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Abstract – A vehicle routing problem (VRP) with sequence-based 
pallet loading and axle weight constraints is introduced in the 
study. An Iterated Local Search (ILS) metaheuristic algorithm is 
used to solve the problem. Like any metaheuristic, a number of 
parameters need to be set before running the experiments. 
Parameter tuning is important because the value of the parameters 
may have a substantial impact on the efficacy of a heuristic 
algorithm. While traditionally, parameter values have been set 
manually using expertise and experimentation, recently several 
automated tuning methods have been proposed. The performance 
of the routing algorithm is mostly improved by using parameter 
tuning, but no single best tuning method for routing algorithms 
exists. The tuning method, Iterated F-race, is chosen because it 
seems to be a very robust method and it has been shown to perform 
well on the ILS metaheuristic and other metaheuristics. The 
research aims at developing an algorithm, which performs well 
over a wide range of network sizes. 
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I. INTRODUCTION 
Vehicle routing is a well-studied problem in operations 

research as it makes up an important part of distribution 
logistics decision making. The increase in computing power as 
the development of efficient algorithms has made that complex 
variants of the Vehicle Routing Problem (VRP) can be solved 
in a reasonable time. Therefore, the research is still active, 
because nowadays real-life cases can be handled. The more 
complex variants with multiple types of constraints are called 
‘rich vehicle VRPs’ in literature. There is no strict definition of 
a Rich VRP: some of them are mentioned in [1], [2] and [3]. 
They may include, for example, the introduction of time 
windows, heterogeneous vehicles, incompatibility of products 
in vehicles, etc. 

Apart from the routing of vehicles, logistics companies also 
need to consider the loading of the vehicles. A feasible loading 
plan is not guaranteed when only total capacity of a vehicle is 
considered. The loading problem considers efficiency in 
unloading at the customers’ site, stability of the vehicles, 
incompatibility of storage in the vehicle with respect to 
potential damage of the goods, and fulfilment of rules and 
regulations regarding mass distribution within the vehicle. 
Authors of the study [4] mention a survey among several 
Belgian logistics service providers pointing out that they are 
faced with complex loading problems when planning their route 
(e.g., multi-dimensional packing constraints, unloading 

sequence constraints, stability constraints and axle weight 
limits). Ignorance of these constraints may compromise 
planning and induce last minute changes resulting in additional 
costs. Axle weight limits, in particular, impose a challenge for 
transportation companies since they are faced with high fines 
when violating the limits. Weigh-In-Motion (WIM) systems on 
highways monitor axle weight violations of trucks while 
driving, which increases the probability that axle weight 
violations are detected [5]. Furthermore, trucks with overloaded 
axles represent a threat for traffic safety and may cause serious 
damage to the road surface. Since the weight on the axles 
changes when items are loaded and unloaded, it is important 
that axle weights are considered during the entire trip of the 
vehicle and not only at the time the vehicle departs from the 
depot. 

In their guide to vehicle routing problem variants, scientists 
[6] dedicate a section on specificities of drivers and vehicles. 
They focus on heterogeneous vehicles, working hour 
regulations, recharging stops and loading constraints. Problems 
including heterogeneous vehicles typically deal with different 
capacities of vehicles, but the scope has shifted towards multi-
modal transportation systems involving bikes, scooters, vans 
and drones. Working hour regulations deal with the 
responsibility of ensuring that driving plans can be safely 
performed. Various countries impose daily and weekly rest 
periods as well as limits on driving and working hours. 
Recharging stops relate to battery-powered electric vehicles 
because of their limited range. Loading constraints relate to 
specific load restrictions, which need to be considered during 
route planning. They relate primarily to geometric constraints 
(pallet loading, 2D packing and 3D packing), but also to 
fragility, orientation or equilibrium. 

In this paper, a variant of the classical Capacitated VRP is 
analysed. The vehicle fleet consists of homogeneous vehicles 
and the demand of the customers is defined in terms of the 
number of pallets. Sequence-based loading is imposed, which 
ensures that, when arriving at a customer, no pallets belonging 
to customers served later on the route, block the removal of the 
pallets of the current customer. Furthermore, the capacity of a 
truck is not only expressed in total weight and the number of 
pallets but also in terms of a maximum weight on the axles of 
the truck.  
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II. LITERATURE REVIEW 
To our knowledge, [7] and [8] are the only authors that 

address axle weight constraints in a container loading problem. 
The researchers [7] developed a heuristic method to tackle the 
single container loading problem with axle weight constraints. 
In turn, the scientists [8] developed integer linear programming 
models to solve multi-container loading problems with axle 
weight constraints, in which items are first packed on pallets 
and, afterwards, pallets are placed onto the trucks. The 
integration of axle weight constraints in a Capacitated VRP 
(CVRP) has been introduced in [9]. A Mixed Integer Linear 
Programming (MILP) model is proposed to solve the CVRP 
with sequence-based pallet loading and axle weight constraints 
to optimality for networks of up to 20 nodes. Authors [10] 
propose an Iterated Local Search (ILS) metaheuristic to solve 
instances with up to 100 customers for the same problem. 

For state-of-the-art review of the literature concerning the 
combination of Vehicle Routing Problems and loading 
problems, the reader is referred to [11] and [4]. 

Iterated Local Search (ILS) is a metaheuristic framework that 
iteratively applies local search, perturbation, and evaluation of 
the solution against the acceptance criterion [12]. The local 
search embeds a heuristic procedure; the perturbation and the 
acceptance criterion allow exploring the search space as well as 
escaping from local optima. The ILS metaheuristic has been 
applied to many optimisation problems, such as vehicle routing 
problems [13], [10], [14], scheduling problems, facility location 
problems, and inventory routing problems, among others. 

Situation Description and Assumptions 

The assumptions of the problem under study are listed here. 
The demand of the customers is expressed as a number of euro 
pallets (80 x120 cm). Pallets are packed dense in a truck in two 
horizontal rows (a left one and a right one). This means that no 
gap is allowed between two consecutive pallets in the container 
and that all pallets are alternately packed in the left and right 
row. Dense packing also entails that there is an open space 
allowed between the front of the container and the first pallets 
that are packed. Dense packing is often imposed to increase the 
stability of the load since it restricts the moving area of the 
pallets considerably. The driver therefore needs to spend less 
time on securing the cargo. It is assumed that all pallets of a 
single customer have the same weight and that the weight is 
uniformly distributed inside each pallet, i.e., the centre of 
gravity of a pallet is situated in its geometric midpoint. A 
container can only be unloaded at the rear side. To avoid 
moving pallets of other customers, when arriving at a customer, 
sequence-based loading is imposed. Vertical stacking is not 
allowed. The vehicle types in the fleet are different in terms of 
tare weight and measurements. Consequently, the capacity in 
terms of number of pallets and payload is different as well as 
the weight capacity of the axles. 

Axle weight is defined as the weight that is placed on the axles 
of the truck. In Europe, heavy goods vehicles, buses and 
coaches must comply with certain rules on weights and 
dimensions for road safety reasons and to avoid damaging 

roads, bridges and tunnels. A directive of the European Union 
(EU) has set maximum dimensions and weights for 
international traffic, also ensuring that Member States cannot 
restrict the circulation of vehicles which comply with these 
limits for performing international transport operations within 
their territories. The values of the upper bounds on the weight 
on the axles of the tractor and on the axles of the trailer depend 
on the vehicle characteristics and are specified in legislation. 
The lower bound of the weight on the axles of the tractor may 
also be fixed in legislation. 

The Iterated Local Search Algorithm 

The proposed solution method is based on an Iterated Local 
Search (ILS) framework, which is proven to be a highly 
effective heuristic for routing problems [12]. The ILS consists 
of four procedures (Generate Initial Solution, Local Search, 
Perturbation, Acceptance). The general structure is presented in 
Algorithm 1. The algorithm is described in detail in [10], but 
some parts are reproduced here because the parameters, which 
will be tuned in this research, need to be recognised. 
 
Algorithm 1. Steps of the ILS 
 
Initialization 
1: s0 ← Generate initial solution 
2: s; sb ← Local search on s0 

3: repeat 
s ← Perturbation on s 
s ← Local search on s 
s; sb ← Acceptance criterion 

4: until non improving it > α 
 

First, an initial solution (s0) is constructed. Second, this 
solution is improved using local search until a local optimum is 
reached. The local search is performed by a Variable 
Neighbourhood Descent (VND) method. Third, the following 
steps are performed iteratively. In order to escape from the local 
optimum, a new starting point for the local search is generated 
by perturbing the current solution (s). This solution is improved 
using local search. Then, the acceptance criterion determines 
with which solution the process continues. The ILS stops after 
a number of α consecutive non-improving iterations. A non-
improving iteration (non_improving_it) is an iteration in which 
no new best solution was found. Note that since the local search 
is performed by a VND, the algorithm may also be called an 
Iterated Variable Neighbourhood Descent, as used in [15]. 

Initial Solution 

The generation of initial solutions requires no parameters, so 
it is of less relevance to repeat the procedure in this document. 
The interested reader can find all details in the ‘Initial Solution’ 
section of [10]. 

Local Search 

The local search is performed by a VND method, in which 
four neighbourhoods are used. The exchange operator [16] 
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swaps two nodes, which can be either from the same route or 
from different routes. The 2-opt operator [17] removes two arcs 
of a single route and generates two new arcs in such a way that 
the section between the removed arcs is reversed. The cross-
exchange operator [18] interchanges two segments of different 
routes while preserving the orientation of the segments and the 
routes. Finally, the relocate operator [16] removes a node from 
its route and reinserts it in another place in its original route or 
in another route. An overview of the local search procedure is 
presented in Algorithm 2. Further details can be found in the 
‘Local Search’ section of [10]. 
 
Algorithm 2. Local search 
 
Neighbourhoods = {exchange, 2-opt, cross-exchange, 
relocate} 
s = initial solution 
s′ := s 
stop := 0 
repeat 

for i := 1 to 4 do 
next neighbourhood = 0 
repeat 

s′′ ← Local search with 
Neighbourhoods[i] on s′ 

if s′ = s′′ then 
next neighbourhood := 1 

else 
s′ := s′′ 
end if 

  until next neighbourhood = 1 
end for 
if s = s′ then 

stop := 1 
else 

s := s′ 
end if 

until stop = 1  

Perturbation 

In the perturbation phase, the relocate operator is considered 
once for each customer, using a randomized objective function. 
The effect of relocating a customer to another position is 
randomized by adding a noise factor to the insertion cost. The 
insertion cost is calculated as the sum of the costs of the arcs 
that are created when inserting a customer in a new position 
minus the costs of the arcs that are removed. Similar to [19], the 
noise value is calculated as a random number in the interval [-
η∗ maxD; η ∗ maxD] where η ∈ ]0, +∞[ is a parameter to control 
the amount of noise and maxD is the maximum distance 
between two nodes in the network. The general framework of 
the perturbation procedure is presented in Algorithm 3. Other 
details can be found in the ‘Perturbation’ section of [10]. Here 
the focus lies on the parameter η. 

Initially, the value for η is determined by the value of 
parameter η0. If the perturbation does not change the solution s, 
η is increased with the value of parameter ηincr and the 
perturbation is repeated. After δ consecutive non-improving 

iterations (non_improving_it) of the ILS, a heavy perturbation 
is applied. This means that η increases with the parameter value 
of ηheavy to increase the level of diversification. When 
improvement is found after the local search procedure, the 
number of consecutive non-improving iterations becomes 0 (as 
may be seen in Algorithm 4, in the subsection “Acceptance 
Criterion”) and the value for η is set to the value of η0. 
 
Algorithm 3. Perturbation 
 
if non_improving_it > δ then 

η := η0 + ηheavy 
else 

η := η0 
end if 
repeat 

s′ ← Relocate for each customer on s with noise η 
η := η + ηincr  

until s ≠ s′ 
s = s′ 

Acceptance Criterion 

The acceptance criterion that is used in this ILS algorithm is 
based on record-to-record travel introduced by Dueck (1993). 
The solution s obtained after local search is always accepted to 
become the new incumbent solution s of the next ILS iteration 
if the cost is lower than the cost of the current best solution sb. 
When the cost of s is higher than the cost of sb and no heavy 
perturbation is applied in the next iteration of the ILS (i.e., 
non_improving_it < δ), the solution is still accepted if the 
worsening is smaller than a certain threshold value. This 
threshold value corresponds to a fraction β of the cost of sb. In 
case a heavy perturbation is applied in the next ILS iteration, 
worsening is never accepted in order not to deviate too far from 
the current best solution. In case s is not accepted to become the 
new incumbent solution, the search continues from sb. The 
acceptance criterion procedure is described in Algorithm 4. 
 
Algorithm 4. Acceptance Criterion 
 
if cost[s] < cost[sb] then 

sb := s 
non_improving_it := 0 

else 
non_improving_it := non_improving_it + 1 
if (cost[s] > cost[sb] · (1 + β)) or (non improving it > δ) 

then 
s := sb 

end if 
end if 
 
Six parameters have been chosen to be tuned. They are {α, δ, 
η0, ηincr, ηheavy, β}. Parameter α appears in Algorithm 1. 
Parameters δ, η0, ηincr, ηheavy appear in Algorithm 3. Parameter β 
appears in Algorithm 4. 
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III. PARAMETER TUNING 
This section presents the parameter tuning of the algorithm 

described in the previous section. Parameter tuning is important 
because the value of the parameters may have a substantial 
impact on the efficacy of a heuristic algorithm [20]. Authors 
[21] compare the performance of five metaheuristics (tabu 
search, simulated annealing, genetic algorithm, iterated local 
search and ant colony optimization) with and without 
automated parameter tuning on a VRP with stochastic demands. 
The parameters from the non-tuned algorithms were randomly 
drawn within a given range, while the parameters from the 
tuned versions were obtained through an automatic 
configuration process based on the F-Race algorithm [22]. For 
every metaheuristic, the tuned version achieves significantly 
better results than the corresponding non-tuned version. While 
traditionally parameter values have been set manually using 
expertise and experimentation, recently several automated 
tuning methods have been proposed. Authors [23] compare the 
performance of seven state-of-the-art algorithm configuration 
methods on different routing metaheuristics. Their findings 
confirm the results of [21] that the performance of the routing 
algorithm can be clearly improved by using parameter tuning. 
The results also reveal that there is no single best tuning method 
for routing algorithms, but that the Iterated F-Race algorithm 
seems to be the most robust one. Iterated F-race also performed 
very well on the ILS metaheuristic. Therefore, Iterated F-race 
will be used for the parameter tuning of the ILS in the present 
research. 

For the tuning of the parameters, 20 test instances with sizes 
ranging from 20 to 75 customers are used. The value for 
parameter α is determined based on the results of a single run 
of the test instances, in which no substantial improvement was 
found after more than 220 consecutive non-improving 
iterations. The values of the other parameters were determined 
for this run based on preliminary tests. Since this value was the 
result of a single run, α is set to 250, to incorporate a margin of 
10%. The parameter space for the remaining five parameters of 
the ILS algorithm is denoted by X = { δ, η0, ηincr, ηheavy, β}. Each 
parameter Xd ∈ X may take different values within a specified 
range �𝑥𝑥𝑑𝑑 , 𝑥𝑥𝑑𝑑  �. A configuration of the algorithm θ = {x1; x2; x3; 
x4; x5} is a unique assignment of values to these parameters [24]. 
The tuning problem is stated by [25] as the problem of finding 
the configuration θ that provides the lowest expected cost on a 
set of problem instances. In order to find this configuration, the 
irace package provided by [24] is used. The irace package is 
designed for automatic algorithm configuration and implements 
the iterated racing procedure, which is an extension of the 
Iterated F-race procedure [24]. Irace is also successfully used 
by other authors for the tuning of heuristic algorithms in similar 
applications to ours such as by [26] and [27]. The iterated racing 
procedure is presented in Algorithm 5. 

The input of the iterated racing procedure consists of an 
instance set I, parameter space X, a cost function C and a tuning 
budget B. The cost function returns the cost of configuration θ 
on instance i. The tuning budget refers to the number of calls to 
the ILS that irace will perform. Based on the number of 
parameters that are tuned (Nparam), the estimation of the number 

of iterations Niter is made with Niter = ⌊2 + log2 Nparam⌋. Since 
five parameters are tuned in our algorithm, the value for Niter = 
4. Note that Niter is the estimation of the number of iterations. In 
case, after Niter iterations, there is still enough budget to perform 
a new race, the algorithm continues. The tuning budget Bj for 
iteration j depends on the tuning budget B, the tuning budget 
already used in previous iterations Bused, Niter and the iteration 
number: 

           
1
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j iter

B B
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N j

−
=

− +
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Algorithm 5. Iterated Racing [24] 
 
Require: I = {I1; I2; …}, 
1: parameter space: X, 
2: cost measure: C(θ, i) ∈ R, 
3: tuning budget: B 
4: Θ1 ∼ SampleUniform(X) 
5: Θelite := Race(Θ1,B1) 
6: j := 2 
7: while Bused ≤ B do 
8:  Θnew ∼ Sample(X, Θelite) 
9:  Θj := Θnes ∪ Θelite 
10:  Θelite := Race(Θj , Bj) 
11:  j := j + 1 
12: end while 
 

In the first step of the first iteration (j = 1) of the iterated 
racing procedure, candidate configurations Θ1 are sampled 
according to a uniform distribution in the parameter space X 
(line 4 in Algorithm 5). In the second step, a racing procedure 
is used to select elite candidate configurations Θelite from the 
configurations sampled in the previous step (line 5). The racing 
procedure consists of several steps. In each step of the race, the 
candidate configurations are evaluated on a set of instances by 
means of a cost measure C. The order in which the instances are 
considered is randomized. For the evaluation of the candidate 
configurations, the rank-based Friedman test is used. If a 
candidate configuration performs statistically worse than at 
least one other configuration, this configuration is discarded in 
the next step. The racing procedure is terminated when a 
minimum number of surviving configurations is reached (Nj

surv 
≤ Nmin) or when the number of surviving configurations Nj

surv 
exceeds the remaining tuning budget Bj for race j. 

At the end of the race, the surviving configurations are 
ranked according to the mean cost and assigned to a rank value 
rz. The set of the elite configurations Θelite is composed of the 
Nj

elite = min (Nj
surv, Nmin) configurations with the lowest rank. 

For the generation of a new candidate configuration for the next 
race, a parent configuration θz is sampled from the set of elite 
configurations Θelite with a probability pz proportional to its rank 
rz. A higher ranked elite configuration has a higher probability 
of being selected as a parent: 
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A new value is sampled for each parameter Xd within the 
given range according to a normal distribution N(xd

z,  σd
z) (line 

8). For the integer parameter δ, the sampled value is rounded to 
the nearest integer. The mean of the distribution xd

z is the value 
of parameter Xd in elite configuration θz. The standard deviation 
σd

j decreases at each iteration j and depends on the value of the 
standard deviation in the previous iteration (σd

j-1), the number 
of newly sampled configurations (Nj

new) and the number of 
parameters to be tuned (Nparam). The parameter σd

1 is set to 
(𝑥𝑥𝑑𝑑 − 𝑥𝑥𝑑𝑑)/2.  
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The new set of candidate configurations consists of Nj-1
elite 

elite configurations from the previous iteration Θelite and the 
Nj

new newly sampled configurations (line 9). These 
configurations are used in a new racing procedure to select elite 
candidate configurations Θelite (line 10).  This process (lines 8 
to 11) is repeated until the number of experiments Bused exceeds 
the maximum number of experiments specified in the tuning 
budget B. The number of candidate configurations Nj in 
iteration j depends on the tuning budget Bj, the iteration number 
j and parameter µ: 

  
( )min 5,

j

j

B
N

jµ
=

+
.                         (4) 

Parameter µ has a default value of 5 in irace. This value may 
be changed in order to influence the ratio between budget and 
number of configurations. At each iteration, the number of 
candidate configurations Θj decreases to allow for more 
evaluations per candidate configuration in later iterations. After 
five iterations, the number of candidate configurations remains 
constant at value Θ5 in order to avoid having too few 
configurations in a single race. For more information regarding 
the tuning process, the reader is referred to [24]. 

Irace is run with default parameter values on the ILS 
heuristic. A tuning budget B of 5000 runs is specified. The 
parameters tuned by irace may be found in Table I, along with 
the type, range and tuned value. δ is integer (i), while η0, ηheavy, 
ηincr, β are real parameters (r). The ranges for the parameters are 
intuitively determined. The upper bound of δ is equal to 250, 
which is the value for α. For the other parameters, the upper 
bound was increased when the tuned value was close to an 
upper bound. The lower bound of β is set to zero to test the case 
in which a deterioration of the solution value is not accepted as 
a new incumbent solution. The lower bound of ηheavy is also set 
to zero to test the case without heavy perturbation. The lower 
bound of η0 is greater than 0 since there must be a non-zero 
value for noise in the perturbation phase to escape from the 
local optimum. For the real parameters (η0, ηheavy, ηincr, β), two 
decimal places are considered. 

TABLE I 
PARAMETER LIST 

Name Description Type Range Tuned 
value 

δ # non-improving_it heavy 
perturbation 

i (1, 250) 196 

η0
 Initial value η r (0.01, 0.80) 0.33 

ηheavy
 Increase η heavy perturbation r (0.0, 1.0) 0.14 

ηincr Increase η when solution is 
not changed during 
perturbation 

r (0.0, 0.50) 0.22 

β Threshold value r (0.0, 0.50) 0.10 
 
The introduction of heavy perturbation as the acceptance of 

a worse solution based on record-to-record travel appears to 
have a positive influence on solution quality since ηheavy and β 
have non-zero tuned values. In the next section, this influence 
is further analysed by means of a sensitivity analysis. 

IV. SENSITIVITY ANALYSIS 
In this section, the performance of the algorithm in terms of 

solution quality is tested with respect to different parameter 
values. The aim of this analysis is to verify whether the 
parameter tuning produced logical results as well as to test the 
importance of the parameter values for the efficacy of the ILS 
algorithm. For each parameter, different values are tested on 
various instance sets while keeping other parameters at their 
tuned value. We illustrate the working of the sensitivity analysis 
with 12 instances of size 50. 

The instances in the instance sets only differ in network size. 
Other characteristics, such as pallet weight and number of 
pallets per customer, are assigned in a similar way to all 
instance sets.  The performance of each parameter setting is 
measured with five independent runs. The best and average 
increase in solution cost compared to the lowest cost found over 
all experiments for that instance are plotted. Note that for each 
instance set a different scale is used on the vertical axis of the 
graph because of the large difference in cost increase between 
the different instance sets. For all graphs of the same instance 
set, however, the same scale on the vertical axis is maintained 
for the sensitivity analyses of the average and best cost of all 
parameters. 

A. Sensitivity Analysis of η0 

The impact of η0, the initial value for noise, on the solution 
quality of the instance set is plotted in Fig. 1. The following 
values are considered for η0: 0.01, 0.10, 0.20, 0.30, 0.40, 0.50, 
0.60, 0.80 and 1.0. The tuned configuration, in which η0 has a 
value of 0.33, is also included. We see that when η0 exceeds 
0.40, the solution quality deteriorates.  

The variation in solution quality for the instance set with 
respect to changes in the initial value of noise is explored by 
means of a boxplot presented in Fig. 2. In each boxplot the first, 
second (median) and third quartile as well as the minimum and 
maximum cost increase over all instances are indicated in the 
instance set. Note that a different scale is used on the vertical 
axis since the maximum cost increase highly exceeds the 
average cost increase over all instances in the instance set 
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reported in the previous graphs. The figure shows that the 
variation in solution quality for the instances of the set 
decreases when η0 reaches 0.40. 

 
Fig. 1. Sensitivity of η0 on the instance set. 

 

 
Fig. 2. Boxplot of the objective value increase in function of η0. 

B. Sensitivity Analysis of β 

For the sensitivity analysis of β, the factor that determines the 
threshold value in the acceptance criterion, values between 0.0 
and 0.5 are considered in steps of 0.10. To have an idea of the 
effect of a very high value of β, the value 1.0 is also considered. 
In this setting, a solution with a cost twice as high as the cost of 
the best-known solution will still be accepted as the incumbent 
solution in the next iteration of the ILS. For the instance set, 
depicted in Fig. 3, the solution quality improves when 
worsening is accepted (β > 0.0). Based on the figure, it appears 
that the tuned value 0.10 leads to the best solution quality 
although the difference with higher values of β is very small. 
The solution quality clearly benefits from accepting worse 
solutions and, in addition, the tuned value (β = 0.1) renders the 
best solution quality although the difference with higher values 
of β is small.  

 
Fig. 3. Sensitivity of β on the instance set. 

 

 
Fig. 4. Boxplot of the objective value increase in function of β. 

 
Figure 4 presents the variation in solution quality for the 

instances of the set with respect to changes in the threshold 
value. The boxplot of the cost increase of the tuned value of β 
clearly lies lower than the boxplot of the configuration with a 
threshold value of β = 0.0, except for the minimum values 
which are equal for both configurations. When β increases to a 
value higher than 0.1, no clear trend can be distinguished in the 
graph. 

C. Sensitivity Analysis of δ and ηheavy 

The impact of δ, the number of non-improving iterations of 
the ILS after which heavy perturbation is applied, on solution 
quality is measured simultaneously with the impact of ηheavy, the 
increase in η during heavy perturbation. To this end, ten 
combinations are created by varying the values for δ and ηheavy. 
The first combination represents the situation, in which no 
heavy perturbation is applied. In Table II, the remaining nine 
combinations are presented. δ may have a low (50), medium 
(125) or high (200) value. Similarly, ηheavy is assigned to a low 
(0.10), medium (0.30) and high (0.60) level. The tuned values 
of δ and ηheavy are 196 and 0.14, which correspond most to 
combination 4 with a high value of δ combined with a low value 
of ηheavy. 
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TABLE II 
COMBINATIONS FOR THE HEAVY NOISE ANALYSIS 

 δ = 50 δ = 125 δ = 200 
ηheavy = 0.1 Combination 2 Combination 3 Combination 4 
ηheavy = 0.3  Combination 5 Combination 6 Combination 7 
ηheavy = 0.6 Combination 8 Combination 9 Combination 10 
 
Figure 5 plots the average solution quality of the instances of 

the instance set with respect to the different combinations. A 
trend may be distinguished in which the combinations with a 
low value of ηheavy have a higher solution quality than the other 
combinations. Furthermore, when a moderate or high value of 
ηheavy is considered, the value of δ also seems to influence the 
solution cost. A low value of δ appears to have a negative effect 
on the solution quality. Note that, surprisingly, combination 1, 
in which no heavy perturbation is applied, has the best solution 
quality although the difference in the combinations with a low 
value of heavy noise is negligible. The introduction of heavy 
noise therefore does not appear to have a positive impact on the 
solution quality for the instances. 

 

 
Fig. 5. Sensitivity of δ and ηheavy on the instance set. 

D. Sensitivity Analysis of ηincr 

As discussed earlier, in case the solution is not changed 
during the perturbation phase, the value of noise is incremented 
with ηincr and the perturbation is repeated. However, in all runs 
of the instances under study, the solution changes during every 
perturbation. Therefore, the value of ηincr does not have an 
impact on the solution quality of the instances. 

E. Sensitivity Analysis of α 

The impact of the number of consecutive non-improving 
iterations after which the ILS is stopped (α) on the solution 
quality and CPU time is illustrated in Fig. 6 for the instance set. 
Values between 50 and 500 with a step of 50 are considered for 
α. As one can expect, if α increases, CPU time and solution 
quality also increase. The largest gains in solution quality are 
obtained when α is small. For the instance set, the solution 
quality does not increase much beyond α = 300. 
 

 
Fig. 6. Sensitivity of α on the instance set. 

F. Contribution of the Local Operators 

In this section, the contribution to solution quality of the local 
search algorithm and the different local search operators is 
analysed. Five variants of the ILS are analysed on the instance 
sets (not only the set with 50 customers as used in the previous 
sections, but also of sizes 10, 20 and 75). In the first variant, 
only an initial solution is generated. No local search is 
performed. In the other variants, each time a single local search 
operator is removed from the search. Five independent runs of 
the variants of the ILS are performed on each instance. Table III 
gives an overview of the results. When the local search is 
removed, the average gap with the original algorithm is very 
large, ranging from 69.51 % to 98.24 % as can be expected. 
Individually, the local search operators also have a contribution 
to solution quality although much smaller. The influence of the 
local search operators is larger on realistic size instances with 
50 and 75 customers. The relocate operator seems to have the 
largest influence on the results for the realistic-size instances. 
Note that interaction effects between local search operators are 
ignored in this analysis. 

TABLE III 
CONTRIBUTION OF THE LOCAL SEARCH OPERATORS 

 Average gap with original algorithm 
 Instance set 

1 
(tuning 

20–75 cust) 

Instance set 
2 

(20 cust) 

Instance set 
3 

(50 cust) 

Instance 
set 4 

(75 cust) 

No local 
search 

69.51 % 69.60 % 96.50 % 98.24 % 

No exchange 0.03 % 0.00 % 0.25 % 0.53 % 
No 2-opt 0.01 % 0.00 % 0.20 % 0.52 % 
No cross-
exchange 

−0.05 % -0.01 % 0.10 % 0.46 % 

No relocate −0.01 % 0.02 % 0.27 % 0.68 % 

G. Conclusion on the Sensitivity Analysis 

From the sensitivity analysis of different size instance sets, it 
appears that there is an interaction between the size of the 
network and the effect of the parameters on the solution quality 
of the metaheuristic. As a result, the acceptance of worse 
solutions based on record-to-record travel, the heavy noise 
perturbation and the noise increment do not have an added value 
for instances of all sizes. The analysis indicates, however, that 
in these cases the solution quality is also not negatively 
influenced. The algorithm needs to perform well on instances 
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of all sizes and these mechanisms all have proven to contribute 
to the solution quality for at least a subset of instances. 

The initial value of noise η0 has the largest impact on the 
solution quality. For all instance sets, the solution quality 
greatly improves when η0 increases to a value of 0.30. For the 
tuning instances and the instances of size 20, the solution 
quality does not change when η0 further increases. For the 
instances of size 50 and 75, however, the solution quality 
reaches a maximum when η0 reaches 0.30 and 0.40, 
respectively. The solution quality decreases when η0 further 
increases.  

The value of β has a considerable impact on instances with 
20 or 50 customers. For these instances, the solution quality 
greatly improves when β has a non-zero value. The tuned value 
β = 0.10 renders the best solution quality, although the 
difference in higher values of β is very small. For the instances 
of size 75, the tuned value also renders the best solution quality, 
where higher values of β produce worse solutions than the 
configuration where β = 0.0.  

The impact of δ and ηheavy on the solution quality is 
investigated simultaneously. The impact of these parameters on 
small-size instances of set 2 is rather small, while for the 
instances of sets 1, 3 and 4, the configurations with a low value 
of ηheavy produced a higher solution quality than the 
configurations with a moderate and high value of ηheavy. 
Furthermore, in these instance sets a low value of δ appears to 
have a negative effect on the solution quality, especially when 
combined with a moderate or a high value for ηheavy. The value 
of ηincr is only relevant in very small-size instances. The reason 
for this is that an increment is performed only when the 
perturbation does not change the solution, which does not occur 
in the instances with 50 or 75 customers and occurs only rarely 
in the instances of size 20. 

As a result, the sensitivity analysis shows that the tuned 
setting for the parameters tuned by irace {δ, η0, ηincr, ηheavy, β} 
renders a good solution quality for all instance sizes.  

With regards to the value of α, it may be concluded that on 
instance sets 1 and 2 the increase in α beyond the tuned value 
of 250 does not yield a quality increase. For the instances of sets 
3 and 4, the solution quality does not increase much beyond 
α = 300 and α = 350, respectively. Based on these results, α is 
set to 300.  

The relevance of the algorithmic components of the ILS has 
been demonstrated in the foregoing analyses. The contribution 
of the acceptance of worse solutions based on record-to-record 
travel, the heavy noise perturbation and the noise increment is 
analysed in the sensitivity analysis of the parameters. Record-
to-record travel has a positive influence on the solution quality 
since for all instance sets, a threshold value (β) of 0.10 leads to 
a higher solution quality than a threshold value equal to zero. A 
high value of noise after a number of consecutive non-
improving iterations also has a positive effect on the solution 
quality, although this effect appears to depend on the instance 
size. A noise increment after perturbation that did not change 
the solution is only relevant in very small-size instances. The 
contribution of this component can only be demonstrated in 
instances of size 10. For larger instances, this component has no 

influence on the solution quality. For the contribution of the 
local search operators, it appears that the relocate operator has 
the largest impact on the solution quality for realistic size 
instances. The impact on solution quality of the local search 
operators individually does not seem to be very large. 
Interaction effects among local search operators have, however, 
not been considered. Furthermore, there is an interaction effect 
between the size of the network and the contribution of the local 
search operators. 

Note that although the analysis shows that all algorithmic 
components contribute to the solution quality for at least of a 
subset of instances, it may be interesting to look at the 
possibility of using a simplified heuristic method consisting of 
fewer local search operators while maintaining or even 
increasing the efficiency of the solution method. 

V. CONCLUSION 
A metaheuristic algorithm for the capacitated vehicle routing 

problem with sequence-based pallet loading and axle weight 
restrictions has been proposed in the paper. The design and 
analysis of an Iterated Local Search algorithm has also been 
presented. The parameters of the metaheuristic have been tuned 
with automatic algorithm configuration software, which 
implements an iterated racing procedure that is an extension of 
the Iterated F-race procedure. Furthermore, a sensitivity 
analysis has been performed to analyse the impact of the values 
of the parameters of the ILS and to test the contribution of the 
algorithmic components of the ILS on the solution quality. 
Although the results show that the tuned configuration renders 
a good solution quality for all instance sizes, the sensitivity 
analysis also indicates that the impact of the parameter values 
depends on the size of the network. Furthermore, the 
contribution of the algorithmic components seems to interact 
with the instance size. The aim of the parameter tuning has been 
to develop an algorithm, which performs well on instances of 
all sizes. However, future research may focus on making a 
distinction, during the tuning process, between networks of 
different sizes. The differences from the current algorithm to 
algorithms designed for a specific network size may also be 
analysed.  
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