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Abstract: Ultrasonic spray-coating (USSC)—a wet chemical deposition method to deposit ultrathin 

(down to 20 nm) coatings—is being applied as a promising alternative deposition method for 

functional coatings due to an economical, simple, and precise coating process with easy control over 

its operating parameters. In this research, zinc oxide nanoparticles (ZnO NPs) were ultrasonically 

spray-coated on commercial-grade polyethylene terephthalate (PET) and poly(3-hydroxybutyrate-

co-3-hydroxyhexanoate) (PHBHHx) films. The most suitable parameters for the ink composition, 

the ultrasonic spray-coating process, and the number of coating passes (up to 50×) were selected on 

the basis of a series of experiments. The oxygen gas barrier properties in terms of the oxygen 

transmission rate (OTR) of neat PET, and 3×, 5×, 10×, and 50× ZnO NP-coated PET and PHBHHx 

substrates were investigated. The OTR values for neat PET, and 3×, 5×, and 10× ZnO NP-coated PET 

substrates were found to be the same; however, a 5% reduction in OTR for 50× ZnO NP-coated PET 

substrate was observed compared to the neat PET substrate. No reduction in OTR was found for 

any above number of coating passes on PHBHHx substrates against the neat PHBHHx substrate. 

However, the ultraviolet (UV) tests of 3×, 5×, and 10× ZnO NP-coated PET and PHBHH× substrates 

revealed a significant decrease in percentage transmission for 10× coated PET and PHBHHx 

substrates as compared to their 3× and 5× ZnO NP-coated substrates, respectively. It was revealed 

from the study that the 50× ZnO NP coating of the PET substrate created a slight difference in OTR 

as compared to the reference substrate. However, the ultrasonic spray-coating method created a 

significant UV barrier effect for 3×, 5×, and 10× ZnO NP-coated PET and PHBHHx substrates, which 

demonstrates that the optimized coating method cannot be used to create a high oxygen barrier but 

can certainly be applied for UV barrier applications in food packaging. It is concluded that 

ultrasonic spray deposition of ZnO NPs on PET and PHBHHx materials has shown promising 

results for UV barrier properties, demonstrating the advantages of using this method compared to 

other coating methods with regard to cost-effectiveness, precise coating, and better process control. 

Keywords: zinc oxide nanoparticles; ultrasonic spray-coating; polyethylene terephthalate; poly(3-

hydroxybutyrate-co-3-hydroxyhexanoate); oxygen transmission rate; UV barrier properties 

 

1. Introduction 

In the field of food packaging, nanomaterials are creating an incredible impact by 

improving the multifunctional properties of packaging films [1]. Many reports focused on 

applications of nanomaterials concerning food quality assurance and improvements in 

food packaging [2–6]. For example, silver nanoparticles (Ag NPs) can protect food from 
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microbial invasion [7]. Titanium dioxide (TiO2) nanoparticles can be used as an ultraviolet 

(UV) barrier in food packaging. These nanoparticles have also been utilized due to their 

antimicrobial activity [8]. Copper (Cu) and copper oxide (CuO), cadmium (Cd), zinc oxide 

(ZnO), magnesium oxide (MgO), and single-walled carbon nanotubes (SWCNTs) are also 

reported for their antimicrobial activity [9]. Amongst these nanoparticles, ZnO NPs have 

achieved a significant position in enhancing the packaging properties such as mechanical, 

barrier, and antimicrobial properties [10]. Using these nanoparticles in packaging 

polymers is generally possible through two routes: by mixing or dispersing the nano-

objects within a polymer matrix or by applying nanocoatings on the surface of the 

polymers [11]. In the first approach, packaging films consisting of ZnO NPs along with 

(bio)polymers have been made through diverse processing techniques, such as melt 

compounding [12], solvent casting [13,14], twin-screw extrusion [15], solution casting [16–

19], and extrusion blow molding [20], leading to the evaluation of their gas barrier and 

mechanical properties. As far as the second approach is concerned, coatings in the 

packaging sector have shown incredible growth in recent years. This has become possible 

due to two main factors: (1) increased accessibility of various types of nanoparticles, and 

(2) progress and innovations in the processes capable of controlling the coating structure. 

Various types of coatings are available in food packaging applications, such as 

nanocoatings inside the packaging, outside the packaging, in the form of a layer 

sandwiched in multilayer packaging, coatings on polymers with high barrier properties, 

and application of edible coatings on a variety of foods serving as lipid, moisture, and gas 

barriers [21]. The coating processes applied are pulsed laser deposition, vapor deposition, 

magnetron sputtering, plasma-assisted/ion-beam-assisted techniques, layer-by-layer 

coating, sol–gel coating, dip coating, electrochemical deposition, electrospinning, and 

electrospraying techniques [22,23]. Nanocoatings have proven to be incredibly pertinent 

in surface functionalization to provide essential properties such as gas barrier [24], 

antimicrobial [25], flame retardant [26], and self-healing [27] properties. 

A 50 nm coating of ZnO NPs deposited on the surface of polyethylene naphthalate 

(PEN) by radio frequency (RF) magnetron sputtering decreased the oxygen permeability 

to <5 (mL/m2·day·atm)—almost eightfold lower oxygen permeability as compared neat 

PEN [28]. ZnO NP coatings have also been used to protect PEN against ultraviolet (UV) 

light [28,29]. Furthermore, ZnO NPs have also been used for their photocatalytic effect 

[30–32]. ZnO NP-loaded starch-coated polyethylene films have been produced to improve 

antibacterial properties [33]. 

In this study, we used two different kinds of materials, a synthetic polymer, 

polyethylene terephthalate (PET), and a biopolymer, poly(3-hydroxybutyrate-co-3-

hydroxyhexanoate) (PHBHHx). PET is a commercially available thermoplastic [34] and a 

highly demanding packaging material originating from a petrol-based source. Due to 

nondegradable behavior, these synthetic polymers cause environmental pollution and 

adversely affect the wildlife system. Due to these drawbacks, ecofriendly, nontoxic, and 

biodegradable polymers are attaining more attention from researchers. These 

biopolymers are more sustainable alternatives to synthetic polymers. However, their 

barrier and mechanical properties are not so good as those of synthetic polymers [35]. 

PHBHHx, a biopolymer, is a member of the polyhydroxyalkanoate (PHA) family [36]. It 

is an emerging biopolymer that is an environmentally friendly material with food 

packaging applications [37,38]. 

There are various conventional coating technologies to coat nanoparticles on 

substrates. Their uniformity control is limited, and nanomaterial consumption is also 

excessive and costly [39]. In this study, an ultrasonic spray-coating method was chosen to 

deposit ZnO NPs on PET and PHBHHx materials due to the following reasons: process 

simplicity, precise coating, economical, good transfer efficiency, good reproducibility, and 

production of droplets in the micrometer range [40,41]. Ultrasonic spray-coating (USSC) 

works on the principle of ultrasonic atomization. In this technique, high-frequency sound 

(ultrasonic) vibrations generate a fine mist of the coating solution [42], which leads to a 
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narrow distribution in size and composition of the generated droplets, as illustrated in 

Figure 1. In contrast, a broad distribution is usually obtained in the conventional spray-

coating. 

 

Figure 1. An illustration of an atomization process in the ultrasonic spray nozzle [43]. 

The coating material and process parameters must be controlled to obtain a uniform 

layer with ultrasonic spray-coating. The critical factors that need to be emphasized are as 

follows: the ink concentration, the solvents used, the substrate used for spraying, the flow 

rate of the solution, the speed of the nozzle while spraying, the height of the nozzle from the 

substrate, the number of passes, the temperature of the hot plate on which substrate is 

placed, and the inert gas guiding pressure which leads the droplets toward the substrate. 

This research focused on depositing ZnO nanoparticles on commercial-grade PET 

and self-made PHBHHx substrates by optimizing the ultrasonic spray-coating method to 

obtain coated materials with optimized oxygen gas and UV barrier properties. 

2. Materials and Methods 

2.1. Materials 

2.1.1. Ink Materials 

ZnO nanoparticles (20 wt.% dispersion in water, <100 nm particle size (transmission 

electron microscope - TEM), ≤40 nm average particle size (APS)), and polyvinyl alcohol 

(PVA) with average molecular weight (MW) = 146,000–186,000, 99+% hydrolyzed, crystalline 

powder were purchased from Sigma Aldrich, USA. Laboratory-grade isopropyl alcohol 

(IPA) and deionized (DI) water were also used in preparing the solution. 

2.1.2. Substrates 

Commercial-Grade PET Foils 

These foils were purchased from DuPont Teijin films with brand Melinex ST506, 125 

µm thick polyester film. The PET sheet was cut into dimensions of 3.5 cm × 3.5 cm for 

making samples. These samples were cleaned to remove dirt and contaminations. The 

beaker was washed with DI water and then dried with N2 air. Then, PET samples were 

immersed in the beaker containing a soapy water solution, and this beaker was placed in 

an ultrasonication bath for 15 min. Then, the PET samples were put in the beaker containing 

DI water and were sonicated for 15 min. This step was again repeated with fresh DI water. 

PET samples were soaked with acetone for few seconds and then were immersed in the 

beaker containing IPA. This beaker was placed in an ultrasonication bath for 15 min of 

sonication. Then, the PET samples were taken out of the beaker and dried with N2 air. 

Compression-Molded PHBHHx Films 

The PHBHHx granulates were kindly provided by Kaneka Corporation, Belgium. 

The PHBHHx samples with 0.5 mm thickness were prepared from their granulates using 

a Collin Plate Press 200 E machine, which was kindly provided by Catholic University 

Leuven (KU Leuven) in Belgium. These granulates were placed on a stainless-steel mold, 
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and then one Teflon sheet and one stainless-steel plate were placed above the mold, while 

a second set was placed below the mold. This sample set was placed between the plates 

of the Plate Press. The temperature of both plates was kept at 160 °C for 10 min without 

any pressure on the plates. The pressure was raised to 30 bar for 2 min. This pressure was 

slowly increased to 150 bar for 2 min. The pressure was reduced to zero, and the 

temperature of both plates was lowered to 60 °C. Then, the pressure was increased to 50 

bar for 20 min. Then, heating was stopped, and the mold with PHBHHx sample was 

removed from the Plate Press, which led to the ultrasonic spray-coating step. 

2.2. Methods 

2.2.1. Ultrasonic Spray-Coating 

An ExactaCoat ultrasonic spray-coating system from Sono-Tek (Milton, NY, USA) 

equipped with an AccuMist™ ultrasonic spraying nozzle was used for the coating 

experiments in this article. In the ultrasonic spray-coating process, the main parameters 

that need to be considered are the following: 

i. Ink composition: A solution prepared with nanoparticles along with chemicals, 

including solvents. 

ii. Ink flow rate (mL/min): The volume of the ink sprayed per unit time [44]. 

iii. Path speed (mm/s): The distance traveled by the ultrasonic spray nozzle per unit time. 

iv. Nozzle frequency (kHz): This is the frequency at which the nozzle vibrates [39]. 

v. Generator power (W): This is the power required by the generator to operate the 

ultrasonic spray nozzle [45]. 

vi. Hot-plate temperature (°C): The value of the temperature set for the hot plate on 

which the substrate is placed. 

vii. Nozzle to substrate distance (mm): This is the distance between the nozzle tip and 

the substrate. 

viii. Nitrogen guiding pressure (kPa): This gas pressure helps move the sprayed droplets 

toward the substrate [46]. 

ix. The number of coated layers: This is the number of layers coated on the substrates. 

2.2.2. Surface Morphology 

An optical microscope, Nikon Eclipse ME600, was used for the optical 

characterization of the 3×, 5×, and 10× ZnO NP-coated PET and PHBHHx substrates, 

respectively. A 20× resolution of the instrument was set for optical microscopic 

characterization of these substrates. The surface morphology of 50× ZnO NP-coated PET 

and PHBHHx substrates was examined using an FEI Quanta 200F scanning electron 

microscope (SEM), USA. Backscattered electrons (BSE) detection mode was used in the 

image formed for surface morphological characterization. Backscattered electrons are 

those electrons that scatter backward and emit out of the sample. In the BSE detection 

mode, information from the deep region can be obtained [47]. Top-side and cross-sectional 

images of these coated substrates were analyzed. 

Moreover, an atomic force microscope (AFM, NX10—Park Systems, Suwon, South 

Korea) was also used to obtain the topographic structural characterization of the ZnO NP-

coated substrate. The AFM characterization was performed using an ACTA probe in the 

tapping mode of the AFM instrument. The scan area of the sample was kept as 25 µm × 

25 µm. 

2.2.3. Gas Barrier Characterization 

A Mocon Ox-Tran® was used to measure the oxygen transmission rates (OTR, 

cc/m2·day) of neat and 3×, 5×, 10×, and 50× ZnO NP-coated PET and PHBHHx substrates. 

The OTR tests for each sample were performed in triplicate. Thirty samples in total were 

prepared in aluminum masks with a surface area of 5 cm2. The operating conditions of 

OTR tests were maintained at 23 °C and 0% relative humidity (RH). In these tests, the 
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samples were exposed to oxygen on one side and carrier gas (nitrogen/helium) on the 

other side, keeping both sides at a pressure of 1 atm. Thickness measurements were done 

to calculate the oxygen permeability coefficients of neat PET and PHBHHx samples using 

an MTS MI20 thickness gauge instrument. The thickness value of each sample was taken 

as an average of five measurements at different locations. 

2.2.4. UV Barrier Characterization 

A Carry 5000 UV/visible light (Vis)/near-infrared (NIR) spectrophotometer (Agilent 

Technologies, Santa Clara, CA, USA) in scan mode with a resolution of 1 nm was used for 

UV characterization of the eight samples—neat PET and 3×, 5×, and 10× ZnO NP-coated PET 

and PHBHHx samples. Initially, the PET and PHBHHx materials were cut into dimensions 

of 2.5 cm × 2.5 cm. The UV tests were performed in terms of percentage transmission with a 

wavelength (λ) ranging from 200 nm to 800 nm. 

3. Results and Discussion 

3.1. Coating Parameters 

First of all, a series of experiments were performed to find the ink composition of 2.5 

wt.% in PVA, IPA, and DI water, which was suitable to obtain a uniform ink flow pattern 

of the ultrasonic spray coater. Several experiments were conducted on the basis of 

carefully selected parameter combinations. The combination that gave the best results 

regarding uniform coating is presented in Table 1. 

Table 1. The optimized parameters of the ultrasonic spray-coater. PVA, polyvinyl alcohol; IPA 

isopropyl alcohol; DI, deionized. 

Sr. No. Parameters Optimized Values 

1 Ink composition 
2.5 wt.% ZnO NP solution 

in PVA, IPA, and DI water 

2 Path speed (mm/sec) 10 [44] 

3 Nozzle frequency (kHz) 120  

4 Ink flow rate (mL/min) 0.1 

5 Generator power (W) 2.5 [44] 

6 Nozzle to substrate distance (mm) 75 

7 Hot plate temperature (°C) 30 

8 Nitrogen guiding pressure (kPa) 0.34 

9 Number of coated layers 3, 5, 10, and 50 

The PET and PHBHHx substrates were spray-coated with 3×, 5×, 10×, and 50× coated 

layers of ZnO NPs, respectively. The whole ultrasonic spray-coating process was 

conducted through a controlled and three-dimensional (3D) programable system. All 

samples were prepared in triplicate for OTR analysis. 

3.2. Optical Microscopic (OM) and Scanning Electron Microscopic (SEM) Characterizations 

The optical microscopic (OM) characterization of 3×, 5×, and 10× ZnO NP-coated PET 

and 3×, 5×, and 10× ZnO NP-coated PHBHHx substrates revealed that the surface cover-

age of ZnO NPs on these substrates was increased upon increasing the number of coated 

layers, as shown in Figures 2a–c and 3a–c, respectively. 
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(a) (b) (c) 

Figure 2. (a) Optical microscopic (OM) image of 3× ZnO nanoparticle (NP)-coated polyethylene terephthalate (PET) 

substrate; (b) OM image of 5× ZnO NP-coated PET substrate; (c) OM image of 10× ZnO NP-coated PET substrate. 

   
(a) (b) (c) 

Figure 3. (a) OM image of 3× ZnO NP-coated poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) substrate; (b) 

OM image of 5× ZnO NP-coated PHBHHx substrate; (c) OM image of 10× ZnO NP-coated PHBHHx substrate. 

As concluded from the OM images of ZnO NP-coated PET and PHBHHx substrates, 

further experiments were conducted to increase the number of coated layers to enhance 

the surface coverage of these substrates. Therefore, after ultrasonic spray-coating of ZnO 

NPs on both substrates by 50× coated layers, these samples were characterized by 

scanning electron microscopy to investigate the structure of the top-coated layers. 

Initially, the morphology of a 50× ZnO NP-coated PET substrate from its top and cross-

sectional views was analyzed by SEM. An evenly and nicely coated layer was observed in 

the 50× ZnO NP-coated PET substrate as depicted from Figure 4a,b, respectively. In Figure 

4b, the ZnO NP-coated layer is indicated by a red arrow, and the PET substrate is shown 

below the coated layer. On the other hand, a non-homogenously coated surface was found 

in the case of PHBHHx substrates, as shown in Figure 4c,d, respectively. These images 

showed that ZnO NPs poorly adhered to the original PHBHHx substrate, as also depicted 

in the cross-sectional image shown in Figure 4d. In Figure 4d, the ZnO NP-coated layer is 

highlighted by a red arrow under which the PHBHHx substrate is shown. It can also be 

seen that ZnO NPs were not well adhered to the surface of the PHBHHx substrate, leaving 

its surface noncoated due to the hydrophobic behavior of the PHBHHx material itself [35]. 
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Figure 4. (a) Top-side SEM image of 50× ZnO NP-coated PET substrate; (b) cross-sectional SEM image of 50× ZnO NP-

coated PET substrate; (c) top-side SEM image of 50× ZnO NP-coated PHBHHx substrate; (d) cross-sectional SEM image of 

50× ZnO NP-coated PHBHHx substrate [48]. 

3.3. AFM Characterization 

As revealed from the Figure 4c,d, the ZnO NPs were not attached to the surface of 

the 50× coated PHBHHx substrate; therefore, AFM characterization of 50× ZnO NP-coated 

PET substrate was performed. Figure 5a represents the topography of the 25 µm × 25 µm 

scanned area of the sample, while Figure 5b represents the 3D image of this area. In the 

AFM characterization, it was observed from the topographic image that the surface of the 

PET substrate was covered with ZnO NPs, as shown in Figure 5a; however, a variation 

was observed in the surface profile of the coated layer, as shown in Figure 5b. The white 

parts of the coated layer indicated the less dense coating of ZnO NPs on the PET substrate. 

The dark portions of these images represent the presence of more densely coated ZnO 

NPs. These results were in good agreement with the SEM results, as shown in Figure 4a,b. 
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(a) (b) 

Figure 5. (a) Topographic atomic force microscopy (AFM) image of 25 µm × 25 µm scan area of 50× 

ZnO NP-coated PET substrate; (b) three-dimensional (3D) AFM image of 25 µm × 25 µm scan area 

of 50× ZnO NP-coated PET substrate.   

3.4. OTR 

PET substrates: The OTR values of neat PET, 3×, 5×, and 10× ZnO NP-coated PET 

substrates were 12.2 ± 0.3, 12.1 ± 0.4, 12.2 ± 0.2, and 12.1 ± 0.3 cc/m2·day, respectively, while 

the OTR values of 50× ZnO NP-coated PET substrates were observed as 11.6 ± 0.2 

cc/m2·day, as shown in Scheme 1. The given mean values were calculated for three 

samples each for neat and 3×, 5×, 10×, and 50× coated PET substrates. The thickness value 

of the neat PET sample was 0.13 ± 0.002 mm, while the thickness of the coated layer on the 

50× ZnO NP-coated PET substrate was found to be 10.4 µm. The permeability coefficient 

(PO2) (cc·mm/m2·day) is the product of OTR (cc/m2·day) and thickness (mm) of the sample 

[1]. The PO2 value of the neat PET substrate was obtained as ~1.6 cc·mm/m2·day, as also 

mentioned in the literature [37]. Due to the very minute value of coating thickness, 

permeability coefficients of neat and 50× ZnO NP-coated PET substrates did not have a 

considerable difference, which also applied to the remaining substrates. As shown in Figure 

4a,b, the 50× ZnO NP-coated PET substrate exhibited some hindrance to the flow path of 

small oxygen molecules by creating a tortuous path [49] on top of the material. This 

tortuous path is typically created by a well homogeneously ZnO NP-coated layer on the 

substrate to restrict the movement of oxygen gas molecules. In this study, due to the 

insignificant tortuous path, an overall ~5% decrease in the OTR of the 50× ZnO NP-coated 

PET substrate compared to the neat PET was observed. However, micro-cracks and open 

noncoated spots could be the reason for not creating a considerable difference between 

the OTR values of neat PET and 50× ZnO NP-coated PET substrate. On the other hand, 

increasing the number of coated layers can also cause the creation of agglomerates on the 

surface of substrates and the simultaneous settling down of nanoparticles in the ink 

syringe, which can clog the nozzle tubing. Therefore, pretreatment of the reference 

substrate could lead to an improvement of the oxygen gas barrier properties. 
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Scheme 1. The comparison between oxygen transmission rate (OTR, cc/m2·day) and number of 

ZnO NP-coated layers on PET substrates. 

PHBHHx substrates: The OTR values of neat PHBHHx and 3×, 5×, 10×, and 50× ZnO 

NP-coated PHBHHx substrates were found to be 14.5 ± 0.3, 14.4 ± 0.2, 14.5 ± 0.4, 14.6 ± 0.2, 

and 14.5 ± 0.3 cc/m2·day, respectively, as shown in Scheme 2. The given mean values were 

calculated for three samples each for neat and 3×, 5×, 10×, and 50× coated PHBHHx 

substrates. The thickness of the neat PHBHHx sample was 0.52 ± 0.1 mm, while the 

thickness of the 50× ZnO NPs coated layer was obtained as 1.4 µm. The permeability 

coefficient of neat PHBHHx material was obtained as ~8 cc·mm/m2/day, which is in close 

accordance with the literature [37]. Due to the negligible value of the coating thickness, 

permeability coefficients of neat and 50× ZnO NP-coated PHBHHx substrates did not have 

a substantial difference, which also applied to the remaining PHBHHx substrates. In the 

case of the 50× ZnO NP-coated PHBHHx substrate, the ZnO NP-coated layer could not 

adhere well to its top surface, as shown in Figure 4c,d. This behavior is also presented in 

the form of a graph plotting OTR vs. the number of ZnO NP-coated layers on PHBHHx 

films, where no difference in OTR can be seen. This non-adherence could be due to the 

hydrophobic behavior of the PHBHHx material itself, as mentioned in the literature 

[35,50]; consequently, the removal of this coated layer from the substrate caused no 

decrease in the OTR value. 

 

Scheme 2. The comparison between OTR (cc/m2·day) and number of ZnO NP-coated layers on 

PHBHHx substrates 
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3.5. UV/Vis Transmission Measurements 

Transmittance (T) is the fraction of incident light transmitted through a sample [51]. 

The purpose of the UV/Vis spectroscopic study in transmission mode was to determine 

how ZnO NPs could effectively create a UV blockage for neat PET, neat PHBHHx, ZnO 

NP-coated PET, and ZnO NP-coated PHBHHx substrates. One UV measurement per 

substrate was obtained in terms of percentage transmission and wavenumber (nm). As 

shown in Scheme 3, the ZnO NP absorption peak for 3×, 5×, and 10× ZnO NP-coated PET 

substrates was at 370 nm in the UVA region, which is in accordance with the literature, 

also indicating an almost sharp absorbance peak for ZnO NPs at 370 nm [52]. The energy 

band gap was found as ~3.3 eV. The transmission spectrum obtained for neat PET was 

also similar to that mentioned in the literature [53]. 

 

Scheme 3. Ultraviolet (UV)/visible light (Vis) spectrum (percentage transmission vs. wavelength 

(nm)) of neat PET and 3×, 5×, and 10× ZnO NP-coated PET substrates. 

The UV transmission trend was in the following order: neat PET > 3× > 5× > 10×. This 

sequence demonstrates that a neat PET substrate transmitted maximum UV light, while 

the lowest transmission was possible for a 10× coated layer PET substrate, which shows 

that increasing the number of coated layers could reduce the UV transmission and 

increase the UV absorbance. Scheme 3 shows that the percentage transmission for the 10× 

ZnO NP-coated PET substrate was below 40% at the wavelength of 800 nm. Therefore, it 

was expected from the UV experiments performed on 3×, 5×, and 10× ZnO NP-coated PET 

substrates that the percentage transmission of the 50× ZnO NP-coated PET substrate 

would be almost zero. Hence, the percentage transmission of the 50× ZnO NP-coated PET 

substrate is not included. 

In Scheme 4, ZnO nanoparticles showed an absorption peak at 390 nm wavelength 

in the UVA region; however, this was not a sharp peak as seen for coated PET samples. 

The UV transmission trend was in the following sequence: neat PHBHHx > 3× > 5× > 10×. 

This order confirms that the higher number of coated layers would result in a more 

covered surface area and subsequently lower percentage transmission. The UV 

transmission results of the 50× ZnO NP-coated PHBHHx substrate are also not presented 

in the graph due to the expected near-zero percentage transmission. The reasons for the 

deficient UV transmission of PHBHHx samples are the following: 

1. Self-made PHBHHx used was not a transparent material like PET material, i.e., 

commercial-grade foil. 

2. The thickness of the self-made PHBHHx material was approximately 0.5 mm, while 

the PET material thickness was 0.13 mm. It was revealed that increasing the path 

length traveled by incident light caused less UV transmission, as also evident from 

Beer–Lambert’s law [54]. 
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Scheme 4. UV/Vis spectrum percentage transmission vs. wavelength (nm)) of neat PHBHHx and 

3×, 5×, and 10× ZnO NP-coated PHBHHx substrates. 

In both coated PET and coated PHBHHx substrates, the ZnO NPs created a 

significant shielding effect to UV radiation, and these ZnO NPs could extend the UV 

absorption area of the neat PET and PHBHHx films. 

4. Conclusions 

The ultrasonic spray-coating technique was adopted to deposit ZnO nanoparticles 

on PET and PHBHHx substrates. The most suitable ultrasonic spray-coating conditions 

were used, and 3×, 5×, 10×, and 50× layers were coated on the substrates. A uniformly 

covered layer of ZnO NPs for 50× ZnO NP-coated PET substrate was obtained via the 

ultrasonic spray-coating process, as evident from the scanning electron microscopy (SEM) 

images. The barrier properties of neat and coated samples were analyzed and compared. A 

slight difference in OTR (~5%) was observed between 50× ZnO NP-coated PET and neat PET 

or 3×, 5×, and 10× ZnO NP-coated PET substrates, while no difference in OTR was found for 

neat and all other ZnO NP-coated PHBHHx substrates. An improvement in gas barrier 

properties could be acquired through surface modifications such as the pretreatment of neat 

substrates with plasma and corona treatments. These treatments can significantly improve 

the gas barrier properties of coated materials. In future work, suitable pretreatment of neat 

substrates can be used to significantly enhance the barrier properties. Moreover, X-ray 

diffraction (XRD) and Fourier-transform infrared (FTIR) characterization measurements 

could help to further explore the surface morphology of the coated substrates. 

Nonetheless, the UV/Vis spectroscopic results revealed that ZnO NPs created a good 

blocking layer against light in the UVA region. The 10× ZnO NP-coated PET substrate 

showed the highest UV barrier as compared to the 5× ZnO NP-coated PET, 3× ZnO NP-

coated PET, and neat PET. A similar trend was also observed for PHBHHx substrates. 

Therefore, using the ultrasonic spray-coating technique with ZnO NPs could be a novel 

approach to produce UV barrier layers on other materials. 
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