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ABSTRACT

Missing data is a common problem in general applied studies, and specially in clinical

trials. For implementing sensitivity analysis, several multiple imputation methods exist, like

sequential imputation, which restricts to monotone missingness, and Bayesian, where the

imputation and analysis models differ, entailing overestimation of variance. Also, full condi-

tional specification provides a conditional interpretation of sensitivity parameters, requiring

further calibration to get the desired marginal interpretation. We propose in this paper a

multiple imputation procedure, based on a multivariate linear regression model, which keeps

compatibility in sensitivity analysis under intermittent missingness, providing a marginal

interpretation of the elicited parameters. Simulation studies show that the method behaves

well with longitudinal data and remains robust under demanding constraints. We conclude
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the possibility of situations not covered by the existing methods and well suited for our pro-

posal, which allows more efficient handling of a given multivariate linear regression structure.

Its use is illustrated in a real case study, where a sensitivity analysis is accomplished.

1. INTRODUCTION

Missing data is a common problem in general applied studies, and specially in clinical

trials (Wood et al., 2004; Dı́az-Ordaz et al., 2014; Uranga et al., 2017). An improper

treatment of missing data may have serious implications for the accuracy of inferences of

many clinical studies. Then, it is necessary to provide rigorously validated methodological

tools that allow tackling this problem. Multiple imputation (MI) is a widely used method to

handle missing data. It was formally introduced by Rubin (1978). Several other sources offer

easy-to-read descriptions of the technique (Rubin, 1976, 2004; Buuren, 2012; Carpenter and

Kenward, 2013; Little and Rubin, 2014; O’Kelly and Ratitch, 2014). It is possible to impute

qualitative and quantitative data, and to distinguish among missing data in a response

variable or in covariates (Verbeke and Molenberghs, 2000; Molenberghs and Verbeke, 2005).

Clinical trials typically present data of a multivariate structure where, for each individual,

several response variables are measured; as well as data of a longitudinal nature, where an

outcome is measured repeatedly over time. Both situations may be tackled by the so-called

multivariate linear regression model. A general imputation strategy for the missing data,

which is suitable in this setting, is joint modelling. Under this approach, imputations are

drawn from a joint model fitted to the data. The strategy is usually implemented by a

method that assumes multivariate normality, which we shall call MND (as an abbreviation of

“multivariate normal data”), with a Gibbs sampler algorithm built on a somewhat restricted

imputation model (Carpenter and Kenward, 2013; Buuren, 2012).

Other strategies are sequential regression imputation, which operates under monotone

missingness, and full conditional specification (FCS), where the multivariate model is im-

plicitly specified by a set of conditional univariate ones (Buuren, 2012; Carpenter and Ken-

ward, 2013). The methods referred are currently implemented in the statistical software

SAS for Windows, version 9.3 or higher (SAS, 2011). A further development is Bayesian
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multiple imputation, implemented in the SAS macros by DIA Missing Data Working Group

(available at the web page of the Drug Information Association missing data working group,

http://missingdata.org.uk/).

Sequential MI has been used for implementing sensitivity analysis via delta-adjustment

(Ratitch et al., 2013) and Bayesian MI for control-based imputation (Liu and Pang, 2017).

In the first case, imputations are restricted to monotone missing data and in the second,

concerns about variance overestimation have been raised (Ayele et al., 2014; Seaman et

al., 2014; Liu and Pang, 2015, 2017). Tompsett et al. (2018) have criticized the conditional

interpretation of sensitivity parameters under FCS and have proposed a method for improved

elicitation.

Recall that Rubin’s rules apply if the imputation model is more general than the analysis

model, which should then be compatible, or congenial (Meng, 1994; Schafer, 1997). Accord-

ing to Seaman et al. (2014), the problem with control-based imputation arises because the

imputer assumes more than the analyst, which is known to cause the Rubin’s rule variance

estimator to overestimate the repeated sampling variance (Meng, 1994). Indeed, in the so-

called “jump to reference”, “copy reference”, and “copy increments in reference” approaches,

the mean structure of the imputation model is modified, implying the imposition of strong

assumptions that are no longer made when the imputed data are analysed.

Standing on concerns about complicated mean structures which could invalidate the per-

formance of MI strategies, De Silva et al. (2017) compare, in a simulation study, multiple

imputation methods for handling missing values in longitudinal data in the presence of a

time-varying covariate with a non-linear association with time; De Silva et al. (2019) com-

pare multiple imputation methods for handling missing values in a longitudinal categorical

variable with restrictions on transitions over time; and Kalaycioglu et al. (2016) assess the

performance of MI methods for imputing missing data in longitudinal observational health

studies, with particular focus on incomplete time varying explanatory variables, while atten-

tion is also driven to covariance structures.

In this paper, a joint modelling strategy for multiple imputation of data arising from
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a given multivariate linear regression model is proposed, which enhances MND by way of

changing the order of drawing the parameters of the Gibbs sampler algorithm, thus allowing

a more general mean structure for the imputation model. The applications of the procedure

encompass data of a multivariate as well as a longitudinal nature. The method has a natural

extension to account for sensitivity analysis.

Section 2 presents the methodology in six subsections. The first highlights a lack of

generality inherent to the imputation model of MND. The second introduces the new proposal

as a solution to this problem, with a contribution to sensitivity analysis described in Section

2.3, which constitutes a strength over sequential MI, because intermittent missing patterns

are allowed; as well as over FCS, because sensitivity parameters have now a convenient

marginal interpretation. To make the presentation self-contained, algebraic descriptions of

the imputation algorithms of sequential MI and FCS are given. A case study is introduced

in Section 2.6, and results are shown in Section 3, with two simulation studies in Sections

3.1, 3.2 and an illustrative tipping point analysis applied to the case study in Section 3.3.

2. MULTIPLE IMPUTATION METHODS AND SENSITIVITY ANALYSIS

The proposed method for multiple imputation is the main purpose of Section 2. The pro-

cedure surpasses MND in that a more general imputation model is allowed; it also surpasses

sequential MI and FCS in certain applications. To this end, subsections are dedicated to

the algebraic description of the imputation algorithm of each method, with one devoted to

describe a contribution of the new proposal to sensitivity analysis.

2.1. A Drawback of Multiple Imputation for Multivariate Normal Data

We highlight in this section a drawback inherent to multiple imputation for multivariate

normal data (shortly MND). Assume we have a sample from the p-variate normal distribu-

tion, denoted Yi = (Yi1, .., Yip)
T , i ∈ {1, ..., n}. The data then conform to the model

Yi | µ,Σ ∼ N (µ,Σ) , (1)

where µ and Σ are the mean and variance-covariance matrix of Yi. Assume there is partial

4



Figure 1: A drawback of MND, and a solution.

loss of information in Y, the np column vector achieved by stacking the Yi, and denote

by YO, YM the subvectors of observed and missing data. Accept that the missingness

mechanism is missing at random (MAR) (Rubin, 1976; Molenberghs and Kenward, 2007).

As Fig. 1 shows, the multiple imputation tool splits into three steps or, using Rubin’s

terminology, tasks: imputation, analysis and combination (Carpenter and Kenward, 2013;

Rubin, 2004; Verbeke and Molenberghs, 2000). Under MAR, the imputation task entails

generation of random instances from the distribution of missing given observed data, termed

Bayesian predictive distribution. This distribution is usually involved, and the imputation

task must be resolved by appealing to some simulation method of MCMC type (Markov

Chain Monte Carlo) (Hastings, 1970) or similar, such as Gibbs sampler (Geman and Geman,

1984). To initialize the sampler, one can choose initial values of the parameters by estimation

from the observed data, or draw a starting value of YM by sampling from YO. In the case

of MND, the Gibbs sampler switches, under an independence Jeffreys prior, between the
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following steps:

1. Draw Σ | YM ,YO

2. Draw µ | Σ,YM ,YO

3. Draw YM | µ,Σ,YO

to get, at the end of the chain, a random instance from f (YM | YO). This is possible because

in step 1 the distribution is inverse Wishart, and in steps 2 and 3 it is normal; that is, they

are easy to simulate (Carpenter and Kenward, 2013; Schafer, 1997; Box and Tiao, 2011).

Assume now that, instead of (1), the data conform to the model

Yi | β,Σ,Xi ∼ N (Xiβ,Σ) (2)

where Xi are p× q matrices of known covariates. Denote by X the np× q matrix obtained

by stacking the Xi’s, which thus enhance the set of observed data YO. We could think then

about switching between

1. Draw Σ | YM ,YO,X

2. Draw β | Σ,YM ,YO,X

3. Draw YM | β,Σ,YO,X

to get a random instance from f (YM | YO,X) - the required conditional distribution of the

missing given the set of observed data. This, however, is not an easy task, because we face

in step 1 with an involved distribution which is no longer inverse Wishart. Hence, in this

setting, the imputation and analysis models of MND would differ, causing congeniality issues

(Meng, 1994). The next section introduces a multiple imputation procedure as a solution to

this drawback.

2.2. Multiple Imputation under Multivariate Linear Regression
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We have seen that the Gibbs sampler of MND does not absorb (2) as imputation model,

because one of the implied conditional distributions is involved. A subtle way to overcome

the problem is to attempt changing the order of drawing the parameters, as follows (see also

Fig. 1):

1. Draw Σ | β,YM ,YO,X

2. Draw β | Σ,YM ,YO,X

3. Draw YM | β,Σ,YO,X

This happens to be a satisfactory solution: under an independence Jeffreys prior, the

distribution in step 1 is inverse Wishart, and in steps 2 and 3 it is normal. We shall call

the presented proposal to MI: MLR, as an abbreviation of “multivariate linear regression”.

To obtain the explicit expressions for the conditional distributions included in the Gibbs

sampler algorithm of MLR choose, following Box and Tiao (2011), the non-informative prior

f (β,Σ) ∝ |Σ|−
p+1
2 .

Then the posteriors implied by model (2) are

f (Σ | β,Y,X) ≡ W−1

(
n,

n∑
i=1

(Yi−Xiβ) (Yi−Xiβ)T
)

,

f (β | Σ,Y,X) ≡ N
((

XT (In ⊗Σ−1) X
)−1

XT (In ⊗Σ−1) Y,
(
XT (In ⊗Σ−1) X

)−1
)

where In is the identity matrix of order n. Note that these expressions are the same as

formulas (7) and (8) of Percy (1992). To get f (YM | β,Σ,YO,X), denote by XO, XM the

submatrices of X corresponding to YO, YM , by ΣOO ΣOM

ΣMO ΣMM


the resultant grouping of the matrix In ⊗ Σ, and apply the formula of the multivariate

conditional normal distribution to YO

YM

 | β,Σ,X ∼ N

 XOβ

XMβ

 ,
 ΣOO ΣOM

ΣMO ΣMM




7



yielding

f (YM | β,Σ,YO,X) ≡ N (XMβ + ΣMOΣ−1
OO (YO −XOβ) ,ΣMM −ΣMOΣ−1

OOΣOM).

We shall see next that not only MLR surpasses MND in a greater flexibility for the

imputation task, but also enjoys a natural application to sensitivity analysis, namely to the

so-called delta-adjustment where, in contrast to previous methods proposed in the statistical

literature, the analysis can be done under general intermittent patterns of missing data, and

the sensitivity parameters have a convenient marginal interpretation.

2.3. Application of MLR to sensitivity analysis

Delta-adjusted pattern imputation is a strategy that can be used for sensitivity analysis

under a clearly formulated clinical assumption (Ratitch et al., 2013; Liu and Pang, 2017).

Specifically, the assumption is that subjects from the experimental treatment arm in a con-

trolled clinical trial who miss a given time-point would have, on average, their unobserved

efficacy score worse by some amount δ compared with the observed efficacy score of subjects

that continue to the next time-point. Subjects missed from the control arm would exhibit

the same evolution of the disease as control subjects that stay on study. Ratitch et al. (2013)

restrict to monotone missingness and Liu and Pang (2017) overcome intermittent missing-

ness patterns by assuming that the intermittent missing data can be imputed under MAR

to create monotone patterns.

MLR can be successfully used for applying delta-adjustment in the presence of intermit-

tent missing data. To this end assume, in the context of Sections 2.1 and 2.2, that instead

of (2), the data conform to the model

Yi | β, δ,Σ,Xi,Zi ∼ N (Xiβ + Ziδ,Σ) (3)

where Zi are additional covariates and δ is a set of sensitivity parameters whose values would

be elicited (Tompsett et al., 2018). Then, after imputing missing values of Yi using (2) as

imputation model via MLR, simply add the additional constant term Ziδ to get the desired

imputed data from model (3).

This procedure corresponds to the approach, described in Ratitch et al. (2013), that
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first imputes all values (all time-points) using an MAR-based method and only then applies

δ-adjustments. Typically, Zi would be a p× 1 vector of missing data indicators, weighted by

some constants (which vanish for the control group in a clinical trial), and δ a scalar quantity.

According to Ratitch et al. (2013), the procedure can be useful if it is desired to impose

a fixed and definite set of quantities to encapsulate the change in efficacy associated with

missingness - for example, to impose a worsening over time that was observed in withdrawals

in historic data.

The proposed approach to sensitivity analysis via MLR surpasses previous approaches

based on sequential MI, which restrict to monotone missing data, and FCS, where the sensi-

tivity parameters have a conditional interpretation. To make the exposition self-contained,

we give an algebraic description of the imputation algorithms of these last two methods.

2.4. Sequential Regression Imputation

Sequential regression is a method of multiple imputation described in Carpenter and

Kenward (2013). It works under MAR monotone missingness. With notations borrowed

from Section 2.1, the method assumes, at each stage j, 2 ≤ j ≤ p, the validity of the

univariate linear regression model

Yij = γ0j + γ1jYi1 + . . .+ γj−1,jYi,j−1 + εij, εij ∼ N
(
0, σ2

j

)
.

Using data from individuals with Yij observed which, by the monotone assumption, have

Yi1, . . . , Yi,j−1 observed, fit this model, obtaining the ordinary least squares estimates γ̂j, σ̂
2
j

of γj = (γ0j, γ1j, . . . , γj−1,j) and σ2
j . Assuming that the prior distribution of

(
γj, σ

2
j

)
has

density proportional to σ−2
j , sequential imputation performs the following two steps in the

imputation task:

1. Draw γj, σ
2
j | γ̂j, σ̂2

j

2. For each unobserved Yij, draw Yij | Yi1, . . . , Yi,j−1,γj, σ
2
j

This is possible because the distribution in step 1 is a particular case of the normal-

inverted Wishart, and in step 2 it is normal. Note that for j = 3, . . . , p there will be
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some units with Yij missing and with one or more of Yi2, . . . , Yi,j−1 missing, and imputed at

previous steps. These previously imputed values are used when imputing Yij. It is assumed

that Yi1 is observed, 1 ≤ i ≤ n. If appropriate in the context, the fully observed variables

can include covariates, like group indicators in a randomized controlled study. To allow for

intermittent missing data, one can first use MND to transform intermittent into monotone,

then use sequential MI. Ratitch et al. (2013) report an application of Sequential MI to

sensitivity analysis under monotone missing data.

2.5. Full Conditional Specification

Full conditional specification is described in Buuren (2012). With a slight change of

notation from Section 2.1, let the data be represented by the n × p matrix Y. In the

presence of missing data Y is partially observed. Denote by Yj the j-th column in Y,

and by Y−j the complement of Yj, that is, all columns in Y except Yj. Under MAR, the

algorithm for the imputation task of FCS is as follows.

1. Specify an imputation model P
(
Ymiss

j | Yobs
j ,Y−j, θj

)
for variable Yj

with j = 1, . . . , p, where θj are parameters.

2. For each j, fill in starting imputations Ỹ0
j by random draws from Yobs

j .

3. Repeat for t = 1, . . . , T :

4. Repeat for j = 1, . . . , p :

5. Define Ỹt
−j =

(
Ỹt

1, . . . , Ỹ
t
j−1, Ỹ

t−1
j+1, . . . , Ỹ

t−1
p

)
as the currently complete data

except Yj.

6. Draw θ̃tj ∼ P
(
θtj | Yobs

j , Ỹt
−j

)
.

7. Draw imputations Ỹt
j ∼ P

(
Ymiss

j | Yobs
j , Ỹt

−j, θ̃
t
j

)
.

8. End repeat j.

9. End repeat t.

Tompsett et al. (2018) criticize the use of FCS in sensitivity analysis, due to the condi-

tional interpretation of parameters, and develop procedures for tackling this problem. In this

respect note that, with the extension of MLR to account for delta-adjustment, the sensitivity

parameters have a marginal meaning, which is a strength.
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Table 1: Missingness patterns for the Hamilton Depression study.

Measurement occasion

Week 1 Week 2 Week 3 Week 4 Week 6 Week 8 Week 10 Number %

Completers

O O O O O O O 52 67.53

Dropouts

O O O O O O M 6 7.79

O O O O O M M 2 2.60

O O O M M M M 2 2.60

O O M M M M M 4 5.19

O M M M M M M 5 6.49

M M M M M M M 2 2.60

Non-monotone missingness

O O M O O O O 2 2.60

O M O O M M M 1 1.30

O M O M M M M 1 1.30

2.6. Case Study

The sensitivity analysis described in this paper was applied to data from a phase II, multi-

center, randomized, double-blind, placebo-controlled clinical trial in subjects with major

depressive disorder. The primary endpoint was the total score from the first 17 questions of

the 25-item Hamilton Depression Scale (HAM-D-17 total score) ranging from 0 to 52, with

lower values corresponding to more favourable outcomes. Study visits were scheduled at

baseline and at weeks 1, 2, 3, 4, 6, 8, and 10. The aim of the trial was to assess if the arms

differed in the HAM-D-17 total score at week 10, after adjusting for baseline values. Table

1 shows the missingness patterns: 21/77 patients (27.3%) have monotone missing data and

4 subjects (5.2%) have intermittent missingness.
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We used the “tipping point” strategy for analysis of this incomplete data set, where

the delta-adjusting approach discussed in Section 2.3 was used for estimating sensitivity to a

range of assumptions (Ratitch et al., 2013). A series of analyses were performed with a range

of increasing δ values so that we could assess at which point the study conclusions changed

from favourable to unfavourable, that is, so that we could find a tipping point. Then, a

clinical interpretation regarding the δ value representing the tipping point was considered

to judge whether the corresponding differences between the dropouts and completers were

plausible. To define Zi we assigned, to each subject i in the experimental arm, increasing

weights of consecutive values per each run of missing values.

The following model was used for the analysis task: Yij = β1 + β2Hi + β3Gi + β4tj + β5Gitj + β6t
2
j + β7zij + bi + εij,

bi ∼ N (0, d2) , εij ∼ N (0, σ2) independent.
(4)

Here 1 ≤ i ≤ 77, 1 ≤ j ≤ 7; Hi is the baseline HAM-D-17 total score of patient i; Gi takes

the values 0 for control and 1 for the experimental group; the time variable tj represents

measurement occasion in weeks; and zij is the weighted missing data indicator. To impute

missing data via MLR under the MAR assumption, we used a model with the same mean

structure but the term “β7zij” excluded, and with an unstructured covariance matrix. We

then added the constant term “δzij” to perform delta-adjustment. Under MAR, the effect

of interest is given by β3 + 10β5.

3. RESULTS

To provide an experimental validation of MLR, two simulation studies are undertaken,

the first in a standard longitudinal setting and the second, in a more demanding setting,

where we shall see that MLR surpasses its counterparts. The exposition ends with results

from a sensitivity analysis performed to the case study described in Section 2.6.

3.1. Simulation Study in a Standard Setting

We present in this section the results of a simulation study in a standard longitudinal

setting; the aim is to compare the performance of MLR with its analogues implemented in
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SAS. Assume the execution of a hypothetical clinical trial with N = N0 + N1 individuals

enrolled in a control (N0 subjects) and an experimental (N1 subjects) group. For each patient

one plans to collect measurements of a quantitative response variable at p occasions. The

profile of a hypothetical individual i is defined as the vector of p components Yi = (Yi1, ..., Yip)

where each component Yij represents the measurement of the response variable at occasion

j. We use the following instance of (2) as analysis model:
Yij = β1 + β2Gi + β3tj + β4Gitj + δij,

δij = αδi,j−1 + zij, δij ∼ N (0, λ2) ,

zij ⊥⊥ δi1, ..., δi,j−1,

(5)

allowing an unstructured covariance matrix for the imputation model.

In these notations, Gi takes the values 0 for control and 1 for the experimental group;

the time variable tj takes the value j
p
, 1 ≤ j ≤ p, j integer; the parameter vector is θ =

(β1, β2, β3, β4, α, λ
2). We set N0 = N1 = 75 and generate random samples from model (5)

with p = 3, θ = (9, 4, 8, 3, 0.6, 2); then generate missing data according to the logistic model

logit [P (Di = j | Di ≥ j,yi)] = ψ0 + ψ1yij + ψ2yi,j−1, 2 ≤ j ≤ p,

in line with Diggle and Kenward (1994), setting ψ0 = 0, ψ1 = 0, ψ2 = −0.085. This is

an MAR mechanism restricted to dropout, where Di denotes dropout occasion. At the

measurement level, the proportions of missing values are equal to approximately 20%.

We use one of the following methods to get a maximum likelihood (ML) estimate θ̂ of

θ with an associated 95% confidence interval (CI) for each component: direct ML, MND,

sequential MI, FCS, and MLR. The process is iterated 500 times and allows to get, as

summary indicators of the performance of the methods, coverage, defined as the proportion

with which the CI covers the true value, and bias, defined as the absolute value of the

average difference between true value and estimate. Results are shown in Table 2, where

it is apparent that MLR and its counterparts behave excellently, with negligible bias and

coverage about 95%. SAS code is given in Part I of an electronic appendix.

3.2. Simulation Study in a Demanding Setting
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Table 2: Absolute bias and coverage of five methods for treating missing data in a standard

longitudinal setting (ML = maximum likelihood, MND = multiple imputation for multivari-

ate normal data, Sequential MI = multiple imputation by sequential regression, FCS = full

conditional specification, MLR = multivariate multiple imputation).

Setting

ML MND1 Sequential MI FCS MLR

β1 = 9, β2 = 4, β3 = 8, β4 = 3, α = 0.6, λ2 = 2

Bias Cov. Bias Cov. Bias Cov. Bias Cov. Bias Cov.

β1 0.00 0.94 0.00 0.95 0.00 0.94 0.00 0.93 0.00 0.94

β2 0.00 0.93 0.00 0.94 0.01 0.94 0.00 0.93 0.00 0.93

β3 0.01 0.93 0.00 0.94 0.00 0.96 0.01 0.94 0.00 0.96

β4 0.00 0.94 0.01 0.93 0.01 0.95 0.00 0.94 0.00 0.93

α 0.00 0.96 0.00 0.96 0.00 0.96 0.00 0.96 0.00 0.95

λ2 0.01 0.95 0.03 0.96 0.01 0.94 0.02 0.95 0.01 0.95

1 Multiple imputations are performed separately by each category of the group covariate.

Here we present the results from a second simulation study. Similar to Section 3.1, assume

the execution of a hypothetical clinical trial, but now label the group indicator as Gi = 1

for the control and Gi = 0 for the experimental arm. We then use the model
Yij = β1 + β2Gi + β3tj + δij, 1 ≤ j ≤ 2,

δi2 = αδi1 + zi2, δij ∼ N (0, λ2) ,

zi2 ⊥⊥ δi1

(6)

and set N0 = N1 = 75, p = 2, θ = (β1, β2, β3, α, λ
2) = (9, 4, 8, 0.6, 2). Following generation

of random samples from model (6), values Yij are deleted with Gi = 1, j = 2. This is

an instance of an MAR mechanism, dependent on the group covariate Gi. The number of

iterations is 500. We assess the performance of the same methods described in Section 3.1.

Results are shown in Table 3.
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Table 3: Average estimates, bias and coverage of five methods of treating missing data in a

demanding setting (ML = maximum likelihood, MND = multiple imputation for multivariate

normal data, Sequential MI = multiple imputation by sequential regression, FCS = full

conditional specification, MLR = multivariate multiple imputation).

Setting

ML MND1 Sequential MI FCS MLR

β1 = 9, β2 = 4, β3 = 8, α = 0.6, λ2 = 2

Est. Bias Cov. Est. Bias Cov.

β1 8.99 0.01 0.95 9.00 0.00 0.95

β2 4.00 0.00 0.94 Algorithm Algorithm Algorithm 4.00 0.00 0.94

β3 8.01 0.01 0.96 fails fails fails 8.00 0.00 0.94

α 0.60 0.00 0.95 0.60 0.00 0.94

λ2 1.98 0.02 0.95 2.00 0.00 0.96

1 Multiple imputations are performed separately by each category of the group covariate.

Sequential MI fails because, to impute, it works with the conditional distribution of the

second measurement given the first. Since, for the observed second measurements Yi2, the

group indicator Gi is identically zero, the group effect β2 does not appear in the imputation

algorithm, and this implies that β2 is inestimable with this method. FCS uses, in turn, the

two conditional distributions implied by model (6) for Yi1 given Yi2 and vice-versa. Here

occurs, again, the phenomenon encountered with Sequential MI, when imputing the second

observation given the first.

MND fails because imputations are being done separately for each category of the group

covariate, and for Gi = 1 there are not observations on Yi2, which causes non-convergence of

the algorithm. This phenomenon resembles a similar one with maximum likelihood: the ML

estimate of µ in model (1) does not exist if, for all i and some fixed j, the j-th component

of Yi is missing. One could attempt fitting the joint model differently, e. g. altogether.
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However, we should not expect good behaviour in this case, since the imputation model does

not include categorical predictors, implying that the analysis model (6) cannot be embedded

in it (the models are not compatible). An additional simulation was done and reported

distorted results (high bias and low coverage).

The explanation why MLR behaves well in this setting is the same as that for direct

ML: these methods work in the long format, allowing for categorical predictors. Despite

the missing data structure, the maximum likelihood estimator from model (6) exists, and

imputations via MLR are also well-defined.

3.3. Tipping Point Analysis for the Hamilton Depression Clinical Trial

Table 4 and Fig. 2 present the results of analyses using the MLR delta-adjustment

strategy with different values of δ applied to the example dataset described in Section 2.6.

The values of δ range from 0 (corresponding to an MAR based MI analysis) to 3. These results

illustrate how conclusions for early missed observations could be affected by increasingly

pessimistic assumptions for the experimental arm about the HAM-D-17 score.

Under MAR, the estimated profile for non-completers coincides, in both groups, with

that of completers, because the coefficient of the missingness indicator is set to zero. Since,

for patients in the control group, completers and non-completers are assumed to share the

same behaviour, their predicted profiles also coincide in all settings. When δ = 0, the

predicted profile in the experimental arm is significantly separated, in favour of a better

response, from that of the control arm. When the HAM-D-17 is increased by δ = 1 at each

consecutive missed visit, the estimated profile for a patient who drops out at the fourth week

in the experimental arm is closer to that of the controls, as shown in Fig. 2. When δ = 2,

experimental dropouts surpass controls in favour of a worse response, and when δ = 3, this

inverted separation is more pronounced.

Table 4 shows the estimates of the group effect at week 10 under the different values of δ.

When δ = 0, 1, 2, a significant effect in favour of the experimental group is attained. When

δ = 3, significance is lost. If a worsening of 3 in the HAM-D-17 score is clinically plausible

for early non-completers in the experimental arm, then this tipping point analysis would
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Table 4: Results from analyses using standard multiple imputation (MI) and delta-

adjustment. Estimates of group effect at week 10 of Hamilton Depression Scale total score.

Analysis Estimate (CI) p-value

Standard MI (MAR-based) -6.503 (-8.980,-4.027) 0.0000

Delta-adjusting: δ = 1 -4.640 (-6.968,-2.312) 0.0001

Delta-adjusting: δ = 2 -3.346 (-6.012,-0.680) 0.0143

Delta-adjusting: δ = 3 -2.396 (-5.235, 1.043) 0.1894

CI, 95% confidence interval.

suggest that the MAR result of the study needs to be treated with caution. As suggested by

Ratitch et al. (2013), a change of approximately one-half of a standard deviation is clinically

meaningful for a patient. In our example data set the mean of HAM-D-17 total score at

baseline was 23.1, and standard deviation was 2.56 for the two treatment groups combined.

Therefore, a δ = 2 would be a meaningfully pessimistic assumption, yet study conclusions

would still hold, whereas δ = 3 might be considered as quite conservative. SAS code is given

in Part III of an electronic appendix.

4. CONCLUSIONS AND DISCUSSION

The Guideline on missing data in confirmatory clinical trials stresses that “A positive

regulatory decision must be based on an analysis where the possibility of important bias in

favour of the experimental agent can be excluded” (EMA, 2010). This document recommends

using likelihood-based methods as the primary analysis, and conducting sensitivity analysis

to assess the robustness of the results under certain deviations from the MAR assumption

(EMA, 2010; NRC, 2010; Liu and Pang, 2017). According to Carpenter and Kenward

(2013), “Given a set of assumptions about the reasons data are missing, there are a number of

statistical methods for carrying out the analysis. Nevertheless, we argue that none shares the

practical utility, broad applicability and relative simplicity of Rubin’s Multiple Imputation.”
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Figure 2: Tipping point analysis for the Hamilton Depression study. Solid lines: completers;

dash lines: dropouts at fourth week; dots: experimental group; circles: control group.

We introduced in this paper a joint modelling strategy for multiple imputation of data

consistent with a given multivariate linear regression model, which we named MLR. The

procedure surpasses MND in that a more general mean structure for the imputation model

is allowed, attained by way of changing the order of drawing the parameters of the Gibbs

sampler algorithm. Specifically, while the imputation model of MND does not distinguish

covariates explicitly, that of MLR does.

A simulation study was performed in a standard longitudinal setting, where the proposed

method and several existing procedures behaved equally well. We also identified a scenario,

called “demanding setting”, where the standard methods sequential MI and FCS fail, due

to their wide format imputation algorithms, whereas the new proposal works, because it

imputes in the long format. Although MND imputes in the long format too, it fails because

its imputation model does not include categorical predictors, implying the need of performing

imputations separately by each category. The situation can be found in clinical trials on
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strongly impaired patients, for example some sort of cancer, where it is not possible to

collect measurements at the second occasion for patients in the control group.

An application of MLR to sensitivity analysis was revealed; namely, to the so-called delta-

adjustment setting, where the assumption is that subjects from the experimental treatment

arm in a controlled clinical trial who miss a given time-point would have, on average, their

unobserved efficacy score worse by some amount δ compared with the observed efficacy score

of subjects that continue to the next time-point. MLR can be successfully applied to this

setting, whether the patterns of missing data are monotone or intermittent. This could

be considered an improvement over previous works that restrict to monotone missingness

(Ratitch et al., 2013; Liu and Pang, 2017).

Control-based imputation is an approach to sensitivity analysis that imputes missing data

in the test drug group using a model built from the control group. In this setting, concerns

about variance estimation have been raised, because the imputation models are different from

the final analysis model, causing congeniality issues (Ayele et al., 2014; Seaman et al., 2014;

Liu and Pang, 2015, 2017; Meng, 1994; Nielsen, 2003). It has been pointed out that the mean

structure of the imputation model, bearing in procedures like “jump to reference”, “copy

reference”, and “copy increments in reference”, entails more assumptions of the imputer than

the analyst, which is known to cause the Rubin’s rule variance estimator to overestimate the

repeated sampling variance (Seaman et al., 2014; Meng, 1994). With MLR, this should not

be anymore the case, because the mean structure of the imputation and analysis models can

be equated in a natural way.

Owing to concerns about complicated mean structures, which could invalidate the perfor-

mance of MI strategies, De Silva et al. (2017) performed a comparison of multiple imputation

methods for handling missing values in longitudinal data in the presence of a time-varying

covariate with a non-linear association with time. The methods included FCS, MND, and

two-fold FCS. Once again, the difference between the imputation and analysis models was

the motivating reason of investigation, because of the danger of uncongeniality issues. MLR

could be included in these types of simulations, taking into account that it naturally incor-
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porates non-linear predictors, due to the conditioning on covariates.

Tompsett et al. (2018) propose a variant of FCS for elicitation of sensitivity parameters

via calibration. They consider models in which the sensitivity parameters have a conditional

interpretation, which is not practical. Then they match those models with others built in

such a way that the sensitivity parameters have a convenient marginal interpretation. The

matching is algebraically and computationally involved. In this respect we have noted that,

with the extension of MLR to account for delta-adjustment, the sensitivity parameters have

a marginal meaning, which is a strength.

Specifically, following Tompsett et al. (2018), in a not at random fully conditional specifi-

cation (NARFCS) procedure, the sensitivity parameters are the specified differences between

imputed and observed values of a variable, conditional on all remaining variables of the data

and their missingness indicators; hence they are termed conditional sensitivity parameters, or

CSP. When a sensitivity parameter is marginal on at least some of the remaining variables, it

is referred to as marginal sensitivity parameter (MSP). In contrast to MSP, direct elicitation

of a CSP is typically not feasible, as this conditional nature forces one to elicit information

about groups of people who are matched in ways that are not commonly analysed, if at

all. This makes typical elicitation nearly impossible for NARFCS, and the authors provide

an algorithm to perform calibration, by relating the CPS to MSP. In the case of MLR, the

sensitivity parameters are marginal on the remaining variables, albeit conditional on the

missingness indicators; hence they are MSP, and easier to interpret.

As a limitation of MLR, we should stress that, although the mean structure of the

multivariate linear regression model (2) is fully absorbed in a natural fashion, the covariance

matrix Σ remains unstructured, generating p(p+1)
2

variance-covariance parameters. This

does not affect validity of inferences if the analysis model has a simpler structured matrix

(for example compound-symmetric or first-order autoregressive) because, in this case, the

imputation model is more general than the analysis model (Meng, 1994; Schafer, 1997). As

a coming work, we intend to extend the method to include missing data in covariates, which

could allow enhancing the simulation studies of Kalaycioglu et al. (2016).
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