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Abstract Attribute weighting is a task of paramount relevance in multi-
attribute decision-making (MADM). Over the years, different approaches have
been developed to face this problem. Despite the effort of the community, there
is a lack of consensus on which method is the most suitable one for a given
problem instance. This paper is the second part of a two-part survey on at-
tribute weighting methods in MADM scenarios. The first part introduced a
categorization in five classes while focusing on explicit weighting methods. The
current paper addresses implicit and hybrid approaches. A total of 20 methods
are analyzed in order to identify their strengths and limitations. Toward the
end, we discuss possible alternatives to address the detected drawbacks, thus
paving the road for further research directions. The implicit weighting with
additional information category resulted in the most coherent approach to
give effective solutions. Consequently, we encourage the development of future
methods with additional preference information.
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G. Nápoles
Faculty of Business Economics, Universiteit Hasselt, Belgium
Department of Cognitive Science & Artificial Intelligence, Tilburg University, The Nether-
lands
E-mail: gonzalo.napoles@uhasselt.be

Y. Salgueiro
Department of Computer Sciences, Faculty of Engineering, Universidad de Talca, Campus
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1 Introduction

Decision-making is probably the most frequently performed activity of human
beings. Hence, it makes sense that academics have put a great deal of effort
into mathematically modeling these processes, especially in complex scenar-
ios where intuition may fail. The best decision is always linked to the best
interests of decision-makers, which are often associated with several variables
(attributes) simultaneously. However, not all attributes have the same impor-
tance. For this reason, decision-making processes often benefit from weighting
the attributes, which is a decisive step toward generating solutions for the
problem at hand. The application of attribute weighting approaches has also
been extended to other areas such as data mining [38,7,86,52].

One of the first attribute weighting methods reported in the literature
was based on direct ranking where the decision-makers are requested to as-
sign a weight to each attribute given a fixed scale. ELECTRE I [65] and II
[66] are examples of this approach. Another early introduced method was the
qualitative approach [51], which only requires ordering the attributes by their
relevance. However, this type of method is not recommended when dealing
with more complex decision-making problems having high uncertainty or de-
pendency among the attributes. Later research efforts (e.g., [34] [76] [41] [10])
allowed handling problems with these characteristics.

Currently, most research efforts focus on developing methods based on op-
timization models where the information given by decision-makers is modeled
as constraints while the objective functions match with the weighting strat-
egy. Some of these methods can be found in [77,25,40,80,54,9,75,74,35,15,
23,88,11,10,56,87,72,30]. Recent papers reviewing and comparing weighting
methods can be found in [50,8] and [29], respectively. This paper complements
these pieces of research by focusing on the calculation procedures, interpre-
tation and situations where these methods may produce misleading results.
Whenever possible, we discuss some ideas that can be used by the community
as starting points towards correcting the detected issues.

In the literature, attribute weighting methods are often gathered into three
categories: subjective, objective, and hybrid [81,11]. However, in a recently
published paper [57], we proposed a different taxonomy (see Figure 1) that
facilitates the study of such methods. The first two classes gather explicit
weighting methods, which include strong explicit methods (e.g., [17,62,6,39,
18,23,70,69,88]) and weak implicit methods (e.g., [71,77,25,40,80,54,9,75,
74,15,35,21,37]). Overall, 25 methods from both classes were categorized and
analyzed (please refer to [57] for more details).

Explicit methods operate on the information provided by decision-makers
on the importance of each attribute. However, sometimes decision-makers are
not able to provide such information. In addition, if the main objective is
attribute weighting, then the availability of weights should not be assumed.
In both cases, the viable alternative would be the implicit approaches, where
weights are derived indirectly. Methods grouped in Class III (methods with-
out additional information) and Class IV (methods with additional preference
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Fig. 1 Categorization of attributes weighting methods [57]. In this paper, we cover the
methods belonging to the last three classes.

information) perform implicit weighting. Class V (hybrid weighting methods)
combines both explicit and implicit methods. In this paper, we cover the me-
thods belonging to the last three classes (see Table 1), thus providing closure
to our previously published review.

Table 1 Distribution of methods to be analyzed in groups within Classes III, IV and V.

Class Group Methods

III

1
The entropy method [14,67,73,89], the standard deviation method
[14,16], importance of criteria through inter-criteria correlation [53,
33], correlation coefficient and standard deviation [81]

2
Subjective and objective integrated approach [46,47], attribute
weighting method by incompatibility among attributes [11]

3
Objective method based on intuitionistic fuzzy sets entropy [10], con-
tinuous entropy method based on interval-valued intuitionistic fuzzy
sets with unknown weights information [35]

4

Multi-objective programming model that takes one objective without
weight information [79], rational model with dissonance minimization
based on correlation measures [56], TOPSIS method based on single-
valued neutrosophic sets [4]

IV
1

Swing weighting [19], the TRADE-OFFS method [36], MacBeth’s
weighting method [2]

2

Linear programming for attributes’ weighting on the performance
evaluation process [31], multiple attribute decision making based on
fuzzy preference information on alternatives [20], attribute weighting
using preference comparisons [32]

V 1
Approach to integrate subjective preferences and objective informa-
tion [82], integrated weighting method of attributes “1” [44], inte-
grated weighting method of attributes “2” [64]

Before moving forward, it seems convenient to describe the review method-
ology. Firstly, a comprehensive search of articles proposing new weighting me-
thods published up to 2019 was conducted. We gave priority to recent journal
papers while avoiding journals requesting publication fees. More than 70 ap-
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proaches/methods were identified and grouped according to their weighting
approach, type of information requested from decision-makers, and the cal-
culation procedures used to compute the weights. Secondly, a representative
method of each group was selected and carefully revised.

Overall, this paper has three main objectives. The first one is concerned
with revising representative weighting methods, which include both implicit
and hybrid approaches. These methods belong to Classes III, IV and V. The
second objective focuses on conducting a critical analysis to identify the prin-
cipal shortcomings of these methods. The third goal is aimed at discussing
potential alternatives to overcome the detected issues, thus serving as a guide
for future algorithmic and theoretical developments.

The rest of this paper is organized as follows. Section 2, 3 and 4 revise rep-
resentative methods belonging to Classes III, IV and V, respectively. Section 5
summarizes the main drawbacks of these methods and elaborates on possible
solutions. Finally, Section 6 concludes the paper.

2 Implicit weighting methods without additional information

In this section, we will introduce the implicit weighting methods without ad-
ditional information. These methods, categorized as Class III, only use the
decision matrix [57]. This group can be further divided into four subgroups,
each described in a separate subsection.

We will assume the following notation (unless otherwise stated). The set
of alternatives is O = {O1, O2, . . . , Om} with m ≥ 2, the set of attributes is
A = {A1, A2, . . . , An} with n ≥ 2, the weight vector is w = {w1, w2, . . . , wn}>,
where

∑n
j=1 wj = 1, wj ≥ 0 and wj denotes the weight of the attribute Aj ,

the set of decision-makers is E = {E1, E2, . . . , EK} with K ≥ 1, and the
evaluations of the alternatives in each attribute or elements of the decision
matrix is xij , i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

2.1 Description of methods in Group III.1

The methods described next compute the weights based on the dispersion of
the evaluations associated with the available alternatives.

2.1.1 The entropy method

The method uses an entropy index [14,67,73,89], which establishes a measure
of the variation among the evaluations of an attribute. Attributes with fairly
distributed evaluations are deemed to be important.

The first step of this weighting method consists in normalizing the evalua-
tions xij associated with each attribute in the decision matrix. The normalized
values aij are computed as follows:
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aij =


xij∑m
i=1 xij

if Aj is for benefit

1/xij∑m
i=1(1/xij) if Aj is for cost

. (1)

After that, the entropy index Ej associated with attribute Aj is calculated
according to Equation (2),

Ej = −k
m∑
i=1

aij log(aij); (k =
1

log(m)
). (2)

Finally, considering the diversity coefficient Dj = 1−Ej , we can compute

the weight associated with Dj as wj =
Dj∑n

j=1Dj
.

A recent version of this method based on the Evidential Reasoning (ER)
[24–28,11,12,49,63,3,83,85] is developed in [11] (view subsection 2.2.2 for a
summary of ER). The main difference with respect to the original formalism
relies on the information format used by the decision-maker, which is based
on the ER instead of being real numbers.

2.1.2 The standard deviation method

The idea behind this method is similar to the previous one [14,16]. The main
difference is that the index used to express the attribute’ distribution is the
standard deviation (SD). In this method, the xij values are normalized first
such that we obtain the matrix Mm×n = (aij)m×n. The standard deviation

of the j-th attribute σj is determined as σj = 1
m

√∑m
i=1(aij − āj)2, where

āj =
∑m

i=1 aij
m . The weight of each attribute is given as wj =

σj∑m
k=1 σk

. A new

version based on the ER approach can be found in [11].

2.1.3 Importance of criteria through inter-criteria correlation

This method is based on the importance of criteria through inter-criteria cor-
relation (CRITIC) [53,33]. It determines the weights based on the correlation
coefficients rjk between the evaluations on the pairs of attributes (Aj , Ak).
Equation (3) formalizes this idea,

rjk =

∑m
i=1(aij − āj)(aik − āk)√∑m

i=1(aij − āj)2
∑m
i=1(aik − āk)2

; j, k = 1, 2, . . . , n (3)

where āj =
∑m

i=1 aij
m and āk =

∑m
i=1 aik
m . Equation (4) shows how to compute

the importance coefficient Cj for each attribute Aj ,

Cj = σj

n∑
k=1

(1− rjk); j = 1, 2, . . . , n. (4)
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The final weights are determined after normalizing the coefficients Cj as

wj =
Cj∑n

k=1 Ck
. As in the previous cases, the reader is referred to [11] for a

version of this method based on the ER approach.

2.1.4 Correlation coefficient and standard deviation

This method uses the Correlation Coefficient and Standard Deviation (CCSD)
[81]. It integrates both the Pearson’s correlation coefficient and the SD. This
method starts by considering the Simple Additive Weighting (SAW) on each
alternative Oi, removing one of the attributes dij =

∑n
k=1,k 6=j wkaik. Con-

sequently, both the correlation among the evaluations and the SAW weights
of all the alternatives are determined without considering the Aj attribute.
Equation (5) shows how to compute this,

Rj =

∑m
i=1(aij − āj)(dik − d̄k)√∑m

i=1(dij − d̄j)2
∑m
i=1(aik − āk)2

(5)

where āj =
∑m

i=1 aij
m and d̄k =

∑m
i=1 dik
m .

Assuming that σj is the SD of the evaluations associated with Aj , the

weight of Aj is determined as wj =
σj

√
1−Rj∑n

k=1 σk

√
1−Rk

. The weight wj requires

knowledge about Rj that is subject to dij , which in turn depends on the
weights wj . This generates a dependency cycle. The optimization function
presented in Equation (6) avoids this inconvenience,

minimize J =

n∑
j=1

(wj −
σj
√

1−Rj∑n
k=1 σk

√
1−Rk

)2 ; j = 1, 2, . . . , n. (6)

2.1.5 Advantages and disadvantages of methods in Group III.1

Advantages

a) These methods are suitable for finding the attributes with the highest
impact on the alternatives.
When facing decision-making problems, we often rely on those attributes
with the highest influence on the evaluations. By analyzing the attributes
that influence such a variability allows adopting policies that lead to an
optimal evaluation distribution. For example, let us consider a company
selling cars is not doing great when compared to previous years. After an
attribute analysis, we find out that there is little variability on the values of
the attribute speed. This suggests that customers do not take this attribute
into consideration when buying the cars of that company, thus the speed
is not the reason for the drops in the sales.

Disadvantages
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a) It is assumed that a larger dispersion (to the center) in the alternatives’
evaluations on the same attribute influences its importance.
An attribute with the alternatives’ evaluations widely dispersed discrimi-
nates better among them. Therefore, it would make sense to assume that
such attributes contain more information to distinguish one alternative
from another. However, we might question to what extent this criterion
properly reflects the importance of an attribute when it comes to the opin-
ion/objectives of the decision-maker. The reader can fairly argue that such
information is already contained in the data records.

b) The option of decision-makers regarding the attributes’ relevance is not
taken into consideration.
The opinion of decision-makers is a fundamental pillar to solve decision-
making problems, even when the information on their preferences is limited.
The relevance of each attribute should include human perception, which
may vary depending on many factors.

Case study. Let us consider a couple who wants to buy an apartment. The
couple has a budget of $ 100,000 and focuses on three attributes: price, size
and location. They would like to save money for furniture although they prefer
spacious apartments. The key elements that influence the location are distance
to the workplace and access to supermarkets and medical services. Also, it
would be desirable to analyze options in areas with good access to public
transport. Table 2 shows the different options, where MS and SC represent
the closest distances to medical services and a shopping center, respectively,
while WP is the distance to the workplace.

Table 2 Summary of the three purchase options.

Price $ Size m2 Location km(MS/SC/WP)
O1 70,000 120 2.0 /3.0 / 4.0
O2 90,000 84 0.3 /0.4 / 0.5
O3 100,000 196 2.0 /2.0 / 3.0

After a qualitative evaluation of the information, the most important at-
tribute should be price, because the amounts are relatively close to the avail-
able capital. Location and size should not be so significant due to favorable
public transportation and the fact that only two people are moving to the new
house. Under such conditions, O1 arises as the best option. However, implicit
weighting methods neglect the information regarding the buyer’s opinion, thus
very likely generating sub-optimal weights.

Aiming at further elaborating on this issue, let us analyze Table the normal-
ized values per option (see Table 3). The criteria associated with the attribute
location were averaged before normalization.

Based on the values in Table 3, the attribute weights and the alternatives’
evaluations by simple additive weighting (SAW, E(Oi), i = 1, 2, 3) were calcu-
lated for the four methods in Group III.1. Table 4 shows the results obtained
using Mathematica 12.0 software package [48].
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Table 3 Normalized values using the functions in Section 2.1.1.

Price Size Location
O1 0.40 0.10 0.30
O2 0.31 0.77 0.21
O3 0.28 0.13 0.49

Table 4 Attributes’ weights and SAW of the alternatives’ evaluation according to the four
methods in Group III.1.

Method w (Price) w (Location) w (Size) Evaluation of alternatives by SAW
Entropy 0.025 0.133 0.842 E(O2) = 0.68 > E(O3) = 0.185

> E(O1) = 0.135
SD 0.108 0.250 0.642 E(O2) = 0.578 > E(O3) = 0.239

> E(O1) = 0.183
CRITIC 0.136 0.214 0.650 E(O2) = 0.585 > E(O3) = 0.231

> E(O1) = 0.184
CCSD 0.094 0.257 0.649 E(O2) = 0.580 > E(O3) = 0.240

> E(O1) = 0.180

The results show that the attribute with the highest importance is the loca-
tion because its values have a larger central dispersion. Additionally, the SAW
method indicates that O1 is the worst alternative. Both results are inconsistent
with the real situation of the problem.

2.2 Description of methods in Group III.2

The methods in this group are closely related to the ones described in the
previous subsection since they assume a dependency between the dispersion
of an attribute’s evaluations and its importance.

2.2.1 Subjective and objective integrated approach

In this method, the weights are derived from the vector w∗ = H−1e
eTH−1e

, where
e = [1, . . . , 1]n×1 and H is a diagonal matrix of m × n [46,47]. The elements
of H are hjj =

∑m
i=1(b∗j − bij)2, where b∗j = max1≤i≤m{bij}∀j = 1, 2, . . . , n,

j = 1, 2, . . . , n (bij are the normalized values of xij).

The values of the main diagonal of H quantify the distance between the
maximum evaluation b∗j and the rest of the evaluations for the same attribute.

Note that H−1 is the diagonal matrix whose diagonal elements are the recip-
rocals of H. Therefore, H−1e is a vector that attributes a larger value to each
attribute in the measure of how small is the distance between its evaluations
set and its maximum evaluation. The w∗ vector is the normalization of H−1e,
given that e>H−1e is the sum of the latter vector’s elements. In conclusion,
this weighting method assigns large weights to the attributes whose evaluation
distributions are closer to their maximum evaluation.
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2.2.2 Attribute weighting by incompatibility among attributes

The weighting by incompatibility among attributes uses an information mod-
eling from an ER perspective [11]. Let us assume a decision-making problem
with M alternatives al, l = 1, 2, . . . ,M and L attributes ei, i = 1, 2, . . . , L.
The weights of the L attributes are denoted by w = (w1, w2, . . . , wL), where

0 ≤ wi ≤ 1,
∑L
i=1 wi = 1. The values Ω = {H1, H2, . . . ,HN} are used to evalu-

ate the M alternatives for the L attributes. The elements of the decision matrix
can be seen as an evaluation vector distributed across ei attribute for an alter-
native al : B(ei(al)) = {Hn, βn,i(al), n = 1, 2, . . . , N}. In this formalization,
βn,i(al) is the degree of belief to which the appropriate level for the evaluation

ei regarding the alternative al isHN , such that βn,i(al) ≥ 0;
∑N
n=1 βn,i(al) ≤ 1,

and
∑N
n=1 βn,i(al) + βΩ,i(al) = 1. Likewise, βΩ,i(al) denotes the degree of

global ignorance. If βΩ,i(al) = 0, then the evaluation is considered to be com-
plete, otherwise it is regarded as incomplete.

To generate a solution in the ER approach, the B(ei(al)) evaluations
weighted by w are added to form the B(y(al)) = {Hn, βn(al), n = 1, 2, . . . , N ;
(Ω, βΩ(al)) evaluations, using the analytical algorithm [83]. In this context,
βΩ(al) represents the degree of aggregate global ignorance.

Fu Yang et al. in [26] defined a compatibility measure (cm) between two
belief structures (BS) based on the distance between the betting commitments
of two BS developed by [45]. In this context, in [26] the authors quantify the
deviation incompatibility Ciσ on the attribute ei as follows:

Ciσ =

∑M−1
l=1

∑M
j=l+1[1− cm[B(ei(al)), B(ei(aj))]]

M(M − 1)/2
, i = 1, 2, . . . , L. (7)

Consequently, they proposed a decision incompatibility measure Cid on the
attribute ei as follows:

Cid =

∑M
l=1[1− cm[B(ei(al)), B(y(al))]]

M
, i = 1, 2, . . . , L (8)

such that the aggregated assessments B(y(al)) were determined using the an-
alytical algorithm presented in [83].

They also proposed a relaxation coefficient 0 ≤ θ ≤ 1 to combine Ciσ
with Cid in order to form a complete incompatibility coefficient denoted by

Cis = θCiσ + (1− θ)Cid. The weights are computed as wi =
Ci

s∑L
k=1 C

k
s

. Therefore,

an attribute is deemed important as long as it presents more incompatibilities
between the assessments of its different alternatives. This formula is poorly
defined. Let us consider the notation y ← x where the variable y depends on
the variable x, so the dependency relation wi ← Cis ← Cid ← B(y(al)) is true.
According to the analytical algorithm in [83], B(y(al)) ← wi meaning that
wi ← wi, which is not consistent. To avoid this problem, the authors in [11]
proposed the following optimization problem:
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minimize W =

L∑
i=1

(wi −
Cis∑L
k=1 C

k
s

)2 (9)

where
∑L
i=1 wi = 1, and wi ≥ 0, i = 1, 2, . . . , L. This optimization problem

allows approximating the values generated by
Ci

s∑L
k=1 C

k
s

and the wi values used

to obtain B(y(al)), since they do not match in general.

2.2.3 Advantages and disadvantages of methods in Group III.2

Advantages

a) They are suitable for finding the attributes with the highest impact on the
alternatives’ differences.
These methods assume that the importance of each attribute is linked to
the distribution of the evaluations. The key difference between the methods
belonging to Groups III.1 and III.2 relies on the criteria used to indicate
how the distributions of the evaluations affect the weights.

Disadvantages

a) It is assumed that the distribution of the attribute evaluations by all the
alternatives determines its importance.
Although all the methods in this group show this limitation, we focus on
the one described in subsection 2.2.1. Let us the case where the attributes’
evaluations are all the same. In such a situation, determining the weights

by using the expression w∗ = H−1e
e>H−1e

loses meaning since H−1 would not
be defined. It could happen that all evaluations on the same attribute are
almost equal (Aj). If so, even though w∗ is well defined, the weight of Aj
would be very large because the coefficient associated with its value in
the matrix H−1 is 1∑m

i=1(b∗j−bij)2 . This coefficient would reach large values

as the denominator would be very close to 0. If all the evaluations of Aj
are small, and a new alternative is added with a larger evaluation, then
the weight of Aj decreases radically. This means that only one component
would primarily determine the attribute weight.

b) The option of decision-makers regarding the attributes’ relevance is not
taken into consideration.
If we neglect the subjective opinion of decision-makers, then for two decision-
making problems with the same number of alternatives, attributes, and
decision matrix confirmation, the model defined in Equation (9) will gen-
erate identical solutions. However, the decision contexts and the attributes’
nature could be entirely different.

2.3 Description of methods in Group III.3

The methods described in this subsection minimize the fuzzy entropy of the
decision matrix to generate the weights.
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2.3.1 Objective method based on intuitionist fuzzy set entropy

This method uses intuitionist fuzzy sets (IFS) to generate the decision matrix’s
values [10]. An IFS A in a set X is defined as A = {〈x, µA(x), vA(x)|x ∈ X〉},
where µA : X −→ [0, 1] and vA : X −→ [0, 1]. The values µA and vA represent
the degrees of membership and non-membership of x to A, respectively, such
that 0 ≤ µA(x) + vA(x) ≤ 1. In addition, the degree of ignorance of A is
defined by πA(x) = 1− (µA(x)+vA(x)). Within this mathematical formalism,
the concept of fuzzy entropy concept emerged.

In [10] several approaches to determine the fuzzy entropy are discussed. As
not all of them could be discussed in this paper, we will adopt one of these
approaches to contextualize the concept of fuzzy entropy.

Let us assume that the entropy of a set X with IFS values is E(X) =∑n
i=1 πi, where X = {x1, . . . , xn}, xi = (µi, vi, πi). The first step to calculate

the weights consists in computing the fuzzy entropy matrix such that each
element xij = (µij , vij , πij) of the decision matrix is replaced by its singular
entropy value Eij (as Eij = πij). Therefore, for each attribute Aj we have
a unique entropy of the alternatives’ evaluation Eij , i = {1, 2, . . . ,m}. The

values of Eij are normalized as hij =
Eij

max{Eij ,E2j ,...,Emj} . If we consider that

aj =
∑m
i=1 hij and T =

∑n
i=1 aj , then the weights can be computed as wj =

1−aj
n−T . According to this expression, larger weights are assigned to attributes
whose fuzzy entropy values are small.

2.3.2 Continuous entropy method based on interval-valued IFS with unknown
weight information

Continuous entropy method based on interval-valued IFS with unknown weight
information is a group of decision-making methods where each decision-maker
builds the decision matrix with interval-valued IFS (IVIFS) [35,78,77,90,84,
61]. A set Ā of IVIFS associated with the universe X = {x1, x2, . . . , xk} of
fixed real values is defined as Ā = {〈x, µ̄Ā(x), v̄Ā(x)|x ∈ X〉}, where µ̄Ā(x) :
X −→ L([0, 1]), v̄Ā(x) : X −→ L([0, 1]), while L([0, 1]) denotes the set of
all sub-intervals of [0, 1]. Likewise, µ̄Ā(x) and v̄Ā(x) represent the degree of
membership and non-membership of Ā to X, respectively.

Similarly, Ā can be expressed as {〈x, [µ̄L
Ā

(x), µ̄R
Ā

(x)], [v̄L
Ā

(x), v̄R
Ā

(x)]|x ∈
X〉}, where µ̄L

Ā
(x) and v̄L

Ā
(x) are the lower limits of the intervals and µ̄R

Ā
(x)

and v̄R
Ā

(x) are the upper values, so that 0 ≤ µ̄L
Ā

(x) ≤ µ̄R
Ā

(x) ≤ 1, 0 ≤ v̄L
Ā

(x) ≤
v̄R
Ā

(x) ≤ 1 and µ̄R
Ā

(x), v̄R
Ā

(x) ≤ 1,∀x ∈ X.
To define the fuzzy entropy coefficient, in [35] the authors convert IVIFS

values into IFS ones. This conversion is carried out by transforming an interval
into a real value using the function FQ(a) = FQ([a−, a+]) = λa+ + (1− λ)a−,
where λ ∈ [0, 1] determines the preference of the decision-maker towards a−

or a+, respectively. In addition, the ignorance degree associated with each of
these IFS values formed is πFQ(α̃ij) = 1 − (FQ(µα̃ij

) + FQ(vα̃ij
)). The fuzzy

entropy of α̃ij is defined as follows,
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ε(α̃ij) =
1− |FQ(µα̃ij )− FQ(vα̃ij )|+ πFQ(α̃ij)

1 + |FQ(µα̃ij
)− FQ(vα̃ij

)|+ πFQ(α̃ij)
. (10)

When considering the opinion of multiple decision-makers (e1, e2, . . . , eK),

the entropy of the attribute Aj is calculated as E(Aj) =
∑K
k=1 lk

∑m
i=1 ε(α̃ij),

where lk denotes the weight of the k-th decision. The weights based on the
entropy of the IFS evaluations are calculated as follows:

wj =

∑K
k=1 lk

∑m
i=1(1− ε(α̃kij))∑n

j=1

∑K
k=1 lk

∑m
i=1(1− ε(α̃kij))

; j = 1, 2, . . . , L. (11)

2.3.3 Advantages and disadvantages and of methods in Group III.3

Advantages

a) These methods are suitable when the quantity and quality of information
available on some attributes are poor.
If there is uncertainty in the evaluation of a given attribute, it is reason-
able not to rely too heavily on that information. One way to handle such
uncertainty is to reduce the relevance of that attribute when making the
decisions. This is the idea behind these methods.

Disadvantages

a) Inconsistency in the objective method based on IFS entropy.
The methods based on fuzzy entropy are intended to assign larger weights
to those attributes whose evaluations have lower entropy values (as ex-
plained in [10]) since this is a desirable characteristic of the decisions ma-
trix. However, the formula for calculating weights it is not consistent with
this line of thought.
In the expression wj =

1−aj
n−T (where aj =

∑m
i=1 hij and T =

∑n
i=1 aj), aj is

subtracted from 1. This means that larger fuzzy entropy values correspond
with lower weights. It should be noticed that aj ≥ 1∀j = 1, 2, . . . , n, so
1 − aj ≤ 0. Likewise, T =

∑n
i=1 aj ≥

∑n
i=1 1 = n. The case where aj = 1

can be ruled out since is unlikely in practice, which means that 1− aj < 0

and T > n. Then, wj =
1−aj
n−T takes a positive value because the numerator

and denominator are negative. However, larger values of aj increase the

modular value of 1− aj so the expression
1−aj
n−T increases as well. In other

words, large fuzzy entropy values result in large weights, which contradicts
the intuition behind these methods.
As an alternative to overcome this drawback could change the expression
wj =

1−aj
n−T to wj =

m−aj
mn−T . Given that hij ≤ 1 −→ aj =

∑m
i=1 hij ≤∑m

i=1 1 = m and T =
∑n
i=1 aj ≤

∑n
i=1m = nm, then the assumption

that both the numerator and denominator are always positive is fulfilled.
In addition, larger values of aj would decrease the numerator such that the
expression would behave as desired.
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The expression wj =
m−aj
mn−T can be generalized to wj =

M−aj
Mn−T where M is a

constant such that M ∈ R,M ≥ m. Note that
∑n
j=1 wj =

∑n
j=1

(M−aj)
Mn−T =∑n

j=1(M−aj)

Mn−T =
nM−

∑n
j=1 aj

Mn−T = nM−T
Mn−T = 1.

b) A small fuzzy entropy in the evaluations of the same attribute does not
objectively contribute to its importance.

Case study. A company wants to invest based on two attributes, the in-
vestment cost (A1) and the expected increase earnings per year (A2). The
company gives priority to the second attribute.

According to the method described in Section 2.3.2. Let us assume that A2

is more important than A1. Moreover, since the values of A1 and A2 depend on
factors generating uncertainty, it would make sense to express the evaluations
with IVIFS values. In this example, we will model the problem with IFS for
the sake of simplicity. Table 5 shows the values of FQ(µα̃ij

) and FQ(vα̃ij
), and

the evaluations of the investment options O1 and O2.

Table 5 Evaluations of O1 and O2 for attributes A1 and A2, respectively.

Investment cost A1 Expected increase in annual earnings A2

O1 FQ(µα̃11 ) = 0.50, FQ(vα̃11 ) = 0.40 FQ(µα̃12 ) = 0.60, FQ(vα̃12 ) = 0.20
O2 FQ(µα̃21 ) = 0.70, FQ(vα̃21 ) = 0.20 FQ(µα̃22 ) = 0.40, FQ(vα̃22 ) = 0.40

In this example, the alternative O1 is less valued than O2 with respect to
A1. In addition, A1 has a small degree of ignorance 0.1 for both alternatives
πFQ(α̃ij) = 0.1 = 1− (0.5 + 0.4) = 1− (0.7 + 0.2). However, O1 is better valued
than O2 with respect to the most important attribute A2. Notice that A2 is
the more uncertain attribute, so its degree of ignorance 0.2, is greater than
the one associated with A1, πFQ(α̃ij) = 0.2 = 1− (0.6 + 0.2) = 1− (0.4 + 0.4).
Table 6 shows the entropy values for the decision matrix evaluations, and the
attributes’ weights according to Equations (10) and (11).

Table 6 Entropy of the evaluations according to Equation (10) and weights according to
Equation (11).

A1 A2

O1 ε(α̃11) = 0.833 ε(α̃12) = 0.500
O2 ε(α̃21) = 0.375 ε(α̃22) = 0.100
wj w1 = 0.612 w2 = 0.387

The weights generated by this method indicate that A1 is more important
than A2, which does not correspond with the company’s interest.
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According to the method described in Section 2.3.1. The expression wj = (1−
aj)/(n−T ) fails in assigning larger weights to attributes having smaller entropy
values. Hence, the expression wj = (M − aj)/(nM − T ) will be used instead.
Table 6 shows the entropy values obtained according to Eij = πij (see Table
7) while Table 8 shows the normalized values.

Table 7 Entropy of the evaluations according to Eij = πij .

A1 A2

O1 E11 = 0.1 E11 = 0.2
O2 E21 = 0.1 E22 = 0.2

Table 8 Normalized entropy values according to the proposed format.

A1 A2

O1 E11 = 1 E12 = 1
O2 E21 = 1 E22 = 1

Given the fact that all values associated with each attribute match with
each other, then we can conclude that w1 = w2. However, this conclusion
would conflict with the problem statement.

2.4 Description of methods in Group III.4

As mentioned in Section 1, the weighting methods were grouped into different
classes according to their similarity to facilitate their analysis.

2.4.1 Multi-objective programming model that takes one objective without
weight information

The idea behind this model is that the most appropriate weights are the ones
that maximize the evaluations [79]. Assuming that zij represents the normal-
ized values of each alternative, the authors in [79] proposed the optimization
model described below,

maximizing J(W ) =
1

m

m∑
i=1

Di(W ) =
1

n

n∑
i=1

zijwj . (12)

Overall, the objective of this optimization model is to find the set of weights
that maximizes the average of the simple additive evaluations.
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2.4.2 Rational model with dissonance minimization based on correlation
measures

In [56] the authors proposed a rational model with dissonance minimization,
which is based on the cognitive crisis theory [22]. This method introduces
several indicators to correlate the evaluations for pairs of alternatives. These
indicators increase with the similarity between the paired evaluations of alter-
natives. The optimization model in [56] gives more relevance to the weights
that maximize the correlation between all pairs of alternatives, and the similar-
ity between each alternative and the alternative having an optimal evaluation.
In the context of decision making, the alternative with optimal evaluation is
the one with the best attribute rating.

2.4.3 TOPSIS method based on single-valued neutrosophic sets

Neutrosophic sets (NS) can be seen as a generalization of fuzzy sets and IFS.
These sets are defined as NS = 〈TN (x), IN (x), FN (x)〉, where TN (x) is the
truth membership function, IN (x) is the indeterminacy-membership function
and FN (x) is the falsity-membership function. These independent functions
represent uncertainty but also vagueness, imprecision, error, contradiction and
redundancy [4]. Unlike IFS, in NS-based methods, the sum of the three func-
tions satisfies the condition 0 ≤ TN (x) + IN (x) + FN (x) ≤ 3.

In [4] the ratings provided by decision-makers about each attribute’s al-
ternative take the form of single-valued NS, thus generating the following
decision matrix Xk = 〈Tij , Iij , Fij〉m×n where Tij , Iij , Fij denote the degree
of truth-membership, indeterminacy-membership and falsity-membership, re-
spectively, of alternative Oi with respect to attribute Aj . Equation (13) dis-
plays the weighting averaging operator used to aggregate the decision matrix
associated to the k-th decision maker,

Xk ⊕W = Xw = 〈xwj

ij 〉m×n = 〈Twj

ij , I
wj

ij , F
wj

ij 〉m×n. (13)

Afterwards, the relative positive RP ∗ = [xw+
1 , xw+

2 , . . . , xw+
n ] and negative

RN∗ ideal solutions are defined from the aggregated weighted decision matrix.
The Euclidean distance is used to determine the gap from each alternative
Oj to the positive and negative ideal solutions. Thus, the relative closeness
coefficient (C∗i ) of each alternative to the neutrosophic positive ideal solution
is calculated by Equation (14). This coefficient is used as a baseline such that
values above the coefficient indicate better alternatives.

C∗i =
Di−
Euc(x

wj

ij , x
w−
j )

Di+
Euc(x

wj

ij , x
w+
j ) +Di−

Euc(x
wj

ij , x
w−
j )

, for i = 1, 2, ...,m. (14)

The similarity measure is an important tool to compute the degree of
similarity between objects. In [58] the authors proposed other vector similarity
measures of single-valued and interval NS by hybridizing the concepts of Dice
and Cosine similarity measures.
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MADM problems using single-valued NS have the drawback of asymmetri-
cal behavior and undefined phenomena. In [59] the authors proposed a method
able to deal with unknown weights of attributes and unknown weights of
decision-makers. Recently published papers [60,13,5] expand the single-valued
representation of ratings on each attribute’s alternative to interval-valued,
trapezoidal, among others types of NS.

2.4.4 Advantages and disadvantages of methods in Group III.4

Next, we analyze the shortcomings of methods in Group III.4. The advantages
and disadvantages listed in a) refer to the method described in Section 2.4.1,
the ones in b) refer to the method in Section 2.4.2 while the ones in c) refer
to the method in Section 2.4.3.

Advantages

a) These methods are suitable for low-risk environments.
By assuming that the evaluations are maximal, decision-makers take an
optimistic position. If the decision environment is high-risk, this position
can lead to significant losses. This might result in a considerable deviation
of J(w) from its real value. However, if the environment is low-risk, then
incorrect results would have little consequences.

b) They are suitable in situations where the characteristics of the available
alternatives are different from each other.

c) These methods are capable of handling indeterminate and inconsistent in-
formation.

Disadvantages

a) The maximization of the evaluations is not an objective criterion to deter-
mine the attributes’ weights.
Large evaluation values do not always express the intrinsic attractiveness of
attributes as this also depends on human perception. It seems opportune to
highlight that these methods do not take into account the decision-makers’
preferences. Consequently, it would difficult to guarantee the compatibility
between both pieces of information.

b) The global correlation maximization between the pairs of alternatives (as
an indicator of low cognitive dissonance) does not seem to be an objective
criterion to determine the weight of each attribute.
Human beings prefer to avoid uncertainty when facing decision-making
situations. According to the method described in Section 2.4.2, one of the
main reasons for decision-makers to be uncertain is that evaluations’ dis-
tributions might differ considerably. If two alternatives have very different
characteristics and present weaknesses and strengths, then the comparison
between becomes difficult. Moreover, the fact that a set of weights implies
more similarities between the alternatives does not imply a change in the
real characteristics for them to be more similar. Hence, the premise that
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the cognitive dissonance phenomenon can be limited without changing the
alternatives’ characteristics seems to lack objectivity.

3 Implicit weighting methods with additional information

In this section, we will discuss weighting methods that do not require direct in-
formation about the attributes. Nevertheless, they need additional information
about the decision matrix.

3.1 Description of methods in Group IV.1

The methods in this subsection use ideal reference alternatives, which are used
by decision-makers to establish their preferences.

3.1.1 Swing weighting

This method uses an initial ideal alternative where all attributes have mini-
mum evaluation. Then, starting with the most important attribute, it increases
its level to be the maximal one while inspecting the new alternatives [19]. The
change in the attractiveness of the new alternative for the reference is attached
with a numerical reference value (commonly 100), which is the value assigned
to the most important attribute. The same process is performed for each one of
the other attributes by increasing the level from minimum to maximum. The
changes produced in the alternatives are weighted with values lower than the
one that was initially granted to the most relevant attribute. These values are
given to the remaining attributes. Finally, the assigned values are normalized,
thus generating the definitive weights.

3.1.2 The TRADE-OFFS method

The TRADE-OFFS method starts with the maximum and minimum attributes’
evaluations Ak1 , A

k
2 , . . . , A

k
n and A1

1, A
1
2, . . . , A

1
n, respectively, where k is the

maximum evaluation level that an attribute can reach while 1 is the minimum
[36]. For each attribute Ai, decision-makers are asked for the value of p of the
lottery alternative (Ak1 , A

k
2 , . . . , A

k
n, p;A

1
1, A

1
2, . . . A

1
n, 1−p)) to be preferentially

equivalent to the alternative (A1
1, A

1
2, . . . , A

k
i , . . . , A

1
n). The larger the value of

p, the most important the attribute. The following step consists in sorting the
attributes according to their importance.

To determine the weights, the authors in [36] used the most important
attribute (Aj) as a reference. For each attribute Ai, i = 1, 2, . . . , n, i 6= j

they ask decision-makers to set the levels for Ak
′

j , Aj and Ak
′′

i , Ai, k
′, k′′ =

1, 2, . . . , k. Any level associated with the remaining attributes does not change
for an alternative with Ak

′

j , A1
i and another with A1

j , A
k′′

i . Then, considering
that an attribute evaluated with 0 does not report any utility, the equality
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between these two alternatives is rjuj(A
k′

j ) = riui(A
k′′

i ), where uj(A
k′

j ) and

ui(A
k′′

i ) are the utilities (established by decision-makers) that report the levels

Ak
′

j and Ak
′′

i , respectively. This leads to ri = rj
uj(Ak′

j )

ui(Ak′′
j )

. After setting a value for

rj , it is possible to derive all possible values from ri, which can be considered
a relevance indicator for each attribute. Therefore, it would only be necessary
to normalize these values to obtain the final weights.

3.1.3 MacBeth’s weighting method

The main difference between MacBeth’s method [2] and the others reported
in the literature relies on the scale is that the scale used to evaluate the alter-
natives. Instead of fixing this scale, MacBeth’s method uses a generated scale
that takes into account the set of impact levels that different evaluations have
on each attribute. For example, the reached attribute’s level Ai can have a
high impact (Sk), a huge impact (Sk−1), . . ., a little impact (S1) such that the
set S = (S1, S2, . . . , Sk) determines an ordinal scale, where Sk is greater than
Sk−1 and so on, S is called the “attribute descriptor”. Within this ordinal
scale, two particular levels must be selected, one neutral (S1 will be assumed)
and another good (Sk′ will be assumed).

To express the difference in attractiveness between the elements of S, we
should consider another ordinal scale. This new scale is characterized by the
following elements: an element without a difference in attractiveness (C0), an
element with a small difference (C1), . . ., and so on until reaching a huge at-
tractive difference (Cd), where d+1 is the total possible levels for an attractive
difference. The set C = (C0, C1, . . . , Cd) must be generated.

For each attribute, the decision-makers have to assign a value Ci, i =
1, 2, . . . , d to differentiate between each pair of elements Sj , S

′
j ∈ S as shown in

Table 9. These values will be denoted as (Sj , Sj′) ∈ Ci, where Sj is preferred
over Sj′ . The reader can notice that more than a couple of elements of S may
be associated with the same value of C.

Table 9 Assignments of the attractiveness differences Ci to each pair of impact levels.

Sk Sk−1 Sk−2 . . . S1

Sk C0 C1 C1 . . . Cd
Sk−1 C0 C2 . . . Cd−2

Sk−2 C0 . . . Cd−2

. . . . . . . . .
S1 C0

The numerical scale Φ(Si) associated with the ordinal scale S for a given
attribute must be consistent with the elements in the assignment table of Ci.
Therefore, the authors in [2] proposed the following two conditions.

Condition 1 (ordinal condition). ∀Si, Sj ∈ S : Φ(Si) > Φ(Sj) ⇐⇒ Si is
more attractive than Sj .
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Condition 2 (semantic condition). ∀d′, d′′ ∈ {0, 1, . . . , d},∀Si, Sj , Si′ , Sj′ ∈
{S} with (Si, Sj) ∈ Cd′ and (Si′ , Sj′) ∈ Cd′′ : d′ ≥ d′′+1 =⇒ Φ(Si)−Φ(Sj) >
Φ(Si′)− Φ(Sj′).

We can build and optimization model using all feasible scales that fulfill
these two conditions. Such a model allows generating a scale (µ), which is
called the basic MacBeth’s scale, as depicted below:

minimize Φ(Sk)

s.t: Φ(S1) = 0; ∀Si, Sj ∈ S : with (Si, Sj) ∈ C0 =⇒ Φ(Si) = Φ(Sj)

∀d′, d′′ ∈ {0, 1, . . . , d} with d′ > d′′,∀(Si, Sj) ∈ Cd′ and

∀(Si′ , Sj′) ∈ Cd′′ =⇒ Φ(Si)− Φ(Sj) ≥ Φ(Si′)− Φ(Sj′) + d′ + d′′.

(15)

However, the scale µ(S) generated by this linear optimization problem is
not definitive. Its main goal is to serve as a reference, so it does not have to be
rebuilt from the beginning because the values were established according to
Conditions 1 and 2. We can start from µ(S) and then ask the decision-makers

whether or not the proportion
µ(Si)−µ(Sj)
µ(Si′ )−µ(Sj′ )

correctly reflects the difference

of Si and Sj with respect to Si′ and Sj′ , respectively. In this way, decision-
makers will be able to suggest changes in the values of µ(Si),∀i = 1, 2, . . . , k
to generate values fitting their opinion. Of course, the constraints to which the
optimization model is subject to must be fulfilled.

Once the scales associated with each descriptor have been established, we
use a set of n + 1 dummy alternatives to produce the attributes’ weights
a0 = (S1

1 , S
2
1 , . . . , S

n
1 ), a1 = (S1

k, S
2
1 , . . . , S

n
1 ), a2 = (S1

1 , S
2
k, . . . , S

n
1 ), . . ., an =

(S1
1 , S

2
1 , . . . , S

n
k′). In this formulation, the superscripts indicate the attribute

reference. These alternatives are those achieving the neutral level (S1) for all
the attributes but one, where the good level is reached (Sk′). With the ex-
ception that A reached the neutral level in all attributes. Considering that
the neutral and good evaluation values are v = 0 and v = 100, respectively,
and assuming that the overall alternative’s evaluation Oi can be calculated
as V (Oi) =

∑n
j=1 wjv(xij), we would have V (ai) =

∑n
j=1,j 6=i wjv(Sj1) +

wiv(Sik′) = wiv(Sik′) = 100wi;∀i = 1, 2, . . . , n and V (a0) = 0.
Since the global alternatives’ values V (ai) are directly related to the weights

of attributes, we could ask decision-makers to rank these reference alternatives
to determine an order among the weights. Later on, it would be sufficient to
define the set of semantic expressions to characterize the attractive differences
for each pair of attributes. Then, a matrix of paired comparisons can be formed
between these reference alternatives. The same process is applied to determine
the numerical scale of the evaluations. This scale will associate each reference
alternatives with a value as preferred by the expert. We can obtain the final
weights after normalizing these values.

3.1.4 Advantages and disadvantages of methods in Group IV.1

Advantages
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a) The features of the reference alternatives defined in these methods allow
taking into account the opinion of decision-makers.
Many weighting methods require decision-makers to establish a hierarchi-
cal order among them. However, it is unlikely to obtain this information
directly from decision-makers, mainly when the alternatives’ characteris-
tics differ significantly from each other. The reference alternatives used by
these methods have characteristics that allow for this feature. Since the
assessments of most attributes are similar, the possible distortion caused
by the variability of the information is limited. At the same time, there
are differences in the evaluations of the remaining attributes, thus allowing
discriminating among the alternatives.

Disadvantages

a) The concept of weight still does not have an objectively formalized inter-
pretation.
In the Swing method [19], for example, this disadvantage becomes more
evident since the weighting is based on a direct assignment by decision-
makers, which naturally implies a very high degree of subjectivity. In the
case of other methods (i.e., MacBeth, TRADE-OFFS), the weights are de-
rived from mathematical rules but the concept of weight is not objectively
formalized, so its interpretation is rather intuitive. In the TRADE-OFFS
method [36], the weights are determined based on their relationship with
the most important attribute. This is a piece of minimal information. On
the other hand, in MacBeth’s method [2] decision-makers have the possibil-

ity of changing the values of the basic scale µ to adapt the ratio
µ(Si)−µ(Sj)
µ(Si′ )−µ(Sj′ )

to a desired value. However, the meaning of the previous relationship is very
subjective, which makes it difficult for decision-makers to establish an opti-
mal relationship. Since the concept of weight or the important relationship
is only an intuitive idea, it cannot be guaranteed that decision-makers can

optimally correct the relations
µ(Si)−µ(Sj)
µ(Si′ )−µ(Sj′ )

.

3.2 Description of methods in Group IV.2

The methods described in this subsection consider two forms of evaluation:
functional and subjective. The former approach is based on mathematical
expressions describing how to weight the alternatives. The latter approach is
based on a specific type of subjective information related to preferences of
decision-makers. These methods try to find out which set of weights provides
the best trade-off between these criteria.

3.2.1 Linear programming for attributes’ weighting on the performance
evaluation process

When using linear programming, once all the alternatives have been consid-
ered, they need to be sorted according to decision-makers’ preferences [31].
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Let (O1′ , O2′ , . . . , Om′) be a permutation of (O1, O2, . . . , Om) such that Oi′

is at least as preferred as O
′

i+1. That is, an m-tuple where the alternatives
appear in descending order from left to right in relation to its attractiveness.
Then the global evaluation of Oi′ is carried out as Vi =

∑n
j=1 wjxij , where

xij is the normalized value of the evaluated alternative Oi′ with respect to the
attribute Aj in the decision matrix. Based on such assumptions, it is fulfilled
that Vi − Vi+1 =

∑n
j=1 wj(xij − x(i+1)j) ≥ 0, ∀i = 1, 2, . . . ,m − 1. Likewise,

let Vi − Vi+1 − Si =
∑n
j=1 wj(xij − x(i+1)j) − Si = 0 with Si ≥ 0. Then,

considering that Z = min{S1, S2, . . . , Sm−1}, the authors of [31] proposed the
following linear optimization model to weigh the attributes:

maximize Z,

s.t:

n∑
j=1

wj(xij − x(i+1)j) ≥ Z; i = 1, ...,m− 1;Z ≥ 0.
(16)

3.2.2 Multiple attribute decision making based on fuzzy preference
information on alternatives

In this method, decision-makers must provide the fuzzy preference matrix
among the alternatives [20]. This matrix is represented by P = [pij ]m×m, and
its elements comprise the fuzzy preference relationships pij that indicate the
preference of Oi over the Oj . The values of pij satisfy that: pij ≥ 0 : pij+pji =
1, ∀i, j = 1, 2, . . . ,m, i 6= j, and pii = − (− means that the decision-makers
are not requested to provide this information).

The values xij of the decision matrix are normalized as shown below, thus
leading to the normalized decision matrix B = [bij ]m×n:

bij =


xij−xmin

j

xmax
j −xmin

j
, if Aj is of benefit

xmax
j −xij

xmax
j −xmin

j
, if Aj is cost-effective.

(17)

Considering that the alternative’s attractiveness Oi can be measured as
di =

∑n
j=1 bijwj , the authors in [20] suggested generating a type of fuzzy

relationship among the alternatives subject to the weights:

p̄ik =
di

di + dk
=

∑n
j=1 bijwj∑n

j=1(bij + bkj)wj

where the expression

gik = pik − p̄ik = pik −
∑n
j=1 bijwj∑n

j=1(bij + bkj)wj

suggests that we want to minimize its value, which would imply a high compat-
ibility between the decision-makers’ opinion on the alternatives and their eval-
uations. The denominator of the second term of gik is multiplied by hij(w) =
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pij
∑n
j=1(bij+bkj)wj−

∑n
j=1 bijwj ,∀i 6= j, thus leading to the following linear

optimization model to generate the weights:

minimize H(w) =

m∑
i=1

m∑
j=1

[pik

n∑
j=1

(bij − bkj)wj −
n∑
j=1

bijwj ]
2. (18)

3.2.3 Attribute weighting using preference comparisons

The attribute weighting using preference comparisons starts by calculating
the distance between alternative Oi and the optimal ideal for Di = K +∑n
j=1 wjdij + εi, i = 1, 2, . . . ,m, where K is a constant, dij is the distance

between the evaluation of criterion Aj for the alternative Oi(yij) and the eval-
uation of Aj in the ideal (xj), while εi is an error term [32]. The value dij
can be determined as dij = fj(yij − xj), where f is a function that represents
the dependency of dij with respect to yij − xj . In addition, the distance be-
tween two alternatives Oq and Op can be measured as 4Dpj = Dq − Dp =∑n
j=1 wj(dqj−dpj)+εpq ≥ 0, q, p ∈ S. S denotes the set of index pairs q, p such

that Op is preferred to Oq. The distance (Dq) between Oq and the ideal alter-
native is greater than the distance (Dq) between Op and the ideal alternative
(Dq ≥ Dp). In addition εqp = εq − εp.

It should be noticed that the set S does not discriminate between small
or large evaluations. Consequently, decision-makers are requested to define
the categories in order to establish such a distinction: 4Dpq −→ any(S1),
small(S2), moderate(S3), large(S4). Equation (19) computes the differences
between pairs of alternatives,

4Dsr −4Dtm =

n∑
j=1

wj(dsj − drj − dtj − duj) + (εsr − εtu) ≥ 0 (19)

where s, r ∈ Sk; t, u ∈ Sk;h = 1, 2, 3 and k ∈ {h + 1, 4}. The authors in [32]
proposed a model for attribute weighting, which is given below:

minimize
∑
q,p∈S

zqp +

3∑
h=1;s,r∈Sk;u,t∈Sh;h<k≤4

vsrtu ,

s.t: {
n∑
j=1

wj(dqj − dpj)}+ zqp ≥ 0, q, p ∈ {S}

{
n∑
j=1

wj(dsj − drj − dtj − duj)}+ vrstu ≥ 0; s, r, t, u ∈ Sk; h = 1, 2, 3

(20)

where k ∈ {h+ 1, . . . , 4} and wj , zqp, vsrtu ≥ 0. The first term of the objective
function is aimed at minimizing the negative deviations related to the differ-
ences between the evaluations. In other words, the first term tries to minimize
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the differences between the evaluations of the alternatives whose sign does not
match with the expected one and have the lowest possible value. The intuition
behind the second term of the sum is analogous.

3.2.4 Advantages and disadvantages of methods in Group IV.2

Advantages

a) These methods are suitable when the subjective information provided by
decision-makers is reliable.
If the subjective information provided by decision-makers is accurate, these
methods are the best options, as functional and subjective evaluations will
match, thus leading to accurate weights.

Disadvantages

a) The models do not insufficiently represent decision-makers’ preferences.
Aiming at explaining this disadvantage, we will divide the analysis into
three parts, one for each method discussed in Section 3.2.

Linear programming [31]. In this case, the objective function ensures that
the weights match with the order given by decision-makers. However, maxi-
mizing the minimum possible difference between the evaluations might lead to
contradictions. Although decision-makers provide their preferences, some al-
ternatives might be equally appealing. In such cases, maximizing the minimum
difference would not fully correspond with their preferences. The maximization
model depicted below corrects this issue,

maximize K =

m−1∑
i=1

ki,

s.t: ki =

{
1, if Vi − Vi+1 ≥ 0
0, other cases

.

(21)

The possible maximum for K is m − 1 while the weight sets where this
reaches its absolute maximum are those where Vi−Vi+1 ≥ 0, ∀i = 1, 2, . . . ,m−
1, or equivalently when the generated alternatives sorted by their simple ad-
ditive weighting values match with the decision-makers’ preferences.

This model is a generalization of the one presented in [31] since any solution
generated with in the first model is contained into the ones generated by our
proposal. However, when difference among alternatives is small, equations of
the type ε ≥ Vi − Vi+1 can be added to the constraints, such that the weights
are in concordance with decision-makers’ preferences.

Fuzzy preference information on alternatives [20]. After multiplying gik =
pik − p̄ik by the factor

∑n
j=1(bij + bkj)wj we obtain hij(w) = pij

∑n
j=1(bij +

bkj)wj −
∑n
j=1 bijwj . The values of hij(w) are the intended variables to be

minimized in the model’s objective function. In this process, we might lose the
compatibility with the decisions-makers’ preferences. Individually, the terms
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to be minimized have the form hij(w) = (pik− p̄ik)
∑n
j=1(bij + bkj)wj . Hence,

the model not just produces weights achieving higher correspondence be-
tween the evaluations and the fuzzy preference matrix, but also maximizes∑n
j=1(bij + bkj)wj . It is also desired to minimize the evaluation of each pair

of alternatives individually, which eventually minimizes all alternatives’ eval-
uations. The reader can notice however that the term

∑n
j=1(bij + bkj)wj can

produce deviations from the desired set of weights. In practice, this can be
achieved by minimizing the terms gik = pik − p̄ik.

Attribute weighting using preference comparisons [32]. Minimizing the neg-
ative deviations (zqp) is a suitable criterion to establish a correspondence be-
tween the preferences given by the decision-maker (represented by S) and the
evaluations given by their distances Di to the ideal solution. However, this cri-
terion does not allow correcting all possible incompatibilities. Let suppose that
the decision-maker determines that the alternative O1 is much more attractive
than O2 and O3, while O2 is slightly more attractive than O3. Moreover, let
us consider a set of weights that generates a value of D1, such that D1−D2 is
slightly lower than 0. In this case, no constraint is violated since it is expected
that D1 −D2 < 0, so the model does not try to make corrections due to the
difference generated between D1 and D2. However, the decision-maker estab-
lished that O1 was much more attractive than O2 and not slightly attractive.
It would be expected a larger value for D2−D1, so the fact that it has a small
value could be regarded as an implicit constraint violation.

4 Hybrid weighting methods

The methods described in this section combine (to some extent) explicit and
implicit attribute weighting approaches.

4.1 Description of methods in Group V.1

The number of hybrid weighting methods reported in the literature is small
when compared with implicit and explicit approaches. These methods are gath-
ered together within the same group.

4.1.1 Approach to integrate subjective preferences and objective information

This method uses a normalized decision matrix Z = (zij)m×n such that that
the alternative’s evaluation Oi is given by di =

∑n
j=1 zijwj [82]. This can be

rewritten as D = ZW with W being the weight vector. Aiming at deriving
the weights, the implicit approach used an Analytic Hierarchy Process [68,
69,55,1] that employs a matrix A of paired comparisons between attributes
A = (aij)n×n. In this matrix, aij = 1

aji
is the value of the Saaty’s scale

corresponding to the attribute Ai compared to Aj , and W is the auto-vector
associated with its higher-value A : AW = λmaxW . In addition, when a matrix
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A is perfectly consistent it is true that AW = nW . Then, decision-makers are
requested for another type of information consisting on the fuzzy preferences
relationships matrix among the alternatives P = (pij)m×m, where pij + pji =
1, pii = 0.5 and pij ≥ 0 ∀i, j = 1, 2, . . . ,m. P is a subjective estimate of the
matrix P̄ whose elements p̄ij satisfy p̄ij = di

di+dj
.

Let us assume the following identity system

m∑
j=1,j 6=i

di
di + dj

(di + dj) = (m− 1)di, ∀i = 1, 2, . . . ,m. (22)

Given that P is an accurate estimate of P̄ , we can substitute di
di+dj

by pij .

This leads to the following matrix:

B =


∑m
j=2 p1j p12 . . . p1m

p21

∑m
j=1,j 6=2 p2j . . . p2m

. . . . . . . . . . . .

pm1 pm2 . . .
∑m−1
j=1 pmj

 . (23)

The system in (22) can rewritten as BD = (m−1)D. If we make D = ZW
in the previous expression, then we obtain BZW = (m− 1)ZW . Both AW =
nW and BZW = (m− 1)ZW are achieved only in an ideal case. Therefore, it
would be necessary to consider the next deviation vectors E = AW − nW =
[A−nI]W and Γ = [BZ− (M − 1)]W . The components of E and Γ are given
by E = (ε1, . . . , εn)> and Γ = (γ1, . . . , γm)>, respectively. The authors in [82]
proposed the hybrid optimization model given below,

minimize J = (α

m∑
i=1

|γi|p + β

n∑
j=1

|εj |p)1/p,

s.t: [BZ − (m− 1)]W − Γ = 0; (A− nI)W − E = 0.

(24)

Wang and Parkan [82] proposed alternative models based on the same idea
(interesting readers are referred to [82] for more details).

4.1.2 Integrated weighting method of attributes “1”

The integrated weighting method of attributes “1” starts with the decision
matrix Xk of each decision-maker ek, such that the evaluation of each attribute
is given by xkij , i = 1, 2, . . . ,m, j = 1, 2, . . . N , k = 1, 2, . . . ,K. Moreover, the

xkij values are expressed as linguistic variables [64,74,47,75,42,44,43] and later

on are replaced by their normalized values rkij (see details in [44]). The weight

of each attribute Ai is given by woj = Vj/
∑n
i=1 Vi, where Vi is the variance

among all evaluations of that attribute.
Each decision-maker ek is requested to provide the attributes’ weights as

linguistic variables. This information is used to calculate the aggregate weight
of attribute Aj as wsj = wsj1 ⊕ wsj2⊕, . . . ,⊕wsjK , where ⊕ is a definite sum



26

for linguistic terms and wsjk the weight corresponding to ek. Finally, subjec-
tive weights are calculated by normalizing the values wsjk with the expres-

sion W s
j = wsj/

∑n
i=1 w

s
i The definitive attributes’ weights are computed as

wj = uwoj +vwsj , where u and v denote the weights attributed to the objective
and subjective approaches, respectively.

4.1.3 Integrated weighting method of attributes “2”

The integrated weighting method of attributes “2” is very similar to the previ-
ous one. It starts considering the evaluations for each attribute (xij) and their
normalized values (x∗ij) [64]. The variance of the evaluations for each attribute

Aj is calculated as Vj = 1
n

∑m
i=1(x∗ij − (x∗ij)average)

2. The objective weighting

of each attribute Aj is given by woj =
Vj∑n
i=1 Vi

.

In [64] the authors proposed a subjective weighting approach similar to
the Analytic Hierarchy Process (see [64] for details). It includes the subjec-
tive weights wsj and the weighting model wij = W owoj + W swsj , where W o

and W s are the weights attributed to objective and subjective components,
respectively, while W 0,WS ∈ [0, 1].

4.1.4 Disadvantages and advantages of methods in Group V.1

Advantages

a) Hybrid approaches are a mathematical generalization of the implicit and
explicit approaches in its definition.
When the coefficient associated with an approximation (implicit or explicit)
approaches 1 it means that the results generated by the hybrid method will
be similar to the ones obtained with the SIMPLE method. This means that
if one method is appropriate for a situation (a) while the other method is
appropriate for a situation (b), then the hybrid approach that includes
them may be suitable for both situations.

Disadvantages

a) Uncertainty in determining adequate relaxation coefficients.
The weighting process of a hybrid model (implicit or explicit) is very sub-
jective. Overall, the criteria used to guide decision-makers in this process
can vary and are often based on intuition.

b) Lack of interpretability.
Sometimes, implicit and explicit methods lead to entirely different results.
The intuition behind these approaches differs significantly from a method
to another, so there is no guarantee of compatibility among them.

5 Summary of the main limitations of the revised methods

In this section, we summarize the main drawbacks of the analyzed methods
and suggest guidelines to overcome them.
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– Issue 1. The concept of weight is rather intuitive.
Observation. Both the calculation procedures and the information requested
from decision-makers can take various nuances. This is often a source of
inconsistency, thus leading to different results.
Suggestion. The concept of weight should be mathematically formalized.
Thereby, the decision on which methodology to follow will be subject to
the concept of weight itself.

– Issue 2. It is often assumed that attribute weights can be determined from
the dispersion of alternatives’ evaluations.
Observation. There are a few methods where the weights depend on the
dispersion of the evaluations. This brings up two main drawbacks. Firstly,
the fact that some alternatives are added or removed in the decision pro-
cess affects the importance of the attributes. Second, the interest of the
decision-maker is marginalized. Note that beyond the evaluations of each
attribute, the particular attention of each decision-maker may vary. There-
fore this should be taken into account when determining the weights.
Suggestion. Avoid using criteria associated with the dispersion of evalua-
tions when developing new weighting methods.

– Issue 3. The preference information of decision-makers regarding the rel-
evance of attributes is often neglected.
Observations. This limitation was mentioned as part of the previous issue.
However, it is important to mention it in isolation, as it is a problem ob-
served in most weighting methods. In practice, these methods are usually
adopted when this information is not available.
Suggestion. The formats used for the decision-makers to provide their pref-
erences must be as flexible as possible and directly associated with the
remaining pieces of information.

– Issue 4. There is a lack of objectivity in several objective functions at-
tached to weighting optimization models.
Observation. Such models aim to optimize objective functions that insuffi-
ciently represent reality. They are based on abstract concepts that describe
poorly the components of the decision-making problem.
Suggestion. The objective functions must fulfill mathematical relationships
ensuring the compatibility with the information obtained from decision-
makers. Additionally, the objective functions should be as general as possi-
ble, otherwise, we might overlook relevant solutions when trying to satisfy
specific relationships or constraints.

Table 10 shows the issues found in the 20 methods examined in this paper.
Issue 1 is observed in all methods. Due to the absence of a formal definition
of weight, each researcher provides an interpretation according to the needs of
the problem they face.

In general, Class III concentrates methods with a higher number of issues.
This class gathers implicit weighting methods without additional information.
At the other extreme are Class V methods that combine explicit and implicit
(hybrid) attribute weighting approaches.
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Table 10 Issues found in each method revised in this study.

No. Method
Issues

1 2 3 4
1 The entropy method [14,67,73,89] X X X
2 The standard deviation method [14,16] X X X

3
Importance of criteria through inter-criteria correlation
[53,33]

X X X

4 Correlation coefficient and standard deviation [81] X X X
5 Subjective and objective integrated approach [46] X X X

6
Attribute weighting method by incompatibility among at-
tributes [11]

X X X X

7 Objective method based on IFS entropy [10] X X

8
Continuous entropy method based on IVIFS with un-
known weights information [35]

X X

9
Multi-objective programming model that takes one objec-
tive without weight information [79]

X X X

10
Rational model with dissonance minimization based on
correlation measures [56]

X X

11
TOPSIS method based on single-valued neutrosophic sets
[4]

X

12 Swing weighting [19] X
13 The TRADE-OFFS method [36] X
14 MacBeth’s weighting method [2] X

15
Linear programming for attributes’ weighting on the per-
formance evaluation process [31]

X X

16
Multiple attribute decision making based on fuzzy prefer-
ence information on alternatives [20]

X X

17 Attribute weighting using preference comparisons [32] X

18
Approach to integrate subjective preferences and objec-
tive information [82]

X

19 Integrated weighting method of attributes “1” [44] X
20 Integrated weighting method of attributes “2” [64] X

6 Conclusions

In this paper, we have presented a review of implicit and hybrid methods for
weighting attributes in the context of multiple attribute decision-making prob-
lems, which provides closure to the study presented in [57]. Perhaps the most
important finding of our study is that most methods do not align well with
the subjective information of decision-makers on their preferences. Although
there are cases where this information is limited, it is necessary to establish
alternative ways to extract decision-makers’ expertise. Without this informa-
tion, no weighting method could ensure producing coherent results. In that
regard, the weighting methods in Class IV (implicit weighting methods with
additional information) were the ones potentially prone to give coherent solu-
tions. Therefore, we encourage the community to further improve the implicit
weighting methods with additional information.
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