of size H × W × C, an average pooling layer with kernel size 2×2 is firstly
adopted to shrink the feature from H × W × C to (H/2) × (W/2) × C. Then
we use the same sequential Conv-LeakyRuLU-Conv structure to extract features.
In order to do element-wise sum operations with the other two parallel blocks,
sub-pixel convolution is used for reconstructing the high-resolution image of
size H × W × (C/4) due to its efficiency. Finally, a convolution with kernel
1×1 is adopted to expand the channel number back to C. While reducing the
computation cost, scaling the feature also expands the receptive field to obtain
more context information, which is helpful to extract different features for local
fusion.

3.4 Fine-grained Channel Pruning

Although the efficient blocks in HCB provide different features for local fusion,
it’s hard to determine the weights for these features manually especially when
the model size is limited. In addition, which are the most important features that
the upsampling module needs remains a question. Therefore, we utilize pruning
method to remove those channels that contribute little to the quality of the
reconstruction image.
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Fig. 4. The difference between our FCP and group pruning. (a): baseline structure.
(b): structure pruned by group strategy. (c): structure pruned by our fine-grained
strategy. The red letter denotes the channel number.

We reduce the redundancy in upsampling modules and convolutions in HCB
by asserting the gating function, which can be expressed as

g(α) =

{
0, IS(α) < T

α, otherwise
(6)

where α is a scaling factor that multiplied on each channel, IS(α) denotes the
importance score of each channel, T is the global score threshold that depends
on the pruning ratio. For the importance criterion, we utilize the algorithm in
[25, ?] that estimate the change in loss function caused by setting α to zero,
which can be easily computed during back-propagation.

The difference between our fine-grained channel pruning strategy and the
previous grouping method is shown in Figure 4. Grouping method assigns the
channels connected by the skip connection into a group, and importance scores
for channels in the same group are accumulated which makes these troublesome
filters harder to be pruned. Instead of only considering the output channel of
each convolution, we try to assert the gating function before and after each
convolution, and allow each channel to be pruned independently. To avoid the
misalignment problem between the convolution and the skip connection, we do
not prune the skip connections. Figure 5(a) shows the possible structures pruned
by our proposed FCP. For representational simplicity, we only show structures
of one path, while the condition is the same for pruning the other two paths
and the upsampling module. Note that since there is no difference for pruning
channels inner residual blocks between FCP and other methods, these channels
are not considered in Figure 5(a).

1)Only prune the input channel of the first convolution in residual blocks. As
shown in Figure 5(b), channel 0 will totally skip Resblockl, and directly perform
the element-wise operation with the output channel of Resblockl.

2)Only prune the output channel of the last convolution in residual blocks.
As shown in Figure 5(c), the output channel 0 of Resblockl is removed, however,
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(a) (b)

(c) (d)

Fig. 5. Illustration of possible architectures pruned and reconstructed by FCP in
channel-wise view, the dotted lines denote pruned channels. (a): structure before prun-
ing. (b): only prune input channel. (c): only prune output channel. (d): prune both
input and output channels

we do not prune the input channel 0 of Resblockl+1, previous channel 0 will
bypass the element-wise operation and become the input of Resblockl+1.

3)Prune both input and output channels. Figure 5(d) shows the condition,
although the channel 0 between Resblockl and Resblockl+1 is removed, the input
channel 0 of Resblockl will bypass these two blocks and flow into Resblockl+2,
which leverages the full use of residual information.

4 Experiments

4.1 Datasets and metric

We use the DIV2K and Flicker2K datasets as our training set, which contains 800
and 2650 high-resolution images respectively. The HR images are cropped into
small images with size 480 × 480 and we downscale the HR images using bicubic
interpolation to produce LR images. The LR patches with size of 96 × 96 are
randomly cropped from LR images as the input of our model. Data augmentation
is performed on the training set, such as random rotations of 90, 180, 270 and
horizontal flips. For evaluation, we use five standard benchmark datasets: Set5,
Set14, BSD100, Urban100 and Managa109. We evaluate the performance of the
SR images using the peak signal-to-noise ratio(PSNR) and structure similarity
index (SSIM). The results are calculated on Y channel of transformed YCbCr
space, and the scaling factor is ×4 in all our experiments.

4.2 Implementation details

Training Baseline model. In all our experiments, we set the number of LR
HCB (n) and MR HCB (m) to be 12 and 4 respectively. The model is trained
by L1 loss with cyclic cosine annealing schedule. The restart learning rate is set
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Table 1. Quantitative results of evaluated methods for ×4 SR

Method Params Flops
Set5

PSNR/SSIM
Set14

PSNR/SSIM
BSD100

PSNR/SSIM
Urban

PSNR/SSIM
Manga109

PSNR/SSIM

Bicubic - - 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866

D-DBPN [10] 10426K 5925.3G 32.47/0.8980 28.82/0.7860 27.72/0.7400 26.38/0.7946 30.91/0.9137
RCAN [36] 15592K 1042.4 32.63/0.9002 28.87/0.7889 27.77/0.7436 26.82/0.8087 31.22/0.9173
SRCNN [3] 57K 59.9G 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555
FSRCNN [4] 13K 5.2G 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610
VDSR [17] 668K 43.8G 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8870
LapSRN [19] 818K 172.3G 31.54/0.8852 28.09/0.7700 27.32/0.7275 25.21/0.7562 29.09/0.8900
DRRN [28] 302K 19.8G 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.45/0.8946
MemNet [29] 677K 709.4G 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942
EDSR [22] 1518K 130.2G 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849 30.35/0.9067
CARN [1] 1592K 103.6G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.04/0.7838 30.45/0.9073
IMDN [16] 715K 46.7G 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075
MSRResNet 1517K 166.7G 32.19/0.8943 28.64/0.7821 27.58/0.7356 26.12/0.7864 30.49/0.9079

HCSRN (Ours) 2216K 147.2G 32.43/0.8967 28.83/0.7867 27.71/0.7402 26.56/0.7999 31.10/0.9146
AHCSRN1 (Ours) 487K 36.7G 32.24/0.8949 28.70/0.7834 27.62/0.7371 26.23/0.7897 30.72/0.9105
AHCSRN2 (Ours) 354K 27.3G 32.18/0.8942 28.65/0.7824 27.59/0.7360 26.12/0.7860 30.58/0.9087

to 2×10−4, while the minimum learning rate is 10−7. Optimizer is configured as
ADAM with β1 = 0.9, β2 = 0.99. Note that when training with multiple GPUs,
we multiply the learning rate and mini-batch size with the number of GPUs. For
example, when using 4 GPUs, the restart and minimum learning rate should be
modified to 8×10−4 and 4×10−7. If not stated otherwise, all the configurations
are described in the 4 GPUs condition in the following. The mini-batch is set to
64 and we train 500000 iterations totally with 8 cosine annealing cycles (each
cycle 62500 iterations).

Pruning. We employ an iterative pruning and finetuning strategy. The im-
portance scores of channels are estimated every 800 iterations, and 2% of total
channels are pruned away each time. After performing 10 times of such pruning,
we finetune the model by 8000 iterations to recover the performance with learn-
ing rate linearly decreasing from 8×10−4 to 4×10−7. When the compression ratio
meets the requirement, we finetune the model for another 250000 iterations with
4 cosine annealing cycles, learning rate is set to the same as training baseline
model.

4.3 Comparison with state-of-the-arts

Table. 1 shows the results of our baseline HCSRN, pruned model AHCSRN
and other state-of-the-art SR models. For calculating Flops and parameters, we
utilize the open-source tool THOP3, and input image is of size 1×3×256×256.

Firstly, we compare our proposed models with the performance-oriented mod-
els. Although D-DBPN and RCAN achieve very high performance, the superior
PSNR and SSIM are at the expanse of increased network depth and additional
blocks, which result in too much computation costs. We notice that our baseline

3 https://github.com/youzhonghui/pytorch-OpCounter
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Fig. 6. Visual comparisons of HCSRN/AHCSRN with other SR methods.

model HCSRN has similar performance with D-DBPN, worse than D-DBPN
on Set5 and BSD100 but better on Set14, Urban100 and Manag109, however,
the parameters of D-DBPN is nearly 4.7 times of HCSRN, and the Flops is
even 40.25 times of HCSRN. Therefore, the quantitative results show that our
baseline model HCSRN archives better tradeoff among parameters, Flops and
fidelity.

Secondly, we compare our pruned models with other light-weight method-
s. We show two variants of the pruned model (AHCSRN1 and AHCSRN2) of
different pruning ratio. LapSRN also adopts the progressive upsampling strate-
gy, which increases the computation cost in HR image space, therefore LapSRN
has fewer parameters but more Flops than MSRResNet. In spite of employing
progressive upsampling strategy, AHCSRN eliminates unnecessary computation
in HR space by combining efficient blocks and pruning together, thus param-
eters and Flops of AHCSRN1 are both much less than MSRResNet while the
performance is even higher. SRCNN, VDSR, CARN and DRRN have fewer pa-
rameters and Flops than MSRResNet, but these lightweight models all sacrifice
performance to achieve such computation reduction. IMDN keeps the similar
PSNR and SSIM as MSRResNet, and can reduce the parameters and Flops to
715K and 46.7G respectively. Our AHCSRN is even more efficient than IMDN,
AHCSRN1 has much higher performance than IMDN with fewer parameters and
Flops, the more lightweight version AHCSRN2 performs little worse on Set5, but
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Table 2. Speed-up analysis on pruned models

Model Params FLOPs
Time

(ms/img)
Realistic

Speed-up(%)
Theoretical
Speed-up(%)

HCSRN 2216K 147.2G 0.1659 - -
AHCSRN1 487K 36.7G 0.1334 19.6 75.1
AHCSRN2 354K 27.3G 0.1180 28.9 81.5

much better on Other four test datasets than IMDN. These experiment result-
s validate the effect of pruning on HCSRN, and show that AHCSRN is more
efficient than other state-of-the-art light-weight SR models.

Then we compare the visual results of HCSRN/AHCSRN with other state-
of-the-art methods. We take images ’067’ and ’072’ from Urban100 dataset as
examples, from Figure 6 we can see that image details of HCSRN, AHCSRN1
are recovered better than others, and AHCSRN2 has similar qualitative results
with MSRResNet.

Table 2 shows the realistic speedup of our prune model. We measure the
forward time with one RTX2028Ti GPU on the DIV2K validation dataset with
batch size set to 1. The gap between theoretical and realistic models may come
from the limitation of IO delay, buffer switch and efficiency of BLAS libraries.

(a)

(b)

Fig. 7. Channel number allocation of pruned model AHCSRN with parameters of (a):
1503K. (b): 354K.
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Figure 7(a) and 7(b) shows the architecture of AHCSRN with 1503K and
534K parameters respectively. Apparently, the three parallel paths in hybrid
composition block have different weights in different layers, the shrinked spatial
convolution paths always have the smallest channel numbers while the other
two paths have similar weights. However, as the pruning ratio goes deeper, we
can see that in some layers such as layer 8/10/11 in Figure 7(b), the channel
number in the inversed symmetric path is 0 and the shrinked spatial path is more
important. In addition, channel numbers between each residual convolutions are
also different, which validates the effectiveness of our proposed FCP.

4.4 Ablation Study of FCP

Table 3. Quantitative results of evaluated methods for x4 SR

Method Params FLOPs
Set5

PSNR/SSIM
Set14

PSNR/SSIM
B100

PSNR/SSIM
Manga109

PSNR/SSIM

Bicubic - - 28.63/0.8138 26.21/0.7087 26.04/0.6719 25.07/0.7904

EDSR 43090K 2894.5G 32.46/0.8968 28.80/0.7876 27.71/0.7420 31.02/0.9148
MSRResNet 1517K 146.0G 32.22/0.8952 28.63/0.7826 27.59/0.7357 30.48/0.9089

CARN 1592K 90.8G 32.13/0.8937 28.60/0.7806 27.58/0.7349 30.45/0.9073

Li et al.[21] 861K 78.69G 32.03/0.8931 28.54/0.7803 27.53/0.7346 30.23/0.9056
FPGM[13] 859K 83.94G 31.95/0.8917 28.48/0.7790 27.48/0.7332 30.03/0.9033
GBN[34] 863K 75.76G 32.09/0.8944 28.58/0.7815 27.56/0.7356 30.36/0.9075

Ours (60%) 973K 90.29G 32.18/0.8947 28.61/0.7823 27.58/0.7362 30.44/0.9084
Ours (50%) 799K 75.73G 32.15/0.8946 28.58/0.7816 27.57/0.7358 30.40/0.9080

Fig. 8. Visual results of different pruning methods.

To validate the effect of our proposed fine-grained channel pruning, we com-
pare with other state-of-the-art pruning methods on MSRResNet. Table 3 shows
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the quantitative results, FCP can reduce more parameters and FLOPs while
maintaining higher PSNR and SSIM on all datasets than other approaches.
Specifically, we can achieve nearly 64% parameters and 62% computation cost of
the baseline MSRResNet with negligible performance drop, and SSIM on dataset
BSD100 can be even better than the original model. GBN adopts the same prun-
ing criterion and applies group pruning strategy, but our 50% pruned model has
less computation costs while the performance is higher. These results show that
our FCP can compress the model size into a smaller one while still keeping high
performance.

5 Conclusions

In summary, we propose an adaptive hybrid composition based super-resolution
network called AHCSRN for SISR. We take two steps to design an efficien-
t super-resolution network with the resource constraints: 1) Design a baseline
model and 2) Apply channel pruning. To leverage the efficiency of different ker-
nel size and feature scale, we firstly propose a hybrid composition block which
contains asymmetric convolution and shrinked spatial convolution blocks. And
we construct our baseline model with cascaded hybrid block via a progressive up-
sampling method. Secondly, we propose a fine-grained channel pruning method
to solve the misalignment problem in pruning residual networks, and apply it
to our baseline model to get the AHCSRN. Extensive experiments have shown
that the proposed method can achieve a better tradeoff between performance
and computation costs than state-of-the-art models, and the proposed AHC-
SRN has the same performance as MSRResNet with ultra-low parameters and
Flops.

Acknowledgement. This work is supported by the National Key R&D Pro-
gram of China (2020YFB0906000, 2020YFB0906001).
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