
Made available by Hasselt University Library in https://documentserver.uhasselt.be

On matrices and K-relations

Peer-reviewed author version

BRIJDER, Robert; GYSSENS, Marc & VAN DEN BUSSCHE, Jan (2020) On

matrices and K-relations. In: International Symposium on Foundations of Information

and Knowledge Systems, Springer, p. 42 -57.

DOI: https://doi.org/10.1007/978-3-030-39951-1_3

Handle: http://hdl.handle.net/1942/33414

On matrices and K-relations

Robert Brijder, Marc Gyssens, and Jan Van den Bussche

Hasselt University, Data Science Institute, Martelarenlaan 42, 3500 Hasselt, Belgium

Abstract. We show that the matrix query language MATLANG cor-
responds to a natural fragment of the positive relational algebra on K-
relations. The fragment is defined by introducing a composition operator
and restricting K-relation arities to two. We then proceed to show that
MATLANG can express all matrix queries expressible in the positive re-
lational algebra on K-relations, when intermediate arities are restricted
to three. Thus we offer an analogue, in a model with numerical data, to
the situation in classical logic, where the algebra of binary relations is
equivalent to first-order logic with three variables.

Keywords: expressive power, provenance semirings, annotated relations, data
science

1 Introduction

Motivated by large-scale data science, there is recent interest in supporting linear
algebra operations, such as matrix multiplication, in database systems. This
has prompted investigations comparing the expressive power of common matrix
operations with the operations on relations provided by the relational algebra
and SQL [6, 7, 10, 2].

For boolean matrices, the connection between matrices and relations is very
natural and well known. An m× n boolean matrix A can be viewed as a binary
relation R ⊆ {1, . . . ,m} × {1, . . . , n}, where R consists of those pairs (i, j) for
which Ai,j = 1. Boolean matrix multiplication then amounts to composition of
binary relations. Composition is the central operation in the algebra of binary
relations [16, 13, 15]. Besides composition, this algebra has operations such as
converse, which corresponds to transposition of a boolean matrix; union and
complement, which correspond to disjunction and negation of boolean matrices;
and the empty and identity relations, which correspond to the zero and identity
matrices.

A common theme in research in the foundations of databases is the expressive
power of query languages [1]. When we employ a query language, we would like to
understand as well as possible what we can do with it. Of this kind is the classical
Codd theorem, stating the equivalence between the standard relational algebra
and first-order logic. Likewise, for the algebra of binary relations, a classical
result [17] is that it has the same expressive power as the formulas with two free
variables in FO(3), the three-variable fragment of first-order logic. In this sense,

we understand quite well the expressive power of a natural set of operations on
boolean matrices.

What can now be said in this regard about more general matrices, with entries
that are not just boolean values? An m×n matrix with entries in some semiring
K is essentially a mapping from {1, . . . ,m}×{1, . . . , n} to K. This perfectly fits
the data model of K-relations introduced by Green, Garvounarakis and Tannen
[5]. In general, consider an infinite domain dom and a supply of attributes.
In a database instance, we assign to each attribute a range of values, in the
form of a finite subset of dom. Attributes can be declared to be compatible;
compatible attributes have the same range. A relation schema S is a finite set
of attributes. Tuples over S are mappings that assign to each attribute a value
of the appropriate range. Now a K-relation over S is a mapping that assigns to
each tuple over S an element of K.

So, an m × n matrix X can be seen as a K-relation over two attributes A
and B where the range of A is {1, . . . ,m} and the range of B is {1, . . . , n}. We
can assume an order on all attributes and choose A < B so that we know which
values are row indices and which are column indices. Then an n × k matrix
Y is modeled using attributes C < D where we choose C and B compatible,
to reflect that the number of columns of matrix X equals the number of rows
of matrix Y . We can view vectors as K-relations over a single attribute, and
scalars as K-relations over the empty schema. In general, a K-relation of arity
r is essentially an r-dimensional tensor (multidimensional array). (Because we
need not necessarily assume an order on dom, the tensor is unordered.)

Green et al. defined a generalization of the positive relation algebra working
on K-relations, which we denote here by ARA.1 When we restrict ARA to arities
of at most three, which we denote by ARA(3), we obtain an analogue to FO(3)
mentioned above. So, ARA provides a suitable scenario to reinvestigate, in a
data model with numerical values, the equivalence between the algebra of binary
relations and FO(3). In this paper we make the following contributions.

1. We define a suitable generalization, to K-relations, of the composition oper-
ation of classical binary relations. When we add this composition operator to
ARA, but restrict arities to at most two, we obtain a natural query language
for matrices. We refer to this language here as “ARA(2) plus composition”.

2. We show that ARA(2) plus composition actually coincides with the matrix
query language MATLANG, introduced by two of the present authors with
Geerts and Weerwag [2] in an attempt to formalize the set of common matrix
operations found in numerical software packages.

3. We show that a matrix query is expressible in ARA(3) if and only if it is
expressible in MATLANG, thus providing an analogue to the classical result
about FO(3) and the algebra of binary relations. More generally, for any
arity r, we show that an r-ary query over r-ary K-relations is expressible in
ARA(r+1) if and only if it is expressible in ARA(r) plus composition. For this

1 ARA stands for Annotated-Relation Algebra, as the elements from K that a K-
relation assigns to its tuples are usually viewed as annotations.

result, we need the assumption that K is commutative. We stress that the
proof is not a trivial adaptation of the proof of the classical result, because
we can no longer rely on familiar classical properties like idempotence of
union and join.

ARA has been a very influential vehicle for data provenance.2 The elements
from K are typically viewed as annotations, or as identifiers, and the seman-
tics of ARA operations was originally designed to show how these annotations
are propagated in the results of data manipulations. Other applications, apart
from provenance, have been identified from the outset, such as security levels, or
probabilities [5]. By doing the present work, we have understood that ARA can
moreover serve as a fully-fledged query language for tensors (multidimensional
arrays), and matrices in particular. This viewpoint is backed by the recent in-
terest in processing Functional Aggregate Queries (FAQ [11, 12], also known as
AJAR [8]). Indeed, FAQ and AJAR correspond to the project-join fragment of
ARA, without self-joins.

This paper is further organized as follows. Section 2 recalls the data model
of K-relations and the associated query language ARA. Section 3 presents the
result on ARA(r + 1) and ARA(r) plus composition. Section 4 relates ARA(2)
plus composition to MATLANG. Section 5 draws conclusions, discusses related
work, and proposes directions for further research.

2 Annotated-Relation Algebra

By function we will always mean a total function. For a function f : X → Y
and Z ⊆ X, the restriction of f to Z, denoted by f |Z , is the function Z → Y
where f |Z(x) = f(x) for all x ∈ Z.

Recall that a semiring K is a set equipped with two binary operations,
addition (+) and multiplication (∗), such that (1) addition is associative, com-
mutative, and has an identity element 0; (2) multiplication is associative, has an
identity element 1, and has 0 as an annihilating element; and (3) multiplication
distributes over addition. A semiring is called commutative when multiplication
is commutative. We fix a semiring K.

Remark 1. We will explicitly indicate where we assume commutativity of K.

From the outset, we also fix countable infinite sets rel, att, and dom, the
elements of which are called relation names, attributes, and domain elements,
respectively. We assume an equivalence relation ∼ on att that partitions att into
an infinite number of equivalence classes that are each infinite. When A ∼ B,
we say that A and B are compatible. Intuitively, A ∼ B will mean that A and B
have the same set of domain values. A function f : X → Y with X and Y sets
of attributes is called compatible if f(A) ∼ A for all A ∈ X.

A relation schema is a finite subset of att. A database schema is a function
S on a finite set N of relation names, assigning a relation schema S(R) to each

2 The paper [5] received the PODS 2017 test-of-time award.

R ∈ N . The arity of a relation name R is the cardinality |S(R)| of its schema.
The arity of S is the largest arity among relation names R ∈ N .

We now recursively define the expressions of the Annotated-Relation Algebra,
abbreviated by ARA. At the same time we assign a relation schema to each ARA
expression by extending S from relation names to arbitrary ARA expressions.
An ARA expression e over a database schema S is one of the following:

Relation name a relation name R of S;
One the one operation 1(e′), where e′ is an ARA expression, and S(e) := S(e′);
Union the union e1 ∪ e2, where e1 and e2 are ARA expressions with S(e1) =
S(e2), and S(e) := S(e1);

Projection the projection πY (e′), where e′ is an ARA expression and Y ⊆ S(e′),
and S(e) := Y ;

Selection the selection σY (e′), where e′ is an ARA expression, Y ⊆ S(e′), the
elements of Y are mutually compatible, and S(e) := S(e′);

Renaming the renaming ρϕ(e′), where e′ is an ARA expression and ϕ : S(e′)→
Y a compatible one-to-one correspondence with Y ⊆ att, and S(e) := Y ; or

Join the join e1 on e2, where e1 and e2 are ARA expressions, and S(e) :=
S(e1) ∪ S(e2).

A domain assignment is a function D : att → D, where D is a set of
nonempty finite subsets of dom, such that A ∼ B implies D(A) = D(B).
Let X be a relation schema. A tuple over X with respect to D is a function
t : X → dom such that t(A) ∈ D(A) for all A ∈ X. We denote by TD(X) the
set of tuples over X with respect to D. Note that TD(X) is finite. A relation r
over X with respect to D is a function r : TD(X)→ K. So a relation annotates
every tuple over X with respect to D with a value from K. If S is a database
schema, then an instance I of S with respect to D is a function that assigns to
every relation name R of S a relation I(R) : TD(S(R))→ K.

Remark 2. In practice, a domain assignment need only be defined on the at-
tributes that are used in the database schema (and on attributes compatible to
these attributes). Thus, it can be finitely specified. While here we have chosen to
keep the notion of domain assignment and instance separate, it may perhaps be
more natural to think of the domain assignment as being part of the instance.

I(no courses) =

student dptm K

Alice CS 5
Alice Math 2
Alice Bio 0
Bob CS 2
Bob Math 1
Bob Bio 3

I(course fee) =

dptm K

CS 300
Math 250
Bio 330

Fig. 1. Example of a database instance.

Example 1. Let us record for a university both the number of courses each stu-
dent takes in each department and the course fee for each department. Let K be
the set of integers and let S be a database schema on {no courses, course fee}
with S(no courses) = {student,dptm} and S(course fee) = {dptm}. Let D be a
domain assignment with D(student) = {Alice,Bob} and D(dptm) = {CS,Math,
Bio}. A database instance I of S with respect to D is shown in Figure 1.

We now define the relation 1X , as well as the generalizations of the classical
operations from the positive relational algebra to work on K-relations.

One For every relation schema X, we define 1X : TD(X)→ K as 1X(t) = 1.
Union Let r1, r2 : TD(X) → K. Define r1 ∪ r2 : TD(X) → K as (r1 ∪ r2)(t) =

r1(t) + r2(t).
Projection Let r : TD(X)→ K and Y ⊆ X. Define πY (r) : TD(Y)→ K as

(πY (r))(t) =
∑

t′∈TD(X),
t′|Y =t

r(t′).

Selection Let r : TD(X)→ K and Y ⊆ X where the elements of Y are mutually
compatible. Define σY (r) : TD(X)→ K such that

(σY (r))(t) =

{
r(t) if t(A) = t(B) for all A,B ∈ Y ;

0 otherwise.

Renaming Let r : TD(X) → K and ϕ : X → Y a compatible one-to-one
correspondence. We define ρϕ(r) : TD(Y)→ K as ρϕ(r)(t) = r(t ◦ ϕ).

Join Let r1 : TD(X1) → K and r2 : TD(X2) → K. Define r1 on r2 : TD(X1 ∪
X2)→ K as (r1 on r2)(t) = r1(t|X1

) ∗ r2(t|X2
).

The above operations provide semantics for ARA in a natural manner. For-
mally, let S be a database schema, let e be an ARA expression over S, and let I
be an instance of S. The output relation e(I) of e under I is defined as follows.
If e = R with R a relation name of S, then e(I) := I(R). If e = 1(e′), then
e(I) := 1S(e′). If e = e1 ∪ e2, then e(I) := e1(I) ∪ e2(I). If e = πX(e′), then
e(I) := πX(e′(I)). If e = σY (e′), then e(I) := σY (e′(I)). If e = ρϕ(e′), then
e(I) := ρϕ(e′(I)). Finally, if e = e1 on e2, then e(I) := e1(I) on e2(I).

Remark 3. The language ARA is a slight variation of the K-annotated relational
algebra as originally defined by Green et al. [5] to better suit our purposes.

First of all, the original definition does not have a domain assignment D :
att→ D but instead a single domain common to all attributes (and it therefore
also does not have a compatibility relation ∼). As such, the original definition
corresponds to the case where database schemas and ARA expressions use only
mutually compatible attributes. We need our more general setting when we
compare ARA to MATLANG in Section 4.

Also, here, we focus on equality selections, while the original paper does
not fix the allowed selection predicates. Finally, the original definition assumes
zero-relations 0X , while we instead use one-relations 1X .

The following observations, to the effect that some (but not all) classical
relational-algebra equivalences carry over to the K-annotated setting, were orig-
inally made by Green et al.

Proposition 1 ([5, Proposition 3.4]). The following properties and equiva-
lences hold, where, for each given equivalence, we assume that the left-hand side
is well defined.

– Union is associative and commutative.
– Join is associative and distributive over union, i.e., (r1 ∪ r2) on r3 = (r1 on
r3) ∪ (r2 on r3).

– Any two selections commute.
– Projection and selection commute when projection retains the attributes on

which selection takes place.
– Projection distributes over union, i.e., πY (r1 ∪ r2) = πY (r1) ∪ πY (r2).
– Selection distributes over union, i.e., σY (r1 ∪ r2) = σY (r1) ∪ σY (r2).
– We have σY (r1) on r2 = σY (r1 on r2) and r1 on σY (r2) = σY (r1 on r2).
– If K is commutative, then join is commutative.

Note that idempotence of union and of join, i.e., r on r = r ∪ r = r, which
holds for the classical relational algebra, does not in general hold for ARA.

We supplement Proposition 1 with the following easy-to-verify properties.

Lemma 1. Let r1 : TD(X1)→ K and r2 : TD(X2)→ K.

– If X1 ∩X2 ⊆ X ⊆ X1 ∪X2, then πX(r1 on r2) = πX∩X1
(r1) on πX∩X2

(r2).
– If Y1, Y2 ⊆ X1 where Y1 ∩ Y2 6= ∅ and the attributes of Y1 and of Y2 are

mutually compatible, then σY2(σY1(r1)) = σY1∪Y2(r1).
– If ϕ : X1∪X2 → X is a compatible one-to-one correspondence, then ρϕ(r1 on
r2) = ρϕ|X1

(r1) on ρϕ|X2
(r2). If moreover X1 = X2, then ρϕ(r1 ∪ r2) =

ρϕ(r1) ∪ ρϕ(r2).
– If Y ⊆ X1 and ϕ : X1 → X is a compatible one-to-one correspondence, then
ρϕ(σY (r1)) = σϕ(Y)(ρϕ(r1)), where ϕ(Y) = {ϕ(y) | y ∈ Y }.

We also use the operation of projecting away an attribute, i.e., π̂A(e) :=
πS(e)\{A}(e) if A ∈ S(e). Note that conversely, πX(e) = (π̂Am

· · · π̂A1
)(e) where

X = S(e) \ {A1, . . . , Am} and the Ai’s are mutually distinct. Projecting away,
allowing one to deal with one attribute at a time, is sometimes notationally more
convenient.

3 Composition and equivalence

In this section we define an operation called k-composition and show that aug-
menting ARA by composition allows one to reduce the required arity of the
relations that are computed in subexpressions. The intuition is to provide a gen-
eralization of classical composition of two binary relations to annotated relations,
so that we can compose up to k relations of arity up to k. Specifically, the classi-
cal composition of a binary relation r with a binary relation s amounts to viewing
these relations as relations over schemas {B,A} and {A,C}, respectively, and
performing π̂A(r on s). Thus we arrive at the following generalization.

Definition 1. Let k be a nonnegative integer and let l ∈ {1, . . . , k}. Let ri :
TD(Xi)→ K for i ∈ {1, . . . , l}, let X = X1 ∪ · · · ∪Xl, and let A ∈ X1 ∩ · · · ∩Xl.

Define the k-composition ζA,k(r1, . . . , rl) : TD(X \ {A})→ K as

(ζA,k(r1, . . . , rl))(t) = (π̂A(r1 on · · · on rl))(t)

for all t ∈ TD(X \ {A}).

Note that ζA,k takes at most k arguments. We emphasize that ζA,k is defined
as a new operator (albeit one that can be defined by an ARA expression) and
not as a shorthand for an ARA expression.

We denote by ARA + ζk the language obtained by extending ARA with k-
composition. Consequently, if e1, . . . , el are ARA+ ζk expressions with l ≤ k and
A ∈ S(e1)∩· · ·∩S(el), then e = ζA,k(e1, . . . , el) is an ARA+ζk expression. Also,
we let S(e) := (S(e1) ∪ · · · ∪ S(el)) \ {A}.

Let k be a nonnegative integer. We denote by ARA(k) the fragment of ARA
in which the database schemas are restricted to arity at most k and the relation
schema of each subexpression is of cardinality at most k. In particular, join
e1 on e2 is only allowed if |S(e1 on e2)| ≤ k. The fragment (ARA + ζk)(k) is
defined similarly.

From Definition 1 it is apparent that (ARA+ζk)(k) is subsumed by ARA(k+
1). One of our main results (Corollary 1) provides the converse inclusion, when
the database schemas and outputs are restricted to arity at most k. To this end,
we establish a normal form for ARA expressions.

We use the following terminology. Let F be any family of expressions. A
selection of F-expressions is an expression of the form σYn

· · ·σY1
(f), where

f is an F-expression and n ≥ 0. Note the slight abuse of terminology as we
allow multiple selection operations. Also, when we say that e is a union of F-
expressions or a join of F-expressions, we allow e to be just a single expression
in F (so union and join may be skipped).

We are now ready to formulate a main result of this paper. This result is
inspired by the classic equivalence of FO(3) and the algebra of binary relations
[17]. A compact proof of this classical result is given by Marx and Venema [14,
Theorem 3.4.5, Claim 2], and a self-contained exposition is also available [3].

Two ARA expressions e1 and e2 over the same database schema are called
equivalent, naturally, if they yield the same output relation for every domain
assignment and every database instance respecting that domain assignment.

Theorem 1. Let S be a database schema of arity at most k and assume that K
is commutative. Every ARA(k+ 1) expression over S is equivalent to a union of
selections of joins of (ARA + ζk)(k) expressions over S.

The proof of Theorem 1 uses Proposition 1, Lemma 1, and the following
technical lemma to effectively construct the expression in the form given by
Theorem 1. This effective construction is illustrated in Example 2.

Lemma 2. Let r1, . . . , rn be relations with relation schemas X1, . . . , Xn, re-
spectively, and with respect to a domain assignment D. Assume that A,B ∈
X1 ∪ · · · ∪Xn are distinct and compatible. Define, for i ∈ {1, . . . , n},

r′i :=

ri if A /∈ Xi;

ρA→B(ri) if A ∈ Xi, B /∈ Xi;

π̂A(σ{A,B}(ri)) if A,B ∈ Xi,

where A→ B denotes the one-to-one correspondence from Xi to (Xi\{A})∪{B}
that assigns A to B and keeps the remaining attributes fixed. Then

π̂A(σ{A,B}(r1 on · · · on rn)) = r′1 on · · · on r′n.

Example 2. Assume that K is commutative and consider the ARA(3) expression
e = π{B,C}(σ{B,C}(R on R on S on T on ρϕ(T)) ∪ σ{A,B}(R on S on T)), where
S(R) = {A,B}, S(S) = {B,C}, S(T) = {A,C} (A,B,C are mutually distinct),
and ϕ sends A to B and C to itself. The proof of Theorem 1 obtains an equivalent
expression in normal form by using Proposition 1, Lemma 1, and Lemma 2 as
follows.

e = π̂A(σ{B,C}(R on R on S on T on ρϕ(T)) ∪ σ{A,B}(R on S on T))

≡ π̂A(σ{B,C}(R on R on S on T on ρϕ(T))) ∪ π̂A(σ{A,B}(R on S on T))

≡ σ{B,C}(π̂A(R on R on S on T on ρϕ(T))) ∪ π̂A(σ{A,B}(R on S on T))

≡ σ{B,C}(S on ρϕ(T) on π̂A(R on R on T)) ∪ π̂A(σ{A,B}(R on S on T))

≡ σ{B,C}(S on ρϕ(T) on ζA,2(R on R, T)) ∪ π̂A(σ{A,B}(R on S on T))

≡ σ{B,C}(S on ρϕ(T) on ζA,2(R on R, T)) ∪
(
π̂A(σ{A,B}(R)) on S on ρA→B(T)

)
.

The first two equivalences follow from Proposition 1, the third equivalence follows
from Lemma 1, the fourth equivalence is by the definition of ζA,2, and the last
equivalence is by Lemma 2. The last expression is in the normal form since the
subexpressions S, ρϕ(T), ζA,2(R on R, T), π̂A(σ{A,B}(R)), and ρA→B(T) are all
(ARA + ζ2)(2) expressions.

Note that we likely cannot omit the “selections of” in the above theorem. For
example, for k = 2 consider σ{A,C}(R on S) where R and S are relation names
with S(R) = {A,B} and S(S) = {B,C}.

Remark 4. Theorem 1 still holds if the 1 operator is omitted from the definition
of ARA.

Since union, selection, and join do not decrease the number of attributes of
relations, we have the following corollary to Theorem 1, which establishes the
main result announced in the Introduction.

Corollary 1. Let S be a database schema of arity at most k and assume that
K is commutative. Every ARA(k + 1) expression e over S with |S(e)| ≤ k is
equivalent to an (ARA + ζk)(k) expression over S.

Remark 5. We remark that transforming an expression into the normal form of
Theorem 1 may lead to an exponential increase in expression length. The reason
is that the proof uses distributivity of join over union. Indeed, each time we
replace an expression of the form (e1 ∪ e2) on e3 by (e1 on e3)∪ (e2 on e3) there is
a duplication of e3. The proof of the classic translation of FO(3) to the algebra
of binary relations also induces an exponential increase of expression length for
similar reasons. A proof that this blowup is unavoidable remains open, both for
our result and for the classical result (to the best of our knowledge).

3.1 Connection with FO(k)

The connection between ARA(k) and FO(k), to which we have hinted several
times already, can be made explicit as follows.

Let K be the Boolean semiring. Consider a database schema S of arity at
most k. Let D be a domain assignment such that D(A) = D(B) for all attributes
A and B. In other words, D just fixes a single nonempty finite subset of dom.
A tuple (D, I), with I an instance over S, is a classical relational structure over
S.

We can consider FO(k) formulas as first-order logic formulas (also known as
relational-calculus formulas [1]) over S that use only k distinct variables. It is
then an easy exercise to see that every FO(k) formula that does not use negation
or universal quantification, and has k′ ≤ k free variables can be translated to an
equivalent ARA(k) expression. The converse translation is also possible.

4 Matrices

In this section we show that (ARA + ζ2)(2) is equivalent to a natural version of
MATLANG [2]. As a consequence of Corollary 1, we then obtain that also ARA(3),
with database schemas and output relations restricted to arity at most 2, is
equivalent to MATLANG. We begin by recalling the definition of this language.

4.1 MATLANG

Let us fix the countable infinite sets matvar and size, where the latter has
a distinguished element 1 ∈ size. The elements of matvar are called matrix
variables and the elements of size are called size symbols.

A matrix schema is a function S : V → size× size with V ⊆ matvar both
finite and nonempty. We write (α, β) ∈ size× size also as α× β.

MATLANG expressions are recursively defined as follows. At the same time
we assign a matrix schema to each MATLANG expression by extending S from
matrix variables to arbitrary MATLANG expressions.

A MATLANG expression e over a matrix schema S is one of the following:

Variable a matrix variable M of S;
Transposition a transposition (e′)T , where e′ is a MATLANG expression, and
S(e) := β × α if S(e′) = α× β;

One-vector a one-vector 1(e′), where e′ is a MATLANG expression, and S(e) :=
α× 1 if S(e′) = α× β;

Diagonalization a diagonalization diag(e′), where e′ is a MATLANG expression
with S(e′) = α× 1, and S(e) := α× α;

Multiplication a multiplication e1 · e2, where e1 and e2 are MATLANG expres-
sions with S(e1) = α× β and S(e2) = β × γ, and S(e) := α× γ;

Addition an addition e1 + e2, where e1 and e2 are MATLANG expressions with
S(e1) = S(e2), and S(e) := S(e1); or

Hadamard product a Hadamard product e1 ◦ e2, where e1 and e2 are MAT-
LANGexpressions with S(e1) = S(e2), and S(e) := S(e1).

A size assignment is a function σ that assigns to each size term a strictly
positive integer with σ(1) = 1. Let M be the set of all matrices over K. We say
that M ∈M conforms to α×β ∈ size×size by σ if M is a σ(α)×σ(β)-matrix.

If S : V → size× size is a matrix schema, then an instance of S with respect
to σ is a function I : V → M such that, for each M ∈ V , the matrix I(M)
conforms to S(M) by σ.

Remark 6. In practice, a size assignment need only be defined on the size terms
that are used in the schema. Thus, it can be finitely specified. While here we
have chosen to keep the notion of size assignment and instance separate, it may
perhaps be more natural to think of the size assignment as being part of the
instance.

I(no courses) =

(
5 2 0
2 1 3

)
I(course fee) =

300
250
330

Fig. 2. An example of an instance of a matrix schema.

Example 3. This example is similar to Example 1. Let K be the set of integers
and let S be a matrix schema on {no courses, course fee} with S(no courses) =
student× dptm and S(course fee) = dptm× 1. Let σ be a size assignment with
σ(student) = 2 and σ(dptm) = 3. An instance I of S with respect to σ is shown
in Figure 2.

The semantics for MATLANG is given by the following matrix operations.
Let A be an m× n-matrix over K. We define 1(A) to be the m× 1-matrix (i.e.,
column vector) with 1(A)i,1 = 1. If n = 1 (i.e., A is a column vector), then
diag(A) is the m × m-matrix with diag(A)i,j equal to Ai,1 if i = j and to 0
otherwise. If B is an m× n-matrix, then A ◦B denotes the Hadamard product
of A and B. In other words, (A ◦B)i,j = Ai,j ∗Bi,j . Matrix addition and matrix
multiplication are as usual denoted by + and ·, respectively.

Formally, let S be a matrix schema, let e be a MATLANG expression over S,
and let I be a matrix instance of S. Then the output matrix e(I) of e under I
is defined in the obvious way, given the operations just defined. If e = M with
M a matrix variable of S, then e(I) is naturally defined to be equal to I(M).

Remark 7. Matrix addition and the Hadamard product are the pointwise appli-
cations of addition and product, respectively. The original definition of MATLANG
[2] is more generally defined in terms of an arbitrary set Ω of allowed pointwise
functions. So, MATLANG as defined above fixes Ω to {+, ·}. This restriction was
also considered by Geerts [4] (who also allows multiplication by constant scalars,
but this is not essential).

Also, the original definition of MATLANG fixes K to the field of complex
numbers and complex transpose is considered instead of (ordinary) transpose.
Of course, transpose can be expressed using complex transpose and pointwise
application of conjugation.

Table 1. Symbol table for the simulations between MATLANG and (ARA + ζ2)(2).

Mapping MATLANG → ARA ARA → MATLANG

attributes A/size terms α rowα, colα Ψ(A)
schemas S Γ (S) Θ(S)
expressions e Υ (e) Φ(e)
instances I, relations r/matrices M RelS,σ(I), Rels,σ(M) MatD(I), MatD(r)

In the following subsections we provide simulations between MATLANG and
(ARA+ ζ2)(2). The notations for the different translations that will be given are
summarized in Table 1.

4.2 Simulating MATLANG in (ARA + ζ2)(2)

For notational convenience, instead of fixing a one-to-one correspondence be-
tween rel and matvar, we assume that rel = matvar.

Let us now fix injective functions row : size\{1} → att and col : size\{1} →
att such that (1) row(α) and col(α) are compatible for all α ∈ size \ {1}, and
(2) the range of row is disjoint from the range of col. To reduce clutter, we also
write, for α ∈ size \ {1}, row(α) as rowα and col(α) as colα.

Let s ∈ size×size. We associate to s a relation schema Γ (s) with |Γ (s)| ≤ 2
as follows.

Γ (s) :=

{rowα, colβ} if s = α× β;

{rowα} if s = α× 1;

{colβ} if s = 1× β;

∅ if s = 1× 1,

where α 6= 1 6= β.
Let S be a matrix schema on a set of matrix variables V . We associate to

S a database schema Γ (S) on V as follows. For M ∈ V , we set (Γ (S))(M) :=
Γ (S(M)).

Let σ be a size assignment. We associate to σ a domain assignment D(σ)
where, for α ∈ size, (D(σ))(rowα) := (D(σ))(colα) := {1, . . . , σ(α)}.

Let M ∈ M conform to s = α × β by σ. We associate to M a relation
Rels,σ(M) : TD(σ)(Γ (s)) → K as follows. We have (Rels,σ(M))(t) := Mi,j ,
where (1) i is equal to t(rowα) if α 6= 1 and equal to 1 if α = 1; and (2) j is
equal to t(colβ) if β 6= 1 and equal to 1 if β = 1.

Let S : V → size×size be a matrix schema and let I be a matrix instance of
S with respect to σ. We associate to I an instance RelS,σ(I) of database schema
Γ (S) with respect to D(σ) as follows. For M ∈ V , we set (RelS,σ(I))(M) :=
RelS(M),σ(I(M)).

I(no courses) =

rowstudent coldptm K

1 1 5
1 2 2
1 3 0
2 1 2
2 2 1
2 3 3

I(course fee) =

rowdptm K

1 300
2 250
3 330

Fig. 3. Matrix instance from Figure 2 represented as a database instance.

Example 4. Recall I, S, and σ from Example 3. We have that (Γ (S))(no courses)
= {rowstudent, coldptm} and (Γ (S))(course fee) = {rowdptm}. The database in-
stance RelS,σ(I) is shown in Figure 3.

The next lemma shows that every MATLANG expression can be simulated
by an (ARA + ζ2)(2) expression.

Lemma 3. For each MATLANG expression e over a matrix schema S, there
exists an (ARA+ζ2)(2) expression Υ (e) over database schema Γ (S) such that (1)
Γ (S(e)) = (Γ (S))(Υ (e)) and (2) for all size assignments σ and matrix instances
I of S with respect to σ, we have RelS(e),σ(e(I)) = (Υ (e))(RelS,σ(I)).

Example 5. We continue the running example. In particular, recall I, S, and σ
from Example 3. Consider the MATLANG expression e = no courses · course fee
over S. We have S(e) = student× 1 and

e(I) =

(
2000
1840

)
; RelS(e),σ(e(I)) =

rowstudent K
1 2000
2 1840

.

By Lemma 3 and its proof, we have that RelS(e),σ(e(I)) is equal to e′(RelS,σ(I))
with

e′ = ζC,2(ρϕ1
(no courses), ρϕ2

(course fee)),

where ϕ1(colγ) = ϕ2(rowγ) = C /∈ {rowα, colβ} and ϕ1 and ϕ2 are the identity
otherwise.

4.3 Simulating (ARA + ζ2)(2) in MATLANG

In order to simulate (ARA+ ζ2)(2) in MATLANG, we equip att with some linear
ordering <. We remark that < is an ordering on attributes, not on domain
elements. Only an ordering on domain elements can have an impact on the
expressive power of query languages of query languages [1].

Again we assume that rel = matvar. Let us fix an injective function Ψ :
att→ size \ {1}.

Let X ⊆ {A1, A2} be a relation schema for some A1 and A2 with A1 < A2.
We associate to X an element Θ(X) ∈ size× size as follows. We have

Θ(X) :=

Ψ(A1)× Ψ(A2) if X = {A1, A2};
Ψ(A)× 1 if X = {A} for some A;

1× 1 if X = ∅.

Let S a database schema on a set N of relation names of arities at most 2.
We associate to S a matrix schema Θ(S) on N as follows. For R ∈ N , we set
(Θ(S))(R) := Θ(S(R)).

Let D be a domain assignment. We associate to D a size assignment σ(D)
where, for A ∈ att, (σ(D))(D(A)) = |D(A)|. If every element in the range of a
domain assignment D is of the form {1, . . . , n} for some n, then we say that D
is consecutive.

Let D be a consecutive domain assignment. Given a relation r : TD(X)→ K
with X ⊆ {A1, A2} and A1 < A2, we associate a matrix MatD(r) conforming
to Θ(X) by σ(D) as follows. We define (MatD(r))i,j := r(t), where t is (1) the
tuple with t(A1) = i and t(A2) = j if |X| = 2; (2) the tuple with t(A) = i and
j = 1 if X = {A} for some A; and (3) the unique tuple of TD(X) if X = ∅.

Let S a database schema on a set N of relation names of arities at most 2,
and let I be a database of S instance with respect to D. We associate to I a
matrix instance MatD(I) of Mat(S) with respect to σ(D) as follows. For R ∈ N ,
we set (MatD(I))(R) := MatD(I(R)).

Example 6. Recall I, S, and D from Example 1. To reduce clutter, assume that
att = size \ {1} and that Ψ is the identity function. Take student < dptm.
We have that (Θ(S))(no courses) = student × dptm and (Θ(S))(course fee) =
dptm × 1. Consider domain assignment D′ and database instance I ′ obtained
from D and I, respectively, by replacing Alice by 1, Bob by 2, CS by 1, Math by
2, and Bio by 3. Note that D′ is consecutive. The instance MatD′(I ′) is shown
in Figure 2.

The next lemma shows that every (ARA+ζ2)(2) expression can be simulated
by a MATLANG expression.

Lemma 4. For each (ARA+ζ2)(2) expression e over a database schema S of ar-
ity at most 2, there exists a MATLANG expression Φ(e) over matrix schema Θ(S)
such that (1) Θ(S(e)) = (Θ(S))(Φ(e)) and (2) for all consecutive domain as-
signments D and database instances I with respect to D, we have MatD(e(I)) =
(Φ(e))(MatD(I)).

Example 7. We continue the running example. In particular, recall I ′, S, and D′

from Examples 1 and 6. Consider the (ARA+ζ2)(2) expression e = no courses on
course fee over S. We have S(e) = {student,dptm} and

e(I ′) =

student dptm K
1 1 1500
1 2 500
1 3 0
2 1 600
2 2 250
2 3 990

; MatD′(e(I ′)) =

(
1500 500 0
600 250 990

)
.

By Lemma 3 and its proof, we have that MatD′(e(I ′)) is equal to e′(MatD′(I ′))
with e′ = no courses · diag(course fee).

4.4 Relationship with ARA(3) and complexity

Corollary 1, Lemma 3, and Lemma 4 together establish the equivalence of
MATLANG with the language ARA(3) restricted to database schemas and output
relations of arity at most 2.

Theorem 2. For each ARA(3) expression e over a database schema S of arity
at most 2 and with |S(e)| ≤ 2, there exists a MATLANG expression e′ such
that MatD(e(I)) = e′(MatD(I)) for all consecutive domain assignments D and
instances I with respect to S over D.

Conversely, for each MATLANG expression e over a matrix schema S, there
exists an ARA(3) expression e′ such that RelS(e),σ(e(I)) = e′(RelS,σ(I)) for all
size assignments σ and matrix instances I of S with respect to σ.

As to complexity, we note that Υ and Φ in Lemmas 3 and 4 can be effectively
constructed and of linear length (for fixed schemas; quadratic when the schema
is part of the input). We conclude that the direction MATLANG→ (ARA+ζ2)(2)
→ ARA(3) in the above result is linear. The direction ARA(3) → (ARA+ ζ2)(2),
however, is exponential, see Remark 5.

5 Conclusion

In related work, Yan, Tannen, and Ives consider provenance for linear algebra
operators [18]. In that approach, provenance tokens represent not the matrix en-
tries (as in our work), but the matrices themselves. Polynomial expressions (with

matrix addition and matrix multiplication) are derived to show the provenance
of linear algebra operations applied to these matrices.

Our result that every matrix query expressible in ARA(3) is also expressible
in MATLANG provides a partial converse to the observation already made in the
original paper [2], to the effect that MATLANG can be expressed in LAggr(3):
the relational calculus with summation and numerical functions [9], restricted
to three base variables.3 This observation was made in the extended setting
of MATLANG that allows arbitrary pointwise functions (Remark 7). For the
language considered here, ARA(3) provides a more appropriate upper bound for
comparison, and ARA(3) is still a natural fragment of LAggr(3).

When allowing arbitrary pointwise functions in MATLANG, we actually move
beyond the positive relational algebra, as queries involving negation can be ex-
pressed. For example, applying the function x∧¬y pointwise to the entries of two
n×n boolean matrices representing two binary relations R and S on {1, . . . , n},
we obtain the set difference R−S. It is an interesting research question to explore
expressibility of queries in MATLANG in this setting. For example, consider the
following LAggr(3) query on two matrices M and N :

∀i∃j∀k∀x(M(i, k, x)→ ∃iN(j, i, x))

Here, M(i, k, x) means that Mi,k = x, and similarly for N(j, i, x).
The above query, which does not even use summation, reuses the base variable

i and checks whether each row of M , viewed as a set of entries, is included in
some row of N , again viewed as a set of entries. We conjecture that the query
is not expressible in MATLANG with arbitrary pointwise functions. Developing
techniques for showing this is an interesting direction for further research.

Finally, recall that our main result Corollary 1 assumes that K is commu-
tative. It should be investigated whether or not this result still holds in the
noncommutative case.

Acknowledgments We thank Floris Geerts for inspiring discussions. Robert Brij-
der has been a postdoctoral fellow of the Research Foundation - Flanders (FWO).
Jan Van den Bussche was partially supported by the National Natural Science
Foundation of China under grant# 61972455.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Brijder, R., Geerts, F., Van den Bussche, J., Weerwag, T.: On the expressive power
of query languages for matrices. In: Kimelfeld, B., Amsterdamer, Y. (eds.) Pro-
ceedings 21st International Conference on Database Theory. LIPIcs, vol. 98, pp.
10:1–10:17. Schloss Dagstuhl–Leibniz Center for Informatics (2018)

3. Van den Bussche, J.: FO3 and the algebra of binary relations. https://

databasetheory.org/node/94, retrieved 22 July 2019

3 LAggr is a two-sorted logic with base variables and numerical variables.

4. Geerts, F.: On the expressive power of linear algebra on graphs. In: Barcelo, P.,
Calautti, M. (eds.) Proceedings 22nd International Conference on Database The-
ory. LIPIcs, vol. 127, pp. 7:1–7:19. Schloss Dagstuhl–Leibniz Center for Informatics
(2019)

5. Green, T., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings
26th ACM Symposium on Principles of Database Systems. pp. 31–40 (2007)

6. Hutchison, D., Howe, B., Suciu, D.: LaraDB: A minimalist kernel for linear and
relational algebra computation. In: Afrati, F., Sroka, J. (eds.) Proceedings 4th
ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond.
pp. 2:1–2:10 (2017)

7. Jananthan, H., Zhou, Z., et al.: Polystore mathematics of relational algebra. In: Nie,
J.Y., Obradovic, Z., Suzumura, T., et al. (eds.) Proceedings IEEE International
Conference on Big Data. pp. 3180–3189. IEEE (2017)

8. Joglekar, M., Puttagunta, R., Ré, C.: AJAR: Aggregations and joins over annotated
relations. In: Proceedings 35th ACM Symposium on Principles of Databases. pp.
91–106. ACM (2016)

9. Libkin, L.: Expressive power of SQL. Theor. Comput. Sci. 296, 379–404 (2003)
10. Luo, S., Gao, Z., Gubanov, M., Perez, L., Jermaine, C.: Scalable linear algebra on

a relational database system. SIGMOD Rec. 47(1), 24–31 (2018)
11. Abo Khamis, M., Ngo, H. Q., Rudra, A.: FAQ: Questions asked frequently. In:

Proceedings 35th ACM Symposium on Principles of Databases. pp. 13–28. ACM
(2016)

12. Abo Khamis, M., Ngo, H. Q., Rudra, A.: Juggling functions inside a database.
SIGMOD Rec. 46(1), 6–13 (2017)

13. Maddux, R.: The origin of relation algebras in the development and axiomatization
of the calculus of relations. Studia Logica 50(3/4), 421–455 (1991)

14. Marx, M., Venema, Y.: Multi-Dimensional Modal Logic. Springer (1997)
15. Pratt, V.: Origins of the calculus of binary relations. In: Proceedings 7th Annual

IEEE Symposium on Logic in Computer Science. pp. 248–254 (1992)
16. Tarski, A.: On the calculus of relations. J. Symb. Log. 6, 73–89 (1941)
17. Tarski, A., Givant, S.: A Formalization of Set Theory Without Variables, AMS

Colloquium Publications, vol. 41. American Mathematical Society (1987)
18. Yan, Z., Tannen, V., Ives, Z.: Fine-grained provenance for linear algebra operators.

In: Proceedings 8th USENIX Workshop on the Theory and Practice of Provenance
(2016)

