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Abstract

DNA computing has a rich history of computing paradigms with great
expressive power. However, far less expressive power is needed for data
manipulation. Indeed, the relational algebra, the yardstick of database
systems, is expressible in first-order logic, and thus less powerful than
Turing-complete models. Turing-complete DNA computing models have
to account for many and varied scenarios. A DNA implementation of data
manipulations might be nimbler and perform its operation faster than a
Turing-complete DNA computing model. Hence, we propose a restrictive
model for implementing data manipulation operations, focused on imple-
mentability in DNA. We call this model the sticker complex model. A
forte of the sticker complex model, is its ability to detect when hybridiza-
tion becomes an uncontrolled chain reaction. Such chain reactions make
hybridization less predictable and thus less attractive for deterministic
computations. Next, we define a query language on sticker complexes,
called DNAQL. DNAQL is a typed, applicative functional programming
language, powerful enough to simulate the relational algebra on sticker
complexes. The type system enjoys a number of desirable properties such
as soundness, maximality, and tightness.

Keywords: DNA database, Hybridization, Type system, Sticker complex
model, DNAQL

1 Introduction

Since Adleman’s seminal experiment [2], the field of DNA computing has vastly
grown, see the monographs [3, 27] and see [36, 29, 34, 40] for more recent de-
velopments. Computational models in the DNA computing field often aim for
Turing-completeness. However, DNA computing also has a high potential for
database applications. Indeed, the robust (almost indestructible) storage ca-
pacity of DNA [15, 21, 7] is very promising from the databases perspective. The
potential use of single-stranded DNA as an addressable or searchable memory
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is indeed well known [6, 31, 14, 37]. Databases, however, are much more than
searchable memories: they are structured according to a logical data model
such as the relational model, and are queried and manipulated using global
operations on data such as the operations of the relational algebra.

Due to its expressive power, Turing-complete DNA computing models gen-
erally do not allow for a faithful implementation in the wetlab. The expressive
power of query languages, such as the relational algebra, is however distinctly
weaker than Turing-completeness. In this paper we develop a database query
language using DNA, with the aim of having both practically and theoretically
greater tractability than Turing-complete DNA computing models. In particu-
lar, special care has been taken to keep hybridization in check. We introduce
the sticker complexes model, which consists of a number of operations defined
on a restricted subclass of DNA complexes. In the sticker complex model a
clear distinction is made between long data strands and short stickers, used to
manipulate the data strands. Likewise, double-strandedness has a dual abstrac-
tion: a distinction is made between short duplexes formed by the interaction of
stickers and longer data strands, and long duplexes initiated to withhold parts
of data strands from participation in future hybridizations.

Sticker complexes represent the structural content of a test tube. We as-
sume that each component of a sticker complex is redundantly present in a
tube. If a DNA complex can hybridize to itself, it can hybridize as well to an
identical copy. Often, the copy can then hybridize with yet another copy and so
forth. We identify this undesirable behavior as non-terminating hybridization.
Non-terminating hybridization leads to sticker complexes unbounded in size.
In practice, when we have termination of hybridization, a test tube prepared
with sufficient quantities of each component of the complex holds, in principle,
sufficient material to produce all molecular species that can be the result of hy-
bridization. If sufficient quantities are present, adding even more material will
not yield new results. Of course, in practice, a test tube is always finite and the
hybridization reaction will, under normal conditions, always “terminate” (reach
equilibrium). But the point is that, when hybridization does not terminate
for a complex, adding ever more material can, in principle, result in ever more
new molecular species to be produced. In this sense, the potential result of the
hybridization is unbounded. Fortunately, in previous work [11] we have show
that it is efficiently decidable for a sticker complex whether it has terminating
hybridization.

In this paper we introduce the language DNAQL. Similar to languages such
as SQL or the relational algebra that are familiar in the field of databases
[19], DNAQL is a query language rather than a general-purpose programming
language. It includes basic operators on DNA complexes in solution. Apart from
the application of these operators, programs are formed using a let-construct and
an if-then-else construct based on the detection of DNA in a test tube. Last but
not least, the language includes a for-loop construct for iterating over the bits
of a data entry, encoded as a vector of DNA codewords. Indeed, the number of
operations performed during the execution of a DNAQL program, on any input,
is bounded by a polynomial that depends solely on the dimension of the data,
i.e., the number of bits needed to represent a single data entry. This makes that
the execution time of programs scales well with the size of the input database.
In a companion paper we show that DNAQL is expressive enough to simulate
arbitrary relational algebra expressions, when representing relational databases
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as DNA complexes [8]. The relational algebra is the applicative language at the
core of standard database query languages such as SQL [16, 19, 1].

A difficulty with DNAQL, and with DNA computing in general, is that
various manipulations of DNA must make certain assumptions on their input
so as to be implementable in the wetlab and produce a well-defined output. Even
when these assumptions are well understood for each operation in isolation, the
problem is exacerbated in an applicative programming language like DNAQL,
where the output of one operation serves as input for another. Indeed the
problem of deciding whether a given program will have well-defined behavior on
all possible intended inputs is typically undecidable. While this undecidability
result is well known for Turing-complete programming languages, it also holds
for database languages that are typically not Turing-complete [38].

The standard solution to ensure well-definedness of programs is to use a
type system and check programs syntactically so as to allow only well-typed
programs. Well-devised type systems have a soundness property to the effect
that, once a program has been checked to be well-typed for a given input type,
the behavior of the program is then guaranteed to be well defined on all inputs
of the given type [28, 22]. In the present paper, we propose a type system for
DNAQL and establish a soundness theorem. In addition, the type system is
maximal and tight [26]. That is, if an operation is defined on all complexes of a
certain type, the operation’s counterpart on types is defined on the considered
type. In other words, the type system only forbids the application of an opera-
tion if there is a reason to. Furthermore, tightness mean (informally) that the
type output of an operation cannot be slimmed down without jeopardizing the
soundness of the type system.

A crucial feature of the type system presented here is a wildcard mechanism
to account for the fact that the length (in bits), as well as the actual values,
of data entries are unknown at compile time. This mechanism is integrated in
a type-checking algorithm that keeps track of mandatory components in DNA
complexes, as well as their hybridization status. The result is a type system
that allows a natural and flexible representation of structured data in DNA, in
a way so that a significant class of data manipulations can be typed as programs
in DNAQL.

Extended abstracts of the DNAQL programming language and its type sys-
tem, containing selected results mostly without proofs, were presented at the
ANB and DNA 18 conferences [20, 9], as well as in a keynote talk [10]. The
present paper is a completely revised and final research report.

2 Related work

In one of the first papers on DNA computing, Reif already defined a formal
data structure of DNA complexes [30]. Our data structures are simpler in an ef-
fort to avoid unrealistic or otherwise complicated and unmanageable secondary
structures. (Reif avoids these by invoking an oracle for feasibility.) Our simplifi-
cation is that single strands are either all-positive or all-negative, and moreover,
negative strands have length at most two. The short negative strands can be
thought of as stickers; thus the name “sticker complexes”. Our previous work
showed that the restrictions of sticker complexes do not preclude interesting
database computations. An important feature of our model, which is lacking

3



in Reif’s model, is the formal distinction between the structural content of a
complex, and the complex as used in reactions, with multiples of each connected
component present in surplus quantities.

The use of short stickers in DNA computing originates from [32], where
stickers were used to turn bits on or off. We use stickers to bind strands together
so that possibly complex secondary structures are formed.

The present work also fits in a recent trend of integrating formal methods
(such as process calculi in computational systems biology [12]) with DNA com-
puting [13, 24]. Yet the formalisms we use are different from process calculi and
comprise mainly set theory, graph theory, and logic-based query languages. The
computational power of hybridization in various models of formal languages has
been intensively studied, see, e.g., [27, 39].

The paper [42], developed independently of the above mentioned extended
abstract [20], has similar goals as the present paper: to perform the relational
algebra in DNA by using elements of Reif’s model [30]. A fundamental feature of
the relational algebra is compositionality, i.e., the output of one operation may
serve as the input of another. However, the model of [42] is not compositional.
For example, the difference operator assumes the presence of the complements
of the key values of a table (which is not present when the table is the output of
another operation). Another fundamental difference is that the complications
of possible nonterminating hybridization are not taken into account in [42].

In [41] an abbreviated account of achieving relational algebra operations
through DNA manipulation is given. Unfortunately, that paper is too sketchy
to allow any comparison with our approach. In contrast, the methods pre-
sented here are fully formalized, and importantly, identifies restrictions on DNA
computing within which relational algebra simulation remains possible. More
influential for this work is [5], which demonstrates how one can accomplish con-
catenation and rotation of DNA strands. Such manipulations, which involve
circular DNA, are crucial in the DNA model presented here, and indeed were
already crucial in [30].

We can conclude that the idea of performing relational algebra operations
on DNA has been suggested repeatedly and independently over time by various
researchers; a very recent example is the paper by Appuswamy et al. [4].

3 Sticker Complexes

In this section we define the notion of sticker complex, and notions related to
sticker complexes.

3.1 Alphabet

From the outset we assume a finite alphabet Σ. As customary in formal models
of DNA computing [27], this alphabet serves as an abstraction of a set of DNA
codewords; see Section 5. The alphabet Σ is matched with its negative version
Σ = {ā | a ∈ Σ} disjoint from Σ. Thus there is a bijection between Σ and
Σ, which is called complementarity and is denoted by overlining. We also set
¯̄a = a so complementarity is symmetric. As usual, ā stands for the Watson-
Crick complement of the DNA sequence represented by a. The elements of Σ
are called positive symbols and the elements of Σ are called negative symbols.
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For the purpose of data formatting we further assume that Σ = Λ ∪ Ω ∪ Θ
is composed of three disjoint parts: the set Λ of atomic value symbols; the set
Ω of attribute names; and the set Θ = {#i | i ∈ {1, . . . , 9}} of tags.

Justification for tags Tags will be used as markers and punctuations in our
data structures, and serve various purposes. Tags numbered 2, 3, 4, 6 and
8 serve as markers for the split operation (Table 1 in Section 4). Indeed we
have found that to do useful data manipulations, we need up to five distinct
markers to indicate split points: three for single strands (with an operation that
cleaves either before #2 or #3, or after #4), and two more for double strands.
Here, our yardstick for expressive power is the ability to simulate relational
algebra in DNA [10]. By having multiple distinct split points, rather than just
one, we can restrict the locations at which the split operation cleaves. We
consider it a feature that we do not need more than five, although it remains
open whether the relational algebra can already be simulated using strictly less
than five split markers. Detailed examples of the relational algebra simulation
have been given in our conference papers [20, 10]. A full constructive proof
showing that relational algebra can be simulated in DNAQL will be provided in
a companion paper [8]. In the present paper we focus on the formal definitions
of our data model and our language, and, not in the least, on the type system.

Moreover, tags 2, 3 and 4 will be used for the representation of relational
data in DNA, where #2 and #3 will indicate the beginning of an attribute
name and the attribute value, respectively, and #4 will indicate the end of the
attribute/value pair.

Furthermore, we assume four more tags, numbered 1, 5, 7 and 9. These tags
are needed in the relational algebra simulation to construct “stickers” used to
concatenate strands. (Stickers are defined formally in Section 3.3 and their use
for concatenation is illustrated in Example 6.1.) Tags 1 and 5 appear in the
present paper only in examples; tags 7 and 9 are not mentioned further at all in
the present paper, but play a crucial role in the “double bridging” construction
that is used to simulate operations of the relational algebra. Again we consider
it a feature that we need no more than four additional tages to construct the
needed diversity of stickers. Certainly, having just a single sticker available
would be too indiscriminatory and would form unwanted hybridizations; again,
it remains open whether the relational algebra can already be simulated with
strictly less tags than the nine we provide in the language DNAQL.

Finally, we note that #5 also plays a role in the implementation of the
difference operation in DNA, as discussed in Section 5.

3.2 Pre-Complex

We define pre-complexes to contain the overall structure of sticker complexes
(the definition is slightly modified with respect to extended abstract [20]: we
use now node labels instead of edge labels.) A pre-complex is a finite, node-
labeled, directed graph where the nodes represent bases in strands and edges
indicate direction. Moreover, a pre-complex is equipped with a matching, rep-
resenting base pairing, and two predicates. One predicate indicates which bases
are “immobilized”, i.e., do not float freely and can be separated from solution
in a controlled manner; the other predicate indicates which bases are “blocked”,
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i.e., cannot participate in base pairing. Formally, a pre-complex is a 6-tuple
(V,L, λ, µ, ι, β), where:

− V is a finite set of nodes;

− L ⊆ V × V is a set of directed edges without self-loops;

− λ : V → Σ∪Σ is a function labeling the nodes with positive and negative
alphabet symbols;

− µ ⊆ [V ]2 = {{u, v} | u, v ∈ V ∧ u 6= v} is a partial matching on the nodes,
i.e., each node occurs in at most one pair;

− ι ⊆ V is the set of immobilized nodes; and

− β ⊆ V is the set of blocked nodes.

A connected component induced by the edges of L is called a strand. The length
of a strand s, denoted by |s|, is the number of edges of L that belongs to s. By
strands(S) we denote the set of positive strands of pre-complex C.

Both the partial matching µ as the predicate β serve to abstract the notion of
double-strandedness. The matchings make explicit where the negative strands
are bonded to the positive strands. The predicate β represents longer stretches
of double strands.

Components Strands s and s′ are bonded if there is a node v in s and a node v′

in s′ with {v, v′} ∈ µ. When strands are connected (possibly indirectly) by this
bonding relation, we say they belong to the same component. Thus a component
of a pre-complex is a substructure formed by a maximal set of strands connected
by the bonding relation. Note that a component of a pre-complex is in itself a
pre-complex. We use comp(C) to denote the set of components of pre-complex
C. Conversely, we can view a set of pre-complex components as a single pre-
complex, basically by taking the union. For convenience, we sometimes denote
D ∈ comp(C) for a component D and a pre-complex C simply by D ∈ C.

Subsumption and redundancy The intention of the model is that a com-
plex defines the structural content of a test tube. A test tube will, however,
hold copies in surplus quantity of each component. Thus, each component
of a complex stands for multiple occurrences. Two identical components in a
pre-complex are thus meaningless. We formalize this using the notions of sub-
sumption, equivalence, and minimality. (These important issues and notions
are glossed over in Reif’s formalization [30].)

Pre-complexes C1 and C2 are considered isomorphic if they are equal modulo
the identity of the vertices. Consequently, an isomorphism from C1 to C2 should
respect the labels of the vertices, the matching relation, immobilizations, etc. A
pre-complex C1 is subsumed by pre-complex C2, denoted by C1 v C2, if for each
component D1 of C1 there is an isomorphic component D2 of C2. Pre-complexes
C1 and C2 are equivalent if they subsume each other, denoted C1 ≡ C2. A
component D of pre-complex C is redundant if there exists a component D′ 6= D
of C such that D and D′ are isomorphic. Note that removing D from C yields an
equivalent sticker complex. A pre-complex is minimal if there are no redundant
components.

6



a b a b a b

(a) (b)

Figure 1: An example of two pre-complexes that are non-isomorphic but that
are equivalent.

Note that the notions of isomorphism and equivalence are not equal. Indeed,
some pre-complexes can be simultaneously non-isomorphic and equivalent, as
shown in Fig. 1.

3.3 Sticker Complex

A sticker complex is a pre-complex abiding the following requirements:

1. Each node has at most one incoming and one outgoing edge. Thus each
strand has the form of a chain or a cycle.

2. The labels on a chain are “homogeneous”, in the sense that either all nodes
are labeled with positive symbols or all nodes are labeled with negative
symbols. A strand with positive (negative) symbols is called a positive
(negative) strand.

3. Negative strands are severely restricted: specifically, every negative strand
must be a chain of one or two nodes. Such negative strands are called
stickers.

4. Matchings by µ only occur between nodes with complementary labels.

5. Nodes in β do not occur in µ.

6. A node can be immobilized only if it is the sole node of a negative strand.

7. Each component can contain at most one immobilized node.

A node u is called free if u neither occurs in β nor in µ, and is called closed if
it is not free. Nodes u and v are called mutually interacting if (1) they are both
free, (2) u and v are complementary labeled, and (3) u and v do not belong to
different immobilized components (i.e., components containing an immobilized
node).

Isomorphism of sticker complexes can be decided in polynomial time by
depth-first search. Indeed, if C and C ′ both consist of a single component, v
is a node of C, and v′ is a node of C ′, then there is at most one isomorphism
from C to C ′ mapping v to v′, and this isomorphism can be traced out by
depth-first search without backtracking, following the chain or cycle shape of
strands, and the partial matching µ. This search is in linear time, which yields
an isomorphism check for single components in quadratic time (for a fixed node
v of C, try all possible v′ of C ′). This algorithm then easily extends to complexes
C and C ′ with multiple components, by matching the components of C to the
components of C ′ — the complexity of the extended algorithm is in cubic time.
This efficient isomorphism check is in contrast with the problem of general graph
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Figure 2: A sticker complex with one component. The positive strand has been
circularized by a sticker.

isomorphism, which is not known to be decidable in polynomial time. We thus
see that sticker complexes form a restricted family of graphs. As a consequence
of the efficient isomorphism checking algorithm, the algorithm for minimizing a
sticker complex also has polynomial time complexity.

Atomic value symbols fulfill the same function as bits in a digital computer.
A sequence of atomic value symbols represent a value, much like 100 is the
binary representation of the number 8 on a computer. Similar to the word size
(number of bits) used in a digital computer to represent single data elements
(such as integers), we will use sequences of atomic value symbols of a fixed
length `, called the dimension. Let s = s1 . . . s` be a sequence of ` consecutive
nodes of a strand of a sticker complex. If all nodes are labeled with atomic
value symbols, s is called an `-core. Let s = s0 . . . s`+1 be a sequence of ` + 2
consecutive nodes of a strand of a sticker complex. Such a sequence is called
an `-vector if s0 is labeled with #3, s`+1 is labeled with #4 and s1 . . . s` is an
`-core.

The notion of dimension is now defined as follows. For a fixed value of
` ≥ 2, we say that sticker complex C has dimension `, if all nodes labeled with
an atomic value symbol occur in an `-vector. Note that we do not consider the
one-dimensional case.

From now on, we will often refer to sticker complexes simply as complexes,
and to sticker complexes of dimension ` as `-complexes.

Example 3.1. Fig. 2 shows a sticker complex with one component. The di-
rected edges represent L. The dashed edges represent matchings in µ. The
positive strand is being circularized by a sticker labeled by #2 and #4.

4 Operations on Sticker Complexes

In this section, we define a set of operations on complexes that are rather stan-
dard in the DNA computing literature, except perhaps for the difference, see
Section 5. What is interesting, however, is that we have defined sticker com-
plexes in such a way that each operation always results in a sticker complex
when applied to sticker complexes. Moreover, several operations impose addi-
tional restrictions on the input, so as to guarantee effective implementability in
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real DNA. The result of each operation is defined up to equivalence (cf. Subsec-
tion 3.2).

Union Let C1 = (V1, L1, λ1, µ1, ι1, β1) and C2 = (V2, L2, λ2, µ2, ι2, β2) be com-
plexes. Without loss of generality we assume that V1 and V2 are disjoint. We
define the union of C1 and C2, denoted by C1 ∪ C2, as (V1 ∪ V2, L1 ∪ L2, λ1 ∪
λ2, µ1 ∪ µ2, ι1 ∪ ι2, β1 ∪ β2).

Difference Let C1 and C2 be complexes that satisfy the following conditions:

1. µ1 = ι1 = β1 = ∅ = µ2 = ι2 = β2, i.e., all components in C1 and C2 are
single strands.

2. All strands of C1 and C2 are positive, non-circular, and all have the same
length.

3. Each strand of C2 ends with #4 and does not contain #5.

We define the difference of C1 and C2, denoted by C1 − C2, as the union of all
strands in C1 that do not have an isomorphic copy in C2. If C1 and C2 do not
satisfy the above conditions then C1 − C2 is undefined.

Hybridize Let C = (V,L, λ, µ, ι, β) and C ′ = (V ′, L′, λ′, µ′, ι′, β′) be com-
plexes. We say that C ′ is a hybridization extension of C if V = V ′, L = L′,
λ = λ′, ι = ι′, β = β′ and µ′ is an extension of µ. Beware that a hybridization
extension must satisfy all conditions from the definition of sticker complex. A
complex C ′ is said to be saturated if it has no pair of mutually interacting nodes.
In other words, C ′ is saturated if and only if the only hybridization extension
of C ′ is C ′ itself.

The notion of hybridization extension is not sufficient, however, since we
want to allow duplicate copies of components in C to participate in hybridiza-
tion.

Let C and C ′ again be complexes. We call C ′ a redundant variation of C,
simply if C ′ is subsumed by C. Note that C ′ may contain redundant compo-
nents. Hence, the recipe to produce a redundant variation is simply to take, for
every component of C, zero, one, or more copies.

Hybridization is now defined in terms of multiplying hybridization extensions
(MHEs), which, by applying redundant variations, account for the presence of
surplus copies of components participating in the hybridization. Let C and C ′

again be complexes. We call C ′ an MHE of C if C ′ is a hybridization extension
of some redundant variation C ′′ of C.

The notion of MHEs is invariant under equivalence, both on the input side
as on the output side:

Proposition 4.1. Let C1 and C2 be equivalent complexes.

1. A complex C ′ is an MHE of C1 if and only if C ′ is an MHE of C2.

2. C1 is an MHE of a complex C if and only if C2 is an MHE of C.
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b̄ ā b̄ ā
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Figure 3: Illustration for Example 4.2.

A complex C ′ is called unfinished with respect to C if there exists a node u
in C ′ and a node v in C such that u and v are mutually interacting; otherwise
C ′ is called finished with respect to C. An MHE of a complex C that is finished
with respect to C is called saturated with respect to complex C. Note that if C
is saturated, then all MHEs are equivalent to C.

A fundamental issue is that the result of hybridization may be infinite, as
shown next.

Example 4.2. Consider the simple complex consisting of two strands ab and b̄ā
and no matchings. For any number n, using n copies of ab and n copies of b̄ā, we
can produce the MHE component shown in Fig. 3 for n = 3. This component
could also be finished, by matching the remaining a shown on the left with the
remaining ā on the right, effectively creating a ring structure. Different numbers
n yield nonequivalent (non-isomorphic) MHE components, thus the number of
potential MHE components is infinite.

Chemically, hybridization composes MHEs using the available material in
the test tube. When, for a given complex C, there are actually infinitely many
nonequivalent MHEs, we say that hybridization does not terminate for C, or
shorter, that C is nonterminating ; otherwise, we say that hybridization termi-
nates, or shorter, that C is terminating.

In practice, when we have termination of hybridization, a test tube prepared
with sufficient quantities of each component of the complex holds, in principle,
sufficient material to produce all molecular species that can be the result of
hybridization. If sufficient quantities are present, adding even more material will
not yield new results. Of course, in practice, a test tube is always finite and the
hybridization reaction will, under normal conditions, always “terminate” (reach
equilibrium). But the point is that, when hybridization does not terminate
for a complex, adding ever more material can, in principle, result in ever more
new molecular species (MHE components) to be produced. In this sense, the
potential result of the hybridization is indeed infinite.

Let C be a sticker complex. If C has terminating hybridization, then we
define the hybridization of C, denoted by hybridize(C), as the disjoint union
of a set S of mutually non-isomorphic finished MHE components of C such that
each finished MHE component of C is isomorphic to some component in S. If
C does not have a terminating hybridization, then the hybridization of C, i.e.,
hybridize(C), is undefined.

Ligate The ligate operator concatenates strands that are held together by a
sticker. Formally, define a gap as a set of four nodes {n1, n2, n3, n4} such that
{n1, n4} ∈ µ; {n2, n3} ∈ µ; n1 and n2 (in that order) are consecutive nodes on
a negative strand; n3 is the last node on its (positive) strand; and n4 is the first
node on its (positive) strand. By filling a gap we mean modifying the complex
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Table 1: The split points.

Label Free Place
#2 true before
#3 true before
#4 true after
#6 false after
#8 false before

so that the (n3, n4) is added to L. We now define ligate(C) as the complex
obtained from C by filling all gaps.

Flush Quite simply flush(C) is defined as the complex obtained from C by
removing all components that do not contain an immobilized node.

Split Consider a node n in some complex C. By splitting before (resp. after)
n, we mean the following.

− If n has a predecessor (resp. successor) m in its strand, then (m,n) (resp.
(n,m)) is removed from L.

− Furthermore, if there exists a node n′ such that {n, n′} ∈ µ and n′ has a
successor (resp. predecessor) m′ in its strand, then (n′,m′) (resp. (m′, n′))
is removed from L.

Now, consider the set of triples shown in Table 1. Each such triple is called
a split point and has the form (label, free, place). By splitting C at such a split
point, we mean splitting C at all nodes labeled label (be it before or after, based
on the value of place), on condition that the node is free (or closed, depending
on the boolean value free). Since the split points are uniquely determined by
their label, we (may) denote the result by split(C, label).

Block Here we assume that C is saturated; if C is not saturated then the block
operation on C is considered to be undefined. We define the block operation on
C with respect to σ ∈ Ω∪Θ, denoted by block(C, σ), as the complex obtained
from C by adding all free nodes labeled with σ to β.

Block-From Here we again assume that C is saturated, otherwise the block-
from operation is considered to be undefined.

Let again σ ∈ Σ, and consider any contiguous substrand s of C. We call s
a σ-blocking range if it satisfies the following two conditions. Firstly, all nodes
of the substrand are free. Secondly, the last node of the substrand is labeled
with σ. Now we define blockfrom(C, σ) to be the complex obtained from C by
adding to β all nodes appearing in some σ-blocking range.

Block-Except Let n be a natural number and let C be a complex satisfying
the following conditions:

1. C is an `-complex with ` ≥ n;
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2. in every `-vector in C, either all nodes are free or all nodes are closed; and

3. C is saturated.

Then we define blockexcept(C, n) as the complex obtained from C by blocking,
within each `-vector (e0, e1, . . . , e`, e`+1) that is not yet blocked, all nodes except
en. If (C, n) does not satisfy the conditions above, then blockexcept(C, n) is
undefined.

Cleanup The cleanup operator undoes matchings and blockings and removes
all strands except for the longest positive strands. This operation is always
defined.

4.1 Termination of Hybridization

A sticker complex with non-terminating hybridization yields an infinite sticker
complex. This is undesirable, as a sticker complex is conceived as an abstraction
of DNA in test tubes. Clearly, a infinite sticker complex is no abstraction of any
test tube. A natural question thus arises: can we efficiently decide, based solely
on the sticker complex itself, whether hybridization is terminating? Fortunately,
in previous work it is shown that this is possible [11]. Next, we briefly recall the
concepts and results relevant for the type system.

Recall that an undirected graph (V,E) consists of a set V of nodes and a
set E ⊆ {{v, w} ⊆ V | v 6= w} of unordered pairs of nodes (undirected edges).
Recall that a partition π of a set V is a set of nonempty, pairwise disjoint subsets
of V such that their union equals V . A partitioned graph is a triple (V, π,E)
where (V,E) is an undirected graph and π is a partition of V . The sets of π are
called blocks.

Given a complex C, the hybridization graph for C is the partitioned graph
H = (V, π,E) defined as follows:

− V equals the set of nodes of C;

− π contains, for each component D of C, the set of nodes belonging to D
as a block;

− E = {{v, w} ⊆ V | v and w are mutually interacting}.

Thus, whereas the matching µ in C represents the pairs of nodes that are already
annealed, the set E contains the pairs of nodes that may still be annealed (typ-
ically, in an MHE of C). Note that a complex is saturated iff its hybridization
graph does not contain any edges.

The notion of alternating cycle can be defined in general in any partitioned
graph G = (V, π,E). A path in G is a sequence of nodes v1, . . . , vn such that
for each i with 1 ≤ i < n, we have either an

edge move: {vi, vi+1} ∈ E, or a

block move: vi 6= vi+1 and they belong to a common block.

The path is said to be alternating if edge moves happen for each odd i, and
block moves happen for each even i (1 ≤ i < n). When the path is alternating,
it is said to be an alternating cycle when n is odd and at least 3, and vn = v1.
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Figure 4: Hybridization graph of a sticker complex with one immobilized node.

In [11], it is shown that a complex C has non-terminating hybridization if
and only if there is an alternating cycle in its hybridization graph. Although
this result disregards immobilized components, the theorem is easily extended
to include immobilized components:

Theorem 4.3. A complex C has non-terminating hybridization if and only if
there is an alternating cycle P in the hybridization graph of C, such that P does
not pass through a block associated with an immobilized component.

Example 4.4. Fig. 4 (a) shows the hybridization graph of a sticker complex
with two components — immobilized nodes are decorated with the symbol .
The largest component has an immobilized node (the one labeled with #3).
Consequently, the component, to which the node belongs, is immobilized. As
each node has a unique label, we use the node labels to point out an alternating
cycle: #4,#4,#2,#2,#4. Despite the cycles in the hybridization graph, this
complex has terminating hybridization, because all cycles run through the big-
ger, immobilized component. Two copies of an immobilized component cannot
be bonded together, as the resulting component would have two immobilized
nodes.

Fig. 4 (b) shows the two components forming the hybridization based on the
hybridization graph in (a). In the first case, the positive strand is folded into
a circle. In the second case, two stickers are hybridized on both sides of the
positive strand.
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5 Implementation in DNA

In this section, we argue that the abstract sticker complexes and the operations
on them presented above can be implemented in the wetlab. The discussion re-
mains theoretical as we have not performed laboratory experiments. On the one
hand, the main purpose is to make the abstract model plausible as a theoretical
framework to explore the possibilities and limitations of DNA computing as a
database model; on the other hand, we use only rather standard biotechnological
techniques.

Each component of an abstract complex is represented by a large surplus of
duplicate copies in DNA. Each positive alphabet symbol from Σ is implemented
by a strand of (single-stranded) DNA, such that the resulting set of DNA strands
forms a set of DNA codewords [25, 33, 35]. If the DNA strand for symbol a ∈ Σ
is w, then the DNA strand for the complementary symbol ā, is, naturally, the
Watson-Crick complementary strand to w. Then, matching of nodes by µ in an
abstract complex is implemented by base pairing in the DNA complex. We will
see below how blocking is implemented. Immobilization is implemented as is
standard in DNA computing by attachment to surfaces [23] or magnetic beads.

The union operation amounts to mixing two test tubes together.
The difference C1 − C2 of complexes can be implemented by a subtractive

hybridization technique [18]. Let C1 (C2) be stored in test tube t1 (t2). Because
all strands in t2 end in #4, we can easily append #5 to them. Next we add
to t2 an abundance of immobilized short primers #5. Using polymerase we
obtain complements to all strands in t2, still immobilized, so that it is now easy
to separate them. It remains to use these complements to remove all strands
from t1 that occurred in t2. Since all strands have the same length, partial
hybridization, leading to false removals, can be avoided by using a very precise
melting temperature based on the precise length of the strands.

Hybridization happens naturally and is merely controlled by temperature.
Still, we must argue that the result still satisfies the definition of sticker complex.
The only peculiarity in this respect is the requirement that each component can
contain at most one immobilized node. Since immobilized nodes are imple-
mented by strands affixed to surfaces, implying some minimal distance between
such strands, it seems reasonable to assume that the large majority of hybridiza-
tion reactions will occur among freely floating strands, or between freely floating
and immobilized ones.

Splitting is achieved as usual by restriction enzymes. A feature of the ab-
stract model is that we require only five recognition sites (Table 1). Of course,
these recognition sites will have to be integrated in the DNA codeword design.

Blocking is implemented by making strands double-stranded, so that they
cannot be involved in later hybridizations. The ordinary block operation can be
implemented by adding the appropriate primer which will anneal to the desired
substrands thus blocking the corresponding nodes. As in the Sanger sequenc-
ing method, however, the base at the 3′ end of the primer is modified to its
dideoxy-variant. In this way unwanted interaction with polymerase from possi-
ble later blockfrom operations is avoided. Indeed, blockfrom is implemented
using polymerase.

For the blockexcept operation to work, we need to adapt the implementa-
tion of `-vector strands #3v1 . . . v`#4 (we represent here a strand by its string
of labels), with vi ∈ Λ for i = 1, . . . , `, by introducing additional markers φi, so
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that we get #3φ1v1 . . . φ`v`#4. These ` additional markers must be part of the
set of codewords. We can then implement blockexcept(., n) by the composition
block(.,#3); blockfrom(., φn−1); block(., φn+1); blockfrom(.,#4).

The cleanup operation starts by denaturing (warming up) the tube. Immo-
bilized strands are removed from the tube. Next, a gel electrophoresis is carried
out to separate the longest DNA molecules from the other molecules. Finally,
the positive strands are separated from the negative strands (for example, in the
case that a positive strand is complete blocked in a sticker complex), by attach-
ing all the negative alphabet symbols to a surface, thus immobilizing positive
strands.

In connection with gel electrophoresis, a complication may arise when shorter
circular strands may travel at approximately the same speed as longer linear
strands. In the main applications of DNAQL, and in particular in the simulation
of the relational algebra [8], this will not be an issue. Furthermore, in this
paper we introduce a static type system which can be used to predict which
species of strands can potentially occur in the test tube. Then for each species
a separate gel experiment can be run to predict the different positions of the
bands corresponding to the different species. In this way, the complication with
circular strands may in many cases be avoided.

6 DNAQL

DNAQL is an applicative programming language for expressing functions from
`-complexes to `-complexes. A crucial feature of DNAQL is that the same pro-
gram can be applied uniformly to complexes of any dimension `. DNAQL is
not computationally complete, as it is meant as a query language and not a
general-purpose programming language. The language is based on the basic
set of operations on complexes introduced in Section 4. The language provides
some distinguished constants, an emptiness test (if then else), let-variable
binding, counters that can count up to the dimension of the complex, and a
limited for-loop for iterating over a counter. The syntax of DNAQL is given
in Fig. 5. Note that expressions can contain two kinds of variables: variables
standing for complexes, and counters, ranging from 1 to the dimension `. Com-
plex variables can be bound by let-constructs, and counters can be bound by
for-constructs. The free (unbound) complex variables of a DNAQL expression
stand for its inputs. A DNAQL program is a DNAQL expression without free
counters. So, in a program, all counters are introduced by for-loops.

The constant expressions represent particular complexes. A string w ∈ Σ+

represents a linear (positive) strand s where w = λ(v1) · · ·λ(vn) and (v1, . . . , vn)
is the unique path of s containing all vertices of s. A two-letter string āb̄, for
a, b ∈ Σ−Λ, represents a sticker of the form x→ y with λ(x) = b̄ and λ(y) = ā
for some x and y. The expression immob(ā), for a ∈ Σ, stands for a negative,
immobilized node labeled ā. If ā ∈ Λ̄ we call such a node a probe. The expression
empty stands for the empty complex.

The semantics of a DNAQL expression e is defined relative to a context
consisting of a dimension `, an `-complex assignment ν, and an `-counter as-
signment γ. An `-complex assignment for e is a mapping from the free variables
of e to `-complexes; an `-counter assignment is a mapping from the free counters
of e to {1, . . . , `}. Within such a context, the expression may evaluate to an
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〈expression〉 ::= 〈complexvar〉 | 〈foreach〉 | 〈if 〉 | 〈let〉 | 〈operator〉 | 〈constant〉
〈foreach〉 ::= for 〈complexvar〉 := 〈expression〉 iter 〈counter〉 do 〈expression〉

〈if 〉 ::= if empty(〈complexvar〉) then 〈expression〉 else 〈expression〉
〈let〉 ::= let x := 〈expression〉 in 〈expression〉

〈operator〉 ::= ((〈expression〉) ∪ (〈expression〉)) | ((〈expression〉)− (〈expression〉))
| hybridize(〈expression〉) | ligate(〈expression〉)
| flush(〈expression〉) | split(〈expression〉, 〈splitpoint〉)
| block(〈expression〉,Σ− Λ) | blockfrom(〈expression〉,Σ− Λ)
| blockexcept(〈expression〉, 〈counter〉) | cleanup(〈expression〉)

〈constant〉 ::= Σ+ |
(
Σ− Λ

) (
Σ− Λ

)
| immob(Σ) | empty

〈splitpoint〉 ::= #2 | #3 | #4 | #6 | #8

Figure 5: Syntax of DNAQL.

`-complex, denoted by [[e]]`(ν, γ). Because the operations on complexes are not
always defined, the evaluation may fail, so [[e]]`(ν, γ) may be undefined.

The semantic rules that define this evaluation are shown in Figure 6. The
superscript ` has been omitted in the figure to reduce clutter. The bulk of the
evaluation rules simply apply the operations defined in Section 4. The rules
for let and for define these constructs formally. In these rules we use the oft-
used notation f [x := u] to denote the function obtained from f by adding the
mapping of x to u. When e is a program, we denote [[e]]`(ν, ∅) simply by [[e]]`(ν).

Example 6.1. We give an example of a DNAQL program, over the input vari-
ables x1 and x2, with a behavior similar to the selection operator and the carte-
sian product operator from the relational algebra. Below a and b are assumed
to be atomic value symbols.

let y1 := cleanup(flush(hybridize(x1 ∪ immob(ā)))) in

let y2 := cleanup(flush(hybridize(x2 ∪ immob(b̄)))) in

if empty(y1) then empty else

if empty(y2) then empty else

cleanup(ligate(hybridize(y1 ∪ y2 ∪#5#1)))

Assume complex C1 holds a set of strands of the form #3∗#4#5, where ∗ stands
for a data entry in the form of an `-core, and C2 similarly holds a set of strands
of the form #1#3∗#4. Then the program applied to C1 and C2 filters from C1

and C2 the strands whose data entry contains the letter a and b, respectively;
if both intermediate results are nonempty, then the program uses the stickers
#5#1 to concatenate each remaining strand from C1 with each remaining strand
from C2.

7 Sticker Complex Types

Intuitively, a “weak” sticker complex type is an `-complex where all data entries
have been replaced by wildcards. What remains is a structural description of
the components that may occur in the complex, with attribute names and tags
explicit, but the dimension and actual values of data entries hidden. In order to
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x is a complex variable

[[x]](ν, γ) = ν(x)

[[e1]](ν, γ) = C1 [[e2]](ν, γ) = C2

[[e1 ∪ e2]](ν, γ) = C1 ∪ C2

[[e1]](ν, γ) = C1 [[e2]](ν, γ) = C2 C1 − C2 is well defined

[[e1 − e2]](ν, γ) = C1 − C2

[[e′]](ν, γ) = C ′ C ′ has terminating hybridization

[[hybridize(e′)]](ν, γ) = hybridize(C ′)

[[e′]](ν, γ) = C ′

[[ligate(e′)]](ν, γ) = ligate(C ′)

[[e′]](ν, γ) = C ′

[[flush(e′)]](ν, γ) = flush(C ′)

[[e′]](ν, γ) = C ′ σ ∈ {#2,#3,#4,#6,#8}
[[split(e′, σ)]](ν, γ) = split(C ′, σ)

[[e′]](ν, γ) = C ′ block(C ′, σ) is well defined

[[block(e′, σ)]](ν, γ) = block(C ′, σ)

[[e′]](ν, γ) = C ′ blockfrom(C ′, σ) is well defined

[[blockfrom(e′, σ)]](ν, γ) = blockfrom(C ′, σ)

[[e′]](ν, γ) = C ′ i is a counter blockexcept(C ′, γ(i)) is well defined

[[blockexcept(e′, i)]](ν, γ) = blockexcept(C ′, γ(i))

[[e′]](ν, γ) = C ′ cleanup(C ′) is well defined

[[cleanup(e′)]](ν, γ) = cleanup(C ′)

[[e1]](ν, γ) = C1 [[e2]](ν[x := C1], γ) = C2

[[let x := e1 in e2]](ν, γ) = C2

[[e1]](ν, γ) = C0 [[e2]](ν[x := Cn−1], γ[i := n]) = Cn for n = 1, . . . , `

[[for x := e1 iter i do e2]](ν, γ) = C`

[[e1]](ν, γ) = C1 ν(x) is the empty complex

[[if empty(x) then e1 else e2]](ν, γ) = C1

[[e2]](ν, γ) = C2 ν(x) is not the empty complex

[[if empty(x) then e1 else e2]](ν, γ) = C2

Figure 6: DNAQL Semantics
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obtain a powerful type-checking algorithm for DNAQL, these “weak” types S
are augmented to obtain “strong” types that also indicate the mandatory com-
ponents �, which must occur, and a bit h indicating whether all the complexes
of the type are saturated. The former is needed to type common DNAQL pro-
grams that use hybridization, and the latter is needed to type blocking operators
in a DNAQL program (which require saturation to be defined).

7.1 Definition

We begin by introducing four symbols assumed not present in Σ ∪ Σ:

1. ∗ (unblocked) represents an `-core with none of the nodes blocked;

2. ∗ (blocked) represents an `-core with all nodes blocked; and

3. ∗̂ (open) represents an `-core with all nodes except one blocked.

Let N denote the set {∗, ∗, ∗̂}. The positive alphabet without atomic value
symbols, but with the above new symbols is denoted by ΣN = Ω ∪Θ ∪N .

The fourth new symbol, denoted by ‘?’ will be used to represent a single
negative atomic value symbol that has been immobilized. The negative alphabet
without the negative atomic value symbols, but with ? is denoted ΣN = Ω ∪
Θ ∪ {?}. Note that ? is considered to be a negative symbol. We extend the
complementarity relation for sticker complex types, by defining ∗ = ?, ∗̂ = ?
and ? is undefined, i.e., the immobilized negative atomic value symbol (?) can
match with an unblocked or an open `-core. Note that ∗ has no complementary
symbol, and that the complementarity relation is no longer a bijection.

A weak sticker complex type (or weak type for short) is very similar to a
sticker complex; it is a structure S = (V,L, λ, µ, ι, β) that satisfies the same
definition as that of a sticker complex with the following exceptions:

− the range of the node labeling function λ is now ΣN ∪ΣN instead of Σ∪Σ;

− β ⊆ V is not allowed to contain nodes labeled with a symbol from N ;

− a node can be labeled ‘?’ only if it is immobilized; and

− there are no redundant components (recall the definition of redundancy
from Section 3).

Next, we define the important notion of when a sticker complex C = (V,L, λ,
µ, ι, β) of some dimension ` is said to be well typed. Thereto, recall the intuitive
meaning of the new symbols {∗, ∗, ∗̂, ?}. Formally, consider an `-core r occurring
in C. We say that

− r is of type ∗ if no node of r belongs to β, and at most one node of r is
involved in µ;

− r is of type ∗ if all nodes of r belong to β; and

− r is of type ∗̂ if all nodes of r but one belong to β and r is flanked by
closed nodes (i.e., on both sides adjacent, w.r.t. L, to closed nodes).

Now we say that C is well typed if
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Figure 7: Two ill-typed complexes.

− every `-core in C is of type ∗, ∗, or ∗̂; and

− negative atomic value symbols can only occur on immobilized nodes (i.e.,
probes).

Example 7.1. Fig. 7 shows two ill-typed (i.e., not well-typed) complexes. The
first complex is ill typed because it contains a negative atomic value symbol
(a) that is not immobilized. The second complex is ill typed because the node
labeled a in a 3-core is blocked (shown by underlining the symbol a). This
3-core is thus not of type ∗, as one node is blocked, and it is not of type ∗̂ or ∗
as two nodes are not blocked.

Moreover, if C is well typed, we define stype(C) as the weak type obtained
by:

− contracting every `-core occurring in C to a single node labeled with the
type of the `-core (∗, ∗ or ∗̂);

− replacing the label of a node labeled with an immobilized negative atomic
value by ?; and

− when a node from an `-core r in C is matched by µ to a node u, then in
stype(C) the single node representing r is matched to u. Note that, by
the previous item, in stype(C) node u has label ?. Furthermore, the node
representing r is labeled ∗ or ∗̂.

The definitions of subsumption, mutually interacting, and saturated for
sticker complexes, defined in Section 3, are adopted to weak types in the natu-
ral way. We have the following lemma, which henceforth will be used without
mention.

Lemma 7.2. Let C1 and C2 be well-typed sticker complexes. If C1 v C2,
then stype(C1) v stype(C2). If stype(C1) v stype(C2) and stype(C1) does not
contain nodes labeled with symbols of N = {∗, ∗̂, ∗, ?}, then C1 v C2.

Proof. If C1 v C2, then for each component c of C1 there is a component c′ of
C2 isomorphic to c. Hence stype(c) is isomorphic to stype(c′). If stype(C1) v
stype(C2) and stype(C1) does not contain nodes labeled with symbols of N ,
then C1 ≡ stype(C1) v stype(C2). Let c ∈ comp(C1), then there is a c′ ∈
comp(stype(C2)) such that c′ ≡ c. Hence c′ does not contain nodes labeled by
symbols of N . Thus a component isomorphic to c′ belongs to C2.
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Figure 8: A sticker complex C and a weak type S where C has weak type S.

For a well-typed sticker complex C and a sticker complex type S, we now
say that C has weak type S, denoted by C : S, if stype(C) is subsumed by S.
For sticker complex C, stype(C) is the “smallest” weak type, in the sense that
for every weak type S′ such that C : S′, it holds that S is subsumed by S′.

Example 7.3. Fig. 8 shows a sticker complex C of dimension 2, and a weak
type S. Structurally, C and S are very alike. There are two differences: (i)
2-cores are contracted to one node labeled ∗, and (ii) as the second and third
strand of C only differ in their respective 2-cores, only one strand (the bottom
strand of S) is needed to represent both. Weak type S is stype(C) and is thus
the smallest type for C.

Lemma 7.4. A weak type S is saturated if and only if all complexes having
weak type S are saturated.

Proof. We first prove the if direction. Assume S is not saturated, and let u
and v be nodes of S that are mutually interacting. If the labels of u and v are
not in {∗, ∗, ∗̂, ?}, then any sticker complex C with stype(C) isomorphic to S
has corresponding mutually interacting nodes u′ and v′. Alternatively, one of
u and v, say u, has label ? and the other has a label in {∗, ∗̂}. In this case
choose a sticker complex C with stype(C) isomorphic to S such that the `-core
corresponding to u has a free node with label complementary to the label of the
node v′ corresponding to v. Consequently, u′ and v′ are mutually interacting.
In any case, sticker complex C has type S and is not saturated.

We now prove the only-if direction. Assume there is a sticker complex C
of weak type S such that C is not saturated. Then there are nodes u and
v of C that are mutually interacting. Consequently, stype(C) has nodes that
are mutually interacting and since stype(C) v S, so does S. Thus, S is not
saturated.

A weak type is “weak”, in the sense that for any well-typed sticker complex
C of weak type S, C is also of weak type S′, where S is subsumed by S′. In
particular, the empty sticker complex is of every weak type. This is too weak
to type nontrivial DNAQL programs involving hybridization, where we need
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A A

Figure 9: A weak type having two single-node components.

to know about components that are sure to be present. We now introduce
the notion of a “strong” type which can place further restrictions on sticker
complexes. A strong sticker complex type (or type for short) τ is a triple (S,�, h),
where S is a weak type, � is a weak type subsumed by S, h is a boolean, and
moreover if h = true, then C ∪ � is saturated for all C ∈ comp(S). Then S is
called the weak type of τ , � is called the mandatory type of τ , and h is called
the h-bit (or hybridization bit) of τ .

For a well-typed sticker complex C and a type τ = (S,�, h), we now say
that C has type τ , denoted C : τ , if � is subsumed by stype(C), stype(C) is
subsumed by S (i.e., C has type S), and C is saturated if h = true. A type τ
is called saturated if all complexes having type τ are saturated. With [[τ ]] we
denote the set of complexes (of any dimension) having type τ .

Example 7.5. Consider the weak type S shown in Fig. 9. Let h = true and let
� be the weak type consisting of the component of S depicted on the left-hand
side of Figure 9. Then (S,�, h) is not a type since there is a c ∈ comp(S) (it
is the component on the right-hand side of Figure 9), such that c ∪ � is not
saturated.

Note that the saturation condition in the definition of a type avoids “garbage”
components. Indeed, if we omitted this condition, then any complex having type
τ cannot contain the component on the right-hand side of Figure 9, because such
a complex will not be saturated.

Example 7.6. The h-bit in types is essential for typing the block operations,
i.e., block, blockfrom, and blockexcept. As will become clear in proofs about
types, the h-bit introduces some subtle modeling options. For example, recall
the weak type S shown in Fig. 9. Let τ = (S, empty, true). There are three
(mutually non-isomorphic) complexes having type τ : the empty complex, the
complex consisting of the component on the left and the complex consisting of
the component on the right. The complex consisting of both components is not
saturated and thus prohibited by the h-bit.

From now on, in graphical depictions of types, mandatory components are
indicated by the symbol �.

Example 7.7. Consider the type τ on the left-hand side of Fig. 10 — the h-bit
of τ is irrelevant in this case. Although both components of τ are mandatory,
we will see in Section 8 that the hybridization τ ′ of τ consists of three non-
mandatory components, see the right-hand side of Fig. 10. Let τ ′ = (S,�, h).
The h-bit of τ ′ is true. This has important repercussions on the set of complexes
having this type. Indeed, consider the complex in Fig. 11. This complex does
not have type τ ′, but it has type (S,�, false).

The definition of a saturated type is semantic. We now show that we can
efficiently and syntactically decide whether or not a type is saturated.
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#2 A #3 ∗ #4

#2 A #3 ∗ #4�

#2 A #3 ∗ #4�?

?

Figure 10: A type with two mandatory components on the left. On the right is
the hybridization of the type on the left. Despite the fact that all components
start as mandatory, the hybridization contains only non-mandatory components.

b

A d#2 #3 #4

#2 aA #4#3

#2 A #3 #4c

c d

Figure 11: A complex with five components. This complex does not have the
type on the right of Fig. 10.
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Lemma 7.8. Type τ = (S,�, h) is saturated if and only if S is saturated or
h = true.

Proof. We first prove the if direction. Let C ∈ [[τ ]]. Since C is of weak type S,
we have by Lemma 7.4 that if S is saturated, then so is C. If h = true, then C
is saturated by the definition of C : τ .

We now prove the only-if direction. Suppose that S is not saturated and
h = false. Since S is not saturated, by Lemma 7.4, there is a complex C having
weak type S that is not saturated. Let C ′ be a complex with stype(C ′) ≡ �.
Then C ′′ = C ∪ C ′ is not saturated and � v stype(C ′′) v S. Since h = false,
we have that C ′′ ∈ [[τ ]]. Hence τ is not saturated.

Note that, as a consequence of Lemma 7.8, saturatedness of a type is decid-
able in polynomial time.

7.2 Subtypes

A desirable property of types is that they are inhabited, i.e., for every type τ ,
the set [[τ ]] is non-empty. This follows from the next lemma.

Lemma 7.9. Let τ = (S,�, h) be a type. For every D ∈ comp(S), any com-
plex C with stype(C) ≡ � ∪ D has type τ . In particular, any complex C with
stype(C) ≡ � has type τ .

Proof. If h = false, then any complex C with � v stype(C) v S is of type τ . If
h = true, by the definition of a type, the weak type � ∪D is saturated. Con-
sequently, C is saturated and so C has type τ . In particular, if D ∈ comp(�),
then stype(C) ≡ � is saturated. The corner case where comp(�) = ∅ also holds,
since the empty weak type is saturated by definition.

Let τ and τ ′ be types. We denote [[τ ]] ⊆ [[τ ′]] by τ � τ ′. A type τ is subsumed
in, or equivalently is a subtype of, another type τ ′ if all complexes having type
τ also have type τ ′. Types τ and τ ′ are called equivalent if τ � τ ′ and τ ′ � τ .

Example 7.10. Recall the type τ = (S,�, true) on the right-hand side of
Fig. 10. Let τ ′ = (S,�, false). We have that τ � τ ′ but not τ ′ � τ , because the
complex shown in Fig. 11 has type τ ′ but does not have type τ .

The notion of subtyping is defined semantically. Moreover, a type can have
an infinite number of complexes. An efficiently decidable syntactic characteri-
zation of subtyping is thus called for. Proposition 7.11 provides such a charac-
terization.

Proposition 7.11. Let τ = (S,�, h) and τ ′ = (S′,�′, h′) be types. Type τ is a
subtype of τ ′ if and only if (i) S v S′; (ii) �′ v �; and (iii) if h′ = true then τ
is saturated. This statement also holds if we replace the condition h′ = true by
τ ′ is saturated.

Proof. First, we prove the only-if direction. Assume τ � τ ′. We now verify each
of the three conditions.

(i) Suppose that S 6v S′. Let D be a component in comp(S) \ comp(S′). Let
C be a complex with stype(C) = � ∪ D. Complex C has type τ , even
if h = true. But complex C does not have type τ ′, because D is not a
component of S.
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Figure 12: Types τ = (S,�, false) and τ ′ = (S′,�′, true) with τ � τ ′.

(ii) Suppose that �′ 6v �. Let C be a complex with stype(C) = �. By
definition, C has type τ . But complex C does not have type τ ′, because
�′ 6v � = stype(C).

(iii) If h′ = true, then τ ′ is saturated and therefore also τ � τ ′.

We now consider the if direction. Let C be a complex having type τ . We
easily verify that C also has type τ ′: (i) stype(C) v S v S′; (ii) �′ v � v
stype(C); and (iii) if h′ = true, then τ is saturated and thus C is saturated.

If S′ is saturated, then S v S′ is saturated and, by Lemma 7.8, so is τ .
By again using Lemma 7.8 we observe that we thus may replace the condition
h′ = true in the proposition by τ ′ is saturated.

Lemma 7.8 implies that the notion of saturated for types is decidable in poly-
nomial time, and therefore that the notion of subtype is decidable in polynomial
time.

We have the following corollary to Proposition 7.11.

Corollary 7.12. Let τ = (S,�, h) and τ ′ = (S′,�′, h′) be types. Types τ and
τ ′ are equivalent if and only if (i) S ≡ S′; (ii) � ≡ �′; and (iii) if S ≡ S′ is
not saturated, then h = h′.

Proof. It suffices to show that condition (iii) is equivalent to [h′ = true implies
that τ saturated]∧[h = true implies that τ ′ saturated]. By Lemma 7.8, if S ≡ S′
is saturated then both conditions hold trivially, and if S ≡ S′ is not saturated
then both conditions reduce to h = h′.

Obviously, type τ = (S,�, true) is a subtype of the type τ ′ = (S,�, false).
On the other hand, by Corollary 7.12, τ ′ = (S,�, false) may also be a subtype
of τ when S is saturated.

Example 7.13. Fig. 12 shows types τ = (S,�, false) and τ ′ = (S′,�′, true)
with τ � τ ′. Since S is saturated, setting h = true in τ yields a type equivalent
to τ .

The next lemma specifies the “tightest” type (up to equivalence) for a given
complex.

Lemma 7.14. Let C be a complex and τ a type. Then C is of type τ iff
(stype(C), stype(C), hC) � τ with hC = true iff C is saturated.

Proof. Let τ = (S,�, h). By Proposition 7.11, (stype(C), stype(C), hC) � τ iff
(1) � v stype(C) v S and (2) if h = true, then (stype(C), stype(C), hC) is sat-
urated. Now, by Lemma 7.8, (stype(C), stype(C), hC) is saturated iff stype(C)
is saturated or C is saturated. If stype(C) is saturated, then C is saturated.
Hence, (stype(C), stype(C), hC) is saturated iff C is saturated. By definition,
C : τ iff (1) � v stype(C) v S and (2) if h = true, then C is saturated — so
the lemma follows.
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Figure 13: Types τ1 = (S1,�1, h1) and τ2 = (S2,�2, h2), having no mandatory
components in common. As a result, τ1 ∨ τ2 = (S1 ∪ S2, empty, true) allows the
empty complex, whereas the empty complex is not part of [[τ1]] or [[τ2]].

7.3 Least upper bound

Let τ1 and τ2 be types. A type is called an upper bound of τ1 and τ2 if τ1 � τ
and τ2 � τ . A type τ is called the least upper bound of τ1 and τ2 if τ is an upper
bound of τ1 and τ2 and for all upper bounds τ ′ of τ1 and τ2, τ � τ ′. Note that
if τ and τ ′ are least upper bounds of τ1 and τ2, then τ and τ ′ are equivalent.
We denote the (up-to-equivalence unique) least upper bound of τ1 and τ2 (if it
exists) by τ1 ∨ τ2.

Let S and S′ be weak types. The intersection of S and S′ is the weak type
formed by the components of S that are isomorphic to some component of S′.
We denote the intersection of S and S′ by S ∩ S′.

Proposition 7.15. Let τ1 = (S1,�1, h1) and τ2 = (S2,�2, h2) be types. The
least upper bound of τ1 and τ2 exists and is equivalent to the type (S1 ∪S2,�1 ∩
�2, τ1 saturated ∧ τ2 saturated).

Proof. Let τ = (S,�, h) with S = S1∪S2, � = �1∩�2, and h = τ1 saturated ∧
τ2 saturated.

First, observe that τ is a type. Indeed, �1 ∩ �2 v �1 v S1 v S1 ∪ S2

and if h = true, we must show that for all C ∈ comp(S) it holds that � ∪ C
is saturated. Let C ∈ comp(S). Then C ∈ comp(Si) for some i ∈ {1, 2}. If
h = true, then τi is saturated. By Lemma 7.8, Si is saturated or hi = true. If
Si is saturated, then so is � ∪ C v �i ∪ C v Si. If hi = true, then �i ∪ C is
saturated and so is � ∪ C v �i ∪ C.

Now we must show that τ is the least upper bound. Let τ ′ = (S′,�′, h′)
be a type. Then τ ′ is an upper bound of τ1 and τ2 iff τi � τ ′ for i ∈ {1, 2}.
By Proposition 7.11, τi � τ ′ iff Si v S′, �′ v �i and if h′ = true, then τi is
saturated. Hence, τ ′ is an upperbound iff S1 ∪ S2 v S′, �′ v �1 ∩ �2, and if
h = true, then τ1 is saturated and τ2 is saturated. Hence, by Proposition 7.11,
τ ′ is an upper bound of τ1 and τ2 iff τ � τ ′.

For types τ1 and τ2, we have [[τ1]] ∪ [[τ2]] ⊆ [[τ1 ∨ τ2]]. The converse inclusion,
however, does not hold in general. Indeed, consider the types τ1 and τ2 shown
in Fig. 13. The empty complex is in [[τ1 ∨ τ2]] but not in [[τ1]] or [[τ2]], because
both types have a non-empty mandatory type.

7.4 Greatest lower bound

Let τ1 and τ2 be types. A type τ is called a lower bound of τ1 and τ2 if τ � τi
for all i ∈ {1, 2}. A type τ is called a greatest lower bound of τ1 and τ2 if τ is
a lower bound of τ1 and τ2, and for all lower bounds τ ′ of τ1 and τ2, τ ′ � τ .
Notice that if τ and τ ′ are greatest lower bounds, then τ and τ ′ are equivalent.
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The (up-to-equivalence unique) greatest lower bound of τ1 and τ2 (if it exists)
is denoted by τ1 ∧ τ2.

Proposition 7.16. Let τ1 = (S1,�1, h1) and τ2 = (S2,�2, h2) be types.
A lower bound of τ1 and τ2 exists if and only if both (1) �1 ∪ �2 v S1 ∩ S2

and (2) if τ1 or τ2 is saturated, then �1 ∪ �2 is saturated.
If a lower bound of τ1 and τ2 exists, then there exists a greatest lower bound

equivalent to

τg = (S1 ∩ S2 − Z,�1 ∪ �2, τ1 saturated ∨ τ2 saturated),

where Z = {C ∈ comp(S1 ∩ S2) | C ∪ �1 ∪ �2 is not saturated} if τ1 or τ2 is
saturated, and Z = ∅ otherwise.

Proof. Let τ = (S,�, h) be a type. Then, by Proposition 7.11, τ � τi iff S v Si,
�i v �, and if τi is saturated, then τ is saturated. Hence, τ is a lower bound of
τ1 and τ2 iff (1) S v S1 ∩S2, (2) (�1 ∪�2) v �, and (3) if τ1 or τ2 is saturated,
then τ is saturated.

Since � v S, the existence of a lower bound implies that �1 ∪�2 v S1 ∩S2.
Also, if τ is saturated, then � is saturated and therefore so is (�1 ∪ �2) v �.
Thus, the existence of a lower bound also implies that if τ1 or τ2 is saturated,
then �1 ∪ �2 is saturated.

Conversely, if the two conditions stated in the proposition hold, then τg is
a type satisfying the above three conditions for being a lower bound. Indeed,
this is clear if τ1 and τ2 are not saturated. Assume that τ1 or τ2 is saturated.
Then �1 ∪�2 is saturated. Consequently, �1 ∪�2 v S1 ∩S2−Z and for every
C ∈ comp(S1 ∩ S2 − Z), we have that C ∪ �1 ∪ �2 is saturated. So τg is a
type. We easily observe that the three conditions for being a lower bound hold
for τg (the last one holds since the h-bit of τg is true in this case and so τg is
saturated).

We finally show that lower bound τg is a greatest lower bound. Let τ be
such that τg � τ . Then S1 ∩ S2 − Z v S, � v �1 ∪ �2, and if τ is saturated,
then τg is saturated. If τ is moreover a lower bound of τ1 and τ2, then the
above three conditions hold and so S1 ∩ S2 − Z v S v S1 ∩ S2, and � ≡
�1 ∪ �2, and τg is saturated iff τ is saturated. If τ is saturated, then, for
all C ∈ comp((S1 ∩ S2) ∩ Z), we have that C ∪ � is not saturated and so
S1 ∩ S2 − Z ≡ S. Thus τ and τg are equivalent, and so τg is a greatest lower
bound.

Example 7.17. Types τ1 and τ2 from Fig. 13 do not have a greatest lower
bound. Indeed, S1 ∩ S2 is the empty complex, while the weak type �1 ∪ �2

contains two components.

8 Operations on Sticker Complex Types

In Section 4, we have defined a set of operations on complexes. The type system
will mimic the structural changes, effected by the operations on complexes, on
types. Thereto we now proceed to define the operations also on the type level.
The result of each operation below is defined up to equivalence.

Let us first introduce some common notations. In the following definitions,
propositions, and proofs, the symbols τ , τ ′, τ1, and τ2, invariably stand for
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arbitrary types (S,�, h), (S′,�′, h′), (S1,�1, h1), and (S2,�2, h2), respectively.
Also, for any a ∈ Λ and natural number `, the notation a` invariably stands for
a sequence of ` nodes labeled a.

8.1 Union

We define the union of τ1 and τ2, denoted by τ1 ∪ τ2, as (S1 ∪ S2,�1 ∪ �2, h),
where h = true iff both (1) there are no nodes u in S1 and v in S2 such that u
and v are mutually interacting, and (2) τ1 and τ2 are saturated.

Note that τ1∪ τ2 is a type since for all C ∈ comp(Si), with i ∈ {1, 2}, C ∪�i

is saturated, and thus C ∪�1 ∪�2 is saturated by condition (1) when h = true.

Proposition 8.1. If C1 : τ1 and C2 : τ2, then C1 ∪ C2 : τ1 ∪ τ2.

Proof. Let C = C1 ∪ C2 and τ1 ∪ τ2 = (S,�, h). We verify the three conditions
in the definition of a complex having a particular type.

We first verify that stype(C) v S. Let D ∈ comp(C). Then D ∈ comp(C1)
or D ∈ comp(C2). Consequently, stype(D) is subsumed by S1 or by S2, and
thus by S1 ∪ S2 = S.

We now verify that � v stype(C). Let s ∈ comp(�1∪�2). If s ∈ comp(�1),
then s is subsumed by stype(C1), and if s ∈ comp(�2), then s is subsumed by
stype(C2). Hence s is subsumed by stype(C).

Finally, assume that h = true. Assume to the contrary that C is not sat-
urated. Let u and v be mutually interacting nodes of C. Since h = true, τ1
and τ2 are both saturated and so u and v do not both belong to C1 or to C2.
Assume that u belongs to C1 and v belongs to C2. In stype(C), nodes u and v
are represented by nodes u′ and v′ respectively, which are mutually interacting
nodes of stype(C). Since stype(C) is subsumed by S, nodes u′ and v′ in stype(C)
correspond to mutually interacting nodes u′′ and v′′ of S1∪S2, where u′′ belongs
to S1 and v′′ to S2. However h = true implies that such nodes do not exist (see
the definition of τ1 ∪ τ2) — a contradiction.

The next proposition shows that τ1 ∪ τ2 is the most restrictive type that
satisfies Proposition 8.1.

Proposition 8.2. If C1 ∪ C2 : τ for all complexes C1 : τ1 and C2 : τ2, then
τ1 ∪ τ2 � τ .

Proof. Let τ1 ∪ τ2 = (S∪,�∪, h∪). To show that τ1 ∪ τ2 � τ , we verify the three
conditions of Proposition 7.11.

1. Proof of S∪ v S. Let D ∈ comp(S∪). If D ∈ comp(S1), let C1 be a
complex such that stype(C1) ≡ (�1 ∪ D) and let C2 be a complex such
that stype(C2) ≡ �2. By Lemma 7.9, complex C1 has type τ1 and complex
C2 has type τ2. Since C1 ∪ C2 : τ we have D ∈ comp(S).

2. Proof of � v �∪. Let D ∈ comp(S) such that D 6v �∪. We show that
D 6v �. Let, for i ∈ {1, 2}, complex Ci be such that stype(Ci) ≡ �i.
Then complexes C1 and C2 are of types τ1 and τ2, respectively. Because
D 6v �∪, we have D 6v �1 and D 6v �2. Hence complex C1 ∪C2 does not
contain a component of weak type D. Thus, D 6v �.
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3. Proof of h = true implies that τ1 ∪ τ2 is saturated. Assume that τ1 ∪ τ2
is not saturated. We show that h = false. Since τ1 ∪ τ2 is not saturated,
h∪ = false. Thus, by definition of τ1 ∪ τ2, (a) S1 and S2 are mutually
interacting, or (b) τ1 or τ2 are not saturated.

(a) Suppose that S1 and S2 are mutually interacting. Let C1 and C2

be such that stype(C1) ≡ (�1 ∪ D1) and stype(C2) ≡ (�2 ∪ D2),
respectively. Thus C1 ∪ C2 is not saturated. Complexes C1 and C2

are of types τ1 and τ2, respectively. Since C1 ∪C2 : τ and C1 ∪C2 is
not saturated, we have h = false.

(b) Suppose, without loss of generality, that τ1 is not saturated. Hence
there is an unsaturated complex C of type τ1. Let C ′ be a complex
of type τ2. Since C ∪ C ′ : τ and C ∪ C ′ is not saturated, we have
h = false.

8.2 Difference

Assume the weak types Si = (Vi, Li, λi, µi, ιi, βi) underlying τi, for i = 1, 2,
satisfy the following conditions:

1. µ1 = ι1 = β1 = ∅ = µ2 = ι2 = β2 and there are no nodes labeled with ∗
or ∗̂, i.e., all components in S1 and S2 are single strands.

2. All strands of S1 and S2 are positive, noncircular. Furthermore, all strands
have the same length and the same number of ∗-labeled nodes.

3. Each strand of S2 ends with #4 and does not contain #5.

If these conditions are not satisfied, the operation below is undefined.
Let T1 (T2, resp.) be the weak type consisting of all strands in �1 (S1, resp.)

that do not have an isomorphic copy in S2 (�2, resp.). Let data(S1) be the set
of strands in S1 having a ∗-labeled node. We define the difference of τ1 and τ2,
denoted by τ1−τ2, as

(
data(S1)∪T2, T1, true

)
. Note that τ1−τ2 is a type, since

T1 v T2 and data(S1) ∪ T2 is saturated because all components are positive,
noncircular strands.

Example 8.3. Fig. 14 shows a type τ with a single mandatory component.
The h-bit is true. There are no matching, blockings nor immobilizations and
the strand ends on a #4 and does not contain a #5. Consequently, the dif-
ference between τ and itself is defined. All complexes having type τ consist of
linear strands, differing solely on the atomic value symbols. Let C1 and C2 be
complexes of dimension 1 having type τ . The content of the complexes is listed
in Table 2. On the type-level, the cases C1 −C1 and C1 −C2 are indistinguish-
able, however, the resulting complexes are different. The output of C1 − C1 is
the empty complex, whereas the output of C1 − C2 is the complex containing
the strand #2A#3a#4. In other words, the data strands (strands with a node
labeled ∗) are unpredictable on the type-level. Consequently, they are preserved
in the output type, regardless of the content of the second type τ2.

28



A#2 #3 #4∗

�

Figure 14: A hybridized type with a single mandatory component.

Table 2: Two complexes having the type depicted in Fig. 14.

C1

#2A#3a#4

#2A#3b#4

C3

#2A#3b#4

#2A#3c#4

Proposition 8.4. τ1−τ2 is defined if and only if for all complexes C1 of type τ1
and C2 of type τ2, we have that C1−C2 is defined. In this case, C1−C2 : τ1−τ2.

Proof. First assume that τ1− τ2 is defined. Let C1 be a complex of type τ1 and
C2 be a complex of type τ2. We prove that C1 − C2 is defined by showing that
each of the three input restrictions in the definition of difference for complexes
is met.

1. There are no matchings, no immobilizations, no blockings, no nodes la-
beled ∗ and no nodes labeled ∗̂ in S1 and S2. Thus, there can be no
immobilizations, matchings or blockings in C1 or C2.

2. The components of τ1 and τ2 are all positive, noncircular, of equal length
and with the same number of nodes labeled ∗. Thus, C1 and C2 consist
of positive, noncircular and equal length strands.

3. All the strands in τ2 end on #4 and do not contain #5. Thus, all strands
in C2 end on #4 and do not contain #5.

We thus conclude that C1 − C2 is well defined.
Conversely, assume that τ1 − τ2 is not defined. We show that there are

complexes C1 of type τ1 and C2 of type τ2 such that C1 − C2 is not defined.
Assume that τ1 − τ2 is not defined. Then one of the three conditions in the
definition of difference on types is not satisfied. We consider each of these cases
separately.

1. Suppose there is a node x that is matched, immobilized, blocked or labeled
with ∗ or ∗̂ in τ1 (the proof is similar if x is in τ2). Recall that a node
labeled with ∗ or ∗̂ represents a (possibly partially) blocked `-core, and
so every complex having such a type will have a blocked node (as ` ≥ 2
by definition, there will also be a blocked node in case of ∗̂). Let D
be the component of S1 containing x. Let C1 be a complex such that
stype(C1) ≡ D∪�1. Complex C1 has type τ1 by Lemma 7.9 and therefore
has a matching, blocking, or immobilization. So the difference C1 −C2 is
not defined for any complex C2 of type τ2 (such a complex C2 exists by
Lemma 7.9).
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2. This case will be split into two subcases: (a) there is a negative or circular
strand in strands(S1) or strands(S2), and (b) assuming that there are only
positive noncircular strands, strands s1 and s2 in strands(S1)∪strands(S2)
are of different lengths or have a different number of ∗-labeled nodes.

(a) Let d be a strand in Si for some i ∈ {1, 2} that is negative or cir-
cular, and let D be the component in which d occurs. Let Ci be a
complex with stype(Ci) ≡ �i∪D. Hence, complex Ci is of type τi by
Lemma 7.9. Moreover, Ci has a negative or circular strand, whence
the difference C1 − C2 is undefined.

(b) Let s1 and s2 in strands(S1) ∪ strands(S2), having a different length
or a different number of ∗-labeled nodes. Denote with n(s1) resp.
n(s2) the length of s1 resp. s2 and denote with a(s1) resp. a(s2) the
number of ∗-labeled nodes in s1 resp. s2. The length of any strand
of weak type s1 resp. s2 is expressed by n(s1) + (` − 1)a(s1) resp.
n(s2)+(`−1)a(s2) (` is the dimension). We distinguish the following
cases, and exhibit, as claimed, two strands having respective types
s1 and s2, of different lengths, so that their difference is not defined:

i. If n(s1) 6= n(s2) and a(s1) = a(s2), then clearly the lengths
n(s1) + (`− 1)a(s1) and n(s2) + (`− 1)a(s2) are different.

ii. Otherwise, a(s1) 6= a(s2). Then s1 and s2 are of equal length if
`−1 = (n(s2)−n(s1))/(a(s1)−a(s2)). Without loss of generality
we may assume that a(s1) > a(s2). If `−1 > max{n(s2)−n(s1)},
then the above condition cannot be satisfied, i.e., two strands
having respective types s1 and s2 will have different lengths.

3. Let D be a strand of S2 either containing a node labeled #5 or not ending
with a node labeled #4. Let C1 be a complex having type τ1. Let C2 be
a complex with stype(C2) ≡ �2 ∪ D. By definition, C2 has type τ2 and
has a strand that either contains a node labeled #5 or does not end with
a node labeled #4. Hence, C1 − C2 is undefined.

Next, we prove that C = C1 − C2 is of type τ = τ1 − τ2. Let τ = (S,�, h).
We first verify that stype(C) v S. By the definition of difference on com-

plexes, D ∈ comp(C) implies that D is subsumed by C1, but not subsumed by
C2. Consequently, stype(D) is subsumed by S1 and (1) stype(D) is not sub-
sumed by �2 or (2) stype(D) contains ∗. Thus stype(D) ∈ comp(data(S1)∪T2)
where T2 is the complex containing all components of S1 that are not subsumed
by �2 — as required.

We now verify that � v stype(C). Let s ∈ comp(�). By the definition
of �, s v �1 and s 6v S2. Since s v �1, we have s ≡ stype(D) for some
D ∈ comp(C1). Since stype(D) ≡ s 6v S2 and stype(C2) v S2, we have by the
first part of Lemma 7.2 that D 6v C2. Thus D v C1−C2 = C and again by the
first part of Lemma 7.2 we have s ≡ stype(D) v stype(C) as desired.

Finally, since C contains only positive strands, C is saturated. Hence, h =
true is fine.

The next proposition shows that τ1 − τ2 is the most restrictive type that
satisfies Proposition 8.4.
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Proposition 8.5. Assume |Λ| ≥ 2. If C1−C2 : τ for all complexes C1 : τ1 and
C2 : τ2, then τ1 − τ2 � τ .

Proof. Let τ1 − τ2 = (S−,�−, h−). Let a, b ∈ Λ with a 6= b.
To show that τ1− τ2 � τ , we verify the three conditions of Proposition 7.11.

1. Proof of S− v S. Since τ1 − τ2 is defined, neither S1 nor S2 contain
nodes labeled with ∗, ∗̂ or ?. Recall from the definition of τ1 − τ2 that
data(S1) consists of the components of S1 that have a ∗-labeled node. Let
D ∈ comp(S−). Let complex C1 be obtained from �1 ∪ D by replacing
each ∗ by a`. Let complex C2 be obtained from �2 by replacing each ∗
by b`. Since D ∈ comp(S−), we have D ∈ data(S1) or both D /∈ data(S1)
and D does not have an isomorphic copy in �2. In the first case, there
is a component C in C1 − C2 with stype(C) ≡ D, because C1 and C2

have different `-cores. In the second case, there is, by definition of C2,
a component C in C1 − C2 with stype(C) ≡ D. Since, C1 − C2 : τ , we
conclude in both cases that D v comp(S).

2. Proof of � v �−. Let complex C1 be obtained from �1 by replacing all ∗-
labeled nodes by a`. Complex C1 has type τ1. Let complex C2 be obtained
from �2∪(�1−T1) v S2 by replacing all ∗-labeled nodes by a`. Note that
�1−T1 consists of the components in �1 having an isomorphic copy in S2.
As a result, C2 has type τ2 (since τ1 − τ2 is defined). Since we replaced
∗-labeled nodes both in C1 and in C2 by a`, complex C1 − C2 consists
solely of components of weak type T1 ≡ �−, i.e., stype(C1 − C2) v �−.
By assumption, C1 − C2 : τ , whence � v stype(C1 − C2). We conclude
� v �− as desired.

3. Proof that h = true implies saturation of τ1 − τ2. As h− = true, τ is
trivially saturated.

8.3 Hybridize

The hybridize operator on sticker complexes can naturally be adapted to weak
types by incorporating the extended complementarity relation, i.e., with ∗ = ?
and ∗̂ = ? as legal matchings. Denote this adjusted version by hybridizet.

We now proceed to define the hybridization of τ , denoted by hybridize(τ).
First, if h = true, then this is simply τ itself.

Next assume h = false. Now if hybridization does not terminate for S, i.e.,
hybridizet(S) is not defined, then hybridization of τ is not defined either.

Otherwise, we call a component D a necessary component of τ if D ∈
comp(�) and D is not isomorphic to immob(?). Let NC be the weak type con-
sisting of all necessary components of τ . Then we define hybridize(τ) = (Cs,
�h, true), where

Cs =

( ⋃
NCvXvS

hybridizet(X)

)
∪ {immob(?) | immob(?) v S},

and �h is the weak type that consists of all components D of Cs such that
either (1) D is a component of both hybridizet(NC ) and hybridizet(S) or
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Figure 15: A type τ with two mandatory components.
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Figure 16: Type hybridize(τ), where τ is from Fig. 15.

(2) D = immob(?) ∈ comp(�) and there is no component in S with an free node
labeled with ∗ or ∗̂.

Note that hybridize(τ) is well defined as D ∪ �h not saturated for some
D ∈ comp(Cs) would imply that some D′ ∈ comp(�h) is unfinished with respect
to Cs — a contradiction.

Example 8.6. Consider type τ displayed in Fig. 15. Type τ ′ = hybridize(τ)
is shown in Fig. 16 (except for the h-bit which is always true). Note that the
weak type of τ ′ consists of three components, all of which are not mandatory.

Proposition 8.7. hybridize(τ) is defined if and only if for all complexes C
of type τ , we have that hybridize(C) is defined. In this case, hybridize(C) :
hybridize(τ).

Proof. Assume first that h = true. Then hybridize(τ) is defined and equal to
τ . Also, if C is a complex of type τ , then C is saturated. Hence hybridize(C)
is defined and equal to C. In this case hybridize(C) = C : τ = hybridize(τ).

Assume now that h = false.
First assume that hybridize(τ) is defined. Let C : τ . We show that

hybridize(C) is defined. Since hybridize(τ) is defined, hybridizet(S) is de-
fined. Thus hybridization terminates for weak type S. By Theorem 4.3 there is
no alternating cycle in the hybridization graph of S (the definition of hybridiza-
tion graph is straightforwardly extended to weak types by using the extended
complementarity relation). Since `-cores and ?-labeled probes can never engage
in an alternating cycle, there is no alternating cycle in the hybridization graph
of C, and therefore C has terminating hybridization. Hence hybridize(C) is
defined.
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Conversely, assume that hybridize(τ) is not defined. Hence both h = false
and S has non-terminating hybridization. Let C be a complex with stype(C) ≡
S and with an alternating cycle in its hybridization graph. Note that such C
can always be constructed by replacing ∗-nodes in S by `-cores using always
the same atomic value symbol and replacing ?-nodes by the complement of the
chosen atomic value symbol. Consequently, hybridize(C) is not defined, and
C is of type τ because h = false.

Assume now that hybridize(τ) is defined and let C be a complex of type
τ . We show that hybridize(C) : hybridize(τ). Let C ′ = hybridize(C) and
let τ ′ = hybridize(τ) = (Cs,�h, h

′).
We first verify that stype(C ′) v Cs. Let D ∈ comp(C ′). We show that

stype(D) v Cs. Recall that D (as a component of C ′) is a finished saturated
hybridization extension of the disjoint union of some multiset D of components
of C. We distinguish three cases:

1. D contains no probe. Denote stype(C)\immob(?) byX. We have stype(D) v
hybridizet(X). Since � v stype(C), we have NC v X. Since stype(C) v
S, we have X v S. Thus stype(D) v Cs.

2. D consists solely of a probe. In this case stype(D) ≡ immob(?) v stype(C) v
S. Hence, stype(D) v Cs.

3. D contains a probe together with some other copies of components of
C. Note that D can only contain one probe, since probes are immo-
bilized and components of sticker complexes can contain at most one
immobilized node. Now since D is a component, the probe is involved
in the matching that creates D. Let r be the core having the atomic
value node that is matched to the probe, and let E be the component
holding r. Then stype(E) has a node (representing r) that is labeled
by ∗ or ∗̂. The probe’s stype is clearly immob(?). Since both (∗, ?) and
(∗̂, ?) are complementary pairs of symbols, we conclude that stype(D) v
hybridizet(stype(C)). We have NC v � v stype(C) v S. Hence
stype(D) v hybridizet(stype(C)) v Cs.

We now verify that �h v stype(C ′). Let s ∈ comp(�h). We show that s v
stype(C ′). By definition, either (1) s v hybridizet(NC ) and s v hybridizet(S)
or (2) s = immob(?) v � and there is no component in S with an free node la-
beled with ∗ or ∗̂.

1. Assume case (1) holds. Since s v hybridizet(NC ), and NC consists
of the mandatory components except immob(?), we have s = stype(D)
for some MHE component D w.r.t. C that is a saturated hybridization
extension of the disjoint union of some multiset D of components from
C. Since immob(?) is not in NC, the matchings used to make D do not
involve pairs of complementary atomic value nodes. Moreover, since s also
belongs to hybridizet(S), D is finished w.r.t. C. Hence s = stype(D) is
subsumed by stype(C ′).

2. Assume now that case (2) holds. Since � v stype(C), there is a component
D of C that is a probe. By the given, this probe cannot be involved in
the hybridization of C, so D also occurs as a separate component of C ′.
It follows that s = stype(D) is subsumed by stype(C ′).
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Finally, by definition, h = true, and indeed C ′, being the result of a hy-
bridization, is saturated.

The next proposition shows that hybridize(τ) is the most restrictive type
that satisfies Proposition 8.7.

Proposition 8.8. If hybridize(C) : τ ′ for all complexes C : τ , then hybridize(τ) �
τ ′.

Proof. We first treat the case where h = true. Let C be a complex of type
hybridize(τ). We show that C is of type τ ′. Since h = true, we have
hybridize(τ) = τ , and, because C is saturated, hybridize(C) = C. By the
assumption of the lemma, C = hybridize(C) is of type τ ′.

We now assume h = false. Let hybridize(τ) = (Cs,�h, hh) and τ ′ =
(S′,�′, h′). To show hybridize(τ) � τ ′ we verify the three conditions of Propo-
sition 7.11.

1. Proof of Cs v S′. Let D ∈ comp(Cs). Let a ∈ Λ. We distinguish two
cases.

(a) Assume that D ≡ immob(?). Then D v S. Let C be a complex
obtained from � ∪ immob(?) by replacing all ∗-, ∗̂-, ∗-labeled nodes
by a`, replacing closed ?-labeled nodes by a and replacing all free ?-
labeled nodes by b. Complex C has type τ , and so hybridize(C) : τ ′.
Since all `-cores of C are equivalent to a`, and all free immobilized
nodes are labeled with b, there is a free probe in hybridize(C).
Thus, D v S′.

(b) Assume that D 6≡ immob(?). By the definition of S, D is a component
in hybridizet(X) for some weak type X, with NC v X v S. Let C
be the complex obtained from X by replacing all ∗, ∗̂, and ∗-labeled
nodes by a` and the ?-labeled nodes by a. Moveover, if immob(?) v �
but immob(?) 6v X, then we add to C the component immob(b). Then
C has type τ , and so hybridize(C) : τ ′. Since hybridize(C) has a
component of weak type D, we have D v S′.

2. Proof of �′ v �h. Let D ∈ comp(Cs) and D 6v �h. We show that
D 6v �′. Let a ∈ Λ. We distinguish two cases.

(a) Assume that D ≡ immob(?). We again distinguish two cases.

i. Assume that D 6v �. Let C be a complex such that stype(C)
≡ �. Complex C has type τ , thus hybridize(C) : τ ′. By
definition, there is no component in C of type immob(?). Hence,
D 6v �′.

ii. Assume that D v �. Since D ≡ immob(?) and D 6v �h, there is
a component E of S with a free node labeled with ∗ or ∗̂. Let C
be a complex with stype(C) ≡ � ∪ E in which all `-cores are of
the form a` and all probes are labeled with a. Complex C has
type τ , and so hybridize(C) : τ ′. Complex C contains a free
probe labeled a and an `-core with a free node labeled a. Hence,
hybridize(C) does not contain a free probe. Thus, D 6v �′.
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(b) Assume that D 6≡ immob(?). Then D v hybridizet(X) for some
NC v X v Cs. By the fact that D 6v �h, and by the definition of
�h, we have again two possibilities:

i. D 6v hybridizet(NC ). Let C be a complex such that stype(C) ≡
�, all `-cores are of the form a`, all closed probes are labeled a,
and all free probes are labeled b. Since NC = � − immob(?),
D 6v hybridizet(NC ), and free probes cannot interact with `-
cores in C, there is no component in hybridize(C) having type
D. Complex C has type τ , and so hybridize(C) : τ ′. Thus,
D 6v �′.

ii. D 6v hybridizet(S). Let C be a complex such that stype(C) ≡
S, all `-cores are of the form a`, and all probes are labeled a.
Complex C has type τ . Hence, hybridize(C) : τ ′. By our
assumption, D 6v hybridizet(S), so there is no component in
hybridize(C) having type D. Hence, D 6v �′.

3. Proof of h′ = true implies that hybridize(τ) is saturated. Since hh =
true, we have that hybridize(τ) is trivially saturated.

8.4 Ligate, Flush, and Split

The definitions of ligate, flush, and split on complexes are naturally adapted
to weak types. Given this, we now define these operations on types.

The ligation of τ , denoted by ligate(τ), equals (ligate(S), ligate(�), h).
Moreover, the flush of τ , denoted by flush(τ), equals (flush(S), flush(�), h).
Finally, the split of τ on σ ∈ {#2,#3,#4,#6,#8} (i.e., σ is the label of a split
point), denoted by split(τ, σ), equals (split(S, σ), split(�, σ), h).

Since ligate, flush, and split have nothing to do with atomic value sym-
bols, the following is easy to verify.

Proposition 8.9. If C : τ , then ligate(C) : ligate(τ), flush(C) : flush(τ),
and split(C, σ) : split(τ, σ).

The next proposition shows that ligate(τ), flush(τ), and split(τ, σ) are
the most restrictive types that satisfies Proposition 8.9.

Proposition 8.10. If ligate(C) : τ ′ for all complexes C : τ , then ligate(τ) �
τ ′. Analogous statements hold for flush(τ) and split(τ, σ).

Proof. Let a ∈ Λ. To show that ligate(τ) � τ ′, we verify the three conditions
of Proposition 7.11.

1. Proof of ligate(S) v S′. Let D ∈ comp(ligate(S)). Let E be a
component of S such that ligate(E) ≡ D. Let C be a complex such
that stype(C) ≡ � ∪ E. Complex C has type τ by Lemma 7.9. Hence,
ligate(C) : τ ′. By definition, ligate(C) contains a component of weak
type D, and so D v S′.

2. Proof of�′ v ligate(�). LetD ∈ comp(ligate(S)) andD 6v ligate(�).
We show that D 6v �′. Let C be a complex such that stype(C) ≡ �.
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Complex C has type τ by Lemma 7.9. Hence, ligate(C) : τ ′. By the
construction of C, there is no component of weak type D in ligate(C).
Thus, D 6v �′.

3. Proof of h′ = true implies ligate(τ) is saturated. If the h-bit of ligate(τ)
is true, then the implication is trivial. Assume now that the h-bit of
ligate(τ) is false. Then h = false. Let C be a complex such that
stype(C) ≡ S with all `-cores equal to a` and all probes labeled a. Since
h = false, complex C has type τ and so ligate(C) : τ ′. Because h′ = true,
ligate(C) must be saturated. The ligate operator only introduces new
edges between nodes, in particular, no new nodes are introduced and no
closed nodes are made open. Thus, saturation of ligate(C) implies sat-
uration of C. Hence, S is saturated, because all probes and `-cores are
labeled complementary. The ligate operator on types also does not in-
troduce new nodes and it does not make closed nodes free. As a result,
ligate(S) is saturated, whence ligate(τ) is saturated.

The proofs for flush(τ) and split(τ, σ) are similar, except for the proof
that h′ = true implies flush(τ) is saturated. In this case, we alter the proof
by letting C be a complex such that stype(C) ≡ S′ with all `-cores equal to a`

and all probes labeled a and S′ is the weak type obtained from S by retaining
all immobilized components. We observe as before that S′ is saturated, and so
flush(S) ≡ flush(S′) is saturated, and so flush(τ) is saturated.

8.5 Block

The block operator block(C, σ), on a sticker complex C with σ ∈ Ω∪Θ a tag or
an attribute symbol, has nothing to do with atomic value symbols. Hence this
operator is naturally adapted to weak types S to obtain block(S, σ). Given this,
we now define the operator on types. First, if τ is not saturated, then block(τ, σ)
is undefined. Otherwise, define block(τ, σ) = (block(S, σ), block(�, σ), true).

Proposition 8.11. block(τ, σ) is defined if and only if for every complex C
of type τ , we have that block(C, σ) is defined. In this case, block(C, σ) :
block(τ, σ).

Proof. If block(τ, σ) is defined, then τ is saturated, and so any complex C of
type τ is saturated too. Hence block(C, σ) is defined.

Conversely, if block(τ, σ) is not defined, then τ is not saturated. By the
definition of saturated, there is an unsaturated complex C having type τ . Thus
block(C, σ) is not defined.

We now prove the second statement. Assume therefore that block(τ, σ) is
defined, i.e., τ is saturated. Let complex C be of type τ . Since stype(C) is sub-
sumed by the weak type of τ , stype(block(C, σ)) is subsumed by the weak type
of block(τ, σ). Similarly, the mandatory type of block(τ, σ) is subsumed by
stype(block(C, σ)). Since C is saturated and the block operation on complexes
preserves saturation, block(C, σ) is also saturated. Therefore, it is fine that the
h-bit of block(τ, σ) is true.
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8.6 Block-From

As for the block operator, we assume here that τ is saturated; otherwise, the
operation below is undefined.

Let σ ∈ Ω ∪ Θ. Except for a slightly altered definition of a σ-blocking
range, the definition of the block-from operator on sticker complexes is naturally
adapted to weak types, as we show next.

Consider a substrand s of S. We call s a σ-blocking range, in the context of
weak types, if it satisfies two conditions. Firstly, all nodes of s are free and none
of them is labeled with ∗ or with ∗̂. Secondly, the last node of the substrand is
labeled with σ. We define for any weak type W with set β of blocked nodes,
blockfrom(W,σ) to be the weak type obtained from W by adding to β all nodes
x appearing in some σ-blocking range, except if x is labeled ∗, in that case x is
relabeled with ∗.

We now define blockfrom(τ, σ) = (blockfrom(S, σ), blockfrom(�, σ), true).

Proposition 8.12. blockfrom(τ, σ) is defined if and only if for every complex
C of type τ , we have that blockfrom(C, σ) is defined. In this case, blockfrom(C, σ) :
blockfrom(τ, σ).

Proof. The proof of the first statement is similar as in the proof for block

(Proposition 8.11).
We now prove the second statement. Assume therefore that blockfrom(τ, σ)

is defined, i.e., τ is saturated. Let complex C be of type τ . To show that
blockfrom(C, σ) is of type blockfrom(τ, σ), we first verify that blockfrom(C, σ)
is of weak type blockfrom(S, σ). Since C is well typed, an `-core in C either
occurs entirely in a σ-blocking range, or is entirely disjoint from it. Any node x
in an `-core r occurring in a σ-blocking range of C is free, so that in stype(C)
the `-core r is represented by a free node r′ labeled by ∗. In block(C, σ), all
nodes x of r are blocked, yielding an `-core of type ∗. In blockfrom(S, σ),
the node r′ is relabeled with ∗. Hence, stype(blockfrom(C, σ)) is subsumed by
blockfrom(S, σ) as desired. The reasoning that blockfrom(�, σ) is subsumed
by stype(blockfrom(C, σ)) is similar.

Since C is saturated and the block operation on complexes preserves sat-
uration, block(C, σ) is also saturated. Therefore, it is fine that the h-bit of
block(τ, σ) is true.

8.7 Block-Except

Operation blockexcept is defined on a weak type S if and only if each of the
following conditions hold:

1. every node labeled with ∗ is not matched, and is preceded and followed
by a free node;

2. every node labeled with ∗̂ is matched;

3. every node labeled ∗̂ or ∗ is preceded and followed by a closed node;

If these conditions are satisfied, then blockexcept(S) is obtained from S by,
looking for any triple of consecutive, unmatched nodes (n1, n2, n3) on a strand
where n2 is labeled ∗. For any such triple, we relabel n2 to ∗̂, and we add n1

and n3 to β.
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We now say that blockexcept(τ) is defined if and only if blockexcept(S) is
defined and τ is saturated. In this case, blockexcept(τ) is defined as (blockexcept(S),
blockexcept(�), true).

Note that blockexcept for types no longer requires a natural number n as
parameter. Indeed, the dimension of sticker complexes is abstracted away in
sticker complex types.

Proposition 8.13. Let ` > 2 and let n ∈ {1, . . . , `}. Then blockexcept(τ) is
defined if and only if for every `-complex C of type τ , we have that blockexcept(C, n)
is defined. In this case, blockexcept(C, n) : blockexcept(τ).

Proof. Assume that blockexcept(τ) is defined and let C be an `-complex of
type τ . We show that blockexcept(C, n) is defined by verifying the three
conditions in its definition. Condition (1) holds by assumption. Condition (3)
holds since τ is saturated. Condition (2) states that for every `-vector of C
either all nodes are free or all nodes are closed. Let v be an `-vector in C, with
`-core r, let v′ be the representation of v in stype(C) and let r′ be the node in
stype(C) representing r. Node r′ can be of three different types:

1. type ∗: none of the nodes of v are blocked, and none of the nodes are
matched, due to the second condition of the block-except operation on
types.

2. type ∗̂: a single node x of r is not blocked. Node x has to be matched, due
to the third condition of the block-except operation on types. Moreover,
the #3 and #4 of v′ are closed.

3. type ∗: all nodes of r are closed. Due to the third condition of the defini-
tion of the block-except operation on types, all nodes of v are closed.

Consequently, Condition (2) holds and we thus conclude that blockexcept(C, n)
is defined.

Conversely, assume that blockexcept(τ) is not defined. Then one of these
conditions holds:

1. There is a component D of S with

(a) a ∗-labeled node x such that (i) x is not free, (ii) x is not preceded
by a free node, or (iii) x is not followed by a free node, or

(b) a ∗̂-labeled node x that is free, or

(c) a ∗̂ or ∗-labeled node x that is not preceded or not followed by a
closed node.

2. τ is not saturated.

In the first case, let C be a complex with stype(C) ≡ �∪D. By Lemma 7.9, C
has type τ . Complex C contains an `-vector with both free and closed nodes.
Thus, by definition, blockexcept(C, n) is not defined. In the last case, by
the definition of saturation, there is a complex C of type τ that is not sat-
urated. Consequently, blockexcept(C, n) is not defined. So, in each case,
blockexcept(C, n) is not defined.

We now prove the second statement. Assume therefore that blockexcept(τ)
is defined and let complex C be of type τ . Given that blockexcept(C, n)
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is defined, one easily verifies that the mandatory type of blockexcept(τ) is
subsumed by stype(blockexcept(C, n)), which is in turn subsumed by the weak
type of blockexcept(τ). Since C is saturated and the block-except operation on
complexes preserves saturation, blockexcept(C, n) is also saturated. Therefore,
it is fine that the h-bit of blockexcept(τ) is true.

We notice that a result analogous to Proposition 8.10 holds for block,
blockfrom, and blockexcept. The proof is similar as the proof of Proposi-
tion 8.10, except that the third condition becomes trivial because the h-bit of
the result is true.

Proposition 8.14. If block(C, σ) : τ ′ for all complexes C : τ , then block(τ, σ) �
τ ′. Analogous statements holds for blockfrom(τ, σ) and blockexcept(τ).

8.8 Cleanup

Recall that strands(S) denotes the set of positive strands of weak type S. For
any set X, we denote the powerset of X by P(X). Let us use the function
ω : strands(S) → P(comp(S)) that maps each positive strand of S to the
set of components of S containing an isomorphic copy of the strand. For any
t ∈ strands(S), let n(t) be the length of t and let a(t) be the number of nodes
labeled ∗, ∗̂ or ∗. Note that n(t) + (` − 1)a(t) equals the length of a strand
represented by t in a complex of dimension `.

We now define the cleanup of τ , denoted cleanup(τ), to be (Sclean ,�clean , true),
where Sclean and �clean are defined as follows.

For any s ∈ strands(S), we say that s qualifies for Sclean if there exists a
component D ∈ ω(s) such that the system of inequalities {n(s) + (`− 1)a(s) ≥
n(t) + (` − 1)a(t) | t ∈

(
strands(�) ∪ strands(D)

)
} has an integer solution in

the variable ` ≥ 2. So, s qualifies if and only if for some dimension ` and some
`-complex of type τ , s has maximum length. The weak type Sclean is defined to
be consisting of all qualified strands, in which all blockings have been cleared
and ∗̂- and ∗-labeled nodes are relabeled to ∗.

Furthermore, we say that a strand s of Sclean qualifies for mandatory, if for
each strand t of Sclean , the strict inequality n(s)+(`−1)a(s) < n(t)+(`−1)a(t)
has no integer solution in ` ≥ 2. So, s qualifies for mandatory if and only if for
every dimension ` and `-complex of type τ , s has maximum length. Now, �clean

is defined to consist of those strands s of Sclean that both qualify for mandatory
and originate from a component that is mandatory in τ .

Example 8.15. Assume the weak type S consists of the following four compo-
nents: D1 is the strand #3 ∗ #4#3 ∗ #4, D2 is the strand #3 ∗ #4, D3 is the
strand #2#2#2#2#2, and D4 is the strand #2#2#2.

If D2 is the only component of �, then Sclean ≡ D1 ∪D2 ∪D3 and �clean

is the empty weak type. Indeed, Sclean ≡ D1 ∪D2 ∪D3 because n(D1) + (` −
1)a(D1) = 6 + (`− 1) · 2 = 2`+ 4 ≥ `+ 2 = n(D2) + (`− 1)a(D2) for any ` and
n(D3) + (`− 1)a(D3) = 5 ≥ `+ 2 if ` = 2, but n(D4) + (`− 1)a(D4) = 3 < `+ 2
for all ` ≥ 2. Moreover, �clean is in this case the empty weak type because, e.g.,
n(D2) + (`− 1)a(D2) < n(D3) + (`− 1)a(D3) for ` = 2.

If D1 is the only component of �, then Sclean ≡ D1 ≡ �clean . Indeed,
n(D1) + (` − 1)a(D1) is greater than or equal to n(Di) + (` − 1)a(Di) for all
i ∈ {1, . . . , 4} and ` ≥ 2.
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Since the result of the cleanup operation is a set of positive strands, cleanup(C)
of a complex C is trivially saturated and so it is fine to have the h-bit of
cleanup(τ) set to true.

From the above observations we obtain the following.

Proposition 8.16. If C : τ , then cleanup(C) : cleanup(τ).

The next proposition shows that cleanup(τ) is the most restrictive type that
satisfies Proposition 8.16.

Proposition 8.17. If cleanup(C, σ) : τ ′ for all complexes C : τ , then cleanup(τ) �
τ ′.

Proof. Let cleanup(τ) = (Sclean ,�clean , hclean). To show cleanup(τ) � τ ′ we
verify the three conditions of Proposition 7.11.

1. Proof of Sclean v S′. Let s ∈ comp(Sclean). By definition, component
s is a strand and s qualifies for Sclean , i.e., there is a component D ∈
ω(s) such that there is a positive integer solution x in the variable ` to
the system of inequalities {n(s) + (` − 1)a(s) ≥ n(t) + (` − 1)a(t) | t ∈(
strands(�) ∪ strands(D)

)
}. Let C be a complex with dimension x such

that stype(C) ≡ � ∪D. As a result, any strand in C having weak type s
is at least as long as all other positive strands in C, whence cleanup(C)
contains a component having weak type s. Complex C has type τ . Hence,
cleanup(C) : τ ′. Thus, s v S′′.

2. Proof of �′ v �clean . Let s v Sclean and s 6v �clean . We show that
s 6v �′. Recall that a strand must fulfill two conditions to be mandatory
in τ . First of all, there must be a component D ∈ ω(s) such that D ∈ �.
Secondly, it must qualify for mandatory.

(a) If there is no component D ∈ ω(s) such that D v �, then let C be a
complex such that stype(C) ≡ �. There is no component in C having
stype(C) in ω(s), whence there is no strand having weak type s in
C, thus there is no strand having type s in cleanup(C). Complex C
has type τ . Hence, cleanup(C) : τ ′. Thus, s 6v �′.

(b) There is a component D ∈ ω(s) such that D ∈ comp(�), but strand
s does not qualify for mandatory. Hence there is a strand t of Sclean

for which the strict inequality n(s) + (`− 1)a(s) < n(t) + (`− 1)a(t)
has a positive integer solution in the variable `. Let E be a com-
ponent from ω(t). Let C be a complex with dimension x such that
stype(C) ≡ � ∪ E. In complex C strands having weak type t are
strictly longer than strands having weak type s, whence cleanup(C)
does not contain a strand having weak type s. Complex C has type
τ . Hence, cleanup(C) : τ ′. Thus, s 6v �′.

3. Proof of h′ = true implies that τ is saturated. By definition hclean = true,
thus τ is always saturated.
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9 A Type System for DNAQL

In this section we introduce a type system for DNAQL and we show that it
enjoys the desirable properties of soundness, maximality, and tightness.

Denote the set of free variables of a DNAQL expression e (i.e., those variables
not bound by for or let constructs) by FV (e). If a type is fixed for each free
variable, all the complexvar -subexpressions of e are well typed and their types
are known. The constant-subexpressions of e are always well typed, and their
types are known (cf. Fig. 17). In the previous section we defined for each
DNAQL operator, its counterpart operating on types. In this section we extend
these rules to incorporate the for, if, and let expressions. By applying these
rules, we can derive, from the types of the free variables and constants, for each
subexpression of e, and ultimately for e itself, whether it is well typed.

More formally, a type assignment Γ is a mapping from a finite set of complex
variables, dom(Γ), to types. Let e be a DNAQL expression. If dom(Γ) ⊇ FV (e),
then we say that Γ is a type assignment on e.

The typing relation for DNAQL is defined in Fig. 17. Here we write Γ ` e : τ
to indicate that expression e is assigned type τ under type assignment Γ on e.
If Γ ` e : τ , then we call (Γ, τ) a typing of e and say that e is well typed under
Γ.

The domain of Γ is extended from variables to expressions as specified in
Fig. 17. For the basic operators, we first typecheck subexpressions and then
applies the operator on the type level as defined and investigated in Section 8.
The let- and for-constructs are typed in the standard manner. We first type-
check the initializer expression, yielding a result type τ1; then we typecheck the
body expression with variable x declared to be of type τ1.

Our approach to typing if-expressions leverages the least upper bound type
defined and investigated in Section 7.3. Consider the four final typing rules in
Figure 17. The first two of these can predict the outcome of the emptiness test,
in those cases where the type declared for x is empty (so the content of x must be
empty), or the type has mandatatory components (so the content of x cannot
be empty). The third rule further inspects the type x and applies when the
underlying weak type consists of a single component D (up to equivalence). In
that case we can assign a sharper type to x in the else-branch: indeed, x is not
empty there, so we can make D mandatory. The output type of the expression
is the least upper bound of the result types of the then- and else-branches.
The final rule is now as expected in the absence of any “smart” predictions.

The defined typing relation is clearly unambiguous, i.e., if Γ ` e : τ1 and
Γ ` e : τ2, then τ1 and τ2 are equal up to isomorphism of their weak types and
their mandatory types.

Recall the formal semantics of DNAQL (Section 6). When ` is not important,
we refer to an `-complex assignment simply as a complex assignment. Let Γ be
a type assignment, and let ν be a complex assignment. We naturally say that
ν has type Γ if dom(ν) = dom(Γ) and for all x ∈ dom(ν), we have ν(x) : Γ(x),
i.e., complex ν(x) has type Γ(x). The set of all complex assignments of Γ is
denoted by [[Γ]].
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x ∈ dom(Γ)

Γ ` x : Γ(x)

e is a 〈constant〉 expression

Γ ` e : (S, S, true) S = stype(e)

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` e1 ∪ e2 : τ1 ∪ τ2

Γ ` e1 : τ1 Γ ` e2 : τ2 τ1 − τ2 is well defined

Γ ` e1 − e2 : τ1 − τ2

Γ ` e : τ hybridize(τ) is well defined

Γ ` hybridize(e) : hybridize(τ)

Γ ` e : τ

Γ ` ligate(e) : ligate(τ)

Γ ` e : τ

Γ ` flush(e) : flush(τ)

Γ ` e : τ σ ∈ {#2,#3,#4,#6,#8}
Γ ` split(e, σ) : split(τ, σ)

Γ ` e : τ σ ∈ Ω ∪Θ block(τ, σ) is well defined

Γ ` block(e, σ) : block(τ, σ)

Γ ` e : τ σ ∈ Ω ∪Θ blockfrom(τ, σ) is well defined

Γ ` blockfrom(e, σ) : blockfrom(τ, σ)

Γ ` e : τ blockexcept(τ) is well defined

Γ ` blockexcept(e, i) : blockexcept(τ)

Γ ` e : τ

Γ ` cleanup(e) : cleanup(τ)

Γ ` e1 : τ1 Γ[x := τ1] ` e2 : τ2

Γ ` let x := e1 in e2 : τ2

Γ ` e1 : τ1 Γ[x := τ1] ` e2 : τ1

Γ ` for x := e1 iter i do e2 : τ1

Γ ` x : (S,�, h) comp(S) = ∅ Γ ` e1 : τ1

Γ ` if empty(x) then e1 else e2 : τ1

Γ ` x : (S,�, h) comp(�) 6= ∅ Γ ` e2 : τ2

Γ ` if empty(x) then e1 else e2 : τ2

Γ ` x : (S,�, h) comp(�) = ∅ comp(S) 6= ∅
∀D1, D2 ∈ comp(S), D1 ≡ D2 Γ ` e1 : τ1 Γ[x := (S, S, h)] ` e2 : τ2

Γ ` if empty(x) then e1 else e2 : τ1 ∨ τ2

Γ ` x : (S,�, h)
comp(�) = ∅ ∃D1, D2 ∈ comp(S), D1 6≡ D2 Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` if empty(x) then e1 else e2 : τ1 ∨ τ2

Figure 17: Typing relation of DNAQL.
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9.1 Soundness

Given a DNAQL expression e and given a type assignment Γ on e, e is called
`-safe, for a fixed dimension `, if for any `-complex assignment ν and any `-
counter assignment γ on e, with ν ∈ [[Γ]], the result [[e]]`(ν, γ) is well defined. If
e is `-safe for every `, then we say that e is safe.

If e is safe under Γ and, moreover, for every dimension `, every `-complex
assignment ν and every `-counter assignment γ, if ν ∈ [[Γ]] then [[e]]`(ν, γ) has
type τ , then we say that e is safe under Γ with output type τ . We denote this
by Γ |= e : τ .

Since types do not restrict the dimension of complexes, if a type involves
wildcards, there are infinitely many complexes of that type. Hence safety is not
easy to guarantee, indeed safety is undecidable: this follows from the relational
algebra simulation in DNAQL [8] and an easy reduction from satisfiability of
well-typed relational algebra expressions, which is undecidable [1]. The best we
can do is to come up with a type system that tries to infer output types from
the given input types.

Let ` denote a typing relation. We say that typing relation ` is sound, if for
every expression e, type assignment Γ on e and type τ , it holds that if Γ ` e : τ ,
then Γ |= e : τ , i.e., e safe is under Γ with output type τ .

Theorem 9.1. The DNAQL typing relation is sound.

Proof. Let Γ ` e : τ . By induction on e we show that e is safe under Γ with
output type τ . Below we let ` be an arbitrary dimension, ν be an `-complex
assignment on e with ν ∈ [[Γ]], and γ an arbitrary `-counter assignment on e.
To reduce clutter, the dimension ` is often not explicitly mentioned.

Variable Let e = x ∈ dom(ν) be a variable. By Fig. 17, Γ ` x : Γ(x). Hence
ν(x) : Γ(x) = τ . Consequently, [[e]](ν, γ) = ν(x) : τ as required.

Constant If e is a constant, the soundness property holds by definition, noting
that every constant in the DNAQL language is saturated.

Operator Propositions 8.1, 8.4, 8.7, 8.9, 8.11, 8.12, 8.13, and 8.16 together
prove the case where e is of the form of an operator applied to subexpres-
sions.

Let Let e = let x := e1 in e2. By induction, we assume that C1 = [[e1]](ν, γ)
and C2 = [[e2]](ν[x := C1], γ) are defined and of type τ1 and τ2, respec-
tively. Hence, [[e]](ν, γ) = C2 is defined and of type τ2.

For Let e = for x := e1 iter i do e2. By induction, we assume that C0 =
[[e1]](ν, γ) and [[e2]](ν[x := Cn−1], γ[i := n]) = Cn for all n ∈ {1, . . . , `} are
defined, and C0 is of type τ1. Moreover, by the let part above, if Cn−1 is of
type τ1, then Cn is of type τ1 for all n ∈ {1, . . . , `}. Hence C` = [[e]](ν, γ)
is defined and of type τ1.

If Let e = if empty(x) then e1 else e2. There are four possible ways of typing
this expression. By induction, we assume that [[e1]](ν, γ) and [[e2]](ν, γ) are
defined and have type τ1 = (S1,�, h1) and τ2 = (S2,�, h2), respectively.
Also, the variable x is defined and typed. Hence [[e]](ν, γ) is also defined.
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1. Only the empty complex can have the type with no components.
Thus, the then-part of the test is evaluated. By induction, [[e]](ν, γ)
is defined and of type τ1, whence the same holds for [[e]](ν, γ) =
[[e1]](ν, γ).

2. If �x is not the empty complex, then the empty complex cannot
have type Γ(x). Thus, the else-part of the test is evaluated. By
induction, [[e2]](ν, γ) is defined and has type τ2, whence the same
holds for [[e]](ν, γ) = [[e2]](ν, γ).

3. If there is exactly one non-mandatory component in Γ(x), then ef-
fectively, if ν(x) is nonempty, it is not just of type Γ(x) but actually
of type (Sx, Sx, hx) as used in the typing rule to type check the else-
part. Since the type for e inferred by the rule is the minimal upper
bound of the types inferred for the then- and else-parts, soundness
follows immediately.

4. The fourth inference rule is proven similar to the third rule.

Example 9.2. Recall the program from Example 6.1 in Section 6.
Consider the weak types S1 = #3∗#4#5 and S2 = #1#3∗#4. The program

is well-typed under the types τ1 = (S1, S1, false) for x1 and τ2 = (S2, ∅, false) for
x2. Since S1 is mandatory in τ1, we know that input x1 will be nonempty. Note
also that the h-bit in τ1 is false, although complexes of type S1 are necessarily
saturated; so we are making it hard on the type checker. The subexpression
e1 = hybridize(x1∪immob(ā)) is typed as (S?

1 , ∅, true), where S?
1 consists of the

following components: (i) S1 itself; (ii) immob(?); and (iii) the complex formed
by the union of (i) and (ii) and matching the node ∗ with the node ?. Note
that there are no mandatory components, since on inputs without an a, only
(i) and (ii) will occur, whereas on inputs where all strands have an a, only (iii)
will occur. The h-bit is now true since a complex resulting from hybridization
is always saturated.

Applying flush to e1 yields output type (S?
1
′
, ∅, true), where S?

1
′

consists of
components (ii) and (iii) above. Finally the variable y1 in the let-construct
is assigned the type (S1, ∅, true). Similarly, y2 gets the type (S2, ∅, true). Yet,
by the design of the if-then-else typing rules, the subexpression on the last
line of the program will be typed under the types (S1, S1, true) for y1 and
(S2, S2, true) for y2. Because all components are now mandatory, the type
inferred for subexpression hybridize(y1 ∪ y2 ∪ #5#1) will be (S12, S12, true),
where S12 is the weak type obtained from the union of S1, S2 and #5#1 by
matching the #5 and #5 and the #1 and #1 nodes, respectively. After ligate
and cleanup the output type is (S, S, true) where S consists of the single strand
#3∗#4#5#1#3∗#4. The final output type of the entire program, combining
the then- and else-branches, is (S, ∅, true).

Example 9.3. For another example, consider the program

hybridize(hybridize(x ∪
⋃
a∈Λ

immob(a)) ∪#3#4).

This program is ill-typed under the type τ = (S, S, true) for x with S = #3∗#4.
Indeed, the nested hybridize subexpression is still well-typed, yielding the output
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type (S?, ∅, true) without any mandatory components. Adding the component
#3#4 to S?, however, yields a complex with nonterminating hybridization, so
the type checker will reject the top-level hybridize.

Yet, this program will have a well-defined output on every input C of type
τ . Indeed, every strand in C contains some a ∈ Λ, so the minimal type of the
result of the nested hybridize will actually have a single complex component
formed by the union of S and immob(?) with ∗ and ? matched. Then the top-
level hybridize will terminate since each complex can have at most immobilized
node.

This example shows that well-defined programs may be ill typed; this is
unavoidable in general since safety is undecidable.

9.2 Maximal

Let e be a DNAQL expression and let Γ be a type assignment on e. We say
that a typing relation ` for DNAQL is u-maximal (u stands for uniform) for e
if Γ ` e : τ for some τ whenever e is safe under Γ. We say that typing relation
` is d-maximal (d stands for dimension) if Γ ` e : τ for some τ whenever there
exists some dimension ` for which e is `-safe under Γ. Note that d-maximality
requires safety only for some fixed dimension, whereas u-maximality requires
safety uniformly for all dimensions.

A DNAQL expression consisting of a single operation is called an atomic
expression. In particular, if, for, and let expressions are not considered to be
atomic.

Theorem 9.4. For every atomic expression e, the DNAQL type relation is u-
maximal for e. In addition, unless e invokes the difference operator, the typing
relation is d-maximal for e.

Proof. The union, ligate, flush, split, and cleanup operations are always defined
on the type level and so the result holds trivially for these operations. The
if-directions in Propositions 8.4, 8.7, 8.11, 8.12, and 8.13 prove the result for
the difference, hybridize, block, block-from, and the block-except operations,
respectively.

9.3 Tightness

Let e be a DNAQL expression. A typing relation ` for DNAQL is called tight
for e if for all type assignments Γ on e, whenever Γ ` e : τ and Γ |= e : τ ′ for
some types τ and τ ′, then τ � τ ′. The notion of tightness was introduced by
Papakonstaninou and Velikhov [26].

By Propositions 8.2, 8.5, 8.8, 8.10, 8.14, and 8.17 we have the following.

Theorem 9.5. For every atomic expression, the DNAQL type relation is tight.

10 No Maximality and Tightness for Non-Atomic
Expressions

We introduced the notions of maximality and tightness on arbitrary DNAQL
expressions. However, Theorems 9.4 and 9.5 apply to atomic expressions only.
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Figure 18: Types τ1 and τ2. The types consist of one-node components. Both
types have their h-bit, h1 resp. h2, set to true.

In this section, we show that a maximal typing relation on DNAQL is undecid-
able, and that the typing relation is not tight for arbitrary expressions due to
the interplay between union and the h-bit. An interesting future direction of
research is to come up with a tight type relation or proving that a tight type
relation is undecidable.

Let us first examine the maximality of a DNAQL typing relation. It is
undecidable whether a relational algebra expression always outputs the empty
relation [1]. Let e be a relational algebra expression. In a companion paper
[8], it is shown that expression e can be translated to an equivalent DNAQL
expression eDNA. Let ed be a DNAQL expression that is always defined, and
let eu be an expression that is undefined. For example, for ed we can use the
constant expression #2 and for eu we can use block(#2∪#2,#2). We construct
the expression

e′ := if empty(eDNA) then ed else eu

If the DNAQL type system would be maximal, expression e′ would type check
whenever expression e always outputs the empty relation. This is a contradiction
as the emptiness problem is undecidable.

Secondly, we show by counterexample that the DNAQL typing relation is
not tight on expressions. Consider the types shown in Fig. 18. Both types have
their h-bit, h1 resp. h2, equal to true. This implies that the nodes labeled a and
a, in τ1, cannot be both present in a complex having type τ1.

Now consider the expression e = hybridize(τ1 ∪ τ2). The type of τ1 ∪ τ2
consists of the four components of τ1 and τ2. The components with the nodes
labeled b and b are the mandatory components. Pivotal to this example is the
h-bit of the union. The h-bit is set to false, as the respective weak types of τ1
and τ2 are mutually interacting (the node labeled b can match with the node
labeled b). Concretely, the output type of e consists of four components. The
first component is mandatory and consists of two nodes, one labeled b, the other
labeled b. The nodes are matched. The second component is a node labeled a.
The third component is a node labeled a. The fourth component consists of two
nodes, one labeled a, the other labeled a. The nodes are matched. The h-bit of
the output type is true.

Note however, that any two complexes C1 and C2 having type τ1 resp. τ2 can
never produce a component having the fourth component as its type. Indeed,
any complex C1 having type τ1 cannot have both the a- and a-component, and
any complex having type τ2 cannot have either of the components.
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11 Discussion and Further Work

In a companion paper [8] we show that the relational algebra can be simulated
by DNAQL programs. Indeed, we like to think of DNAQL as an analogue to
the relational algebra, when working in the sticker complex data model instead
of the relational data model.

An interesting problem is to understand the precise expressive power of well-
typed DNAQL programs. We conjecture that every well-typed DNAQL program
can be simulated in the relational algebra (on relational structures representing
the typed input complexes). Confirming this conjecture would firmly establish
DNAQL as the DNA-computing equivalent of the relational algebra.

On the practical level, the obvious research direction is to verify some non-
trivial DNAQL programs experimentally, or simulate them in silico. Indeed,
we have gone to great efforts to design an abstraction that is as plausible as
possible. A static analysis of the error rates of DNAQL programs on the type
level is another interesting topic for further research.
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