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In Section 1.2 of the original publication Khoa et al. (2020b), we stated that
“Cf. Khoa and Muntean (2016) as our initiation, a linearization scheme was briefly

designed to prove the weak solvability of (Pε) as α = 0. However, this result was only
guaranteed when the diffusion must be very larger than the Lipschitz rate of reactions. Our
next evolution in this area went to the work Khoa et al. (2020a) where, for the first time,
we addressed a linearization scheme for the weak solvability of a semi-linear microscopic
system with real variable scalings.”

This statement can bemisunderstood to the fact that the scheme is newly designed in Khoa
et al. (2020b), based on Khoa and Muntean (2016). Similarly, in the abstract of the original
publication Khoa et al. (2020b), we stated that

“This work is devoted to the development and analysis of a linearization algorithm for
microscopic elliptic equations, with scaled degenerate production, posed in a perforated
medium and constrained by the homogeneous Neumann–Dirichlet boundary conditions.”

The original article can be found online at https://doi.org/10.1007/s40314-020-01334-0.

B Nguyen Nhu Ngoc
nhungoc.nguyen@polimi.it

Vo Anh Khoa
vakhoa.hcmus@gmail.com; anhkhoa.vo@uncc.edu

Ekeoma Rowland Ijioma
e.r.ijioma@gmail.com

1 Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC
28223, USA

2 Faculty of Sciences, Hasselt University, Campus Diepenbeek, Agoralaan Building D, BE3590
Diepenbeek, Belgium

3 Meiji Institute for Advanced Study of Mathematical Sciences, 4-21-1 Nakano, Nakano-ku, Tokyo,
Japan

4 Dipartimento di Matematica, Politecnico di Milano, 20133 Milan, Italy

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-020-01392-4&domain=pdf
http://orcid.org/0000-0003-4233-0895
http://orcid.org/0000-0002-5091-3225
https://doi.org/10.1007/s40314-020-01334-0
https://doi.org/10.1007/s40314-020-01334-0


   17 Page 2 of 3 V. A. Khoa et al.

It is likely that we develop a new scheme in the paper. Those two statements, however,
are not what we meant for in the paper. Therefore, in the present corrigendum, we want to
correct this point by adding proper references and clarifications.

In our publication Khoa et al. (2020b), we mainly got inspired from the works Slodička
(2001) and Mitra and Pop (2019). However, the original version of this linearization scheme
was proposed in Pop and Yong (2000), where the authors constructed an H1-fixed-point
regularization scheme to prove the existence and uniqueness results for a quasilinear elliptic
equation with non-Lipschitz reaction. The approach we have proposed in Section 3 of Khoa
et al. (2020b) and particularly, our main Theorems 2 and 3 obtained therein can also be found
in that paper. It can be seen that our Theorems 2 and 3 were obtained based on the same
H1-type contraction argument.

It is clear that for nonlinear parabolic problems and their related time-dependent systems,
having the Euler-implicit scheme usually leads to nonlinear elliptic-like problems. That nat-
urally requires a linearization scheme for the sake of numerical analysis. Therefore, many
nonlinear time-dependent problems in the literature were solved in line with this proce-
dure. In particular, a quite early application of linearization schemes is found in Pop et al.
(2004), where a class of degenerate parabolic problems including the Richards’ equation
was solved using that scheme. It turns out that after regularization for the nonlinear term and
using an Euler implicit discretization in time, the emerging nonlinear elliptic problems were
obtained with Lipschitz reactions. Then, analysis of a linearization scheme was investigated.
We also provide here the work Kumar et al. (2013), where the authors used the so-called L-
linearization scheme to prove the existence of a solution to a dissolution-precipitation model.
In the same vein, some extensions gained the applicability of the linearization procedure to
cope with a two-phase model in Radu et al. (2015) and with a tri-phase one in Redeker et al.
(2016). Later on, the authors in Radu et al. (2017) proposed a new type of the L-scheme for
Hölder-type nonlinearities without using regularization. Note that the L-scheme with regu-
larization is exactly what we have done in Khoa et al. (2020b) when proving the existence
and uniqueness of the microscopic solution.
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