
éêçãçíçê=W

=

báåÇîÉêÜ~åÇÉäáåÖ=îççêÖÉÇê~ÖÉå=íçí=ÜÉí=ÄÉâçãÉå=î~å=ÇÉ=Öê~~Ç=
j~ëíÉê=áå=ÇÉ=áåÑçêã~íáÅ~=ãìäíáãÉÇá~

jìäíáJsáÉï=aÉéíÜ=bëíáã~íáçå

mêçÑK=ÇêK=mÜáäáééÉ=_bh^boq

píáàå=_êçìïÉêë

A Word of Thanks
The realization of a thesis is not always an easy assignment. So I would like to thank

all the people who have helped me to be able to bring this thesis to a successful end. I
would like to thank the educational team from the “UIB” university in Mallorca, where
I initially started my thesis. I would also like to guide a word of thanks toward my
promoter prof. dr. Philippe Bekaert and my supervisors Maarten Dumont and Yannick
Francken for their guidance and support. I would also like to thank all my friends and
family for their support throughout the whole years of my studies.

I

Abstract

It is often desired to have a digital representation of a real world scene. One approach
to retrieve digital information about a scene is to capture images from it by means of
digital cameras. The problem with this method is that only a two dimensional represen-
tation of the three dimensional scene is available and limits us to completely reconstruct
it. The problem that is being solved by multi-view depth estimation algorithms is the
problem of retrieving information about the third dimension, depth. When the depth
estimation for each pixel is correct we can digitally reconstruct the scene in three di-
mensions.
Depth estimation algorithms can work on different input parameters. Some algorithms
use only images from one point-of-view while other algorithms use captured data from
different viewpoints. In this thesis three different types of algorithms will be discussed.
First a depth from defocus algorithm is presented that uses images from only one point-
of view. This is followed by explaining the general design of stereo view depth estimation
algorithms and their input and output data. Later in the thesis an implementation of
both types is described. The last type of algorithm that is discussed uses images from
more than two different viewpoints to derive depth for pixels in the reference images.

Nederlandse Samenvatting

Introductie

Het is soms gewenst om een digitale versie van een reële scène te verkrijgen. Het probleem
dat hiermee hand in hand gaat is het feit dat het niet voor de hand liggend is om infor-
matie over alle drie de dimensies (x,y en z) te verkrijgen. Een mogelijke oplossing om
een reële scène te digitaliseren is door afbeeldingen te maken van de scène. Het probleem
met deze methode is dat we slechts over informatie uit twee dimensies beschikken, de
x- en y-dimensie. De taak van diepte schatting algoritmen is om de diepte, de derde
dimensie, te extraheren uit deze afbeeldingen.
Sommige algoritmen gebruiken als input afbeeldingen die genomen zijn vanuit hetzelfde
standpunt. Een voorbeeld van zo een algoritme is het diepte van projectie defocus
algoritme waarbij een illuminatie patroon op de scène geprojecteerd wordt die ons van
extra informatie voorziet, nodig om de diepte te kunnen bepalen. Andere algoritmen
maken gebruik van twee afbeeldingen gemaakt vanuit twee verschillende standpunten.
Deze algoritmen worden stereo diepte schatting algoritmen genoemd. Het laatste soort
algoritmen gaat onder de naam multi view diepte schatting algoritmen en maakt gebruik
van een sequentie, meer dan twee, afbeeldingen genomen vanuit verschillende stand-
punten.

Diepte van projectie defocus

Het eerste soort algoritme steunt op het principe van diepte van defocus. Dit principe
zegt dat wanneer een scène punt niet in focus is voor een camera, zijn radiance wordt
waargenomen door meerdere camera pixels. Het omgekeerde projectie principe for-
muleert hetzelfde principe op een andere manier en zegt dat de radiance waargenomen
door een camera pixel, bëınvloed wordt door meerdere scène punten die niet in focus
zijn. Wanneer we de camera vervangen door een projector in dit principe kunnen we

I

dit als volgt formuleren. Wanneer we de scène belichten met een illuminatie patroon,
belicht één enkele pixel van het illuminatie patroon meerdere scène punten die niet in
focus zijn. Het illuminatie patroon wordt dus met een bepaalde wazigheid waargenomen
op de objecten in de scène. De hoeveelheid wazigheid waargenomen op een punt is direct
gerelateerd aan de diepte van dit punt.
Zang en Nayar [1] stellen voor om een illuminatie patroon te projecteren op een vlak
gelegen achter de scène. Een afbeelding wordt dan gemaakt van de scène terwijl deze
belicht wordt met dit patroon. Het patroon wordt vervolgens één pixel verschoven
en er wordt een nieuwe afbeeldingen gemaakt. Dit wordt enkele malen herhaald en
levert ons een temporele radiantie sequentie op voor elke pixel. De volgende stap in
het algoritme gebruikt deze data uit het spatiale domein en converteert deze naar het
frequentie domein. Wazigheid in het frequentie domein komt voort uit het toepassen van
een low-pass filter die zichtbaar is in figuur 2.5. De hoeveelheid wazigheid wordt bepaald
door de mate waarin deze low-pass filter afneemt in frequenties. Door het toepassen van
formule (2.4) verkrijgen we de k-de frequentie. Wanneer we de ratio nemen tussen de
tweede en de derde frequentie, θ genaamd, hebben we een maat voor de wazigheid en
dus een mogelijkheid om de diepte te bepalen voor het scène punt. Het overgaan van θ

naar diepte gebeurt door middel van een opzoek tabel die als volgt wordt opgesteld. Een
bord met enkele referentiepunt wordt voor de camera gehouden. Door middel van deze
referentiepunten en het algoritme voorgesteld door Zhang [2] is het mogelijk de homo-
graphie van het bord te bepalen. Deze homographie maakt het mogelijk de diepte voor
elk punt op het bord te bepalen. Vervolgens gaan we de scène met het bord belichten
met het patroon en maken de nodige opnames. Wanneer we over de nodige afbeeldingen
beschikken berekenen we de θ waarde op de voorgenoemde wijze. We beschikken nu over
zowel de θ waarde als de diepte voor elk punt hetgeen genoeg informatie verschaft voor
een opzoek tabel op te stellen. Om nu de diepte voor een scène te schatten berekenen we
voor elk punt de θ waarde op de zojuist besproken manier. Wanneer we voor elk punt
over de θ waarde beschikken mappen we deze naar de corresponderende diepte waarde
met behulp van de zojuist geconstrueerde opzoek tabel.

Stereo view diepte schatting

Stereo view diepte schatting algoritmen maken gebruik van twee afbeeldingen gemaakt
vanuit verschillende standpunten om een schatting te verkrijgen van de diepte map.
Er wordt verwacht dat de afbeeldingen genomen zijn door middel van twee camera’s,
gebruik makend van een specifieke configuratie, genaamd epipolair gerectificeerd. Epipo-

II

lair gerectificeerd afbeeldingen hebben bepaalde eigenschappen die uitgebuit worden
door de stereo diepte schatting algoritmen. We zeggen dat twee afbeeldingen epipolar
gerectificeerd zijn wanneer corresponderende pixels tussen de twee afbeeldingen dezelfde
y-coördinaten hebben. Wanneer we spreken over corresponderende pixels hebben we het
over de pixels in beide images die hetzelfde punt in de scène voorstellen. Aangezien de
afbeeldingen aan deze stricte configuratie voldoen is het zoeken naar corresponderende
pixels gelimiteerd tot één dimensie. De beslissing of twee pixels corresponderend zijn
wordt bepaald door het berekenen van een matching kost. De pixel combinatie met
de laagste matching kost worden corresponderende pixels genoemd. Een voorbeeld van
zo een matching kost is het berekenen van de SAD waarde formule (3.2) en registreert
het verschil tussen de RGB waarden van beide pixels. Aangezien het bepalen of pixels
corresponderend zijn afhankelijk is van zijn RGB waarden, presteert het algoritme slecht
in bepaalde gevallen. In textuurloze gebieden zijn er meerdere pixels met dezelfde kleur-
waarden en is het dus niet mogelijk te bepalen welk van deze pixels de juiste is. In
gebieden die zichtbaar zijn in één afbeelding maar niet in de andere levert dit algoritme
ook problemen aangezien er geen corresponderende pixel aanwezig is. Wanneer er toch
twee corresponderende pixels gevonden zijn, wordt de diepte gedefinieerd als zijnde
het verschil tussen de x-coördinaten. De x-coördinaten zijn direct gerelateerd aan de
diepte door het feit dat objecten op de voorgrond een grotere translatie ondergaan in
de afbeeldingen bij het verschuiven van de camera, dan objecten op de achtergrond.
Stereo diepte schatting algoritmen kunnen worden opgedeeld in verschillende klasses
waarvan de belangrijkste de lokale en globale algoritmen zijn. De lokale algoritmen
maken gebruik van de zojuist besproken techniek terwijl de globale algoritmen een op-
timalisatie probleem oplossen. Bij een globaal algoritme wordt de optimale diepte map
gezocht die een globale kostfunctie minimaliseert.

diepte mappen van een sequentie afbeeldingen

Deze methode maakt gebruik van een sequentie (meer dan 2) afbeeldingen, genomen
vanuit verschillende standpunten en is vergelijkbaar met stereo diepte schatting algoritmen.
Kang and Szeliski [3] stellen 2 methodes voor om meerdere diepte mappen te verkrijgen
voor de gefotografeerde scène.

• Methode 1 berekent voor elke afbeelding uit de sequentie (of een subset ervan)
een diepte map door gebruik te maken van meerdere input afbeeldingen. Meerdere
diepte mappen worden verkregen door het algoritme meerdere malen uit te voeren,

III

steeds met een andere reference image. Er worden verschillende technieken toegepast
om het algoritme beter te laten presteren bij occlusies. De technieken die gebruikt
worden zijn temporele selectie, spatiaal aanpasbare windows en het berekenen van
een globale kostenfunctie die gebruik maakt van een aangepaste versie van het
graph cut algoritme[4].

• De tweede methode maakt gebruik van een globale kostenfunctie die meerdere
diepte mappen gelijktijdig bepaald en omgaat met zichtbaarheid.

Methode 1

Deze methode maakt gebruik van een lokale diepte schatting techniek om de diepte
map te bepalen voor een reference image door gebruik te maken van meerdere input
afbeeldingen. Aangezien deze technieken slecht presteren bij occlusies, textuurloze ge-
bieden en bij diepte ongelijkheden, wordt het algoritme uitgebreid om beter te presteren
in deze gevallen. De gebruikte uitbreidingen worden in de rest van deze sectie besproken.

Spatiaal aanpasbare windows

In het standaard geval worden de matching kosten opgesomt over een window, ge-
centreerd rond de pixel waarvoor de matching kost wordt berekend. Een alternatieve
aanpak is als matching kost voor een pixel de minimale waarde te kiezen van alle vensters
die de pixel bevatten. Door het toepassen van deze techniek gaat het algoritme betere
resultaten opleveren voor voorgrond objecten bij diepte ongelijkheden.

Temporele selectie

In het ideale geval zouden we in plaats van de matching kost over alle frames op te tellen,
enkel de frames gebruiken waarin de pixel zichtbaar is. In plaats van gebruik te maken
van alle frames gaan we slechts gebruik maken van een vast percentage van frames. Enkel
de frames die de laagste matching kosten opleveren worden gebruikt. Deze techniek, net
als de vorige, zorgt er voor dat het algoritme beter presteert bij diepte ongelijkheden.

Globale Optimalisatie

De laatste techniek gaat de verkregen diepte map iteratief verbeteren door een globale
energie functie te minimaliseren. De globale energie functie is gebaseerd op het graph-
cut algoritme voorgesteld door Boykov et al. [4] en uitgebreid met enkele technieken,
voorgesteld door Kang en Szeliski [3].

IV

Bij de eerste techniek krijgen de pixels die verborgen zijn in een andere afbeelding een
label toegekend. Het label geeft aan dat de pixel een matching kost heeft die hoger is dan
de hoogste, correcte matching kost voor corresponderende pixels. Deze pixels kunnen
gedetecteerd worden door de hoge lokale matching kost in een post-processing stage.
De pixels die dit label dragen krijgen een sanctie toegekend. Niet verborgen pixels, die
grenzen aan een pixel die dit label draagt, krijgen ook een sanctie toegekend.
De volgende techniek berekent de zichtbaarheid van een punt in de tweede afbeelding en
gebruikt deze kennis bij het bepalen van de matching kost.
De diepte map wordt dan als volgt verbeterd. De diepte map wordt meegegeven aan
de globale energie functie en het graph-cut algoritme wordt uitgevoerd. Zichtbaarheid
wordt berekend en betrokken bij de berekeningen. Dit levert een betere disparity map
op die dan opnieuw als input gebruikt wordt voor de globale functie, dit levert op zijn
beurt weer een betere zichtbaarheid schatting waarna we deze procedure opnieuw kunnen
herhalen. Om er voor te zorgen dat het algoritme convergeert bevriezen we elke iteratie
15% van de alle dieptes die niet meer veranderd worden in de volgende iteratie. De
pixels die bevroren worden zijn gekozen omdat ze de laagste matching kost opleveren.

Methode 2

Zoals eerder vermeld berekent de tweede methode, voorgesteld door Kang and Szeliski
[3], meerdere diepte mappen gelijktijdig. Uit de set van input images wordt een subset
van keyframes gekozen waarvoor de diepte map bepaald wordt. De data term van de
globale energie functie wordt aangepast zodat we nu optimalizeren over alle diepte map-
pen gelijktijdig. De globale energie functie wordt uitgebreid zodat er rekening gehouden
wordt met de compatibiliteit tussen de naburige diepte mappen. Net zoals in de vorige
methode wordt ook hier gebruik gemaakt van een zichtbaarheidsterm die bepaald of een
pixel zichtbaar in de referentie afbeelding ook zichtbaar is in een andere afbeelding.
Het algoritme is opgedeeld in twee fases
De eerste fase is de initialisatie fase en berekend voor elke image onafhankelijk een
diepte map, gebruik makend van bijvoorbeeld het graph cut algoritme, zonder rekening
te houden met zichtbaarheids- of de compatibility term.
In de tweede fase worden de initiele diepte maps gebruikt om de zichtbaarheid te
berekenen en de globale energie functie wordt geminimaliseerd en levert nieuwe diepte
mappen op die gebruikt worden in de volgende iteratie. Deze procedure wordt herhaald
en levert elke iteratie een betere visibility schatting en dus een betere diepte map op.

V

Resultaten

Diepte van defocus

Het diepte van defocus algoritme toont diepte mappen die zeer goede resultaten opleveren
bij diepte ongelijkheden. De resultaten tonen echter wel problemen bij donkere pixels en
schaduwen die zichtbaar zijn vanuit het camera standpunt. Het algoritme kan ook niet
overweg met spiegelende oppervlakten. Het algoritme toont zeer nauwkeurige resultaten
zoals te zien is bij gebogen objecten zoals een bloempot. De pixels in het midden van
deze bloempot zullen donkerder verschijnen als de pixels aan de zijkant.

Stereo view diepte schatting algoritme

Het basis SAD algoritme werd in het implementatie gedeelte uitgebreid met twee perfor-
mantie verbeteringen. Eén van deze verbeteringen zorgt enkel voor een betere geheugen-
organisatie hetgeen een noemenswaardige vermindering van de uitvoertijd van het algoritme
teweeg brengt. De tweede uitbreiding noemt glijdende vensters en slaat gegevens op in
het geheugen zodat deze niet meerdere keren berekend moeten worden, maar enkel uit
het geheugen hoeven opgehaald te worden. Deze uitbreidingen is vooral duidelijk zicht-
baar wanneer we grote vensters gebruiken. Wanneer van beide verbeteringen gebruik
gemaakt wordt kan dit in sommige gevallen de uitvoertijd met 80% verminderen zonder
de kwaliteit van de diepte mappen te bëınvloeden.
Verder zijn er twee uitbreidingen gëımplentereerd die de kwaliteit van de diepte mappen
bëınvloed. Eén daarvan selecteert pixels waarvoor geen diepte berekend kan worden, in
plaats van deze pixels verkeerde diepte waarden toe te kennen. De andere uitbreiding
gebruikt een mediaan filter om ruis uit de diepte mappen te verwijderen.

Conclusie

In deze thesis werden verschillende diepte schattingsalgoritmen besproken die verschillende
soorten van input gebruiken. diepte van defocus maakt gebruik van afbeeldingen,
genomen vanuit één standpunt terwijl de scene belicht wordt door een projector. Een
ander soort algoritmen, stereo view diepte schatting algoritmen, maken gebruik van twee
epipolair gerectificeerde afbeeldingen om een diepte schatting te berekenen. Een ander
algoritme maakt gebruik van afbeeldingen gemaakt vanuit meer dan twee verschillende
standpunten.
Diepte van defocus algoritmen presteren zeer goed bij diepte ongelijkheden en zijn zeer
nauwkeurig. Ze leveren echter slechte resultaten wanneer er donkere of spiegelende

VI

objecten aanwezig zijn in de scene. Stereo view diepte schatting algoritmen maken
gebruik van het verschil tussen kleurintensiteiten om de diepte te bepalen. Om deze
rede presteren deze algoritmen minder goed bij gebieden die textuurloos zijn of die ver-
borgen zijn in één van de twee afbeeldingen. Het algoritme is echter wel in staat in
real-time de diepte map te berekenen.
Wanneer we afbeeldingen genomen van meer dan twee standpunten gebruiken als input,
beschikken we over meer informatie. De extra informatie maakt het mogelijk om betere
resultaten te verkrijgen bij de probleemsituaties uit het vorige algoritme. Dit algoritme
is echter niet in staat om real-time diepte mappen te bepalen.

VII

Contents

1 Introduction 1

2 Depth From Projection Defocus 3
2.1 Depth From Defocus . 3
2.2 Temporal Defocus Analysis . 5
2.3 Frequency Domain . 6
2.4 Depth Estimation . 7
2.5 Mapping From Defocus To Depth . 9
2.6 Depth Recovery . 10

3 Stereo View Depth Estimation 11
3.1 Input Data . 12

3.1.1 Pinhole Camera Model . 12
3.1.2 Epipolar Rectification . 13

3.2 Design . 16
3.3 Output . 17

3.3.1 Disparity Map . 17
3.4 Sum of Absolute Difference . 18

3.4.1 Introduction . 18
3.4.2 Matching Cost . 19

4 Depth Maps From A Sequence Of Images 20
4.1 Method 1 . 22

4.1.1 Terminology . 22
4.1.2 Spatially Shiftable Windows . 23
4.1.3 Temporal Selection . 25
4.1.4 Global Techniques . 25

4.2 Method 2 . 31

VIII

4.2.1 Terminology . 31
4.2.2 Depth Estimation Algorithm . 32

5 Implementation 34
5.1 Depth From Projection Defocus . 34

5.1.1 Camera And Projector Configuration 35
5.1.2 The Algorithm . 35
5.1.3 Limitations . 38

5.2 Stereo-View Depth Estimation Algorithm 39
5.2.1 Base Algorithm . 39
5.2.2 Memory Organization . 41
5.2.3 Sliding Window . 42
5.2.4 Uniqueness . 42
5.2.5 Median Filter . 43

6 Results 45
6.1 Depth From Projection Defocus . 45
6.2 Stereo Depth Estimation Algorithm . 46

7 Conclusion And Future Work 55

IX

List of Figures

2.1 Fundamental relation underpinning depth from defocus 4
2.2 Reverse projection principle . 5
2.3 Principle of depth from defocus . 6
2.4 Original camera-projector configuration 7
2.5 Two-dimensional low-pass filter . 8
2.6 Illumination pattern . 8

3.1 Pinhole camera configuration . 12
3.2 Meaning of ā,b̄ and c̄ . 13
3.3 Definition of an epipolar line . 14
3.4 Epipolar rectified configuration . 15
3.5 Tsukuba, epipolar rectified data set . 16
3.6 Depth map of Tsukuba data set . 18

4.1 Image sequence: Flower Garden . 21
4.2 Image sequence: Tsukuba . 21
4.3 Image sequence: Symposium . 22
4.4 Shiftable window principle . 24
4.5 Shiftable window advantage . 24
4.6 Result of applying shiftable windows . 25
4.7 Results of temporal selection . 26
4.8 Result of applying visibility based graph-cuts 30

5.1 Principle of visible shadow . 36
5.2 Camera and projector configuration used for the implementation 36
5.3 Illuminated frame example . 37
5.4 Cones data set . 40
5.5 Cuboid . 41
5.6 Sliding window principle . 43

X

5.7 Minimum sorting network for median filter 44

6.1 Defocus algorithm: sample frame . 46
6.2 Results of defocus algorithm . 47
6.3 Result of defocus algorithm : spongebob scene 48
6.4 Result of defocus algorithm : plant scene 49
6.5 Result local stereo depth estimation algorithm (320×240) 52
6.6 Result local stereo depth estimation algorithm (160×120) 53
6.7 Result uniqueness upgrade . 54
6.8 Result median filter . 54

XI

List of Tables

6.1 Time table: SAD . 50
6.2 Time table: SAD + optimization 1 . 50
6.3 Time table: SAD + optimization 2 . 51

XII

Chapter 1

Introduction

Depth estimation algorithms are used to retrieve depth information from a scene. The
goal of this thesis is providing an overview of different ways to handle this problem.
Different algorithms will be discussed and compared to each other. Both advantages
and disadvantages for each algorithm will be provided. With this information available
we are able to determine which type of depth estimation algorithm performs best for a
specific scene.
The input data to depth estimation algorithms can vary. Some depth estimation algo-
rithms use input data from only one point-of-view while others use images from two or
more viewpoints. When images are used from only one point-of-view, the scene can be
illuminated by a projector to provide us with extra information. When images from more
than one point-of-view are being used, depth can be estimated by using correspondence
between multiple images.
Using images from only one point-of-view of the scene makes it hard to derive depth
for each pixel in the input images. By using a projector to illuminate the scene with
different illumination patterns we are provided with extra information. The extra in-
formation gained by this illumination is an amount of blur for each pixel in the input
images. It is possible to derive depth estimations for each pixel by using the amount of
blur, observed at the pixel.
Stereo depth estimation algorithms usually use two input images which are epipolar
rectified. The meaning of epipolar rectification is discussed later. For now it suffices
to know that epipolar rectified images are images acquired from cameras that have a
particular geometric configuration. Given two epipolar rectified images, the algorithms
derive a disparity map for one of the two input images. A disparity map represents the
difference in images obtained from the two different cameras. These disparity maps are

1

often used by other computer vision applications. Because these applications build their
algorithms based on data from this disparity map, it is desirable that the disparity map
is as correct as possible. Sometimes it is more important to retrieve a raw estimate of
the disparity map generated in real-time. For example when a robot has to interact
with the environment it is desirable that this can be done in real-time. When we look
at stereo view depth estimation algorithms, four steps can be distinguished. The steps
that are being performed depends on the stereo algorithm being used.
Other algorithms make use of images taken from more than two viewpoints and disparity
maps are determined for a subset of these images. Because images are used from more
than two points-of-view, multi view depth estimation algorithms are able to perform
better than stereo view depth estimation algorithms.

2

Chapter 2

Depth From Projection Defocus

Depth from defocus algorithms obtain images from the scene from only one point-of-view.
As presented by Zhang and Nayar [1] the scene is being captured by a digital camera
while it is being illuminated by a digital projector. Different illumination patterns are
projected onto the scene and the radiance at each pixel is studied while illuminated
by these patterns. The digital projector produces a focused image on a specific depth.
When a surface point is closer to the projector than the depth on which the projector
is focused, the projected image appears blurred at this specific point. By analyzing the
retrieved data we can model a projection defocus kernel using a linear system. By using
this model we can recover depth at each pixel by estimating the parameters of its defo-
cus kernel in frequency domain. The defocus kernel is scene-independent in contrast to
camera defocus. This property comes from the fact that projector defocus happens on
the projector plane while camera defocus happens on the scene surface.
In contrast to most depth recovery algorithms, this method is more accurate near depth
discontinuities and depth is estimated at each pixel, independent from its neighboring
pixels, without missing parts in the depth map.
The algorithm presents us with a simple linear model for projector defocus. A frequency
domain method is then used to estimate the defocus kernel which is used to recover three
dimensional information of the captured scene.

2.1 Depth From Defocus

Depth from defocus algorithms use images, observed by a camera, to determine the blur
for each pixel. The camera is focused on a plane behind the scene and scene points

3

closer to the camera appear more blurred. The amount of blur can thus be related to
the depth of the scene points. These methods are based upon the relation described
by Langer et al. [5] which is illustrated in figure 2.1 and formula (2.1). The defocus
principle shows us that whenever a scene points is closer to the camera that observes the
scene, the radiance of the pixel influences multiple camera pixels. When a scene point
is in focus it will only be observed by one camera pixel.

Figure 2.1: Fundamental relation underpinning depth from defocus. ds is the distance
between the lens and the sensor plane, do represents the distance between the scene
point and the lens and σ is the radius of the blur circle. Image courtesy of Langer et al.
[5]

d0 =
fds

ds − f − Fα
(2.1)

In this formula f denotes the focal length of the lens, ds represents the distance between
the lens and the sensor, F refers to the lens aperture number and α is the radius of the
blur circle created by a point at distance d0. The lens aperture is a camera setting that
influences the depth of field. A smaller lens aperture produces a longer depth of field
which determines the range of scene points to be in focus at the same time.
When we have a measure for the blur radius at a scene point, we can use formula (2.1)
to determine the distance of that point to the lens. When we have the distance from the
point to the lens we obviously have a depth of the point in the scene.
Figure 2.1 shows us that whenever a point is located closer to the lens than the plane
on which the camera is focused, the blur radius on the sensor plane grows larger. This
is the principle of depth from defocus. The reverse projection from defocus principle is
also presented by Langer et al. [5] and is illustrated in figure 2.2.

where δ̂ is the blur radius in the scene which is related to the lens-object distance,d0,

4

Figure 2.2: The reverse projection principle. Image courtesy of Langer et al. [5]

and df and ra are the lens-focal plane distance and aperture radius respectively.
This figure shows us that a cone can be constructed between the lens and the point on
the plane of focus, visible from a point on the sensor plane. The principle tells us that
the radiance observed at the point on the sensor plane, depends on the radiance from
all scene points within this cone. The size of the cone radius depends on the distance
from the scene point to the lens.
When we use a projector instead of a camera, the sensor plane is replaced by the image
that is projected onto the scene. This shows us that whenever a object is out of focus,
one pixel in the illumination image is projected onto multiple scene points. This reverse
projection principle is the basic principle on which the algorithm, discussed further in
this chapter, relies.

2.2 Temporal Defocus Analysis

To determine the defocus kernel, the function used to represent the defocus, the scene
is illuminated by means of a projector. The projector is focused behind the scene as
discussed by Zhang and Nayar [1] and seen in figure 2.3.

For a scene point that is in focus for the projector, the scene point observed by the
camera is illuminated by a single pixel on the image projected on the scene. When the
scene point is out of focus the irradiance is illuminated by several pixels on the projected
image. The irradiance for such a point equals the convolution of the defocus kernel and
the illumination pattern. The radiance for a scene point on an opaque surface can be

5

Figure 2.3: Principle of depth from defocus. Image courtesy of Zhang and Nayar [1]

written as

I = αf(x, z) ∗ P (x) + β (2.2)

where I denotes the radiance at the scene point along any given outgoing direction,
α is a factor that depends on surface reflectance, f(x, z) is the defocus kernel, P (x)
is illumination pattern and β is the radiance due to ambient light [1]. This formula
represents a linear system with the illumination pattern as its input parameter and the
irradiance as its output. So what formula (2.2) shows us is that the irradiance depends
on the defocus kernel. This means that if we have the irradiance from a pixel, it is
possible to derive the defocus at that point.
The camera-projector configuration used by Zhang and Nayar [1] is shown in figure 2.4.

The beam splitter allows the light from the projector to be illuminated on the scene,
while the light exitant from the scene is reflected onto the camera. This allows the
camera and projector to be coaxial.

2.3 Frequency Domain

Jean Baptiste Joseph Fourier stated that every function whose area is finite under the
curve can be expressed as the integral of sines and/or cosines multiplied by a weighting
function [6]. This integral is called a Fourier Series. The Fouriers series can be recovered

6

Figure 2.4: Camera-projector configuration using a beam splitter. Image courtesy Zhang
and Nayar [1]

completely without loss of information via an inverse process. This allows us to work in
the Fourier Domain, apply some changes and go back to the original domain without
loss of information. In the Fourier transform, each term is composed of the sum of all
values of the function. The values of the function are multiplied by sines and/or cosines
of various frequencies. For this reason, the domain over which the resulting values of
the Fourier transform range, is called the Frequency Domain.
The reason why the frequency domain is explained here is because an image can be
seen as a function f(x, y) where x and y represent the pixel coordinates and are called
spatial variables . We can go from this spatial representation to the Fourier transform
F (u, v) where u and v are the transform or frequency variables. The reason why we
would go from spatial to frequency domain is because some information is more obvious
in frequency domain or some filters are easier to apply in this domain than in the spatial
domain.
To apply a blur or defocus effect to an image, a low-pass filter in frequency domain can
be applied to the image. A low-pass filter is a filter that attenuates high frequencies and
passes low frequencies. Because the high frequencies are attenuated we would expect a
low-pass filtered image to have less sharp details than the original image. An example
of a low-pass filter in frequency domain is shown in figure 2.5.

2.4 Depth Estimation

Equation 2.2 can be seen as a linear equation where its input is represented by the
illumination pattern and the output defined by the pixel radiance. Zhang and Nayar [1]

7

Figure 2.5: An example of a two-dimensional low-pass filter in frequency domain. Image
courtesy of Favaro [7]

state that the radiance of a surface point over time is the response of its defocus kernel
to the excitation by the illumination pattern, projected on the scene. The illumination
pattern, as seen in figure 2.6, is constructed with a wide range of frequencies and is shifted
over the scene. The illumination pattern is a binary periodic sequence, 011011011011...
where each bit represents a 8-pixel wide stripe. The pattern is shifted one pixel at a
time, 24 times, to retrieve 24 different images from the scene.

Figure 2.6: The illumination pattern that is projected onto the scene. Image courtesy
of Zhang and Nayar [1]

By capturing the pixel radiance every time we shift the pattern, we now have a
temporal radiance sequence Il, l = 0, ..., 23, for a scene point.
In the next step a discrete-time Fourier series is defined by using the following formula

8

Il = A0 +
L−1∑
k=1

Akcos(ωkl − φk) (2.3)

where L = 24 and is the number of times the pattern is shifted over the scene,
ωk = 2kπ

L and φk = arctan(Bk, Ck). Ak represents frequency k and consists out of two
terms Bk and Ck. These terms are defined as follows

Ak = sqrt(B2
k + C2

k) (2.4)

Bk =
1
L

L−1∑
l=0

Ilsin(ωkl) (2.5)

Ck =
1
L

L−1∑
l=0

Ilcos(ωkl) (2.6)

Because of the fact that the defocus kernel is a low-pass filter, the amount of defocus
is measured by how quickly Ak diminishes with k. Because the depth determines how
much defocus is visible on a pixel we will be using this data to determine a disparity
estimate for this pixel. Because A0 depends on the ambient light, β, it cannot be used
to estimate depth. We use the ratio of A1 and A2 to determine how severely the kernel
attenuates the second-order harmonic with respect to the first-order one. So the following
formula is used as a measure of depth

θ =
A2

A1
(2.7)

where A1 > A2 > 0 and θ ∈ [0, 1] because the kernel is a low-pass filter. The next
step will be mapping θ to the pixel depth.

2.5 Mapping From Defocus To Depth

The mapping from θ to z happens in three steps

1. In the first step the correspondence between projector and camera pixels is com-
puted. An algorithm to do so is presented by Scharstein and Szeliski [8]. The
algorithm uses structured light to uniquely label each pixel. This can be done by
using gray-code patterns or sine-waves [9].

2. When the correspondences between camera and projector pixels are determined, a
foam board with four markers is tilted in front of the system and depth is computed
for each pixel. To do this, an image is taken from the board and the homography

9

from the board to the projection plane is calculated. The homography allows to
estimate the position and orientation of the board. When this data is known it
is easy to determine the depth for each pixel. Zhang [2] proposes an algorithm to
determine the desired homography.

3. The last step involves shifting the illumination pattern across the scene and com-
puting the δ value for each point on the foam board. We now have both the θ

value and the depth, or z-value, for each pixel. With this information it is possible
to construct a look-up table that enables us to map a θ value to its corresponding
disparity.

We now have the depth map and θ-values for the image of the board. Because the
defocus kernel is assumed to be vertically but not horizontally invariant, a look-up table
is being constructed for each column which maps a θ-value to its corresponding z-value.

2.6 Depth Recovery

Now that the mapping from θ to z is known, recovering depth for a scene is straight-
forward. 24 images are taken from the scene while shifting the illumination pattern,
as discussed in section 2.2. The radiance values for all pixels are stored and used to
calculate A1 and A2. This data is used to compute the θ-value for each pixel. Once we
have all θ-values they are mapped to the corresponding z-values by using the look-up
table, constructed as discussed in section 2.5.

10

Chapter 3

Stereo View Depth Estimation

Stereo view depth estimation is comparable to the principle of the human depth per-
ception. To be able to see a scene in three dimensions the brain is provided with two
images of the scene as visible from the left and the right eye. The point-of-view from
both images is slightly different and correspondence between images is used to determine
the depth for the scene. Stereo correspondence is a complicated and heavily investigated
topic in the computer vision domain. Stereo View depth Estimation algorithms are al-
gorithms that work with two frames/images that are acquired using a particular camera
geometry called epipolar rectified, as discussed in section 3.1.2. These algorithms, given
two epipolar rectified images, generate a disparity map that coincides with one of the
input images. This disparity map relates a depth to every pixel.
Some computer vision algorithms use the disparity map as input data. For example
some image warping algorithms use the disparity map for calculating a new view given
an existing view. Hence, the result of this warping algorithm is related to the quality of
the disparity map.
Stereo depth estimation algorithms often make assumptions, the most frequently used
assumptions are:

Lambertian surfaces Surfaces are assumed to be Lambertian. This means that the
appearance of a scene point does not vary with viewpoint.

Smooth surfaces Surfaces are often assumed to be smooth. This means that there is
little difference between neighbouring pixels on the same surface. Great differences
between intensities often refers to the presence of an edge.

Camera geometry Input images for stereo depth estimation algorithms are almost
always assumed to be epipolar rectified.

11

3.1 Input Data

Stereo view depth estimation algorithms often require epipolar rectified input images.
In this section you will be presented with a definition of epipolar rectification but first
the pinhole camera model is explained because this model is later used to clarify the
epipolar rectified configuration. The pinhole camera and epipolar geometry are defined
by Hartley and Zisserman [10] but in this section the definitions are based on the work
of McMillan [11].

3.1.1 Pinhole Camera Model

McMillan [11] defines a pinhole camera model as a model that collects intensities along
rays that pass through a single point in space called its center-of-projection. These rays
are contained within a bounded solid angle, defined by a solid planar section, the image
plane. This solid angle is well defined as long as the center of projection does not lie on
the extended image plane. As the boundaries of the image plane extend to infinity the
solid angle boundary approaches to 2π steradians. This definition is illustrated in figure
3.1

In a pinhole camera model we consider the rays emanating from the center-of-projection
with basis vectors (̂i, ĵ, k̂). In the image plane a local 2D coordinate system is being
defined with vector basis (ŝ, t̂) so we can identify each point by image coordinates.

Figure 3.1: Pinhole camera configuration. (̂i, ĵ, k̂) are the basis vectors of the local
coordinate system centered at the center-of-projection and (ŝ, t̂) are the basis vectors of
the local coordinate system of the image plane. Image courtesy of McMillan [11]

12

Each image-space point corresponds to one of the rays originating from the center
of projection. The mapping from image space coordinates to rays can be done by the
following planar mapping function.

d̄ =

di

dj

dk

 =

ai bi ci

aj bj cj

ak bk ck

u

v

1

 = P

u

v

1

 (3.1)

d̄ represents the rays direction starting from the center-of-projection while (u, v) repre-
sents the image space coordinates.
We can interpret matrix P as having three columns that we represent as vectors ā, b̄

and c̄.
ā and b̄ are images of the image-plane base vectors ŝ and t̂, respectively, in the (̂i, ĵ, k̂)
coordinate system. c̄ is the vector connecting the origin of the rays with the origin of
the image plane. see figure 3.2.

Figure 3.2: Meaning of ā,b̄ and c̄ vectors, used for ray/image-point transformation. î, ĵ

and k̂ represent the basis vectors of the local coordinate system, centered at the center-
of-projection. Image courtesy of McMillan [11]

3.1.2 Epipolar Rectification

When we talk about epipolar rectified images we refer to a particular geometric configu-
ration that exists between the images. Epipolar rectification can be achieved by a good
camera alignment as discussed in section 3.1.2. Another possibility to achieve epipolar

13

rectified images is by rectifying the given images by means of a rectification algorithm.
All rays originating from the center-of-projection from one camera model can be pro-
jected as lines on the image plane of the other camera model. The ray and the two
centers-of-projection define a plane in 3D space, called an epipolar plane. The projec-
tion of such a plane results in a line on both images. All these projected lines intersect in
the same point called the epipole, the epipole is the projection of the center-of-projection
of one image on the image plane of the other image. An epipolar line is defined as the
projection of the epipolar plane on the image plane as seen in image 3.3

Figure 3.3: The projection of an epipolar plane (light plane) results in a epipolar line
(dark line) on an image plane. Ċ1 and Ċ2 represent two centers-of-projection while Ẋ

represents a scene point.

A epipolar rectified geometry can than be defined as a geometry for which all epipo-
lar lines are parallel to one of the axes of the image planes. Most often the epipolar lines
are parallel to the horizontal axes of the image plane.

By using pinhole camera configuration epipolar rectification can be defined as seen in
figure 3.4.

In an epipolar rectified configuration, the vector connecting the two centers-of-

14

Figure 3.4: Epipolar rectified configuration where Ċ1 and Ċ2 represent two centers-of-
projection while Ẋ represents a scene point. Image courtesy of McMillan [11]

projection is parallel to both image planes and the î basis vector of the camera space is
parallel to the ŝ basis vector of the image planes.

When images are epipolar rectified, the image-space coordinates of corresponding
points differ only in one dimension. In other words this means that image-space coordi-
nates of a pixel representing the same scene point for example have the same y-coordinate
and is different in the x-coordinate.
When a depth estimation algorithm needs to search for corresponding pixels in both
images, this configuration reduces the search area from the whole image to just one scan
line in the image. This is a significant performance upgrade since the matching cost for
a pixel (x, y) in the left image does not have to be calculated for all pixels in the right
image. The matching cost only has to be calculated along one line instead of along the
whole image. When pixel (x, y) corresponds pixel (i, y), the difference between x and
i is related to the depth of the point in the scene. This value can be used to fill the
disparity map.
An example of two epipolar rectified images often used to test depth estimation algo-
rithms is the “Tsukuba” data set, see figure 3.5.

15

Figure 3.5: Two epipolar rectified images from the Tsukuba data set. Image courtesy
of Scharstein et al. [12]

3.2 Design

According to Scharstein and Szeliski [12], stereo algorithms generally perform (subsets)
of the following four steps in the process of generating a disparity map, given two epipolar
rectified images.

Matching cost computation: For all pixels in a reference image, the matching cost
is being computed for all candidate matching pixels. The matching cost is used
as a means of measuring the correspondence between pixels. A typical way to
determine the matching cost is to determine the RGB or intensity difference.

Cost (support) aggregation: This step combines the cost from multiple pixels to
define a matching cost for a pixel in the reference image. For example by averaging
the matching cost in the previous step over a neighbourhood. One way to aggregate
the matching cost is to take the sum of the matching cost within a window of fixed
size. Other methods use adaptive windows, shiftable windows,. . .

Disparity computation/optimization: Given a pixel and a possible matching pixel,
a disparity is being estimated for the pixel in the reference image. When the images
are epipolar rectified, the disparity used is the difference between the x coordinates
of corresponding pixels in both the images. The pixel that is chosen to be a cor-
responding pixel is the one with the lowest matching cost.

Disparity refinement: In this step the disparity map from the previous stap is re-
fined. An example of a refinement technique is applying a sub-pixel refinement
stage or applying a median filter to remove noise.

16

The sequence of steps taken depends on the algorithm that is being used. Stereo
depth algorithms can be divided into several classes. The two most popular classes are

Local Algorithms: Local (window-based) algorithms only use intensity values within
a neighbourhood or window.
An example of a local algorithm is the traditional Sum Of Squared Differences
algorithm, which is discussed in section 3.4, and can be divided in three steps.

1. The matching cost is calculated by applying the sum-of-squared differences
formula on a pixel and its candidate matching pixel.

2. Aggregation is applied by summing up the matching costs within a fixed
window around the pixel.

3. Disparity is then chosen as the difference in the x-coordinate between the
reference pixel and the pixel with the minimum matching cost window.

Global algorithms: These algorithms make explicit smoothness assumptions and
then solve an optimization problem. Mostly global algorithms do not perform an
aggregation step but search for a disparity assignment to minimize a global cost
function that combines data and smoothness terms. The main difference between
global algorithms is the global cost function that is used.

Examples of other classes are iterative, cooperative and Dynamic programming algo-
rithms.

3.3 Output

As discussed earlier the algorithms have as input two images of the scene, taken from
two slightly different points of view. The goal of the algorithm is to provide the user
with a depth estimation of the scene points, as seen from one of the reference images.
The output of the algorithm should thus contain information that represents the third
dimension, depth, or z-coordinate in 3D space.

3.3.1 Disparity Map

Disparity is the difference in images observed from the left and the right eye that the
brain uses as a binocular cue to determine the depth of an object.
The output of depth estimation algorithms is often referred to as the disparity map or

17

disparity function.
The disparity function is defined as d(x, y) which returns the disparity for pixel (x, y)
in one of the reference images and the disparity map is a two dimensional array which
contains the disparity for pixel (x, y) with respect to one of the reference images.
An example of such a disparity map can be seen in figure 3.6.

Figure 3.6: Disparity map for the left image of the Tsukuba data set, computed by a
local stereo depth estimation algorithm. Red pixels represent pixels that are not assigned
a depth value

3.4 Sum of Absolute Difference

3.4.1 Introduction

The Sum of Absolute Difference or SAD algorithm is a very simple algorithm. It’s a local
stereo depth estimation algorithm and uses corresponding pixels to determine depth for
each pixel. As most stereo view depth estimation algorithms, SAD uses two epipolar
rectified images as input and computes a disparity map for one of the two input images.
A pixel in one image that represents the same scene point as a pixel in the other image
are defined as being corresponding pixels. The goal of a local stereo depth algorithm
is to find corresponding pixels between the two input images and use them to make a
depth estimate. Because the images are epipolar rectified, corresponding pixels differ
only in the x dimension. The difference between the x coordinate in the reference image
and the x coordinate in the other image, is directly related to the depth of the scene
point. So if we know which pixels in both images are corresponding pixels, we can use
the difference between both x coordinates as their disparity estimate.

18

3.4.2 Matching Cost

The SAD algorithm uses color intensities to determine whether or not two pixels repre-
sent the same scene point. Each pixel in the reference image is compared to candidate
pixels in the right image. The pixel pair with the lowest intensity difference, or match-
ing cost, is selected as the corresponding pixel pair. The formula, used to compute the
intensity difference is defined by Mühlmann et al. [13] as follows:

SAD(x, y, d) =∑ 1
2
(winx−1)

i=− 1
2
(winx−1)

∑ 1
2
(winy−1)

j=− 1
2
(winy−1)

[

|RL(x + i, y + j)−RR(x + i + d, y + j)|+
|GL(x + i, y + j)−GR(x + i + d, y + j)|+
|BL(x + i, y + j)−BR(x + i + d, y + j)|]

(3.2)

19

Chapter 4

Depth Maps From A Sequence Of

Images

In stereo view depth estimation algorithms, a single depth map is estimated for one of
the two input images. Because these algorithms depend on the correspondence between
pixels in both images, they are known to have problems with occlusions and textureless
regions. If regions are textureless, more than one possible corresponding pixel is found.
If a region is visible in one image but is occluded in the other image, no corresponding
pixel can be found. These two situations can lead to incorrect disparities.
Some techniques are presented to improve the algorithms in textureless regions or near
occlusions. For example volumetric techniques, layered motion and stereo algorithms,...
Despite the efforts, all current correspondence algorithms have their limitations.
A evaluation and comparison of multiple algorithms that use a sequence of input images
is introduced by Seitz et al. [14]. In the paper by Kang and Szeliski [3], a method is
proposed to determine depth by using a sequence of images from different points-of-view.
Instead of computing a single depth map for one reference image, a depth map will be
computed for each input image (or a subset of them). This technique should overcome
most of these limitations. The paper proposes two methods to compute depth maps
from a sequence of images.

1. In the first method, a depth map is computed for a single reference image, using
multiple input images. this process is repeated for all images for which depth maps
are required. Two complementary approaches are proposed to perform better near
occlusions and therefore result in improved depth maps.
The first approach uses spatially adaptive windows and selects a temporal subset
of frames to match at each pixel. The second approach labels occluded regions by

20

using a global minimization technique based on graph cuts where good matching
points are erased from the set of pixels that have to be matched later in the
algorithm. The global optimization approach also explicitly takes visibility from
pixels into account while computing the matching costs.
Both techniques can be combined in one single system.

2. In the second method, all depth maps are computed simultaneously with visibility
handling.
The problem of extracting multiple depth maps is handled by using a global opti-
mization over the unknown depth maps.

All images and results are originated from the paper by Kang and Szeliski [3]. Three
image sequences are used throughout their paper and are shown in figures 4.1, 4.2 and
4.3.

Figure 4.1: 1st, 6th and 11th image from the eleven image flower garden sequence. Image
courtesy of Kang and Szeliski [3]

Figure 4.2: 1st, 3rd and 5th image from the five image Tsukuba sequence. Image courtesy
of Kang and Szeliski [3]

21

Figure 4.3: 1st, 3rd and 5th image from the five image symposium sequence. Image
courtesy of Kang and Szeliski [3]

4.1 Method 1

In the first method a disparity map is calculated for each input image or a subset from
these input images. A local algorithm is used to solve the problem. Local algorithms are
known to have problems in textureless regions, near occlusions and depth discontinuities.
Therefore the algorithm is upgraded using spatially shiftable windows and temporal
selection. Although the algorithm discussed here is designed to use a sequence of input
images, it will also produce reasonable results if only two input images are used, in the
latter case the use of the temporal selection component is useless. After the depth map
is calculated it is improved by using a global optimization approach, based on graph
cuts.

4.1.1 Terminology

Before starting to explain the two methods used to compute depth maps given a sequence
of images as input, we go through some terminology used throughout this chapter. The
terminology and equations that are presented in this section are identical to the termi-
nology and equations used by Kang and Szeliski [3]
Multi-view stereo algorithms use a collection or sequence of images as input. The col-
lection of images is denoted as Ik(x, y), k = 0...K where K is the total amount of images
available. Pk refers to the camera matrix associated with image Ik(x, y). The camera
matrices are assumed to be computed elsewhere and are accurate enough to be used
in the presented algorithms. I0(x, y) is the reference image for which we are about to
calculate a depth map d(x, y). Îk(x, y, d) is image Ik warped by a disparity map d(x, y)
and can be computed using the following formula

Îk(x, y, d) = Ik(x + bkd(x, y), y) (4.1)

22

where bk represents a scaling factor.
Eraw(x, y, d, k) represents an initial raw matching cost between the reference image and
image Ik warped with disparity d(x, y) and can be computed using the following formula

Eraw(x, y, d, k) = ρ(I0(x, y)− Îk(x, y, d)) (4.2)

ρ(.) is a measure for the RGB difference between two images. An example of such a
measure is the SAD value as can be seen in equation 3.2. So Eraw(x, y, d, k) is the RGB
difference between the reference image and another input image warped with disparity
d(x, y) over an unaggregated region. The task of multi-view stereo algorithms is to
compute a disparity map d(x, y) for which the raw matching costs are low for all images.
Since the raw matching cost can be very noisy it is advised to aggregate over a region
to improve the results. A simple aggregation technique is “sum of sum of squared
differences” or simply SSSD. The following formula shows how to calculate the SSSD
value.

ESSSD(x, y, d) =
∑
k 6=0

∑
(u,v)∈W (x,y)

Eraw(u, v, d, k) (4.3)

W (x, y) is a square window centered around pixel (x, y). In words, we will sum up
the raw matching costs over a window and sum these up for every image in the input
collection except for the reference image. Local algorithms use the disparity with the
lowest SSSD value. This performs well in textured regions and not near occlusions and
depth discontinuities. In other cases local algorithms do not perform well. Kang and
Szeliski [3] present two techniques to improve the algorithm in these cases. One technique
uses spatially shiftable windows and the other technique uses temporal selection.

4.1.2 Spatially Shiftable Windows

Until now, if we want to calculate the matching cost between two pixels, the cost is
aggregated over the windows centered around the pixels to be matched. Instead of
only using the windows centered around these pixels, spatially shiftable windows use all
the windows that include the pixels to be matched. This adds very little computation
because the value of a shifted window is the same as that of a centered window at
some neighboring pixel. This can be seen in figure 4.4. As can be seen in figure 4.5 this
approach can improve the algorithm near depth discontinuities. The black pixel now also
matches correct in both the middle and left image but not in the right frame because
the scene point is occluded from this point-of-view. Trying to match the pixel in the
right image will lead to erroneous depth estimations. To solve this problem, temporal
selection is used, which is discussed in the next chapter.

23

Figure 4.4: Working with all windows containing a pixel (black pixel in this image) is
the same as taking the minimum matching cost of all centered windows around pixels
in the window centered around the black pixel. This image shows three shifted windows
of a 3x3 neighbourhood. Image courtesy of Scharstein et al. [12]

Figure 4.5: The white pixel now matches correctly in all frames. This would not be the
case if we would use centered windows. The black pixel also matches correctly in the
left and middle image. Image courtesy of Kang and Szeliski [3]

24

The results of applying spatially shiftable windows on the flower garden image se-
quence can be seen in figure 4.6. Differences are visible but they are not spectacular.

Figure 4.6: a) Result of using 3x3 centered windows, b) Result of applying 5x5 centered
windows, c) Result of applying 3x3 shiftable windows, d) Result of applying 5x5 shiftable
windows. Image courtesy of Kang and Szeliski [3]

4.1.3 Temporal Selection

Instead of using all frames to search for a match for a pixel it would be better to only
use those frames in which the pixel is visible. For a camera moving along a continuous
path, a pixel that is about to be occluded will often be occluded only in the preceding or
the succeeding frames. Instead of just choosing between preceding or succeeding frames,
a fixed percentage of frames can be chosen to be used. For example 50% of all available
frames can be used. The frames we choose is based on the matching score the frame has.
So for each pixel we compute the SSD value and then sum up the matching costs until
we have used 50% of all frames. This approach is better for scenes in which for example
a picket fence is present. The picket fence would make some pixels alternately visible
and this technique would thus perform better by choosing frames from both succeeding
as preceding frames instead of just one side. Figure 4.7 shows the results of applying
temporal selection. The figure shows that temporal selection performs really well near
depth discontinuities.

4.1.4 Global Techniques

As an alternative approach for dealing with the problems that arise in local depth es-
timation algorithms near occlusions,depth discontinuities and textureless regions, Kang
and Szeliski [3] propose the use of a global technique. A global energy function normally
consists of two terms as can be seen in the following formula.

Eglobal(d(x, y)) = Edata + Esmooth (4.4)

25

Figure 4.7: Results of applying the temporal selection principle on (from top to bottom)
the Flower Garden, Tsukuba and Symposium sequence . Image courtesy of Kang and
Szeliski [3]

26

The disparity d(x, y) that minimizes this global energy function is chosen as the solution
to the depth estimation problem. As said earlier formula (4.4) consists of two terms, a
data term Edata and a smoothness term Esmooth. Edata is simply a summation of the
local matching costs and is computed using the following formula.

Edata =
∑
(x,y)

ESSSD(x, y, d(x, y)) (4.5)

Because smoothness is handled by the global smoothness term, no aggregation is used
in the SSSD term. The smoothness term adds a certain amount to the global energy
function so that disparity maps that are smooth have priority over disparity maps that
have salt-and-pepper noise. The smoothness term is calculated as in formula (4.6).

Esmooth =
∑
(x,y)

[sh
x,yφ(d(x, y)− d(x + 1, y)) + sv

x,yφ(d(x, y)− d(x, y + 1))] (4.6)

Scharstein and Szeliski [12] define φ is a monotonically increasing function of disparity
difference. φ can take different forms. It can be a quadratic function but may lead
to poor results near object boundaries. Functions that do not exhibit this problem
near object boundaries are called discontinuity preserving functions. sh

x,y and sv
x,y are

horizontal and vertical smoothness strengths respectively which can be spatially varying.
The graph cut algorithm introduced by Boykov et al. [4] is one that minimizes the full
2D global energy function. Next Kang and Szeliski describe two extensions on this global
graph cut algorithm to better handle partial occlusions present in multi-view stereo. One
extension uses pixel labeling and visibility computation while the other extension uses
hierarchical disparity computation to improve efficiency.

Pixel Labeling

Pixels that do not have good matches in other images are still assigned a disparity, even
if this disparity is erroneous. These pixels often have a high matching cost and are thus
easy to detect. This problem can be solved by introducing a label doccl which is assigned
to pixels that are outliers or potentially occluded. A penalty Eoccl is associated with
every pixel that carries the doccl label. The penalty Eoccl should be assigned a value
that is higher than the highest value associated with correctly matching pixels. All non-
occluded neighboring pixels are assigned a smoothness penalty, Φoccl. The matching cost
ESSSD(x, y, d(x, y)) in previous formulas can be rewritten as E′

SSSD(x, y, d(x, y)) where
E′

SSSD(x, y, d(x, y)) is defined by the following formula:

E′
SSSD(x, y, d(x, y)) =

{
ESSSD(x, y, d(x, y)) if d 6= doccl

Eoccl if d = doccl

(4.7)

27

and smoothness function φ is modified to the following definition

φ′(p− q) =

φ(p− q) if p and q 6= doccl

Φoccl if p or q = doccl, p 6= q

0 if p = q = doccl

(4.8)

Labeling of occluded pixels often fails to label occluded pixels in textureless regions
because these pixels may match with pixels in the same region even if it is not the correct
pixel. This a direct consequence of the fact that the region is textureless.

Visibility Computation

To use visibility inside the global optimization function Kang and Szeliski [3] make use
of a visibility function. The visibility function is denoted as v(x, y, d, k) and can be
computed as a function of the disparity assignments at layers closer than d. o(x, y, d′) is
called the opacity function and represents a binary image of the pixels assigned to depth
d′. s(x, y, d′, d, k) is called the shadow function and is the shadow that the opacity casts
onto another level d relative to camera k. This can be derived from the homographies
that map between disparities d′ and d, where homography Hk(d) can be computed
directly from camera matrices P0 and Pk and depth d. Pixels in image k that are in
a shadow region are pixels that are not visible from the reference image. The shadow
function is defined as followed:

s(x, y, d′, d, k) = (Hk(d)H−1
k (d′)) ◦ o(x, y, d′) (4.9)

The visibility function can then be determined using the following formula:

v(x, y, d, k) =
∏
d′<d

(1− s(x, y, d′, d, k)) (4.10)

The formula runs over all depth levels smaller than d and determines if the pixel (x, y)
in image k is in the shadow of one of these depths. If this is the case, the visibility
algorithm returns 0 else it will return 1. The latter case means that pixel (x, y) in image
k is visible from the reference image. To involve visibility in the global energy function,
the raw matching cost can be replaced by

Evis(x, y, d, k) = v(x, y, d, k)ρ(I0(x, y)− Îk(x, y, d)) (4.11)

By using this formula we explicitly take occlusions and partial visibility in account.
The problem with this approach is that it’s complicated to minimize the global energy
function. Kang and Szeliski [3] present us with a solution to this problem. To minimize

28

the global function a good way would be to start with all pixels visible. The graph-
cut algorithm [4] is run as usual to get an initial depth estimation, d(x, y). Visibility
is recomputed for all pixels by using this disparity map. The disparity map is then
improved by re-optimizing the modified energy function. The problem with this option
is that this process may not converge. This comes from the fact that visibilities assumed
for one iteration may be undone by a re-assignment of labels in that iteration. To make
sure this approach converges a fixed percentage of all the pixels is frozen. For example
we choose 15% from all the pixels and use their disparity in the final disparity map. We
choose to freeze those pixels that have the lowest matching costs. The next step runs the
graph cut algorithm again on the remaining pixels until depth is computed for all pixels.
The result of applying this algorithm can be seen in figure 4.8. The most significant
improvement of applying the global technique is visible in the dataset from the Tsukuba
university.

29

Figure 4.8: Result of applying the global visibility based graph-cuts algorithm on (from
top to bottom) the Flower Garden, Tsukuba and Symposium image sequences. Image
courtesy of Kang and Szeliski [3]

30

4.2 Method 2

This section describes a technique proposed by Kang and Szeliski [3] which computes
multiple depth maps from a sequence of input images simultaneously. It is referred to
as the multi-view stereo reconstruction framework.

4.2.1 Terminology

From the set of input images Ik(x, y), k = 0...K, a set S of keyframes is chosen. For
these keyframes a depth map dl, l ∈ S will be estimated. The choice of which frames to
be taken as being keyframes is problem dependent and is comparable to the selection of
I and P frames in video compression techniques [15]. Because we now use a collection of
reference images the formula for calculating a warped image has to be adjusted.

Î l
k(x, y, d) = Ik(x + (bk − bl)d(x, y), y) (4.12)

where bk and bl represent scaling factors. In the ideal case without occlusions, this
warped image would coincide with reference image Il. This leads to the fact that now,
the raw matching cost depends on l as can be seen in the following formula.

Eraw(x, y, d, k, l) = ρ(Il(x, y)− Î l
k(x, y, d)) (4.13)

This formula represents the raw matching cost between reference image Il and the image
Ik warped by disparity map dl. When we include visibility in the raw matching cost
formula we get the following

Evis(x, y, d, k, l) = v(x, y, d, k, l)ρ(Il(x, y)− Î l
k(x, y, d)) (4.14)

The visibility function v(x, y, d, k, l) will be explained later. The data term of the global
energy function to be minimized can then be defined as followed

Edata =
∑
l∈S

∑
k∈ℵ(l)

wkl

∑
(x,y)

Evis(x, y, d, k, l) (4.15)

Image Ik with k ∈ ℵ(l) is a neighboring frame of image Il for which corresponding
pixel colors agree. wkl is a weight that determines how much the neighboring image
contributes to the estimate of disparity map dl. This formula shows that minimizing
the global energy function involves minimizing over multiple depth maps simultaneously.
For the multi-view stereo reconstruction framework, the global cost function is extended
to consist out of three terms as can be seen in the following formula

Eglobal = Edata + Esmooth + Ecompat (4.16)

31

The formula consists out of the data term, which is explained above, a smoothness term
and a compatibility term. This formula differs from formula (4.4) because it encapsulates
an extra term. The other difference between the two methods presented are not directly
visible in this formula but are integrated in each term. The smoothness term is the same
as in 4.6 but now involves summing over all depth maps l.

Esmooth =
∑
l∈S

∑
(x,y)

[sh
x,yφ(dl(x, y)− dl(x + 1, y)) + sv

x,yφ(dl(x, y)− dl(x, y + 1))] (4.17)

The Ecompat function is defined as follows

Ecompat =
∑
l∈S

∑
k∈S

wkl

∑
(x,y)

v(x, y, d, k, l)ρC(dl(x, y)− d̂l
k(x, y, d)) (4.18)

where ρC denotes the disparity difference and d̂l
k(x, y, d) can be computed analogous as a

warped image in formula (4.12). Instead of enforcing smoothness on a disparity map like
the smoothness term, the compatibility term enforces compatibility between depth maps
at different neighboring keyframes. The computation of The definition of the visibility
function v(x, y, d, k, l) is different from where we compute a single depth map. We first
compute the warped disparity map d̂l

k(x, y, d) and then define the visibility function as
follows

v(x, y, d, k, l) = ((dl(x, y)− d̂l
k(x, y, d)) ≤ δ) (4.19)

where δ represents a threshold which accounts for errors in estimation. Whenever a pixel
corresponding to (x, y) is out of the boundaries of the image dimension, v(x, y, d, k, l) is
set to zero.

4.2.2 Depth Estimation Algorithm

The following algorithm was proposed by Kang and Szeliski [3] and combines ideas from
hierarchical estimation, correlation-style search and sub-pixel motion/disparity estima-
tion.
The algorithm works in two phases. The first phase is an initialization phase and the
second phase involves computing visibility and enforcing compatibility between disparity
maps.

Phase One

This phase computes depth maps for each keyframe separately without enforcing the
compatibility term nor computing visibility. The disparity maps in this phase can be
computed by using a hierarchical algorithm like for example the graph cut algorithm
described in section 4.1.4.

32

Phase Two

Once the initial set of disparity maps dl is calculated, visibility can be computed and
the compatibility term Ecompat is used in the global cost function. The algorithm can
be executed several times and will obtain better visibility and thus better depth results
at each iteration.

33

Chapter 5

Implementation

This chapter will discuss the implementation of two depth estimation algorithms. In
section 5.1, a depth from projection defocus algorithm is presented which is based on
the work of Zhang and Nayar [1]. In section 5.2, a local stereo depth estimation algorithm
is discussed, the implementation is based on the work of Mühlmann et al. [13]. First a
basic SAD algorithm is implemented which is optimized with several performance and
quality upgrades. The results of the algorithms can be found in section 6.

5.1 Depth From Projection Defocus

This implementation is based on the work from Zang and Nayar [1]. It uses a camera
and a projector to estimate the depth for each pixel, captured from a real-world scene by
the camera. The basic principle is to focus the projector on a plane, located behind the
scene objects. An illumination pattern, as shown in figure 2.6, is shifted over the scene.
We choose this illumination pattern because it contains a wide range of frequencies. The
next step in the algorithm is to record the radiance at every pixel, illuminated by the
projector. Because the objects are positioned closer to the projector than the plane on
which the projector is focused, the illumination pattern is defocused on each object.
The amount of defocus is directly related to the depth of the object. For this reason
we analyse the radiance sequence for each pixel and determine the amount of defocus,
introduced by the object on that point. The amount of blur for a sequence of radiance
values is determined by converting the spatial domain values to frequency domain. In
frequency domain, an image is blurred by applying a low-pass filter. An example of a
low-pass filter can be seen in figure 2.5. How quickly the frequencies decrease represents
the amount of blur. An amount for how fast the frequencies diminish is to take the

34

second and third frequency and compute their ratio. The obtained value is referred to
as θ and this value is directly related to the depth of that pixel.

5.1.1 Camera And Projector Configuration

In the paper upon which this implementation is based, a beam splitter is used to obtain
a coaxial camera-projector configuration. The camera and projector are made coaxial
to avoid shadows in the obtained images. Because shadows are not influenced by the
projection of the illumination pattern, we would not be able to determine depth for these
pixels. In the original configuration, a projector was placed behind the beam splitter
which allowed the light to pass. Light exitant from the scene was reflected in the beam
splitter into the camera lens. The original configuration can be seen in figure 2.4.

Because no beam splitter was available, an alternative approach was adopted which
is much cheaper but also approximate. If the projector and camera are not coaxial,
shadows are visible through the eye of the camera. This principle can be seen in figure
5.1 and shows the case where the camera is placed on the right-hand side from the
projector.

Each object illuminated by the projector casts a shadow, visible to the camera, to
the right. When the camera is placed to the left of the projector, the shadow is cast to
the left of the object. The farther the camera and projector are placed, relative to each
other, the more shadow becomes visible. By placing the camera on the same x axis,
above or below the projector, shadows are eliminated to both the right and left side.
Because the camera is positioned below or above the projector, the camera will capture
shadow below or above the object respectively. A configuration is chosen so that the
camera is positioned under the projector. This will cast shadow under the objects in the
scene. If objects are placed on a ground object, no shadows will be visible. This limits
our scene to objects that are not hanging in the air, but standing on another object.
The configuration can be seen in figure 5.2.

Figure 5.3 shows the example of a scene illuminated with the pattern as seen through
the lens of the camera.

5.1.2 The Algorithm

The first step in the algorithm is to acquire images while shifting the pattern. The
pattern is shifted 24 times with 1 pixel. Every time the image shifts, the camera is
triggered to capture an image. Because the projector vibrates at a high frequency, its
brightness is not stable over time which means the radiance changes slightly over time.

35

Figure 5.1: Principle of shadow, visible with the camera

Figure 5.2: Camera and projector configuration used for the implementation

36

Figure 5.3: Example of a frame, captured by the camera while illuminated by the pro-
jector

37

For this reason multiple frames are captured while the scene is illuminated by the same
pattern. After we acquire all the images, we take the average for each frame and use
this to get the desired pixel radiance. The more images we take for each frame, the less
the radiance will fluctuate.
To go from spatial to frequency domain, we convert the 24-bit color images to grayscale
images. This is done with the following formula [16]:

Y = 0.3 ∗R + 0.59 ∗G + 0.11 ∗B (5.1)

and is applied to the averaged frames.
We use the formulas defined in section 2.4 to retrieve the second and third frequency
for each point. These frequencies are used to determine the speed at which the defocus
kernel diminishes. The first frequency is not used because it depends on the ambient
light β. The ratio between the second and the third frequency is called θ and is a measure
for the amount of defocus at the specific point.
In the original paper a method is adapted to map theta to depth. This is done by
building a lookup table for each column because the defocus kernel is assumed to be
vertically invariant but has horizontal variation. The mapping between θ and depth is
not a necessary step in the algorithm but will improve the results. Because θ is directly
related to the depth it will only affect the result with a scale factor and will thus only
serve as a solution for the horizontal variation from the defocus kernel.

5.1.3 Limitations

As discussed before, the algorithm will not be able to determine depth for each pixel
with the discussed configuration if there are pending objects in the scene. These objects
will create shadows that are visible through the camera. Because the projector does
not illuminate the pixels they will have the same values for all frames and there will be
no defocus visible. Because we use the defocus to estimate depth, it is not possible to
determine depth for these pixels.
When a black scene point is illuminated with a pixel that is black in the illumination
pattern, the point is observed as being black by the camera. When the same point is
illuminated with a pixel from the illumination pattern that is white, the scene point is
still observed as being black. The illumination of such a scene point does not give us
extra information. Because the radiance of this pixel, observed by the camera, remains
approximately the same, we can not derive the amount of defocus from the illumination
pattern for this pixel. If we cannot determine the amount of defocus for a pixel it is not

38

possible to compute a disparity for it. This means that we are limited to scene objects
that are not to dark.
If scene objects are not Lambertian, the light originating from the projector is reflected
and can not be captured by the camera. This means that depth estimates for objects
that reflect the light are erroneous depth values.
Obviously depth can only be estimated for regions that are illuminated by the camera.
If the scene is to big to be illuminated by the illumination pattern, we can not estimate
depth for all scene objects.

5.2 Stereo-View Depth Estimation Algorithm

The implementation of this local stereo depth estimation is based on the paper presented
by Mühlmann et al. [13].
First the base algorithm will be discussed. This base algorithm will be upgraded step-
by-step to gain in both quality and performance.
The resulting depth maps and computation times can be found in chapter 6.

5.2.1 Base Algorithm

The base algorithm is a simple SAD algorithm. A SAD algorithm is a local stereo depth
estimation algorithm. For each pixel in the reference image, a list of candidate pixels
is chosen. Between the reference pixel and all of its candidate pixels, a matching cost
is computed. In an SAD algorithm this matching cost is determined by computing the
SAD or Sum Of Absolute Difference value which is defined in Formula (3.2). Once we
have this value for all candidate pixels, the pixel with the lowest matching cost is chosen
to be the corresponding pixel and a depth estimate can be determined by using the
coordinates of both the reference and corresponding pixel.
Depth will be estimated for the right image of the two input images. In the right image,
objects in the scene will be positioned more to the left than the same object in the
left image. This property can be seen clearly in figure 5.4. This limits our search for
corresponding pixels to only one direction and leads to the fact that all candidate pixels
for pixel (i, j) in the right image have x coordinates so that x > i.
As discussed before, the candidate pixels are limited to those pixels that have the same y

coordinate. This comes directly from the fact that we are using epipolar rectified images
as input.
To further limit candidate pixels it is possible to define two variables. One variable de-
fines the bottom limit for an interval between which we are searching for corresponding

39

pixels, while the other defines the upper limit. If we know that the difference between
corresponding pixels is at least a pixels and b pixels at max, it is useless to search for it
outside this interval. If for example we define a as being 5 and b as being 30, the search
interval for pixel with coordinate (100, 100) is now limited to all pixels with coordinates
(x, y) where x ∈ [105, 130] and y = 100.
With all these limitations the search for the corresponding pixel is limited from the whole
image to only a small interval.

Figure 5.4: The cones data set shows us that objects in the right image appear to be
translated more to the left than in the left image. Image courtesy of Scharstein et al.
[12]

The matching cost values between two pixels are stored in memory in a three dimen-
sional array or cuboid as seen in figure 5.5. The dimensions of the cuboid are determined
by the dimensions of the reference image and the disparity search range. The difference
between pixel (x, y) in the right image and pixel (x + d, y) in the left image is stored at
position (x, y, d) in the cuboid.

While running over all pixels to compute their matching cost, for each pixel we keep
track of the minimum matching cost that is found and store the related d-value. The
d-value with the smallest SAD-value represents the pixel which corresponds the most to
the reference pixel. The difference in x coordinates between the reference pixel and the
corresponding pixel is used as disparity value.

The times needed to execute the base algorithm with different variable values can be

40

Figure 5.5: A three dimensional array, cuboid, where matching costs are being stored.
The value at (x, y, d) represents the matching cost between pixel (x, y) in the reference
image and (x + d, y) in the other image. Image courtesy of Mühlmann et al. [13]

found in Table 6.1.

5.2.2 Memory Organization

Mühlmann et al. [13] proposed different ways to fill in the cuboid. The way the cuboid
is filled affects the performance of the algorithm. The matching cost has to be computed
for all pixels and all depths within a specified interval. To compute this, three loops are
needed, one loop for each dimension of the image (x and y) and one loop for different
depth values, d.
The best way to organize the loops is to make y the outer loop and d the inner loop. If
we would use d as the outer loop we would need two runs through the volume. One run
would fill in the volume while the other run is used to find the pixel with the smallest
matching cost.
If we use d as the inner loop this can be done in one run. If we fill in the matching cost
for (x, y, d) we check it against a variable that holds the current smallest value. If the
new value is smaller than this value, we update the variable. When the d loop is done,
we have the smallest d value stored in the variable. This value represents the disparity
that corresponds that corresponds to the pixel in the reference image with coordinate
(x, y).

41

When the loops or organized like this, advantages of the cache memory are better ex-
ploited [13].

The times needed to execute the base algorithm with optimized memory organization
can be found in Table 6.1.

5.2.3 Sliding Window

Mühlmann et al. [13] also presented a technique which is called sliding window. This
upgrade, just like the previous one, reduces calculation time. It is easy to see that every
RGB difference between a pixel in the reference image and a candidate pixel is required
in winx∗winy windows. We can exploit this by storing some data in memory and reusing
it, instead of recalculating the difference every time it is needed.
If we assume for now that d is a constant value, we calculate the SAD value for a window
around pixel (x, y) and the next window is centered around (x + 1, y).
Figure 5.6 shows the principle of the sliding window in the x-direction. Each square
represents the sum of SAD values in a column of the window. The final matching cost
is computed by summing up these columns. We can get the correct matching cost for
the next pixel by reusing the current matching cost. We do this by simply deducting
the first column from the total value and adding the next column to this result.
Until now we have assumed that the d value is constant. But this is not the case in
our implementation because the d loop is the inner loop. For this reason we store the
necessary data in a two dimensional array. This array stores each column of the current
window for each d value. If we now want to compute the matching cost for a pixel we
request the matching cost from the previous pixel from the cuboid. Next we compute
the matching cost for the new column and add it to the value from the cuboid. We
now ask the first column from our two dimensional array and deduct it from our current
value and use it as the current matching cost. We remove the column we deducted from
the two dimensional array and add the new column so our window is up-to-date again.

The times needed to execute the base algorithm with optimized memory organization
and sliding windows can be found in Table 6.1.

5.2.4 Uniqueness

In regions with repetitive or no texture, a local stereo algorithm does not provide a
reliable depth estimate. We choose to mark these pixels as unreliable instead of just

42

Figure 5.6: Sliding window principle in x-direction. Each square represents the sum of
all SAD values in a column of the window. Image courtesy of Mühlmann et al. [13]

giving a wrong value. To determine whether or not such an estimate is reliable or not
we determine its uniqueness. This is done by recording the three minimum SAD-values.
The lowest SAD-value determines a threshold. If the third value is not higher than this
threshold we say it is not unique and mark it. To determine the threshold, 5% of the
total colorrange is added to the lowest value. Whenever a value is not unique we do
not relate a depth to that pixel because the disparity we would apply to it probably is
erroneous. Resulting disparity maps can be found in chapter 6, figure 6.7.

5.2.5 Median Filter

The next upgrade to the base algorithm is to apply a median filter on the acquired dis-
parity map. In contrast to the previous upgrades, the median filter does not upgrade the
algorithm’s speed but improves the depth map quality. The median filter is a technique
to remove salt-and-pepper noise from images. Salt-and-pepper noise refers to pixels
which are significantly different from their surrounding pixels. In depth maps these
pixels often are wrongly estimated disparity values. By removing these pixels the depth
map will appear much smoother. To apply the median filter we run through the image
and for each pixel we choose the median of its 3×3 neighbourhood to represents that
pixel value. For each pixel the value is determined by the values of 9 pixels. It is possible
in our implementation that a pixel is not given a value because it is not unique and we
do not relate a disparity to the corresponding pixel. This can be the case in weakly
textured regions. If at least 5 of 9 pixel values are given, we determine the median value,
else we say the pixel is not unique. The fastest way to determine the median for a pixel is
shown in figure 5.7. The dots in this figure represent nodes. Each node has an input of 2
pixel values and outputs the minimum of the 2 to the left and the maximum to the right.

43

The resulting disparity map can be found in chapter 6, figure 6.8.

Figure 5.7: Minimum sorting network to calculate the median of nine elements. Image
courtesy of Mühlmann [13]

44

Chapter 6

Results

This chapter shows the resulting depth maps, acquired from the algorithms discussed
in section 5. The chapter also compares the performance upgrades, made to the local
stereo depth estimation algorithm described in section 5.2.

6.1 Depth From Projection Defocus

The following results are acquired by executing the algorithm as discussed in section 5.1.
Figure 6.1 shows us one frame of an image sequence, used to determine depth by using
the depth from defocus algorithm. As discussed in section 5.1, multiple images are
captured from the scene while being illuminated by the same pattern. The reason why
this is done is because the radiance does not remain constant over time. When we take
the average over a series of images from the same scene, the radiance difference between
different frames will be minimized. Figure 6.2 shows the result of using different amounts
of versions of the frame.

Objects that appear darker are positioned closer to the camera. The resulting depth
map clearly shows us that the ball is positioned before the boxes. The table appears to
be closer to the camera, which is erroneous and artifacts are visible in the lower right
corner. The reason for this erroneous data originates from the fact that the table, used
to place the object on, is reflective as can be seen in figure 6.1. This means that when
we project the illumination pattern on the table, the pattern is reflected by the table.
For this reason we can not capture the illumination pattern at those scene points and
are unable to construct a defocus kernel for those points. Erroneous pixel depths are
also visible in regions where shadows are visible as can be seen at the top of the frontal
box.

45

Figure 6.1: Shows the first frame of image sequence used as input to the depth from
defocus algorithm.

Another result from the algorithm can be seen in figure 6.3. This figure shows us that
the algorithm works well, even for complexer objects like the toy. The figure also shows
that the algorithm is not able to determine depth for pixels which appear black, because
the illumination of these objects do not provide us with enough information.

Figure 6.4 shows us the effect of using pending objects when using the camera-
projector configuration, presented in section 5.1. When the depth values are analyzed
we find that in the middle of the pot, pixels appear darker than on the borders of the
pot. This follows from the fact that the pot is not a plane but a curved object. This
shows us that algorithm is able to detect small differences in depth.

6.2 Stereo Depth Estimation Algorithm

Table 6.1 shows us the execution times of the basic SAD algorithm with different input
parameters as discussed in section 5.2.1. This table can be used show us the effects of
the performance upgrades, applied to the base algorithm.

Table 6.2 shows us the results of running the SAD algorithm, upgraded with the
memory optimization technique which is discussed in section 5.2.2. When we compare

46

Figure 6.2: This figure shows the results of using different amounts of snapshots from
the scene. The left image is the depth, estimated by using only 1 version of each frame.
The result in the middle uses 150 version and the right image uses 300 versions.

47

Figure 6.3: This figure shows us the result of using the projection from defocus algorithm
when dark object are present in the scene.

48

Figure 6.4: This figure shows us the result of using pending and curved objects.

49

Resolution Window Size Depth Range Time

320x240 9 30 6453
320x240 9 10 2422
320x240 5 30 2375
320x240 5 10 735
160x120 9 30 813
160x120 9 10 422
160x120 5 30 453
160x120 5 10 203

Table 6.1: SAD Algorithm Time Table

Resolution Window Size Depth Range Time

320x240 9 30 3344
320x240 9 10 1344
320x240 5 30 1390
320x240 5 10 531
160x120 9 30 750
160x120 9 10 359
160x120 5 30 344
160x120 5 10 172

Table 6.2: SAD + Memory Organisation (Optimization 1) Time Table

the execution times with table 6.1 we see that it is greatly reduced. This tells us that a
good memory organisation is very important.

Table 6.3 shows the results of executing the basic SAD algorithm, upgraded with
both the memory organization upgrade and the sliding window technique. When we
compare this table with the previous two, it shows us that the upgrade is especially
useful when we use larger windows.
By comparing the base algorithm with the fully upgraded algorithm we can see that in
some cases the execution time is reduced with approximately 80% without any loss of
quality.

The following figures show the resulting disparity maps with resolutions of 320×240
(figure 6.5) and 160×120 (figure 6.6). The execution times needed to compute these
depth maps are visible in tables 6.1, 6.2 and 6.3. The upgrades that are applied to the

50

Resolution Window Size Depth Range Time

320x240 9 30 1297
320x240 9 10 656
320x240 5 30 922
320x240 5 10 453
160x120 9 30 266
160x120 9 10 187
160x120 5 30 234
160x120 5 10 140

Table 6.3: Optimization 1 + Sliding Window (Optimization 2) Time Table

basic algorithm do not influence the resulting disparity map. The depth maps on the
left side of the figures shown below are computed by using a depth range of 30 pixels
and the ones on the right with a depth range of 10 pixels. The disparity maps at the top
of the figures are the result of aggregating over a 9x9 window while the bottom depth
maps or the result of aggregating over a 5x5 window.

The objects that appear darker are farther away from the camera. The red pixels in
the images represent pixels for which no depth is estimated. When we look at figure 6.5
we see that the algorithm gives reasonably good results. When we use larger windows,
the less noise is visible in the images but the object borders appear less sharp.

Figure 6.7 shows us the result of applying the “uniqueness” update. The red pixels
represent those for which no disparity is computed. As can be seen more pixels are
rejected in textureless areas and no erroneous depths are assigned to these pixels.

The next figure is the result of applying the median filter to the depth map. The
application of the median filter takes about 32ms for a disparity map with a resolution
of 320x240. The median filter eliminates a certain amount of noise but also makes the
object borders appear less sharp.

The times needed to run the algorithms are all calculated on a Intel Pentium 4 2.8
GHZ portable PC with 256MB of RAM.

51

Figure 6.5: Disparity maps from local stereo algorithm with a resolution of 320×240
[left: depth range = 30, right: depth range = 10, top: window size = 9, bottom: window
size = 5

52

Figure 6.6: Disparity maps from local stereo algorithm with a resolution of 160×120
[left: depth range = 30, right: depth range = 10, top: window size = 9, bottom: window
size = 5

53

Figure 6.7: Result of applying the ’uniqueness’ upgrade. As we can see, in the disparity
map to the right, more pixels are rejected rather than applying a faulty depth to them.

Figure 6.8: Result of applying the ’median filter’ upgrade. As can be see, the disparity
map on the right is smoother than the one on the left.

54

Chapter 7

Conclusion And Future Work

In this thesis different types of depth estimation algorithms have been presented. The
depth estimation algorithms that were discussed differ in the input data that is used.
The wide range of depth algorithms is divided in three major domains.
One domain uses only images from one point-of-view. Extra information can be provided
by illuminating the scene by a projector. This information is used to estimate depth for
each pixel.
Another domain uses two epipolar rectified images as input and is referred to as stereo
view depth estimation. The third domain of depth estimation algorithms uses a sequence
of images, taken from different viewpoints.
The stereo view depth estimation algorithms deliver reasonable depth maps with much
noise. These algorithms do not perform well near depth discontinuities and textureless
regions. Near depth discontinuities, a pixel visible in one image is not visible in the
other and makes it impossible to find the correct matching pixel. In textureless regions,
we have to many corresponding pixels and it is hard to determine which of these pixels
is the correct one. The stereo view depth estimation algorithms allow us to determine
depth maps in real-time, so when real-time depth estimation is required, stereo depth
algorithms are the best choice.
When we compute depth from a sequence of images we have more information for each
pixel in the reference images. When a pixel appears occluded in one image, it may be
non-occluded in another. The quality of these depth maps is therefore better than the
results from stereo view algorithms.
Depth from projection defocus algorithms are able to determine depth for all pixels in
the scene. It does not have trouble near depth discontinuities and textureless regions
because it does not depend on pixel correspondence and delivers accurate depth maps.

55

Problems with these algorithms arise when dark objects are present in the scene. An-
other problem is to determine depth when the camera and projector are not perfectly
aligned.

To improve the results from the depth from defocus algorithm it would be a good idea
to implement the mapping from θ to depth as discussed in section 2.5. This will reduce
the artifacts visible in the current results. It would also be a good idea to use different
types of illumination patterns. As can be seen in the resulting depth maps, vertical lines
are visible, this is probably from the fact that we use an illumination pattern that shifts
vertical lines. A good idea would be to shift some horizontal lines over the scene as well.
An implementation of a global stereo algorithm would be interesting to compare results
with the local algorithm and compare execution times.

56

Bibliography

[1] L. Zhang and S. K. Nayar. Projection Defocus Analysis for Scene Capture qnd
Image Display. ACM Trans. on Graphics (also Proc. of ACM SIGGRAPH), Jul
2006.

[2] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(11):1330–1334, 2000.

[3] S. B. Kang and R. Szeliski. Extracting view-dependent depth maps from a collection
of images. Int. J. Comput. Vision, 58(2):139–163, 2004.

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. In ICCV (1), pages 377–384, 1999.

[5] S. McCloskey, M. Langer, and K. Siddiqi. The Reverse Projection Correlation
Principle for Depth from Defocus. Proceedings of the 3rd International Symposium
on 3D Data Processing, Visualization and Transmission, 2006.

[6] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2001.

[7] P. Favaro. Depth from focus/defocus, June 2002.

[8] D. Scharstein and R. Szeliski. High-accuracy stereo depth maps using structured
light. cvpr, 01:195, 2003.

[9] J. Salvi, J. Pages, and J. Batlle. Pattern codification strategies in structured light
systems. Pattern Recognition, 2004.

[10] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, New York, NY, USA, 2003.

[11] L. McMillan. An Image-Based Approach To Three-Dimensional Computer Graphics.
PhD thesis, University of North Carolina, 1997.

57

[12] D. Scharstein, R. Szeliski, and R. Zabih. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms, Dec 2001.

[13] K. Mühlmann, D. Maier, J. Hesser, and R. Männer. Calculating dense disparity
maps from color stereo images, an efficient implementation.

[14] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A comparison and
evaluation of multi-view stereo reconstruction algorithms, 2006.

[15] D. Le Gall. Mpeg: A video compression standard for multimedia applications.
Commun. ACM, 34(4):46–58, 1991.

[16] D. W. Fanning. Convert rgb image to grayscale, 2002.

58

Auteursrechterlijke overeenkomst
Opdat de Universiteit Hasselt uw eindverhandeling wereldwijd kan reproduceren, vertalen en distribueren is uw

akkoord voor deze overeenkomst noodzakelijk. Gelieve de tijd te nemen om deze overeenkomst door te

nemen, de gevraagde informatie in te vullen (en de overeenkomst te ondertekenen en af te geven).

Ik/wij verlenen het wereldwijde auteursrecht voor de ingediende eindverhandeling:

Multi-View Depth Estimation

Richting: Master in de informatica Jaar: 2007

in alle mogelijke mediaformaten, - bestaande en in de toekomst te ontwikkelen - , aan de

Universiteit Hasselt.

Niet tegenstaand deze toekenning van het auteursrecht aan de Universiteit Hasselt behoud ik

als auteur het recht om de eindverhandeling, - in zijn geheel of gedeeltelijk -, vrij te

reproduceren, (her)publiceren of distribueren zonder de toelating te moeten verkrijgen van

de Universiteit Hasselt.

Ik bevestig dat de eindverhandeling mijn origineel werk is, en dat ik het recht heb om de

rechten te verlenen die in deze overeenkomst worden beschreven. Ik verklaar tevens dat de

eindverhandeling, naar mijn weten, het auteursrecht van anderen niet overtreedt.

Ik verklaar tevens dat ik voor het materiaal in de eindverhandeling dat beschermd wordt door

het auteursrecht, de nodige toelatingen heb verkregen zodat ik deze ook aan de Universiteit

Hasselt kan overdragen en dat dit duidelijk in de tekst en inhoud van de eindverhandeling

werd genotificeerd.

Universiteit Hasselt zal mij als auteur(s) van de eindverhandeling identificeren en zal geen

wijzigingen aanbrengen aan de eindverhandeling, uitgezonderd deze toegelaten door deze

overeenkomst.

Ik ga akkoord,

Stijn Brouwers

Datum: 22.05.2007

Lsarev_autr

