
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Fine-Grained Channel Pruning for Deep Residual Neural Networks

Peer-reviewed author version

CHEN, Siang; Huang, Kai; Xiong, Dongliang; LI, Bowen & CLAESEN, Luc (2020)

Fine-Grained Channel Pruning for Deep Residual Neural Networks. In: Farkaš, Igor;

Masulli, Paolo; Wermter, Stefan (Ed.). Artificial Neural Networks and Machine

Learning – ICANN 2020 , Springer international publishing AG, p. 3 -14.

DOI: 10.1007/978-3-030-61616-8_1

Handle: http://hdl.handle.net/1942/33444

Fine-grained Channel Pruning for Deep Residual
Neural Networks⋆

Siang Chen1, Kai Huang1(�) , Dongliang Xiong1, Bowen Li1, and Luc Claesen2

1 Institute of VLSI Design, Zhejiang University, Hangzhou, China
{huangk,11631032,xiongdl,11631033}@zju.edu.cn

2 Engineering Technology - Electronics-ICT Dept, Hasselt University, 3590
Diepenbeek, Belgium

luc.claesen@uhasselt.be

Abstract. Pruning residual neural networks is a challenging task due
to the constraints induced by cross layer connections. Many existing
approaches assign channels connected by skip-connections to the same
group and prune them simultaneously, limiting the pruning ratio on those
troublesome filters. Instead, we propose a Fine-grained Channel Pruning
(FCP) method that allows any channels to be pruned independently. To
avoid the misalignment problem between convolution and skip connec-
tion, we always keep the residual addition operations alive. Thus we can
obtain a novel efficient residual architecture by removing any unimpor-
tant channels without the alignment constraint. Besides classification,
We further apply FCP on residual models for image super-resolution,
which is a low-level vision task. Extensive experimental results show that
FCP can achieve better performance than other state-of-the-art meth-
ods in terms of parameter and computation cost. Notably, on CIFAR-
10, FCP reduces more than 78% FLOPs on ResNet-56 with no accuracy
drop. Moreover, it achieves more than 48% FLOPs reduction on MSR-
ResNet with negligible performance degradation.

Keywords: Channel pruning · Residual neural network · Efficient
network structure.

1 Introduction

Despite the superior performance of deep convolutional neural networks in
machine learning, the massive computation and storage consumption prevents
its deployment in resource constraint devices. Pruning is a promising way for
convolutional neural network (CNN) model size compression by identifying and
removing unnecessary neurons without significant performance degradation. Re-
cent studies on neural network pruning can be divided into either non-structured
[5] or structured pruning [21], the former prunes weight independently, thus
always results in structures that are unfriendly for hardware acceleration, while
⋆ Supported by the National Key R&D Program of China (2018YFB0904900,

2018YFB0904902).

2 Siang Chen et al.

(a) (b) (c)

Fig. 1. An illustration of (a): baseline structure. (b): structure pruned by group
strategy. (c): structure pruned by our fine-grained strategy. The red letter denotes
the channel number.

the latter aims at removing parameters in units of filters which can take
advantage of fast dense matrix multiplication [4]. Among the structured pruning
methods, channel pruning (a.k.a filter pruning) [9] directly eliminates entire
channels in each layer with no special hardware design required.

As the neural network becomes deeper and wider, it is a challenge to
effectively train a very deep model. One good solution is residual learning [6],
which leverages the shortcut connection between layers to reformulate the layers
as learning residual information. The conception of residual learning has been
widely used to design efficient neural network architectures. ResNet is one of
the most popular residual architectures, which performs residual mapping by
a shortcut and element-wise addition. Directly applying pruning methods to
residual neural networks, however, brings some problems. Specifically, pruning
filters of the last convolution in each basic block independently will lead to
the misalignment between the skip connection and the corresponding output
feature maps. Therefore, various works have been made to tackle these problems.
[17] avoid pruning these troublesome layers. [16] prune pre-activation models by
inserting an additional channel selection layer before the first convolution in each
residual block. [13] apply the mixed block connection to avoid such problem.
Recently, [3, 4, 22] all propose the Group Pruning for those layers connected
by skip connections. Unfortunately, pruning in a group technique will lead to
models shown in Figure. 1(b) such that all corresponding connections of one
eliminated filter should be removed simultaneously, limiting the performance at
especially high pruning ratios.

In this paper, we propose a novel Fine-grained Channel Pruning (FCP)
approach as shown in Figure. 1(c), which solves the constraint that the
pruning problem encounters when pruning residual neural networks. Instead
of focusing on measuring the importance of filters, we insert gate function
into all channels between layers, and transfer the problem of optimizing filter
numbers into minimizing data transmissions. By paying attention on estimating
the importance of each channel independently, we allow both input and output

Fine-grained Channel Pruning for Deep Residual Neural Networks 3

channels of convolutions to be pruned. The FCP method provides a larger search
space for unimportant filter selections, thus can achieve a more fine-grained
channel allocation between layers. Our contributions are summarized as follows:

(1) We analyze the pruning of residual neural network in detail and observe
that the state-of-the-art group strategy is a coarse pruning that is still limited
by the alinement constraint.

(2) We propose FCP to allow any channels between residual blocks to be
pruned independently while keeping constant numbers of skip connections. By
performing such pruning strategy, we can obtain a novel efficient residual network
structure, of which connections can fully skip the residual building block.

(3) We demonstrate the effectiveness of FCP on both classification and image
representation (super-resolution) tasks. The extensive experiments show that
FCP can prune more parameters and FLOPs with less performance drop than
state-of-the-art methods.

2 Related Work

Model pruning has shown great success in neural network compression by
removing unimportant neurons with negligible performance degradation. Despite
the deep compression of parameters, pruning individual weights [5] always leads
to unstructured models, which makes it difficult to implement realistic speedup
unless special software and hardware are designed. Therefore, many researches
focus on filter pruning. [14] prune filters in each layer with small l1-norm
magnitude. [16] impose sparsity-induced regularization on the scaling factor in
batch normalization layers, and identify insignificant channels with small scaling
factors. [8] prune the most replaceable filters containing redundant information
by analyzing geometric median distance. Our work also falls into the category
of channel pruning.

The problem of vanishing gradient prevents neural networks from becoming
deeper to demonstrate higher performance. To address this problem, [6] apply
element-wise addition on the feature maps between two residual blocks, which is
known as ResNet. [10] connect each layer to every other layer in a feed-forward
fashion, which fully exploits the advantages of skip connections and reduces the
number of parameters as well. While the existence of skip connections makes
it effective to train a very deep network, methods for pruning plain networks
like VGG [19] and AlexNet [12] can not be applied to residual models directly:
pruning the filters of each layer independently will result in misalignment of
feature maps between residual blocks. [17] avoid this problem by only pruning
the internal layers in residual blocks. [16] place a channel selection layer before
the first convolution in each residual block to mask out insignificant channels,
and leave the last convolution layer unpruned, which only works for pre-
activation networks. [13] use a mixed block connectivity to avoid redundant
computation. Recently, [3, 4, 22] propose to assign the layers connected by pure
skip connections into the same group, thus the filters in the same group can be

4 Siang Chen et al.

(a) (b)

Fig. 2. Structures of ResBlock with node transformation before and after inserting the
gate function (symbol

⊗
). (a): group pruning. (b): our fine-grained pruning

pruned simultaneously. However, the above methods still can not remove each
channel between residual blocks independently.

3 Approach

3.1 Rethinking pruning residual neural networks

To understand the relationship of channels between residual blocks more clearly
in following sections, we first transform the operation on feature maps in the
network into Node. Consider pruning two consecutive blocks in ResNet, as
shown in Figure. 2(a) and 2(b). The structure consists of two basic Nodes:

1)Nodeadd: indicates the element-wise addition for channels of the same
index from the output of the previous convolution and the corresponding skip
connection, the operation can be defined as:

Ol,c
add = Ol,c

conv1 +Ol−1,c
conv (1)

where Ol,c
add denotes the c-th output channel of Nodeadd in l-th layer, Ol,c

conv1

denotes the c-th channel from the previous convolution.
2)Nodeconv: indicates the regular convolution operation. Take the first

convolution in ResBlock as an example:

Ol+1,k
conv0 =

C∑
i=1

Ol,c
add ∗W

l+1,c,k (2)

C is the total number of input channels, Ol+1,k
conv0 denotes the k-th output

channel of convolution, Wl+1,c,k denotes c-th input channel and k-th output
channel weight. For representational simplicity, the kernel operation, bias term,
BN and activation layers are not included in our formulation. Existing methods
only estimate the importance of the output channel of convolutions as shown in
Figure. 2(a), in order to allow all filters to be pruned, they regard the channel
relationship as:

C(Ol−1
conv) = C(Ol

add) = C(Ol
conv1) = C(Ol+1

conv1) (3)

Fine-grained Channel Pruning for Deep Residual Neural Networks 5

C(x) denotes the set of input channels in x. Based on Eq. (1) and Eq. (2), pruning
these channels is under the constraint that the output channel number of the
Nodelconv1, channel number of skip connection and input channel of Nodel+1

conv0

should be maintained the same. Therefore, importance score for these filters in
the group are accumulated together, which makes them harder to be pruned,
and always results in dense connections between residual blocks and very few
connections inner residual blocks especially for high pruning ratios. Instead, we
consider the problem of pruning from the perspective of gating feature maps.
Different from [22] that only add gates after convolutions, we try to insert gate
function on each channel except the output channel of Nodel−1

conv as shown in
Figure. 2(b), thus the operations for Nodeladd become:

Ol,c
add = I l,cadd +Rl,c

add,

I l,cadd = gl,cadd1 ×Ol,c
conv1,

Rl,c
add = gl,cadd2 ×Ol−1,c

conv

(4)

while for Nodel+1
conv0:

Ol+1,k
conv0 =

C∑
c=1

I l+1,c
conv0 ∗W l+1,c,k,

I l+1,c
conv0 = gl+1,c

conv0 ×Ol,c
add

(5)

Here gl,cadd is the gate function for the corresponding channel, of which the value
is 0 for masking. Il,cadd and Rl,c

add is the c-th output channel of Nodelconv1 and the
skip connection after the gate function respectively. According to Eq. (1) and
Eq. (2), the channel relationship is actually:

C(Ol
add) = C(Ol−1

conv) ∪ C(Ol
conv1) (6)

C(I l+1
conv0) = C(Ol

add)× gl+1
conv0 (7)

Combined with Eq. (5), the channel set of weights in each convolution only
depends on input feature map for each Node, which means pruning the input
of each Node equals to pruning filters. Note that here we only analyze the
channels between residual block. For channels inner the residual block or in the
plain neural network, we treat them as a special case without skip connections.
Therefore the problem of pruning filters in residual neural network can be
transformed into the optimization of feature map channels.

3.2 Channel Importance

The biggest difference between our approach and group pruning is that we prune
each channel independently, therefore the problem arises on how to measure
the importance of both input and output channel in normalization. Magnitude-
based [14, 8] or utilizing BN scaling factor [16] is not applicable for such pruning

6 Siang Chen et al.

strategy, we leverage Taylor expansion [18] in this work, and extend this method
to a more general one. Instead of only considering the output of each convolution,
we multiply each channel between convolutions by a trainable scaling factor α,
then we estimate the change in loss function caused by setting α to zero, thus
we get the importance score of the corresponding channel:

IS(α) = |∂L
∂α

α| (8)

which can be easily computed during back-propagation. Therefore, the gate
function can be defined as:

g(α) =

{
0, IS(α) < T

α, otherwise
(9)

where T is a global threshold that depends on pruning ratio and is computed
by sorting the importance score.

Note that we can also prune the Radd in the same way as in the other
channels. We however do not prune Radd, there are three reasons: First and
most important, keep constant numbers of residual connections can avoid the
problem of misalignment for output channels of last convolution in each block.
Second, in the case that Iadd is pruned, Radd can still provide information for
following layers, which retains the full capacity of network to some extent. Third,
pruning Radd can not eliminate filters directly.

According to Eq. (8), the importance score is zero when gradient or α is zero,
while the gradient depends on training process, we can induce more sparsity by
adding a sparse constraint on α.

LFT = LD + λ
∑
α∈Φ

|α| (10)

where LD is the loss function on data, λ is the penalty.
To guarantee the importance score is accurate enough, we compute Eq. (8) of

each channel by accumulating individual contribution in one epoch, and prune
p percentage of the total channels each time besides zero scaling factors, then
we fine-tune the network for T epochs based on the loss function Eq. (10). We
iteratively conduct the prune and fine-tune step until meeting the compression
requirement.

3.3 Analysis of Residual Neural Network

In this section, we analyze the possible efficient structures for ResNet pruned
and reconstructed by our approach. For simplicity, we take two consecutive basic
blocks with at most two channels for each convolution as examples in Figure.
3(a), a regular ResNet can be treated as a combination of replicated structures.
Possible pruning for channels inter ResBlock can be summarized as follows:

1) Pruning Iconv. As shown in Figure. 3(b), we only remove the input channel
0 of Nodelconv0 while keeping the corresponding output channel of Nodel−1

conv1,

Fine-grained Channel Pruning for Deep Residual Neural Networks 7

(a) (b)

(c) (d)

Fig. 3. Illustration of possible architectures pruned and reconstructed by FCP in
channel-wise view, the dotted lines denote pruned channels. (a): structure before
pruning. (b): only prune input channel. (c): only prune output channel. (d): prune
both input and output channels

Ol−1,c
add will bypass through Nodelconv0 and connect to Nodelconv1 as a skip

connection. We only need to store the pruned or the remaining channel indices to
assure correct input channel feature maps flow into Nodel+1

conv0, which is negligible
to the total amount of parameters.

2) Pruning Iadd. we eliminate the output channels of weight in Nodelconv1,
but we do not prune Il+1

conv0 simultaneously so that the skip connection of channel
0 becomes a pure input for Nodel+1

conv0 in Figure. 3(c). Similarly, We should store
the pruned or remaining channel index to exclude the pruned channel from
addition operation.

3) Pruning both Iconv and Iadd. we can remove the output channel of
Nodelconv1 and the input channel of Nodel+1

conv0 as shown in Figure. 3(d). However,
different from group pruning or pruning in plain neural networks, we allow the
skip connection to bypass through Nodel+1

conv0 and connect to Nodel+1
conv1 directly.

4 Experiments

In this section, We demonstrate the benefits of FCP for ResNet on both
classification and super-resolution tasks. For classification, we use two standard
benchmarks: CIFAR-10 and CIFAR-100 [11]. CIFAR-10 contains 50000 training
images and 10000 testing images of size 32 × 32, which are categorized into
10 different classes. CIFAR-100 is similar to CIFAR-10 but has 100 classes. For
super-resolution, we conduct MSRResNet [20] on the DIV2K dataset [2], which
contains 800 high-resolution images.

To compare with other state-of-the-art pruning methods for residual neural
networks, we define different pruning levels as follows:

Skip. Only prunes the channels inner ResBlock.
In-only. Only prunes the input channels for the first convolution in each

ResBlock.

8 Siang Chen et al.

Out-only. Only prunes the output channels for the last convolution in each
ResBlock.

Group. This strategy prunes the channels connected by pure shortcut
connections together.

4.1 Experimental Settings

Training setting. For CIFAR-10 and CIFAR-100 datasets, we use the default
parameter settings as [7]. For super-resolution on DIV2K dataset, we refer to the
open-source platform BasicSR. The HR images are cropped into small images
with size 480×480 by step 240, and the number of small images is 32208. The LR
images with size 32×32 are randomly cropped from small images, then ratated by
90◦, 180◦, 270◦ and flip them horizontally. We optimize the weights via ADAM
with batchsize=16, β1 = 0.9, β2 = 0.999 and ϵ = 10−8. The initial learning rate
is set to 2× 10−4 and reduced to half every 500 epochs for 1500 epochs totally.
Pruning setting. We prune models by following the Tick-Tock setup in [22]. All
the networks are pruned 0.2% filters in each Tick stage for 10 epochs, followed by
one Tock phase of 10 epochs for classification and 20 epochs for super-resolution,
respectively. In the case of CIFAR-10 and CIFAR-100, the learning rate used in
the Tick stage is set to 10−3, we use the 1-cycle strategy to linearly increase the
learning rate from 10−3 to 10−2 in the first half of the iteration, then linearly
decrease it from 10−2 to 10−3, sparse constraint λ is set to 10−3. For DIV2K,
the learning rate is set to 2× 10−7 in the Tick stage, and increases from 2× 10−7

to 2× 10−5 in the first half of the iteration, and then linearly decreases from 2×
10−7 to 2× 10−5. For fine-tuning stage, we use the same learning rate strategy
as the Tock phase, the difference is that fine-tune epochs are 40 for classification
and 125 for super resolution.

4.2 Results on Classification

CIFAR-10. Table. 1 shows the results. Our FCP achieves a better performance
than other state-of-the-art pruning methods for ResNet. For example, GBN [22]
use the group strategy to prune ResNet-56 by 70.3% FLOPs with only 0.03%
accuracy drop, we can however achieve no accuracy drop while pruning 7.75%
more FLOPs and 5.44% more parameters. FPGM [8] prune ResNet-20 by 42.2%
FLOPs with 1.11% accuracy drop, we can achieve even 0.09% better accuracy
than baseline with more FLOPs pruned. Figure. 4 shows the pruning result of
ResNet-56 on CIFAR-10, active channel numbers between ResBlocks are not
limited to be the same, and some layers are even totally pruned to allow feature
maps of previous layer directly flow into next layer.
CIFAR-100. As shown in Table. 1, results on ResNet-32 and ResNet-164
demonstrate that FCP outperforms previous methods on CIFAR-100 again. For
ResNet-164, there are few works on this pre-activation model which adds more
constraints on pruning, but FCP can still reduce more than 60% FLOPs with a
even 0.19% accuracy increase.

Fine-grained Channel Pruning for Deep Residual Neural Networks 9

Table 1. Comparison of pruning ResNet on CIFAR-10 and CIFAR-100

Dataset Depth Method Baseline acc.(%) Acc. ↓(%) Params ↓(%) Flops ↓(%)

CIFAR-10

20
FPGM[8] 92.20 1.11 - 42.20
GBN[22] 92.07 0.68 36.08 44.53

Ours 92.07 -0.09 36.62 48.46

32
FPGM[8] 92.63 0.32 - 41.50
GBN[22] 93.22 0.46 35.93 44.59

Ours 93.22 0.10 38.70 52.10

56

He et al.[9] 92.80 1.00 - 50.00
FPGM[8] 93.59 0.10 - 52.60
GBN[22] 93.10 0.03 66.70 70.30

Ours(60%) 93.10 -0.37 61.00 70.08
Ours(78%) 93.10 0.00 72.14 78.05

110
FPGM[8] 93.68 -0.16 - 52.30
GBN[22] 94.02 -0.05 58.04 54.17

Ours 94.02 -0.24 58.89 68.01

CIFAR-100
32

FPGM[8] 69.77 1.25 - 41.50
GBN[22] 70.27 1.38 20.82 44.36

Ours 70.27 0.32 20.96 50.02

164 Li et al.[16] 76.63 0.54 - 50.60
Ours 76.25 -0.19 34.04 60.07

These results validate the effectiveness of FCP, which can produce a more
compressed ResNet model with nearly the same or better performance compared
to the original model.

Fig. 4. Result of 70% FLOPs pruned by our method on ResNet-56-CIFAR-10

4.3 Comparison of different pruning levels

To fairly validate the effectiveness of FCP at different pruning ratios, we compare
different pruning levels using the same pruning criterion and settings in this
paper.

10 Siang Chen et al.

Fig. 5. The effect of varying percentages of
FLOPs by different pruning levels

Fig. 6. Padding-and-Pruning strategy for
the pixelshuffle layer

Figure. 5 shows the results. The skip strategy produces the smallest search
space of channels and is more sensitive to pruning in most cases. Since in-only
and out-only both can be treated as subsets of FCP, their results are similar.
FCP is more fine-grained than the other three pruning levels, thus is more robust
against pruning ratio and performs better especially at deeper pruning ratios.

4.4 Results on Super Resolution

Table 2. Quantitative results of evaluated methods for x4 SR

Method Params FLOPs Set5
PSNR/SSIM

Set14
PSNR/SSIM

B100
PSNR/SSIM

Manga109
PSNR/SSIM

Bicubic - - 28.63/0.8138 26.21/0.7087 26.04/0.6719 25.07/0.7904
EDSR 43090K 2894.5G 32.46/0.8968 28.80/0.7876 27.71/0.7420 31.02/0.9148

MSRResNet 1517K 146.0G 32.22/0.8952 28.63/0.7826 27.59/0.7357 30.48/0.9089
CARN 1592K 90.8G 32.13/0.8937 28.60/0.7806 27.58/0.7349 30.45/0.9073

Li et al.[14] 861K 78.69G 32.03/0.8931 28.54/0.7803 27.53/0.7346 30.23/0.9056
FPGM[8] 859K 83.94G 31.95/0.8917 28.48/0.7790 27.48/0.7332 30.03/0.9033
GBN[22] 863K 75.76G 32.09/0.8944 28.58/0.7815 27.56/0.7356 30.36/0.9075

Ours (60%) 973K 90.29G 32.18/0.8947 28.61/0.7823 27.58/0.7362 30.44/0.9084
Ours (50%) 799K 75.73G 32.15/0.8946 28.58/0.7816 27.57/0.7358 30.40/0.9080

In MSRResNet, upscaled features are generated by the pixelshuffle layer,
which reshapes feature maps from H ×W ×r2C to rH ×rW ×C in a periodic
way. Here the input image is assumed to be of size H ×W ×C, r is the scale
factor. Thus there is a constraint on pruned channels of convolution before the
pixelshuffle layer, we apply a novel padding-and-pruning approach to address this
problem. As shown in Figure. 6, for each periodic r2 channels with more than one
channels remaining after pruning, we extend them to the original r2 channel size

Fine-grained Channel Pruning for Deep Residual Neural Networks 11

by padding, and others are pruned away. Those padding channels will become
blank pixels after the pixelshuffle layer, which means the final HR images consist
of pixels directly from bilinear interpolation. This also makes sense that some
pixels by bilinear interpolation may be good enough and convolutions for those
pixels can be skipped.

We evaluate our pruned model on four standard benchmark datasets,
including Set5, Set14, B100 and Manga109. Results are evaluated with PSNR
and SSIM on Y channels of transformed YCbCr space. To show the effectiveness
of FCP, we implement the state-of-the-art pruning methods: L1-norm based [14],
FPGM [8], GBN [22].

Table. 2 shows the parameters, FLOPs and performance for ×4 SR. FCP
can reduce more parameters and FLOPs while maintaining higher PSNR and
SSIM on all datasets than other approaches. When compared to state-of-the-art
models, we can achieve nearly 64% parameters and 62% computation cost of
the baseline model with negligible performance drop, and SSIM on dataset B100
can be even better than original model. Our 60% pruned model performs better
than CARN [1] on most of the datasets, but the parameters of our pruned model
is 619K less. EDSR [15] optimizes performance by increasing network depth and
width, but too much parameters and FLOPs limit the application on resource-
constrained devices, while our pruned model has almost 54× reduction in model
size and 38× reduction in computation cost. These results demonstrate that
FCP can achieve better performance with a comparable compression ratio on
pixel-level tasks.

5 Conclusion

In this paper, we propose a fine-grained channel pruning (FCP) approach
for deep residual networks. Unlike previous works that prune in a group
technique, we allow any channels between convolution layers to be pruned,
our approach multiplies a scaling factor on each channel, then we compute
the importance score based on Taylor expansion, finally we obtain the compact
model by removing unimportant channels independently, which reveals a novel
residual structure for efficient model design. Extensive experiments show that
FCP outperforms other state-of-the-art filter pruning approaches on both
classification and super-resolution tasks.

References

1. Ahn, N., Kang, B., Sohn, K.: Fast, accurate, and lightweight super-resolution
with cascading residual network. In: ECCV 2018. pp. 256–272 (2018).
https://doi.org/10.1007/978-3-030-01249-6_16

2. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.: Low-complexity
single-image super-resolution based on nonnegative neighbor embedding. In:
BMVC. pp. 1–10 (2012). https://doi.org/10.5244/C.26.135

12 Siang Chen et al.

3. Ding, X., Ding, G., Guo, Y., Han, J.: Centripetal SGD for pruning very deep
convolutional networks with complicated structure. In: CVPR. pp. 4943–4953
(2019)

4. Gao, S., Liu, X., Chien, L., Zhang, W., Alvarez, J.M.: VACL: variance-aware cross-
layer regularization for pruning deep residual networks. CoRR abs/1909.04485
(2019), http://arxiv.org/abs/1909.04485

5. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural networks pp. 1135–1143 (2015)

6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

7. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for
accelerating deep convolutional neural networks. In: IJCAI. pp. 2234–2240 (2018).
https://doi.org/10.24963/ijcai.2018/309

8. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median for
deep convolutional neural networks acceleration. In: CVPR. pp. 4340–4349 (2019)

9. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural net-
works. In: ICCV. pp. 1398–1406 (2017). https://doi.org/10.1109/ICCV.2017.155

10. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely
connected convolutional networks. In: CVPR. pp. 2261–2269 (2017).
https://doi.org/10.1109/CVPR.2017.243

11. Krizhevsky, A.: Learning multiple layers of features from tiny images. In: Technical
report (2009)

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep
convolutional neural networks. In: NeurIPS. pp. 1106–1114 (2012)

13. Lemaire, C., Achkar, A., Jodoin, P.: Structured pruning of neural networks with
budget-aware regularization. In: CVPR. pp. 9108–9116 (2019)

14. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
convnets. In: ICLR (2017)

15. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks
for single image super-resolution. In: CVPR Workshops. pp. 1132–1140 (2017).
https://doi.org/10.1109/CVPRW.2017.151

16. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient
convolutional networks through network slimming. In: ICCV. pp. 2755–2763
(2017). https://doi.org/10.1109/ICCV.2017.298

17. Luo, J., Wu, J., Lin, W.: Thinet: A filter level pruning method for
deep neural network compression. In: ICCV. pp. 5068–5076 (2017).
https://doi.org/10.1109/ICCV.2017.541

18. Molchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J.: Importance estimation
for neural network pruning. In: CVPR. pp. 11264–11272 (2019)

19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: ICLR (2015), http://arxiv.org/abs/1409.1556

20. Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y., Loy, C.C.: ESRGAN:
enhanced super-resolution generative adversarial networks. In: ECCV Workshops.
pp. 63–79 (2018). https://doi.org/10.1007/978-3-030-11021-5_5

21. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in deep
neural networks. In: NeurIPS. pp. 2074–2082 (2016)

22. You, Z., Yan, K., Ye, J., Ma, M., Wang, P.: Gate decorator: Global filter pruning
method for accelerating deep convolutional neural networks. In: NeurIPS. pp. 2130–
2141 (2019)

