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Abstract 

The bicycle has many positive effects; however, bicyclists are more vulnerable than users of other transport modes, and 

the number of bicycle related injuries and fatalities are too high. We present a clustering analysis aiming to support the 

identification of the locations of bicyclists' perceived unsafety in an urban traffic network, so-called bicycle impediments. 

In particular, we present an iterative k-means clustering approach, which in contrast to standard k-means clustering, 

enables to remove outliers and solitary points from the data set. In our study, we used data collected by bicyclists travelling 

in the city of Lund, Sweden, where each data point defines a location and time of a bicyclist's perceived unsafety. The 

results of our study show that 1) clustering is a useful approach in order to support the identification of perceived unsafe 

locations for bicyclists in an urban traffic network and 2) it might be beneficial to combine different types of clustering to 

support the identification process. Furthermore, using the adjusted Rand index, our results indicate high robustness of our 

iterative k-means clustering approach. 

 
Keywords: Cluster analysis; k-means; iterative k-means; DBSCAN; Click-point data; bicycle impediment 
 

  

1. Introduction 

The bicycle is considered a sustainable, fast, cost efficient, and 

healthy alternative to the car for urban transport. The list of 

positive effects of the bicycle can be made long; however, a 

negative aspect is that bicyclists are unprotected, hence more 

vulnerable than the users of other transport modes, in particular 

car and public transport. Still, it has been shown that the positive 

health effects of bicycling significantly overshadow the risk of 

getting injured or dying from an accident. For example, 

Andersen et al. [1] argue that bicyclists are expected to live 

longer even though they are exposed to an increased risk of 

getting injured or dying in an accident. 

Even though the number of road fatalities are steadily 

decreasing, there are still too many accidents involving 

bicyclists. For example, approximately 2000 bicyclists died in 

road accidents in the European Union (EU) countries during 

2016 [2]. The total, yearly, number of road fatalities in EU has 

significantly decreased from approximately 43.000 to 

approximately 26,000 from 2007 to 2016. The number of 

bicycle fatalities dropped from approximately 2500 to 

approximately 2000 from 2007 to 2010; however, since 2010, 

the number of bicycle fatalities has remained on the same level. 

It is, therefore, obvious that there is a need for improvements in 

order to provide a safer traffic environment for bicyclists, hence 

contributing to increasing the attractiveness of the bicycle. This 

is important as the bicycle plays an important role in the strive 

towards a sustainable society, where urban transport to a larger 

extent than today is carried out by green transport modes. 

We let the term bicycle impediment refer to a location in an 

urban traffic network where bicyclists tend to feel unsafe. By 

identifying bicycle impediments, it is possible for the 

responsible authorities to focus their safety improving 

investments on the locations that are perceived unsafe by 

bicyclists.  However, it is not always straightforward to identify 

the (location of) bicycle impediments in an urban transport 

network. Historic accident statistics is an important source to 

support the identification of bicycle impediments; however, we 

argue that the accident statistics does not give a complete view 

on the locations of impediments as it does not take into 

consideration the bicyclist's own perception of unsafety. 

Holmgren et al. [3] contribute a clustering analysis, aiming to 

identify bicycle impediments in the city of Lund, Sweden, where 

each of the identified clusters represents a potential bicycle 
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impediment. The clustering analysis is based on a set of so-

called click-point data collected by bicyclists, who were 

instructed to push a button mounted on their bicycle handlebars, 

each time they experienced unsafety in the traffic situation. The 

analysis by Holmgren et al. suggests that bicycle impediments 

typically occur at particular places (e.g., in an intersection) or 

along roads, corresponding to compact and stretched clusters, 

respectively. The compact clusters are identified by applying k-

means clustering, and the stretched clusters are identified using 

DBSCAN. In particular, Holmgren et al. introduce an iterative 

k-means clustering approach, which, in contrast to standard k-

means clustering, enables to suggest 1) solitary points (including 

outliers) from the data set and 2) a value of 𝑘, that is, the number 

of clusters to be generated by the k-means algorithm. We define 

a solitary point as a point that is not located sufficiently close to 

sufficiently many other points, according to specified 

thresholds.  

In the current paper, we extend the paper by Holmgren et al. [3], 

by providing an in-depth analysis of the iterative k-means 

clustering approach. In particular, we extend the work by 

Holmgren et al. by providing a stability analysis of the suggested 

approach in order to show its applicability for spatial clustering.  

The identification of accident locations, often referred to as 

accident hotspots, is widely discussed in the literature, see, for 

example, Cheng & Washington [4] and Montella [5] for 

overviews. Several studies use clustering in order to identify 

accident hotspots, for example, Anderson [6] use k-means 

clustering and kernel density estimation in order to identify 

accident hotspots and typical groups of road users involved in 

accidents, and Xu & Tao [7] use ensemble clustering in order to 

identify accident hotspots. The existing studies differ from our 

work in that they mainly focus on historic data on accidents, 

whereas we focus on perceived unsafety of bicyclists.  One 

exception is the study of Persson Masud & Olsson [8] which 

makes use of k-means clustering for the same data set as we used 

in the current study. The focus of their work is to compare 

different approaches for controlling the size of the generated 

clusters.  

Each impediment (i) is bound to a particular yet unknown 

location that does not necessarily coincide with one of the 

observations and (ii) has a limited spatial extent. Therefore, the 

current paper introduces the idea to add an upper bound for the 

cluster diameter together with a lower bound for the number of 

cluster members and, hence, adds the possibility to disregard the 

solitary points. 

Rodriguez & Laio [9] develop the density peak clustering (DPC) 

method. The basic idea is that cluster centers are located in 

regions of high density and far apart from each other. The 

method is based on ranking of distance values (as opposed to 

distance values themselves). The authors claim that their method 

is therefore less sensitive to the density threshold value. For each 

element the number of elements within a given threshold are 

counted. This is defined as the density 𝜌 for the element. Then 

a value  𝛿  is defined as the minimum distance to an element 

having a larger density. 𝛿  and 𝜌  are shown in a decision 

diagram. Each element having a large 𝜌 and a large 𝛿 represents 

a cluster center. Finally, each element is assigned to the same 

cluster as its nearest neighbor of higher density. The method has 

only a single parameter that specifies the region around each 

observation used to determine the density 𝜌 . The number of 

clusters is a result of the algorithm. The method considers some 

observations as outliers and may deliver stretched clusters (there 

is no restriction on the geometric extent of a cluster). 

Lord et al. [10] focus on k-means and k-medoid clustering and 

discuss cluster validity indices (quality of clustering) and 

solution stability (effect of removing part of the data). New 

stability indices related to individual objects, clusters (cluster 

stability) and partitions (global stability) are introduced. The 

most unstable objects are removed from the dataset, hence 

introducing the concept of noise. Furthermore, the global 

stability score is used to determine the number of clusters. The 

technique has a large memory footprint and handling our 

problem on a machine having 8GB of memory would not be 

possible. Furthermore, noise can be removed but there is no 

guarantee about limited spatial extent of the resulting clusters. 

Knapen and Holmgren [11] use click point clustering in order to 

select the optimal set of impediments to solve under budget 

constraints. They combine the same dataset of click points with 

GPS traces collected from a different set of bicyclists. The 

authors deliberately allow for stretched clusters and use 

DBSCAN. Each cluster of click points represents an 

impediment. The geometric distance between cluster members 

on one hand and recorded trip positions on the other hand 

determines whether the impediment affects the trip. An 

impediment resolution cost is assigned to each cluster and the 

study aims to determine the set of impediments to resolve under 

a given budget constraint so that the maximum number of trips 

becomes impediment free. Both the size and the shape of the 

clusters affect the resolution cost as well as the geometric 

relationship between impediments and trips. Hence it would be 

interesting to investigate how the optimization behaves when 

DBSCAN is replaced by compact k-means clustering. The 

current study aims to discover a phenomenon for which spatial 

density is an essential property. Therefore, we look for spatially 

dense groups of click points. It should be emphasized that the 

solitary points are not interpreted as measurement errors; instead 

they are discarded because they, by definition, are not member 

of an impediment.  

As indicated above, the result of the presented clustering 

approach aims to support the interactive urban designer through 

visual inspection of the generated clusters, hence enabling to 

incorporate the clustering in the decision-making on how to 

improve the urban road infrastructure.  

The remainder of the current article is organized in the following 

way. Section 2 describes the click point data set used in our 

study. In Section 3, we discuss the use of traditional k-means 

clustering for the considered application. In Section 4, we 

present and analyze our iterative k-means approach. Finally, we 

conclude the paper in Section 5, with a discussion and 

concluding remarks.    

In our study, we used python 2.7.18 with the machine learning 

package scikit-learn 0.19.2.  

2. Click point data 

We used a set of, so-called, click-point data, which was 

collected by 78 bicyclists traveling in Lund, Sweden, in the 

autumn of 2018. The bicyclists where instructed to click a 

handlebar mounted button when feeling unsafe in the traffic 

situation. Each of the clicks, that is, a data point, contains the 

unique button identifier, the GPS coordinate (latitude and 

longitude), the received GPS accuracy, and a time stamp of the 

click. See Fig 1 for an overview of our click-point data set and 

geographic focus area.  

As the data set contained several repeated (most likely 

unintended) clicks, duplicates, as well as geographic outliers, we 

filtered the data set prior to conducting our cluster analysis. 

Repeated clicks were those that were provided so fast that we 

considered it to be very unlikely that they could be provided by 

a bicyclist pushing the button several times. Even if the clicks 

that we considered to be repeated would be intended, a sequence 

of repeated clicks most likely refers to the same impediment, 

still making it safe to filter them out. Duplicates are sequences 

of data points provided by the same button, but with the same 
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latitude and longitude. By applying the following, sequential 

filtering steps, we reduced the data set from 3101 to 1622 data 

points: 

• Remove repeated clicks. For each individual, we 

considered a click point with timestamp 𝑡  to be an 

intended click point if and only if it has no predecessor 

in the period 𝑡 − Δ𝑡, where Δ𝑡 = 1[s]. This reduced 

our data set from 3101 (the collected number of data 

points) to 2142 data points. 

• Remove duplicate clicks. This further reduced our 

data set from 2142 to 1914 data points. 

• Remove clicks outside focus area. We filtered all 

data points outside the area defined by the longitude 

interval [55.68,55.729]  and the latitude interval 

[13.153,13.254]. This reduced our data set from 1914 

to 1774 points. 

• Remove inaccurate clicks. We filtered all data points 

with GPS accuracy larger than 50 meters. This further 

reduced our data set from 1774 to 1622 data points.  

 

 
Fig 1: The click-point data set and considered focus area. 

3. K-means clustering 

In k-means clustering [12], the number of clusters that should be 

produced is required as input, and the algorithm operates by 

iteratively assigning points to clusters represented by cluster 

centroids, which are iteratively updated. A cluster centroid is 

calculated by taking the average in each dimension of all data 

points included in the cluster. The algorithm is initiated by 

assigning 𝑘 randomly chosen points in the data set as centroids, 

and it iterates between the two following two steps until the 

clusters have stabilized: 

1. Assign each data point to the closest centroid. 

2. Calculate new positions of the centroid of each cluster 

by taking the mean value of all data points assigned to 

the cluster.    

 

As mentioned above, k-means clustering requires the number of 

clusters (𝑘) to be provided as input; however, it is typically not 

straightforward to identify a suitable value of 𝑘 . Different 

approaches have been proposed in order to identify an 

approximate optimal value of 𝑘, including silhouette analysis, 

rule-of-thumb, and the elbow method [13]. In the elbow method, 

a decreasing cost function 𝑐(𝑘) , for example, the average 

distance from any point in the data set to its centroid, is analyzed 

for 𝑘 = 1, … , 𝑛. As the value of 𝑘 is increased, the cost function 

will typically drop faster for lower values of 𝑘 and slower for 

larger values of 𝑘. For some applications, the decrease rate of 

the cost function will, for some value of 𝑘, distinctly slow down, 

and this value of 𝑘 is referred to as the elbow point. For our 

click-point data set, we illustrate in Fig 2 the application of the 

elbow method, where 𝑐(𝑘)  is the average distance from any 

point to its centroid. By visual inspection, the elbow appears to 

be somewhere in the interval [35,40]. 
 

 
Fig 2: The average distance from any point to its centroid 

for different values of 𝒌. The elbow appears to be 

somewhere in the interval [𝟑𝟓, 𝟒𝟎]. 

However, a further analysis of the k-means clustering for 𝑘 =
40  reveals that the types of clusters produced is clearly not 

suitable for identification of bicycle impediments, as the clusters 

vary significantly in terms of their spatial extension. This is 

illustrated in Fig 3, where we plot the largest and average 

distance from any point to its centroid for each cluster. In 

general, the clusters are spatially too big for 𝑘:s  around 40, and 

to obtain clusters that are small enough to be connected to 

bicycle impediments, a significantly higher 𝑘-value is required. 

However, this would instead give us many small clusters 

containing solitary points, and some clusters that are still 

spatially larger than a typical bicycle impediment. For 𝑘 = 200, 

we illustrate this in Fig 4. 

 

 
Fig 3: For each k-means cluster, where 𝒌 = 𝟒𝟎, the average 

distance from any point to its centroid (in blue) and the 

largest distance from any point to its centroid (in red). 

By analyzing Fig 3 and Fig 4, it appears that it is mainly the 

solitary points that prevent us from finding an appropriate value 

of 𝑘. Indeed, k-means clustering has no noise concept similar to 

DBSCAN and is therefore unable to identify solitary points. In 

addition, k-means clustering does not allow setting a limit on the 

minimum number of points to include in a cluster, or a 

maximum spatial cluster size. These aspects are important in our 

application, where a minimum number of clicks within a rather 

small area is required in order to define a bicycle impediment.  

Furthermore, it is well known that k-means clustering suffers 

from the problem of converging to a local optimum; hence, it 

has been suggested to restart k-means using different starting 
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solutions. For the considered, filtered data set, we applied k-

means clustering five times, with random initialization, for each 

𝑘 = 1, … , 350 . For each value of 𝑘 , we plot in Fig 5, the 

silhouette score for 1) the clustering with the lowest average 

distance to centroid (in red), 2) the clustering with the highest 

average distance to centroid (in green), and 3) the clustering 

with the median average distance to centroid (in blue). This 

confirms, for our data set, how sensitive the performance of k-

means clustering is for the initialization.  
 

 
Fig 4. For each k-means cluster, where 𝒌 = 𝟐𝟎𝟎, the largest 

distance from any point to its centroid. 

 
Fig 5: Silhouette score where we applied k-means clustering 

with five random initializations. For each value of 𝒌, we plot 

the silhouette score for the clustering with the lowest, 

median, and largest average distance from a point to its 

centroid. 

It should be emphasized that the Silhouette score (or Silhouette 

coefficient) [14] is often used in order to evaluate the quality of 

a clustering. The Silhouette coefficient 𝑠(𝑖)  of a data point 𝑖 
ranges between -1 and 1, where a higher value indicates that the 

data point quite well matches its own cluster, whereas a low 

value indicates that the data point poorly matches its own 

cluster. We let 𝑎(𝑖) denote the mean distance between a point 𝑖 
and all other data points in the same cluster, and 𝑏(𝑖) denote the 

smallest mean distance between 𝑖  and all points of a cluster, 

where the minimum is taken over all clusters except the one that 

𝑖 belongs to. The Silhouette coefficient of a point 𝑖 is defined as 

 

𝑠(𝑖) = {

𝑏(𝑖)−𝑎(𝑖)

max{𝑎(𝑖),𝑏(𝑖)}
 if |𝐶𝑖| > 1

0 if |𝐶𝑖| = 1
.  

 

The mean �̅�(𝑖) taken over all data points in the data set provides 

an indication of the quality of the generated clustering.  

4. Iterative k-means clustering 

In the current section, we present our iterative k-means 

clustering approach with outlier detection, which was originally 

presented by Holmgren et al. [3]. The approach aims to 1) 

identify an appropriate value of 𝑘 (for the k-means algorithm) 

and 2) remove solitary points from our data set. The approach, 

which is specified below (in Algorithm 1), makes use of iterative 

updates of 𝑘 and removal of solitary points, and it requires the 

following input parameters: 

 

• min_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 . The minimum number of points to 

allow in any cluster. 

• 𝑚𝑎𝑥_𝑑𝑖𝑠𝑡_𝑡𝑜_𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 . The maximum distance a 

point is allowed to be from the centroid of its cluster. 

• 𝑜𝑢𝑡𝑙𝑖𝑒𝑟_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . A point is considered to be a 

solitary point if and only if the distance to its centroid 

is larger than 𝑜𝑢𝑡𝑙𝑖𝑒𝑟_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 times the median of 

the distance to the centroid for all points in the same 

cluster. 

• 𝑘𝑖𝑛𝑖𝑡 ∈  ℤ+. The initial 𝑘-value used in the approach. 

 

Furthermore, we let 𝑃 denote the input set of click points. 
 

Algorithm 1: Iterative k-means clustering with outlier 

detection 

Step 0: Set 𝑷𝒄𝒖𝒓 = 𝑷 and 𝒌𝒄𝒖𝒓 = 𝒌𝒊𝒏𝒊𝒕. 

Step 1: Generate a k-means clustering 𝑪 for 𝒌 = 𝒌𝒄𝒖𝒓  and 

data point set 𝑷 = 𝑷𝒄𝒖𝒓. 

Step 2: Identify the set 𝑪′ ∈ 𝑪 of all clusters with less than 

𝒎𝒊𝒏_𝒔𝒂𝒎𝒑𝒍𝒆𝒔 data points. If |𝑪′|  =  𝟎: Go to Step 3. 

Otherwise: Go to Step 4. 

Step 3: For all clusters 𝒄′ ∈ 𝑪′  remove the point 𝒑′  with 

longest distance to its cluster centroid, i.e., set 𝑷𝒄𝒖𝒓 =
𝑷𝒄𝒖𝒓 ∖ 𝒑′. Set 𝒌𝒄𝒖𝒓 = 𝐦𝐚𝐱 (𝟏, 𝒌𝒄𝒖𝒓 − 𝟏) and go to Step 

1. 

Step 4: Identify the point 𝒑′ ∈ 𝑷𝒄𝒖𝒓, with distance 𝒅(𝒑′) to 

its cluster centroid, with largest value 𝒒 =
𝒅(𝒑′)

𝐦𝐞𝐝𝐢𝐚𝐧𝒑∈𝑪′ 𝒅(𝒑)
. 

If 𝒒 >  𝒐𝒖𝒕𝒍𝒊𝒆𝒓_𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅: Go to Step 5. Otherwise: 

Go to Step 6. 

Step 5: Remove 𝒑′, i.e., set 𝑷𝒄𝒖𝒓 = 𝒑𝒄𝒖𝒓 ∖ 𝒑′. Set 𝒌𝒄𝒖𝒓 =
𝐦𝐚𝐱 (𝟏, 𝒌𝒄𝒖𝒓 − 𝟏) and go to Step 1. 

Step 6: If 𝐦𝐚𝐱𝑷𝒄𝒖𝒓 𝒅(𝒑) > 𝐦𝐚𝐱 _𝒅𝒊𝒔𝒕_𝒕𝒐_𝒄𝒆𝒏𝒕𝒓𝒐𝒊𝒅 : Set 

𝒌𝒄𝒖𝒓 = 𝒌𝒄𝒖𝒓 + 𝟏 and go to Step 1. Otherwise: Terminate 

with approximate optimal 𝒌∗ = 𝒌𝒄𝒖𝒓, filtered data point 

set 𝑷𝒄𝒖𝒓, and clustering 𝑪. 

 

It should be emphasized that the proposed approach contains 

several (greedy) heuristic elements: 

• Step 1: Since k-means clustering is heuristic it cannot 

be guaranteed that the best clustering can be 

identified. In addition, choosing the best clustering is 

not a guarantee to find the optimal point set and 

optimal 𝑘 value at termination.  

• Step 3: We chose to remove one point from each of 

the clusters with less than 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 data points.  

• Step 4: The identification of potential solitary points 

is based on the chosen definition of what is a solitary 

point. It should be emphasized that different 

definitions might give different candidate sets.  

• Step 3, 5 and 6: The update of 𝑘𝑐𝑢𝑟 is heuristic, based 

on our perception of what is reasonable in order to 

converge to a proper 𝑘 value at termination.  

• The choice of input parameters also influences the 

performance of our iterative approach.  
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Considering the indication (see Section 3) that the optimal 𝑘 

value should be somewhere in the interval [35,40], we applied 

our iterative kmeans approach with initial 𝑘  value slightly 

below this interval. In particular, we applied our algorithm with 

𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 8 , 𝑚𝑎𝑥_𝑑𝑖𝑠𝑡_𝑡𝑜_𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = 50 ,  𝑘𝑖𝑛𝑖𝑡 =
30, and  𝑜𝑢𝑡𝑙𝑖𝑒𝑟_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  2.0. This resulted in a final 𝑘 

value of 41 (i.e., 𝑘∗  = 41), where 1053 (i.e., all but 569) of our 

1622 data points were discarded as solitary points. See Fig 6 for 

an illustration of the generated clusters.  

 

 
Fig 6: Generated clusters using our iterative k-means 

clustering approach with 𝒌 = 𝟒𝟏 and 1053 solitary points 

removed. 

For comparison, we present in Fig 7 the clusters generated with 

the DBSCAN algorithm [15] for three different values of 𝜖. By 

comparing Fig 6 and Fig 7, it can be seen that the DBSCAN 

clusters typically cover the k-means clusters; however, the k-

means clusters are in general more compact. The reader is 

referred to Holmgren et al. [3] for further details of the 

DBSCAN analysis.  

 

 
Fig 7: DBSCAN clusters using 𝝐 = 𝟓𝟑 (yellow), 𝝐 = 𝟔𝟑  

(red), and 𝝐 = 𝟕𝟑 (green).  

It should be emphasized that we evaluated the generated clusters 

by presenting them to traffic management practitioners of the 

Lund municipality, who confirmed that the identified bicycle 

impediments, represented by clusters, appear to be reasonable. 

They were able to explain several of the impediments, whereas 

some of them were previously unknown. 

In order to evaluate the robustness of our iterative k-means 

approach, we applied  it for 𝑘𝑖𝑛𝑖𝑡 ∈ {5,10, … , 100} , with 

𝑚𝑎𝑥_𝑑𝑖𝑠𝑡_𝑡𝑜_𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = 50 , 𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 8 , and 

𝑜𝑢𝑡𝑙𝑖𝑒𝑟_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 2.0 . For each value of 𝑘𝑖𝑛𝑖𝑡 , we 

conducted five runs, were we used the kmeans++ initialization 

approach [16] in each of the iterations. It should be mentioned 

that the kmeans++ initialization algorithm, which is the default 

initialization method in scikit-learn, has been suggested in order 

to propose an initialization that increases the possibility that k-

means will find a good local optimum. It should, however, be 

emphasized that kmeans++ is stochastic.  

The results of our robustness analysis clearly indicate that our 

iterative approach inherits the issue that the k-means algorithm 

tends to get stuck in different local optima, depending on how 

the initialization is done. In Fig 8, we plot the final 𝑘 values for 

each of our five series of runs with 𝑘𝑖𝑛𝑖𝑡 ∈ {5,10, … , 100}. For 

𝑘𝑖𝑛𝑖𝑡  values up to around 15-20, it appears that the final value of 

𝑘 is lower than for higher values of 𝑘𝑖𝑛𝑖𝑡 . Similarly, we plot in 

Fig 9, the number of solitary points for each value of 𝑘𝑖𝑛𝑖𝑡  for 

our five series of runs. Obviously, there is a negative correlation 

between the final 𝑘  value and the number of solitary points. 

Furthermore, we present in Fig 10, the silhouette score for each 

value of 𝑘𝑖𝑛𝑖𝑡 for our five series of runs. 

 

 
Fig 8: Final 𝒌  value for 𝒌𝒊𝒏𝒊𝒕 ∈ {𝟓, 𝟏𝟎, … , 𝟏𝟎𝟎}  and the 

kmeans++ initialization method, where we conducted five 

runs of our iterative k-means approach for each value of 

𝒌𝒊𝒏𝒊𝒕. Each color represents one series of runs.  

 
Fig 9: Number of solitary points for 𝒌𝒊𝒏𝒊𝒕 ∈ {𝟓, 𝟏𝟎, … , 𝟏𝟎𝟎} 

and the kmeans++ initialization method, where we 

conducted five runs of our iterative k-means approach for 

each value of 𝒌𝒊𝒏𝒊𝒕. Each color represents one series of runs. 
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Fig 10: Silhouette score for 𝒌𝒊𝒏𝒊𝒕 ∈ {𝟓, 𝟏𝟎, … , 𝟏𝟎𝟎} and the 

kmeans++ initialization method, where we conducted five 

runs of our iterative k-means approach for each value of 

𝒌𝒊𝒏𝒊𝒕. Each color represents one series of runs. 

It can be seen that the Silhouette score for the final clusterings 

also vary significantly; however, it can be argued that a higher 

silhouette score indicates a better clustering. Hence, we plot for 

each value of 𝑘𝑖𝑛𝑖𝑡  in Fig 11 and Fig 12 the final 𝑘 value and 

number of solitary points, respectively, for the runs with the 

highest Silhouette score. This results clearly indicate that the 

final 𝑘 values and number of generated solitary points stabilize 

if we choose the clusterings with higher silhouette score. In turn 

this could indicate that a proper final 𝑘 value, for the considered 

application with solitary points removed, is approximately in the 

range [40,45], a value that can be reached for values of 𝑘𝑖𝑛𝑖𝑡  

ranging from 20 at least up to 100. This also indicates that the 

silhouette score might be a proper indication of how well our 

iterative k-means approach manages to identify solitary points, 

and to identify a proper 𝑘 value.  

 

 
Fig 11: Final 𝒌  value for 𝒌𝒊𝒏𝒊𝒕 ∈ {𝟓, 𝟏𝟎, … , 𝟏𝟎𝟎}  and the 

kmeans++ initialization method, for the runs with best 

silhouette score. 

For the interested reader, we present in Fig 13 the evolution of 

𝑘  for two runs of our iterative k-means clustering approach, 

where 𝑘𝑖𝑛𝑖𝑡 = 40. It can be seen that both of the runs converge 

towards the same final 𝑘 value even though the evolution of 𝑘 

is different.  

Furthermore, we present in Table 1 the adjusted Rand index for 

pairwise comparisons of the clusterings generated for the runs 

with best silhouette score for 𝑘𝑖𝑛𝑖𝑡 ∈ {30,35,40,45,50} . The 

adjusted Rand index [17] is a measure that can be used in order 

to compare the partitions (i.e., clusters) included in two 

clusterings. Basically, the adjusted Rand index gives a measure 

of the degree of agreements between two clusterings. 

As the set of solitary points varies for the different runs (see Fig 

12), we had to include the solitary points in the adjusted Rand 

score calculation. In particular, we assigned all solitary points 

for each of the runs to a separate cluster. 

 

Fig 12: Number of identified solitary points for 𝒌𝒊𝒏𝒊𝒕 ∈
{𝟓, 𝟏𝟎, … , 𝟏𝟎𝟎} and the kmeans++ initialization method, for 

the runs with best silhouette score.  

 

Fig 13: Evolution of 𝒌 for two runs, represented in blue and 

red, respectively, of our iterative k-means clustering 

approach, where 𝒌𝒊𝒏𝒊𝒕 = 𝟒𝟎. 

Table 1: Adjusted Rand index for 𝒌𝒊𝒏𝒊𝒕 ∈
{𝟑𝟎, 𝟑𝟓, 𝟒𝟎, 𝟒𝟓, 𝟓𝟎}, for the runs with best silhouette score. 

𝑘𝑖𝑛𝑖𝑡  35 40 45 50 

30 0.862 0.896 0.914 0.878 

35  0.858 0.892 0.837 

40   0.879 0.871 

45    0.844 

 

5. Discussion and concluding remarks 

In the current paper, which is an extension of Holmgren et al. 

[3] we have presented a clustering analysis for the identification 

of so-called bicycle impediments, which are locations in the 

traffic network where bicyclists tend to feel unsafe in the traffic 

situation. We present an iterative k-means clustering approach 

with outlier detection, which is tailored for the considered 

application. In particular, we extend the work by Holmgren et 

al. [3] with an in-depth analysis of our iterative k-means 

clustering approach.  

The presented iterative k-means approach is based on repeated 

application of the k-means algorithm, where it aims to 1) 
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identify a proper 𝑘  value and 2) identify solitary points 

(including outliers). Hence, it aims to address two of the main 

weaknesses of the k-means algorithm, that is, that it requires that 

a proper 𝑘 value is provided as input and that it is not able to 

identify outliers in the considered data set.   

As mentioned above, it is well known that the k-means 

clustering algorithm is sensitive towards the choice of starting 

solution, that is, the initial choice of cluster centroids, and it 

typically converges towards a local optimum. In order to analyze 

whether the characteristic that k-means tends to converge 

towards a local optimum has an influence of our iterative k-

means clustering approach, we conducted a robustness analysis 

consisting of five series of runs with our approach. In each of 

the series, we considered 𝑘𝑖𝑛𝑖𝑡  values ranging from 5 to 100, 

that is, 𝑘𝑖𝑛𝑖𝑡 ∈ {5,10, … , 100}. The results from our robustness 

analysis clearly indicate that our iterative approach inherits the 

sensitiveness towards the initialization from the standard k-

means algorithm. 

However, our results indicate that the Silhouette score (even 

though it is proposed for visual analysis of clusterings, can be 

used as an indicator of the quality of a clustering. By choosing 

the clustering with the highest Silhouette score for each of the 

runs for a particular value of 𝑘𝑖𝑛𝑖𝑡  (at least if 𝑘𝑖𝑛𝑖𝑡 ≥ 20), it 

appears that the outcome of the algorithm stabilizes (see Fig 11). 

Hence, we recommend, just as for standard k-means clustering, 

to run our iterative clustering approach multiple times and 

choose the clustering with highest Silhoutte score.  

Our results further indicate that our iterative approach is not very 

dependent on choosing a proper initial 𝑘 value (i.e., 𝑘𝑖𝑛𝑖𝑡). For 

our data set, where it appears that a proper final 𝑘  value 

approximately lies in the range [40,45], it appears that 𝑘𝑖𝑛𝑖𝑡  

ranging from 20 up to at least 100 (we did not test values higher 

than 100) gives reasonable results.  

In order to compare the generated clusterings for the runs with 

best silhouette score, we generated the adjusted Rand index for 

pairwise comparison of the runs with 𝑘𝑖𝑛𝑖𝑡 ∈ {30,35,40,45,50}. 

The adjusted Rand index values for these comparisons vary 

between 0.837 and 0.914, which we consider to be a rather 

strong indication that the clusterings generated for different 

values of 𝑘𝑖𝑛𝑖𝑡  are rather consistent.  

As mentioned above, the Rand index compares partitions of a 

dataset (clustering results). Hence, it defines a value for each 

pair of results. A graph can be created where each vertex 

represents a clustering result and the edges are labeled with the 

Rand index. Two vertices are connected if and only if the Rand 

index for the pair exceeds a given threshold. Cliques in such a 

graph may identify families of more or less equivalent 

clusterings. In many problems there is no single best clustering 

representing the base truth; however, there may be a family of 

similar clusterings that solve the impediment identification 

problem in a sufficient way. This is suggested by the diagrams 

because of the plateaus for 𝑘 and for the number of solitary 

points. Future research will focus on identifying maximal 

cliques having sufficiently large average silhouette value in the 

Rand index based graph and on summarizing the resulting 

cluster family for use by the officer in charge for impediment 

resolution. 

An interesting observation for the considered data set is that the 

elbow method, applied on the data set including the solitary 

points, suggested that the optimal value 𝑘 is approximately in 

the range [30,40] . Our iterative approach suggests that an 

appropriate 𝑘 value is just slightly higher, that is, in the range 

[40,45] . Perhaps this could be an indication that the elbow 

method could be used on the original data set in order to find an 

appropriate value of 𝑘𝑖𝑛𝑖𝑡  for our iterative approach.  

As mentioned above, our iterative approach contains some 

heuristic steps, which obviously might influence the 

performance of the approach. For example, we use kmeans++ in 

Step 2; however, kmeans++ does not always provide the best 

clustering, as it is to some extent stochastic. In order to  analyze 

whether finding better clusterings in each of the iterations tends 

to lead to a better final clustering, we made, in addition to our 

first kmeans++ series of runs, three additional series of  

experiments, where we added 10, 20, and 30, random 

initializations, respectively in each of the iterations of our 

approach. Then we chose to use the clustering with the lowest 

average distance from each point to its centroid, assuming that 

the lowest average distance is a proper measure of the clustering 

quality. One could believe that choosing the best clustering in 

each of the iterations should lead to a better final clustering; 

however, the results of our experiments does not support this. 

For the details, see Fig 14 and Fig 15, where we plot the final 

𝑘 value and number of iterations where a random initialization 

is better than kmeans++, respectively, for each of the considered 

𝑘𝑖𝑛𝑖𝑡  values for our four runs. 

 

 
Fig 14: Final 𝒌 value when only using kmeans++, and when 

adding 10, 20, and 30 random initializations, respectively, in 

each of the iterations of our iterative approach.  

 
Fig 15: Number of iterations (of approximately 2000) where 

a random initialization gives a better clustering than 

kmeans++, when adding 10, 20, and 30 random 

initializations, respectively, in each of the iterations of our 

iterative approach. 
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