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Abstract: This paper introduces a flexible modeling strategy to extend the fa-

miliar mixed-effects models for analyzing longitudinal responses in the multivariate

setting. By initiating a flexible multivariate multimodal distribution, the strategy

relaxes the imposed normality assumption of related random effects. We use copu-

las to construct a multimodal form of elliptical distributions. It can deal with the
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multimodality of responses and the nonlinearity of dependence structure. Moreover,

the proposed model can flexibly accommodate clustered subject-effects for multiple

longitudinal measurements. It is useful when several sub-populations exists but can-

not be directly identified. Since the implied marginal distribution is not in the closed

form, to approximate the associated likelihood functions, we suggest a computational

methodology based on the Gauss-Hermite quadrature that consequently enables us

to implement standard optimization techniques. We conduct a simulation study to

highlight the main properties of the theoretical part and make a comparison with reg-

ular mixture distributions. Results confirm that the new strategy deserves to receive

attention in practice. We illustrate the usefulness of our model by the analysis of a

real-life data set taken from a low-back pain study.

Key words: Clustered random effects; Copula function; Gaussian quadrature; Low-

back pain; Multiple longitudinal responses; Multimodality; Non-linear dependence.

1 Introduction

Linear mixed-effects (LME) models have been progressively extended in recent studies

to analyze some correlated data, including longitudinal or clustered, wherein a set

of subjects are repeatedly measured on different conditions or periods (Laird and

Ware, 1982). A routine assumption in fitting various mixed models is the normality

of underlying subject effects though it may violate in practical applications. For

example at the presence of outliers, the random effects may follow a distribution with

heavier tails than normal. Another realistic situation involves the existence of latent
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subpopulations in the data generating process especially when important categorical

covariates are omitted in the fixed part of models.

Although the conventional likelihood-based estimates of fixed effects might be robust

to non-normality of random effects (Butler and Louis, 1992), the same is not true

for the prediction of random effects (Zhang and Davidian, 2001). Also, the ML es-

timate of model parameters including variance components suffers from the loss of

efficiency and incorrect computation of standard errors (Pinheiro et al., 2001). In

recent years, certain problems about choosing suitable distributions for the random

effects and calibrating them efficiently to the observed data set have extensively dis-

cussed by several authors. In some applications, to avoid misleading inference, it is

suggested that the collected measurements must be classified based on the adoption

of a multimodal distribution for random effects. The choice of statistical methods in

the literature to set up a multimodal structure has mostly concentrated on a mixture

of multiple unimodal components. An example of mixture distributions with normal

components in linear mixed-effects models is given by Verbeke and Lesaffre (1996)

and described further by Verbeke and Molenberghs (2000). Another application of

mixture distributions using the skew-t components is proposed by Lin (2010) to allow

the accommodation of both skewness and thick tails for random effects.

In this paper, we extend the common mixed-effects models to the analysis of multiple

longitudinal responses by utilizing an innovative modeling strategy to cover possible

multimodality of data. We propose to apply the separate LME models to all responses

and linking them by allowing a suitable multivariate multimodal distribution for the

random effects of assorted responses.

In practical applications, there are several issues in using mixture distributions in
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fitting LME models for multiple responses. One is the identifiability (Hennig, 2000)

due to the unstructured forms of covariance matrices and a large number of unknown

parameters which makes the use of basic estimation procedures complicated. Any

mixture distribution to simplify the execution of computational procedures requires

the convincing prior information on the choice of the true number of components.

Fixing the number of components to avoid overfitting and the same distribution for all

clusters are strong restrictions. Other constraints comprise the linearity of dependence

structure between variables and the similarity of all marginal distributions.

The importance of dealing with these challenges motivated us to investigate alterna-

tive strategies that offer great flexibility in jointly modeling of multimodal data. We

construct a new multivariate distribution by a combination of copula functions (Sklar,

1959) and a member of elliptical distributions (Fang et al., 1990) called the Double

Gamma (DG) distribution. It is a suitable choice for analyzing longitudinal data that

exhibit multimodality since it can cover most distributional peaks through a limited

number of parameters without the need for strong prior information. Moreover, this

option overtakes mixture distributions that tend to enforce additional components or

parameters to capture more peaks. Furthermore, a copula is using to separate the

dependence structure of a multivariate distribution from the individual marginal dis-

tributions by looking at its underlying copula form. Through the study of copula the

analyst can be better aware of various associations between variables and recognize

tails of the related distributions. For instance, a copula may be applied to observed

data indicating correlation in the extreme tails but not elsewhere in the distribution.

The proposed strategy constructs straightforwardly a multimodal structure for the

underlying random-effects based on the DG distribution and a suitable copula. It
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involves several main advantages, such as i) facilitating the fitting of general mixed

models with multiple responses, ii) presenting great flexibility to model the nonlinear

correlations between responses, iii) allowing various marginals for each response, iv)

covering several types of responses with multimodal behaviors, v) managing the im-

pact of hidden subpopulations with different behaviors in terms of peaks that cannot

be directly observed through the value of responses, vi) being useful for analyzing

clustered data, vii) avoiding incorrect inference when the normality of random effects

is violated or clustering of responses occurs and some important categorical covariates

are omitted.

The maximum likelihood approach is used to fit the proposed multivariate mixed

models. The corresponding likelihood functions appear in the non-closed form due

to complicated integrals. Hence a numerical integration method using the Gauss-

Hermite quadrature is employed to approximate integrals. In addition, familiar nu-

merical optimization techniques, such as Newton Raphson, are utilized to maximize

the underlying likelihoods in user-friendly software packages, such as SAS and R.

We examine the usefulness of our methodology in the analysis of low back pain (LBP)

and its related disabilities, which have grown in most industrialized countries and are

amongst the most frequent reasons for consulting a primary care physician. Preven-

tion of LBP in primary stages is a major public health problem worldwide since it

contributes to the prevention of disabilities because of back pain in progressive stages.

To evaluate the contributions of some factors to the acute LBP, we apply our strategy

to re-analyze a real-life data set taken from a prospective cohort study on low back

pain (Park et al., 2010).

The remainder of this paper is organized as follows. Section 2 introduces the uni-
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variate DG distribution and reports its main properties. Section 3 presents a short

introduction of copula functions and how to construct a new multivariate multimodal

distribution using copulas. Section 4 specifies the multivariate mixed-effects models

and extends strategies to jointly analyzing multiple multimodal responses. Section

5 conducts a simulation study to evaluate the performance of our proposed model.

Finally, in Section 6 we apply our methodologies to analyze a real-life data set taken

from the low-back pain study and our proposed model will be compared to several

competitors.

2 Double Gamma distribution

A special case of elliptical distributions (Fang et al., 1990) is the double Gamma (DG)

distribution [??], defined as follows.

Definition 1 The random variable X follows the DG distribution with parameters

µ ∈ R, σ > 0 and α > 0, if its probability density function (PDF) is of the form

f (x;µ, σ, α) =
1

2Γ (α)σα
|x− µ|α−1 exp (− |x− µ| /σ) , x ∈ R. (2.1)

We denote X ∼ DG (µ, σ, α). By conducting basic statistical techniques the following

properties hold: E (X) = µ, Var (X) = α (α + 1)σ, the kurtosis measure is (α+3)(α+

2)/α(α + 1), and the cumulative distribution function (CDF) of X is

F (x) =
1

2
(1 + sign (x− µ)Fα (|x− µ| /σ)), x ∈ R,

where Fα (t) denotes the value of standard gamma density with parameter α inte-

grated up to t and sign (t) equals 0 for t = 0, −1 for t < 0, and +1 for t > 0. The
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Figure 1: The density plot of DG(0, 1, α) for (left) α = 0.6 (center) α = 1 (right)

α = 3

univariate DG distribution is symmetric about µ and its shape depends on α. Fig-

ure 1 shows density plots of DG(0, 1, α) for some values of α. For 0 < α < 1 the

density function (2.1) tends to infinity at X = µ, whereas for α > 1 it has a local

minimum at µ with two modes. The special case α = 1 refers to a generalization of

the double-exponential distribution introduced by Gómez et al. (1998).

3 Multimodal Double-Gamma copula

Consider the random vector (U1, . . . , Up)
> where each Ui, i = 1, . . . , p, follows a uni-

form random variable over the unit interval [0, 1]. On the unit hyper-cube [0, 1]p,

the p-dimensional copula function C can be defined based on the joint CDF of

(U1, . . . , Up)
>. Sklar (1959) shows that for any p-dimensional random vector X =

(X1, . . . , Xp)
> with joint CDF F (x1, . . . , xp) and continuous margins F1(x1), . . . , Fp(xp),

a unique copula function C exists on RanF1×· · ·×RanFp, where RanFk denotes the

range of Fk, such that F (x1, . . . , xp) can be represented through this copula and its

margins as

F (x1, . . . , xp) = C (F1(x1), . . . , Fp(xp)) , (x1, . . . , xp)
> ∈ Rp. (3.1)
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Key idea is that any existing continuous multivariate distribution can be reformulated

according to a copula function and conversely, using any kind of univariate margins,

a multivariate distribution can be constructed by means of a copula. Using this fact,

through the combination of copula functions with multimodal univariate distribu-

tions (e.g., DG), we can construct new flexible multivariate multimodal distributions

that are useful for modeling multivariate multimodal measurements. To select un-

derlying marginal distributions, we note that a unimodal distribution corresponds to

an unclustered population while the existence of several distinct modes indicates a

clustered population for measurements of each variable.

As already mentioned the PDF and CDF of the univariate DG distribution are in the

closed-form. Thus, we introduce at least one DG distribution as the marginal of copula

to consequently provide a collection of multivariate multimodal distributions. The

dependence between related variables is then specified by making use of an assigned

copula.

Copula functions can be determined completely by any scale-invariant dependence

measure that remains unchanged under monotonically increasing transformations of

marginal distributions. Therefore, we can express the dependence measures for pro-

posed copulas in terms of the selected copula function C only. A well-known type of

these measures is Kendall’s τ given by

τ
K

= 4

∫ 1

0

∫ 1

0

C (u1, u2) dC (u1, u2)− 1.

If the copula C and margins F1, . . . , Fp are continuous and differentiable then the

joint density function, corresponding to the joint distribution (3.1), is given by

f (x1, . . . , xp) = c (F1(x1), . . . , Fp(xp))

p∏
k=1

fk(xk), (x1, . . . , xp)
> ∈ Rp,



Joint Modeling of Multimodal Longitudinal Responses 9

where fk(·) is the density corresponding to the marginal CDF Fk(·) for k = 1, . . . , p

and copula density c is the derivative of the copula C.

For illustration, in the bivariate case, to show the multimodal feature of the of-

fered copula, as an example Figure 2 demonstrate the contour of some well-known

Archimedean copulas (Nelsen, 2006) by imposing the DG and normal margins. Note

that the value of Kendall’s τ for all given copulas equals 0.5. These figures evidently

indicate that the number of peaks is a function of the assigned margins. Clearly,

the copula function reflects only a particular dependence structure and the choice of

copula directly controls what parts of the implied distribution are more associated.

As mentioned by Frees and Valdez (1998), the Frank copula imposes a very specific

radially symmetric dependence structure. For the Clayton copula the dependence is

stronger in the lower-left region than in the upper-right region while for the Gumbel

copula it is stronger in the upper-right region than in the lower-left region.

4 Specification of multimodal multivariate LME mod-

els

The multivariate linear mixed-effects (MLME) modeling is an appropriate technique

to describe the variation in multiple responses that are measured repeatedly over time

periods for each subject in terms of a set of fixed covariates. Let p responses be mea-

sured for N subjects. For each subject i, i = 1, 2, . . . , N, denote the response vector

yki =
(
yki1, . . . , y

k
ini

)>
corresponds to the k-th (k = 1, . . . , p) response’s measurements

at ni different time periods. The traditional linear mixed-effects model assumes that
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(Clayton copula)

(Frank copula)

(Gumbel copula)

Figure 2: The density plot of the copula with the standard normal as both margins

(left), the DG as one of two margins (center), and the DG as both margins (right).
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the response vector yki for each k satisfies

yki |bki ∼ Nni

(
Xk
iβ

k + Zk
ib

k
i ,D

k
i

)
,

where Xk
i and Zk

i are ni × r and ni × q known covariates matrices related to the r-

dimensional vector of unknown fixed regression coefficients βk and the q-dimensional

vector of random effects bki =
(
bki1, . . . , b

k
iq

)
, respectively, and Dk

i denotes an ni × ni

covariance matrix (Fieuws and Verbeke, 2006). A usual assumption in fitting MLME

models is that the measures yki1, . . . , y
k
ini

for each k are conditionally independent given

bki . It simply results in Dk
i = σ2

kIni
, where Ini

is a ni-dimensional identity matrix .

Furthermore, all random effects are assumed to be normally distributed. In practical

applications, this näıve assumption can likely be violated if special classification exists

for some responses.

In this paper, we propose an extension of MLME models which is promoted to analyze

multiple clustered responses. We construct a new model by allowing the response

vector yki , conditioned on the random effects bki , follows a known distribution with

PDF gk(yki |bki ;θk), where the vector of unknown parameters θk possibly depends on

some covariates. By assuming that all elements of yki are independent, given bki ,

we introduce a multivariate distribution based on utilizing a proposed multimodal

copula for the random effects to take into account correlated responses. It suggests

that fitting a separate linear mixed-effects model for each response can appropriately

specify the joint model by successively combining the multimodal copula distribution

for all random effects. This strategy also allows choosing any marginal density with

the bimodal/multimodal property, such as the univariate Double Gamma, for each

random effect, to construct a multivariate multimodal density.

In the regression modeling methodology, the marginal expectation of responses is



12 Mahdiyeh et al.

commonly assumed to depend only on the covariates, i.e., E(Yk
i ) = Xk

iβ
k. It is quite

desirable to keep this property even for our proposed model by assuming that the

marginal mean of each random effect is zero. Also, under offered assumptions, k-th

LME model clearly dictates the marginal cross correlation structures between k-th

response’s measurements at two time points j 6= s, within subject i, as Corr(Y k
ij , Y

k
is) =

σki(j,s)/
√
σki(j,j)σ

k
i(s,s), where σki(j,s) = Zk>

ij Cov(bki )Z
k
is + σ2

kI(j = s), with Zk>
ij being the

j-th row of the matrix Zk
i and I(·) denotes the indicator variable. Moreover, the

role of the dependence between the responses-specific random effects generates the

correlation structure between the measurements of different responses k and l, to be

measured as Corr(Y k
ij , Y

l
is) = σ

(k,l)
i(j,s)/

√
σki(j,j)σ

l
i(s,s), where σ

(k,l)
i(j,s) = Zk>

ij Cov(bki ,b
l
i)Z

l
is

with Cov(bki ,b
l
i) is computed by the defined copula and Hoeffding’s Lemma (Pumi

and Lopes, 2012). For illustration, consider the following simple model

yki |bki ∼ Nni

(
Xk
iβ

k + bki Jni
, σ2

kIni

)
,

where Jni
denotes an ni-dimensional vector of ones. For all l and k = 1, . . . , p we

have

Corr(Y k
ij , Y

l
is) = Cov(bki , b

l
i)/
√

Var(Y k
ij )Var(Y l

is),

with Var(Y k
ij ) = Var(bki ) + σ2

k, where Var(bki ) can be obtained from the marginal

distribution of the random intercept bki and

Cov(bki , b
l
i) =

∫ 1

0

∫ 1

0

C (uk, ul)− ukul
fk
(
F−1k (uk)

)
fl
(
F−1l (ul)

)dukdul,
where Fk and Fl denote the marginal CDFs and fk and fl denote the marginal PDFs

of bki and bli, respectively.

The above expressions reveal that the correlation between measurements of responses

is directly related to the correlation between responses-specific random effects. It
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also shows that measures within of each response may be correlated even if measures

between two mixed responses are uncorrelated.

The inference for the vector of unknown model parameters Θ (includes the vector

parameters θ1, . . . ,θp, the parameters of the marginal distributions of random effects

and the parameter of selected copula function C) in fitting the proposed model is

based on the Log-likelihood function ` (Θ|y) =
∑

i ln[f(yi; Θ)], where f(yi; Θ) is the

marginal density function of the response vector yi = (y1
i , . . . ,y

p
i )
> which can be

obtained by integrating out the random-effects vector bi = (b1
i , . . . ,b

p
i )
> as

f(yi; Θ) =

∫ p∏
k=1

{
gk(yki |bki1, . . . , bkiq;θk)

q∏
h=1

fkh(b
k
ih)

}
(4.1)

×c(F11(b
1
i1), . . . , Fpq(b

p
iq))db

1
i1 . . . db

1
iq . . . db

p
i1 . . . db

p
iq,

where Fkh(·) and fkh(·) for k = 1, . . . , p and h = 1, . . . , q, are PDF and CDF of the

presumed marginal distribution for random effect bkih respectively, and c is the density

function of the selected copula C.

5 Maximum likelihood estimation

To carry out the inference of Θ, the direct maximization of the Log-likelihood function

may involve solving complex integrals using advanced numerical techniques. In this

paper, the application of a numerical technique using the Gauss-Hermite quadrature is

proposed to approximate the likelihood function and to make inference on parameters

in user-friendly software packages, such as SAS or R. Gaussian quadrature can be used

to approximate integrals with respect to a given kernel by a weighted average of the

integrand evaluated at predetermined points, called nodes. The known weights and
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nodes for most kernels can be obtained by tables provided by Abramowitz and Stegun

(1964) or by using an algorithm proposed by Golub (1973). Gaussian quadrature for

multiple integrals are numerically complicated (Davis and Rabinowitz, 2007).

In fitting LME models for non-normal responses, the Gaussian quadrature technique

can approximate the marginal density function by a weighted average of the integrand

directly when the distribution of random effects is normal and the dimension of the

random-effects vector is not large (Lesaffre and Spiessens, 2001; McCulloch and Searle,

2001; Gueorguieva, 2001). Thus, the estimation process is not straightforward when

we use the Gaussian quadrature for fitting our proposed model. Nevertheless, using

a statistical trick followed by Liu and Yu (2007) we can multiply and divide the

integrand in (4.1) by a standardized multivariate normal density and reformulate

the resulting function over the normal random effects αi = (α1
i , . . . ,α

p
i )
>

, where

αk
i =

(
αki1, . . . , α

k
iq

)
for k = 1, . . . , p, as

f(yi; Θ) =

∫ p∏
k=1

{
gk(yki |αki1, . . . , αkiq;θk)

q∏
h=1

fkh(α
k
ih)

}

×c(F11(α
1
i1), . . . , Fpq(α

p
iq))

φpq(αi; 0, Ipq)

φpq(αi; 0, Ipq)
dα1

i1 . . . dα
1
iq . . . dα

p
i1 . . . dα

p
iq,

where φpq (αi; 0, Ipq) denotes the normal density function of the pq-dimensional vector

αi with the zero mean vector and the identity covariance matrix. Thus, the Gaussian

quadrature technique can easily be applied to approximate the integrand

p∏
k=1

{
gk(yki |αki1, . . . , αkiq;θk)

q∏
h=1

fkh(α
k
ih)

}
c(F11(α

1
i1), . . . , Fpq(α

p
iq))/φpq(αi; 0, Ipq).

This technique only requires that the PDF of random effects can be appeared in the

closed form as is available for our proposed multimodal copulas.
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6 Simulation studies

We conduct two simulation studies to highlight the performance of our modeling

methodology in comparison with normal and mixture models. To obtain the max-

imum likelihood estimation of model parameters, the Gauss–Hermite quadrature in

the NLMIXED procedure of SAS is used.

To design the first simulation study a specific mixed effects model is considered for

illustrative purposes. In particular, we generate 100 data sets from the bivariate LME

model

ykij = βk0 + βk1xj + βk2x
k
i + bki + ekij, (6.1)

for k = 1, 2, i = 1, . . . , 100, j = 1, . . . , 5, where e1ij and e2ij are independent and

identically distributed (iid) that follow N (0, 1) and N (0, 4) respectively, the covariate

xj = j−3 contains values changing within subjects and the same for all subjects, and

x1i and x2i are assumed to be the subject level covariates and are drawn uniformly in

the range (10, 20). True values of fixed parameters are set to β1
0 = 20, β1

1 = 4, β1
2 = 3,

β2
0 = 10, β2

1 = 6, and β2
2 = 7. To show usefulness of the proposed multimodal copulas

for accommodating the multimodality, as an illustrative case, we select the Clayton

copula and generate the random intercepts b1i and b2i from a bivariate distribution

according to the Clayton copula with margins DG(0, 1, 3) and DG(0, 2, 5). We set

θ = 2 to correspond to Kendal’s τ = 0.5.

To generate b1i and b2i , we first draw variants (u1, u2) from the following process

(Nelsen, 2006):

1. Generate two independent uniform random variables u1 and v.
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2. Set u2 =
((
v−θ/(1+θ) − 1

)
u−θ1 + 1

)−1/θ
.

Then, we generate bki for k = 1, 2, by computing the quantile function ofDG(µk, σk, αk)

given by bk = F−1k (uk) = µk + σksign(uk − 0.5)F−1αk
(|uk − 0.5|), where F−1α denotes

the quantile of Gamma(α, 1) distribution.

Histograms of the generated random intercepts in Figure 3, clearly demonstrate the

existence of two modes for each one. Also, the related scatter plot and the distribution

surface of random intercepts in Figure 4 (left) and (center) show the existence of two

partitions with nonlinearity of the dependence structure. For each of 100 generated

Figure 3: Histograms of the generated random effects from the Clayton copula with

DG margins.

data sets, Model (6.1) was fitted by assuming that ekij
iid∼ N

(
0, σ2

ek

)
for k = 1, 2, and

the random intercepts b1i and b2i distributed by

M1: The bivariate normal N2 (0,Σb) .

M2: The mixture distribution
∑2

j=1 πjφ (µj,Σb) with
∑2

j=1 πj = 1. Here, the con-

dition
∑2

j=1 πjµj = 0 is required to let the mean value of random effects being

zero. Also, it is necessary to assume a common covariance matrix for all com-
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Figure 4: The scatter plot (left), the surface plot (center) and the contour plot (right)

of the generated random effects from the Clayton copula with DG margins.

ponents to avoid unbounded likelihood (Böhning, 1999; Verbeke and Lesaffre,

1996).

M3: The Clayton copula with margins DG(0, σ1, α1) and DG(0, σ2, α2).

M4: The Gaussian copula with margins DG(0, σ1, α1) and DG(0, σ2, α2).

To make a comparative study, we report the parameter estimates and their standard

errors of each model in Table 1(a). We also compute the Akaike Information Criteria

(AIC) and the Bayesian Information Criteria (BIC) to select the best-fitted model.

These values show that the Clayton copula with the DG margins better fits for all

generated data sets. It assures the correctness of our simulation process. The estimate

of shape parameters for the DG margins are also significant.

A comparison of various models shows that the most parameter estimates are nearly

unbiased and the same for all fitted models. In model M3, the biases and standard

errors are very small and the efficiency of β1
2 and β2

2 estimates that are associated

with the subject-level covariates x1i and x2i are improved in comparison with the case
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Table 1: Simulation results based on 100 generated data sets of model (6.1) when

the random effects have been generated from (a) Clayton copula and (b) bivariate

normal. Parameter estimates (Est) and their standard errors (SE) are reported.

M1 M2 M3 M4

Parameters Est SE Est SE Est SE Est SE

(a) Multimodal random effects

β1
0 = 20 19.821 0.798 19.873 0.792 20.081 0.764 20.153 0.799

β2
0 = 10 9.867 0.689 10.113 0.668 9.922 0.524 9.899 0.759

β1
1 = 4 4.014 0.271 4.013 0.264 4.013 0.231 4.019 0.285

β2
1 = 6 5.986 0.235 6.014 0.219 5.988 0.187 5.898 0.311

β1
2 = 3 3.067 0.172 2.944 0.167 2.957 0.155 3.61 0.188

β2
2 = 7 6.895 0.379 7.098 0.369 7.056 0.348 7.212 0.423

σ2
e1 = 1 1.008 0.153 1.006 0.149 1.004 0.144 1.009 0.229

σ2
e2 = 4 4.011 0.149 4.009 0.146 4.008 0.145 4.23 0.161

(b) Normal random effects

β1
0 = 20 19.935 0.349 20.069 0.613 20.132 0.745 19.878 0.512

β2
0 = 10 9.951 0.371 10.166 0.581 10.187 0.654 10.067 0.423

β1
1 = 4 3.996 0.093 4.005 0.105 4.012 0.116 3.994 0.101

β2
1 = 6 5.997 0.106 6.009 0.109 5.991 0.114 6.007 0.107

β1
2 = 3 3.019 0.098 2.948 0.161 3.065 0.192 2.963 0.123

β2
2 = 7 7.008 0.027 6.949 0.192 7.073 0.193 7.045 0.179

σ2
e1 = 1 0.999 0.127 1.008 0.229 0.988 1.241 1.009 0.221

σ2
e2 = 4 4.004 0.214 4.006 0.248 4.011 0.254 4.006 0.232

of normally distributed random-effects. This evidence shows that the use of the pro-

posed multimodal multivariate distribution based on copulas is more plausible and

the adoption of incorrect assumptions (e.g., normality) for random-effects distribu-

tions may reduce the efficiency of the regression parameter estimates. Similar findings

have been addressed in McCulloch and Neuhaus (2011) for the estimate of intercepts.

Our results show that the efficiency of β1
0 and β2

0 estimates may be degraded when

the random effects distribution is far from normal while the normality is assumed.

The efficiency of β1
1 and β2

1 estimates are nearly equal in all models which shows that

the distribution of random effects does not considerably influence the estimate of
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longitudinal effects. This fact was already addressed by Verbeke and Lesaffre (1996)

in a specific linear mixed-effects model. The estimate of scale parameters shows a

discrepancy for all fitted models but are not comparable because of owning different

scales.

Figure 4(right) displays the scatter plot of estimated random intercepts from model

M3, with the super-imposed contour plots of the fitted Clayton copula with DG

margins. It demonstrates that the additional flexibility afforded by the proposed

distribution is sufficient to capture quite accurately the true multimodal underlying

feature of the random intercepts.

Afterward, we design the second simulation by assuming that the random intercepts

follow a bivariate normal and illustrate that the proposed model still provides rea-

sonable estimation results. This reveals that the proposed model deserves to be used

in practical applications as a reliable alternative even if the classical model is correct.

Specifically, we let b1i and b2i being generated by a bivariate normal distribution with

mean 0 and the covariance matrix

1 1

1 4

.

For each of 100 generated data sets, we again, fit Model (6.1) by assuming that b1i

and b2i follow M1-M4. As expected, the AIC and BIC values choose the normal as the

best fitted model. Results are given in Table 1(b) show that the parameter estimates

are, for the most parameters, relatively unbiased in all models. The estimate of

fixed-effects parameters in model M4 is extremely close to model M1. The Gaussian

copula evidently can cover the linear dependence structure between the generated

normal random intercepts. In this way, there is no efficiency loss associated when

using the Gaussian copula. The comparison of findings for M3 and M4 shows that
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changing of the copula can increase the bias and standard error of some parameter

estimates. As a result, proper specification of the random-effects distribution and

the copula function are important. The choice of better fitness depends necessarily

on using various copulas with specific margins to construct suitably a joint random

effects-distribution.

7 Data analysis strategies for the low back pain study

We reanalyze a real-life data set, which is taken from a prospective cohort study

on low back pain (Park et al., 2010), to illustrate the usefulness of our proposed

MLME model. The main aim of the study was to explore the effect of a treatment

package composed of herbal medicine, acupuncture, bee venom acupuncture, and a

Korean version of spinal manipulation (Chuna) on low back pain. We show that

our methodology is useful when a complex structure involving the multimodality of

bivariate responses is to be analyzed.

7.1 Data description

The institutional review boards (IRBs) of both the University of North Carolina

and Jaseng hospital in Korea has organized the low back pain study. The collection

of measurements was from November 2006 to October 2007. In total 127 patients

were selected. They had not previously treated for low back pain at the Jaseng

hospital. Some specific cases were deleted from the sample due to some exclusion

criteria, such as back pain caused by non-spinal or soft tissue issues, pregnancy,

spinal tumor, rheumatoid arthritis, the history of back surgery, vertebral fracture,
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dislocation, suspected concurrent severe neurological symptoms, and major organ.

The control of treatment was at baseline and followed-up measurements were at weeks

4, 8, 12, 16, 20 and 24. Patients were 34.7±8.4 years old (mean ± standard deviation)

with 41.6 percent female.

In our modeling process, we will jointly analyze the visual analog scale (VAS) (0-10)

of back pain (Jensen et al., 1986) and the Oswestry Disability Index (ODI) (Beurskens

et al., 1996). The model includes several medical and demographic factors such as

the patients’ age, sex, body mass index, surgery recommendation (0=recommended

and 1=not recommended), baseline measures of two responses and the quality of

life variables according to different subcategories mental health and physical health.

These two main summary measures are aggregated from 8 sub-scale items (physi-

cal functioning, role-physical, bodily pain, general health, vitality, social functioning,

role-emotional and mental health) of the SF-36 Health-Related Quality of Life Ques-

tionnaire (Ware et al., 1995) and are defined as scores ranging from 0 to 100 wherein

the higher score indicates an improved level of health.

7.2 Data analysis

The individual profiles plot, not shown here, shows that both ODI and VAS levels

increase over time for most patients and substantial inter-patient variation exists.

Thus, we first fit two separate univariate normal random-intercepts for responses

(y1ij, y
2
ij) ≡ (V ASij, ODIij) as

ykij = Xijβ
k + bki + ekij, (7.1)

for i = 1, . . . , 127 and j = 1, . . . , 6, where ekij
iid∼ N

(
0, σ2

ek

)
and bki

iid∼ N (0, σ2
k) for

k = 1, 2. We observed that any evidence of interaction of covariates by time was not
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significant and hence only main effects are included for both responses. Also, to select

a suitable covariance structure for within subject residual terms in the vector eki =

(eki1, . . . , e
k
i6)
>, we fitted four LME models based on four different structures, including

the unstructured (UN), the first-order autoregressive (AR(1)), the first-order ante-

dependence (ANTE(1)) and the standard variance component (VC) (Thiébaut et al.,

2002). According to the AIC values, the VC with structure σ2
ek

I6, which assumes

independence of the residual measurements, seems to be the best one between others.

The empirical correlation between the measures of two responses ODI and VAS was

0.62, suggesting that a bivariate model may significantly be fitted better than two

separate univariate LME models. Results of the fitted bivariate model show that the

correlation between the prediction of random intercepts of two separated models for

the ODI and the VAS is close to one (0.83), which may suggest that a model with

one shared random intercept should also fit well. Comparison of two fitted models

with shared and separated random-intercepts show that the sharing strategy makes

no better fit based on the smallest AIC and BIC values.

A preliminary descriptive analysis, based on some categories factors, shows that a

hidden classification may exist in the structure of collected data. Furthermore, based

on the histograms of the predicted random intercepts, shown in Figure 5, we ob-

served that the random intercept associated with VAS deviates from the normality

and multimodal shape, whereas the random intercept associated with ODI may be

normally distributed. Also, the related density surface and scatter plot of the pre-

dicted intercepts, shown in Figure 6 (left) and (center), obviously reveal that the joint

distribution of intercepts (b1i , b
2
i ) may be bimodal.

The above evidence motivates us to examine the ability of our proposed strategy
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Figure 5: Histograms of the estimated random intercepts from model M5 in low back

pain study.

Figure 6: (left)The scatter plot (center) The surface plot of the estimated random

intercepts from model M5. (right) The contour plots of the Clayton copula with DG

margins in the low back pain study.

to classifying patients. A strong dependence observed in the lower-left region of

the predicted intercepts. It may be cover by the Clayton copula. Thus, we specify a

multimodal bivariate distribution for the random intercepts by utilizing the univariate

DG distribution for each random intercept and the Clayton copula to join them.

Because the joint distribution of random intercepts is multimodal, we fit a bivariate

LME model specified by the finite mixture distribution with normal components and

the bivariate DG distribution for random intercepts.

For comparison, we fit the mixed-effects model (7.1) by assuming that the random
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intercepts be distributed as the already introduced specification for Models M1–M3

and two following models.

M4: The Clayton copula with margins N(0, σ2
1) and N(0, σ2

2).

M5: The Clayton copula with margins DG(0, σ1, α1) and N(0, σ2
2).

Table 2 shows the estimation results. We report the SAS code for M5, as an example,

in Appendix. Values of model selection criteria show that M5 is the best-fitting model

while M3 is the second-best one. The dependence parameter estimate of Clayton cop-

ula and the shape parameter estimate of the DG margin in M5 are significant. We

observe that the standard errors of fixed effects associated with most covariates in

the normal model M1 are larger than those models assuming multimodality and are

smaller in the selected model M5. The same is true for the estimate of random-effects

variances.

Figure 6 (right) displays the scatter plot of the predicted intercepts with the super-

imposed contour plots of the fitted model M5. This figure indicates that the more

flexibility, offered by our proposed model, is sufficient to capture the multimodality

and the nonlinear dependence between the random intercepts.

7.3 Medical results based on the best fitted model

Results of the best-fitted model show that both responses significantly unrelated to

the gender and surgery recommendation. A large amount of pain or disability at
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Table 2: Estimate (standard error) of model parameters under the fitted models M1–

M5 for the low back pain study. ODI= Oswestry Disability Index; VAS= Visual

Analogue Scale.

Estimate (standard error)

M1 M2 M3 M4 M5

Fixed effects parameters

Baseline ODI 0.59 (0.67) 0.45 (0.54) 0.43 (0.52) 0.48 (0.59) 0.43 (0.33)

FemaleODI 0.38 (0.91) 0.53 (0.53) 0.46 (0.46) 0.36 (0.62) 0.54 (0.42)

AgeODI 0.92 (0.74) 0.85 (0.52) 0.75 (0.42) 0.78 (0.57) 0.72 (0.36)

Body mass indexODI 1.99 (1.39) 2.09 (1.26) 1.84 (1.11) 2.41 (1.29) 2.89 (0.91)

Surgery recommendationODI 0.13 (1.82) 0.33 (1.19) 0.52 (1.13) 0.46 (1.25) 0.42 (1.07)

Physical healthODI −0.64 (0.84) −1.44 (0.76) −1.09 (0.53) −1.14 (0.69) −1.05 (0.31)

Mental healthODI −0.78 (0.64) −1.34 (0.46) −1.11 (0.23) −1.17 (0.47) −1.98 (0.14)

BaselineV AS 0.09 (0.09) 0.09 (0.07) 0.03 (0.06) 0.07 (0.08) 0.09 (0.05)

FemaleV AS 0.78 (1.35) 0.45 (1.27) 0.76 (1.11) 0.38 (1.31) 0.58 (1.04)

AgeV AS 0.27 (0.37) 0.34 (0.29) 0.59 (0.14) 0.51 (0.32) 0.64 (0.11)

Body mass indexV AS 0.03 (0.89) 0.19 (0.64) 0.09 (.34) 0.07 (0.68) 0.13 (0.29)

Surgery recommendationV AS 1.46 (1.91) 1.92 (1.36) 1.55 (1.28) 1.25 (1.56) 1.56 (1.13)

Physical healthV AS −0.07 (0.09) −0.02 (0.06) −0.08 (0.05) −0.01 (0.06) −0.09 (0.04)

Mental healthV AS −0.55 (0.36) −0.58 (0.19) −0.86 (0.16) −0.52 (0.28) −0.95 (0.13)

Variance components

V ar(b1) 16.74 (5.21) 16.01 (4.08) 14.96 (3.82) 15.91 (3.92) 14.15 (3.27)

V ar(b2) 16.61 (5.82) 14.21 (4.30) 12.52 (4.41) 15.13 (4.35) 12.11 (4.22)

σ2
e1 1.97 (0.027) 1.93 (0.026) 1.94 (0.027) 1.92 (0.025) 1.91 (0.024)

σ2
e2 1.46 (0.35) 1.39 (0.23) 1.36 (0.16) 1.45 (0.22) 1.34 (0.14)

Model selection criterion

AIC 7791 7403 7307 7665 7273

BIC 7845 7458 7363 7612 7326

the beginning of the study without any intervention may be significantly associated

with the degree of patient improvement according to the VAS and ODI changes in

the follow-up values. This result has been already addressed by previous researchers

(Karaman et al., 2011).

As expected, our analysis shows that a significant positive relationship exists between
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age and both ODI and VAS. It means that an increase in age leads to higher disability

and pain severity. We can show that the risk of disabling back pain rises in older ages.

Accordingly, it is highly recommended to find a desirable policy for LBP in elderly

patients. Another finding of our study is the significant positive relationship between

BMI and both ODI and VAS. It means that the pain severity and the risk of disabling

back pain rise in the overweight category. We also observed a relationship between

the disability of patients with chronic pain and a significant negative relationship

between physical and mental health with both ODI and VAS. These show that there

is a correlation between the reduction in pain and the improvement in disability

simultaneously with an increase in the quality of life when excluding the effect of

other factors. The negative correlation of quality of life with chronic low back pain is

in concordance with other studies (e.g., Di Iorio et al. (2007)). As expected, decreased

disability also had an impact on the physical and mental components score of the

quality of life given the bilateral relationship. However, we omitted it in our study

and only investigated the effect of quality of life components on the pain severity and

disability of patients.

8 Discussion

The basic requirement of the analysis of multiple responses in mixed-effects modeling

is to construct a multivariate distribution from desired marginal distributions with a

given dependence structure. A flexible tool is a copula model, which extends the mul-

tivariate linear mixed-effects models in a way that the dependence structure between

multiple correlated responses is not necessarily limited to be linear. Furthermore,
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the proposed methodology is useful when the marginal distributions of responses are

non-normal. Besides, it is convenient to model heterogeneous data with some unob-

served subpopulations. The strategy was to specify the separate LME models with

random intercepts with each response distributed as the DG. Then, we used a cop-

ula function to join the random intercepts of responses. Since the copula eliminates

the effect of univariate margins from their dependence structure, the strategy causes

greater flexibility in designing mixed-effects models that are applicable in real empir-

ical applications. It is also helpful when several peaks exist in joint or each one of

the marginal distributions of responses but is not directly detectable. An interesting

extension is to allow controlling of the unobserved subject heterogeneity by letting

some regression coefficients being heterogeneous across subjects and consequently fit

random slopes models. This is a topic of our future research.

We should mention that our proposed strategy to jointly model clustered data differs

in methodology in comparison to other tools in the literature. In the analysis of

binary and continuous responses, Gueorguieva and Agresti (2001) propose a correlated

probity model without using the copula approach. Lambert and Vandenhende (2002)

propose an adaptable way of modeling the dependence between the components of

non-normal multivariate longitudinal-data by using the copula but without any notice

on the multimodal structure of data.

Also, to relax the normality assumption in the multivariate longitudinal settings

Nai Ruscone and Osmetti (2017) introduce the implementation of the D-vine copula

function. Our proposed strategy uses familiar copulas to illustrate how two types

of dependence between variables and over time appear in the multivariate-clustered

longitudinal data framework.
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Our proposed strategy can be used suitably as an attractive alternative to the mul-

tivariate mixture modeling since it can cover multimodality via a fewer number of

parameters without employing any selection method for the number of mixture com-

ponents. It is not however applicable to research studies with aims concentrated only

on classification, clustering, or discrimination of population under investigation. Al-

though our simulation studies show that the proposed strategy is convenient for the

analysis of multimodal correlated data, further research is required to illustrate the

strengths and weaknesses of the strategy when comparing with finite mixture models.

We employed a numerical integration technique using the Gauss-Hermite quadrature

to carry out statistical inference through the maximum likelihood approach. Al-

though most commonly available software packages, such as SAS or R, are useful to

implement the technique, in our experience fitting multiple mixed-effects models with

several responses is somehow complicated. The optimization algorithms may termi-

nate due to non-convergence. The analyzer requires some carefully selected initial

values. Thus, for future work, we suggest performing other estimation approaches

based on Bayesian computation. They can be easily implemented inaccessible soft-

ware packages, such as OpenBUGS, STAN, or JAGS in R.

Appendix

Note that the variable ’lastid’ is set to 1 for the last record of the same patient and

to zero otherwise.

proc nlmixed data=pain qpoints=30;

parms ...;
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bounds s2a1>0,s2a2>0,s2e1>0,s2e2>0;

if var=1 then do; mu=b01+b11*female + ...+ a1; s2e=s2e1; end;

else if var=2 then do; mu=b02+b12*female + ...+ a2; s2e=s2e2; end;

\lnlike=-0.5*\ln(s2e)-(y-mu)**2/(2*s2e);

z1=a1/sqrt(s2a1);

p1=0.5/(sqrt(s2a1)*gamma(alpha))*abs(z1)**(alpha-1)*exp(-(abs(z1)));

F1=0.5+0.5*sign(z1)*CDF('gamma',abs(z1),alpha,1); if F1>0.9999 then F1=0.9999;

p2=pdf('Normal', a2, 0, s2a2);

F2=cdf('Normal', a2, 0, s2a2); if F2>0.9999 then F2=0.9999;

\lnclaytonden=\ln(theta+1)+\ln(p1)+\ln(p2) -(theta+1)*(\ln(F1)+\ln(F2))

-(1/theta+2)*\ln(F1**(-theta)+F2**(-theta)-1);

\lnnormalden=-a1**2/2-a2**2/2;

if lastid=1 then \lnlike=\lnlike+\lnclaytonden-\lnnormalden;

model y ~ general(\lnlike);

random a1 a2 ~ normal([0,0],[1,0,1]) subject=patient; run;
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