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Monotone missing data and
pattern-mixture models
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Lancaster LA1 4YF, UK

It is shown that the classical taxonomy of missing data models, namely
missing completely at random, missing at random and informative
missingness, which has been developed almost exclusively within a
selection modelling framework, can also be applied to pattern-mixture
models. In particular, intuitively appealing identifying restrictions are
proposed for a pattern-mixture MAR mechanism.

Key Words & Phrases: missing at random, selection model.

1 Introduction

Modern missing data terminology is largely due to RUBIN (1976) and LITTLE and

RUBIN (1987). Their taxonomy of missing data mechanisms, which distinguishes

between missing completely at random, missing at random, and informative missing-

ness, is widely used. It is usually presented in the selection modelling framework (S),

where the joint distribution of measurement and missingness processes is factorized

into the marginal measurement distribution and the conditional distribution of the

missingness indicators, given the outcomes. Recently, LITTLE (1993) has suggested

pattern-mixture models (PM) as a valuable alternative to selection models. An early

reference is GLYNN, LAIRD and RUBIN (1986). PMmodels are expressed in terms of the

opposite factorisation of the joint distribution.

Although S and PM models are interchangeable from a probabilistic point of view,

in the sense that they represent di�erent factorisations of the same joint distribution,

in practice they encourage di�erent kinds of simplifying assumptions. For this reason,

it is important to consider their relative merits as scienti®c models, especially when
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the probability of missingness depends on the unobserved outcomes. One attraction

of S models is that they ®t naturally into Little and Rubin's taxonomy, whereas PM

models appear not to do so. The aim of this paper is to show, on the contrary, that

PM models can be classi®ed similarly, and further that the intermediate category of

``missing at random'' is connected to particular kinds of restrictions on the

parameters of a PM model in the case of monotone missingness. This suggests to

us that a purely philosophical debate about the relative merits of the S and PM

paradigms is unhelpful. Instead, the focus of debate should shift to a consideration of

the statistical and scienti®c merits of proposed missing value models on their own

terms. For example, if the question of scienti®c interest regards the treatment e�ect,

averaged over all dropout patterns, then choosing an S model seems to be obvious. On

the other hand, if one is interested in the treatment e�ect, for various dropout patterns

separately, then a PM model is a natural choice.

2 Missing data setting

In this article, we will restrict attention to a longitudinal data setting, where missing-

ness is due to dropout. It will be shown in Section 5 that the results obtained for this

case cannot be generalized to non-monotone patterns.

For each subject in the study, an outcome is intended to be observed at T time

points, yielding the outcome vector Y of length T . Some subjects drop out during the

study, so that for these we only observe the early components of Y . The missingness

indicator will be denoted by R, indicating the time of last measurement. A person

completed the study if R � T .

We will refer to Y as the complete data. The term full data will be used for the pair

�Y;R�. Our objective is to describe the joint density f � y; r� of the full data.

3 Selection models

In an S model, the joint density f � y; r� is factorised as

f � y; r� � f � y� f �r j y� �1�
The classical taxonomy considers the structure of f �r j y�: missing data are said to be

missing completely at random (MCAR) if the probability of missingness is

independent of the data, i.e. f �r j y� � f �r�, and missing at random (MAR) if a

subject's missingness mechanism depends on its observed outcomes only,

f �r � t j y1; . . . ; yT � � f �r � t j y1; . . . ; yt�, for t � 1; . . . ;T . In either case, the joint

density of the observed data factorises as

f � y1; . . . ; yt; r � t� � f � y1; . . . ; yt� f �r � t j y1; . . . ; yt�
with the conditional density further reducing to f �r � t� in the MCAR case. If, in

addition, the parameter vectors associated with the two components, say y and f, are
disjoint, it follows that the log-likelihood can be expressed as the sum of two log-

likelihoods, one for the measurement process parameters y and one for the
#VVS, 1998
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missingness process parameters f. For this reason both MCAR and MAR processes

are called ignorable in the context of likelihood inference, provided that the disjoint

parameter condition is satis®ed (RUBIN, 1976). In contrast, non-ignorable missingness

corresponds to a process for which f �r j y� depends on at least one of the unobserved

components of y, and possibly on the observed components y1; . . . ; yt, in which case

(1) does not simplify. Maximizing the likelihood is then a somewhat more complex

task. Model (1) was considered by DIGGLE and KENWARD (1994) for informative

dropout in longitudinal continuous data and by MOLENBERGHS, KENWARD and

LESAFFRE (1997) for categorical outcomes.

A valid criticism of S models for informative dropout, as pointed out by several

discussions of DIGGLE and KENWARD (1994), is that they often lead to very ¯at

likelihoods or even, in extreme cases, to non-identi®ability of one or more model

parameters. Furthermore, particular S models rest on assumptions which are

fundamentally untestable, in the sense that one can devise multiple models which

would be distinguishable on the basis of complete data, but which are identical with

respect to the observed data.

4 Pattern-mixture models

LITTLE (1993, 1995) advocates PM models as a valuable alternative to S models. In a

PM model, the joint density of f � y; r� is factorized as

f � y; r� � f �r� f � y j r�
Because di�erent densities (possibly with di�erent parameters) are considered for

each of the observed values of r, PM models are chronically under-identi®ed. At ®rst

sight, this leaves them open to the same criticism as S models. However, LITTLE (1993)

claims that the PM approach is more honest, because parameters for which the data

provide information are clearly distinguished from parameters for which there is no

information at all. For example, if Y has two components Y1 and Y2, the second of

which is incomplete, the observed data clearly give no information about the

conditional density of Y2 given that it is missing. LITTLE therefore proceeds by

imposing identifying restrictions, i.e. the inestimable parameters are identi®ed by

linking them to their estimable counterparts.

We will now show how PM models can be classi®ed using exactly the same

taxonomy as is used for S models. Furthermore, we establish a link between this

classi®cation and the identifying restrictions proposed in LITTLE (1993).

Clearly, S models and PM models coincide under MCAR, since in either case the

joint density simpli®es to f � y� f �r�. Next, we show that MAR can be expressed in a

PM framework through restrictions, related to the complete case missing value

(CCMV) restrictions (LITTLE, 1993), which we call available case missing value

(ACMV) restrictions. LITTLE's CCMV restrictions set a conditional density of

unobserved components given a particular set of observed components equal to the

corresponding conditional density in the subgroup of completers. Our ACMV
#VVS, 1998
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restrictions equate this conditional density to the one calculated from the subgroup of

all patterns for which all required components have been observed.

In our setting of longitudinal data with dropouts, CCMV can be de®ned formally

as the condition that

8t � 2; 8j < t : f � yt j y1; . . . ; ytÿ1; r � j� � f � yt j y1; . . . ; ytÿ1; r � T�
whereas ACMV is the condition that

8t � 2; 8j < t : f � yt j y1; . . . ; ytÿ1; r � j� � f � yt j y1; . . . ; ytÿ1; r � t� �2�
If there are only 2 time points �T � 2�, then ACMV and CCMV coincide.

With these de®nitions, our main result is:

THEOREM 1. For longitudinal data with dropouts, MAR()ACMV.

The proof of Theorem 1 is given in the Appendix.

An interesting by-product of this theorem is that, since MAR corresponds to a set

of (untestable) restrictions (ACMV) in the PM framework, MAR itself is also

untestable. This fact is often overlooked in the S framework.

LITTLE (1993) suggested the possibility of using more than the completers to

construct identifying restrictions for two practical reasons: (1) the set of completers

may be small and (2) there may be a closer similarity between the conditional

distributions given r � t and some other incomplete pattern r � s, than between

those for r � t and the completers, r � T .

We suggest the use of the following procedure, which uses the maximum amount of

information. First, restrict the dataset to the ®rst two components only. Then, missing

data patterns r � 2; . . . ;T collapse into a single pattern r � 2. Applying ACMV

restrictions to r � 1 and r � 2 leads to the construction of the density

f � y2 j y1; r � 1� � f � y2 j y1; r � 2�, as in (2). Multiplying by f � y1 j r � 1� leads to

f � y1; y2 j r � 1�, thus determining the joint densities of f � y1; y2 j r� for all

r � 1; . . . ;T . Next, f � y3 j y1; y2; r��r � 1; 2� can be calculated from

f � y3 j y1; y2; r � 3�. We then proceed by induction to construct all joint densities.

5 Non-monotone patterns: A counter example

It has to be noted that the result of Theorem 1 does not hold for general missing data

patterns. Consider a bivariate outcome � y1; y2� where missingness can occur in both

components. Let �r1; r2� be the corresponding bivariate missingness indicator, where

rj � 0 if yj is missing and 1 otherwise � j � 1; 2�.
Consider the following MAR mechanism:

f �r j y� � Pr�r1; r2 j y1; y2� �
p if �r1; r2� � �0; 0�
qy1 if �r1; r2� � �1; 0�
sy2 if �r1; r2� � �0; 1�
1 ÿ p ÿ qy1 ÿ sy2 if �r1; r2� � �1; 1�

8>><>>: �3�
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We need to indicate how the concept of ACMV will be translated to this setting.

Several proposals can be considered. A trivial extension of the ACMV restrictions in

the monotone case, implies for the patterns r � �1; 0� and r � �0; 1�:

r � �1; 0� : f � y1; y2 j r � �1; 0�� � f � y1 j r � �1; 0�� � f � y2 j y1; r � �1; 1�� �4�
r � �0; 1� : f � y1; y2 j r � �0; 1�� � f � y2 j r � �0; 1�� � f � y1 j y2; r � �1; 1�� �5�

The idea is that the density of missing components, given observed components is

replaced by the corresponding density of patterns for which both are available.

Restrictions for the pattern r � �0; 0� will be discussed further.

From condition (4) we derive

f �r � �1; 0� j y1; y2� f � y1; y2�
f �r � �1; 0�� � f �r � �1; 0� j y1� f � y1�

f �r � �1; 0��
f �r � �1; 1� j y1; y2� f � y1; y2�

f �r � �1; 1� j y1� f � y1�
m

f �r � �1; 1� j y1; y2� � f �r � �1; 1� j y1�

since f �r � �1; 0� j y1; y2� � f �r � �1; 0� j y1� � qy1 , implying that sy2 is constant.

Similarly, condition (5) implies that qy1 is constant.

Clearly, since both qy1 and sy2 have to be constant, the mechanism needs to be

MCAR. In other words, ACMV �MCAR, independent of the restrictions for

f � y1; y2 j r � �0; 0��, and hence ACMV and MAR di�er.

6 Conclusion

In a missing data context, the choice of modelling framework needs careful

consideration. The simplicity of the classical MCAR, MAR, and informative

taxonomy is not a feature particular to the selection modelling approach, since, in the

case of monotone missing data, the same taxonomy can be developed for pattern-

mixture models. For the latter, the interpretation is equally instructive as MAR. The

intermediate case corresponds to an explicit and reasonably natural set of restrictions

on the unidenti®able components of the full data distribution.
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Appendix

The MAR assumption states that

f �r � t j y1; . . . ; yT � � f �r � t j y1; . . . ; yt� �6�

and the ACMV assumption that

8t � 2; 8j < t : f � yt j y1; . . . ; ytÿ1; r � j � � f � yt j y1; . . . ; ytÿ1; r � t� �7�

First, a lemma will be established.

LEMMA 1. In a longitudinal setting with dropout, ACMV()8t � 2,

8j < t : f � yt j y1; . . . ; ytÿ1; r � j � � f � yt j y1; . . . ; ytÿ1�.
Take t � 2, j < t, then ACMV leads to:

f � yt j y1; . . . ; ytÿ1� �
Xtÿ1
i�1

f � yt j y1; . . . ; ytÿ1; r � i� f �r � i�

� f � yt j y1; . . . ; ytÿ1; r � t� f �r � t�

�
Xt�1
i�1

f � yt j y1; . . . ; ytÿ1; r � j� f �r � i�

� f � yt j y1; . . . ; ytÿ1; r � j� f �r � t�

� f � yt j y1; . . . ; ytÿ1; r � j�
Xtÿ1
i�1

f �r � i� � f �r � t�
" #

� f � yt j y1; . . . ; ytÿ1; r � j�
#VVS, 1998
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To show the reverse direction, take again t � 2, j < t.

f � yt j y1; . . . ; ytÿ1; r � t� f �r � t� � f � yt j y1; . . . ; ytÿ1�

ÿ
Xtÿ1
i�1

f � yt j y1; . . . ; ytÿ1; r � i� f �r � i�

� f � yt j y1; . . . ; ytÿ1�

ÿ
Xtÿ1
i�1

f � yt j y1; . . . ; ytÿ1� f �r � i�

� f � yt j y1; . . . ; ytÿ1� 1 ÿ
Xtÿ1
i�1

f �r � i�
" #

� f � yt j y1; . . . ; ytÿ1; r � j� 1 ÿ
Xtÿ1
i�1

f �r � i�
" #

� f � yt j y1; . . . ; ytÿ1; r � j� f �r � t�

This completes the proof.

We are now able to prove Theorem 1.

MAR) ACMV

Consider the ratio Q of the complete data likelihood to the observed data likelihood.

This gives, under the MAR assumption:

Q � f � y1; . . . ; yT � f �r � i j y1; . . . ; yi�
f � y1; . . . ; yi� f �r � i j y1; . . . ; yi�

� f � yi�1; . . . ; yT j y1; . . . ; yi� �8�

Further, one can always write:

Q � f � yi�1; . . . ; yT j y1; . . . ; yi; r � i� f � y1; . . . ; yi j r � i� f �r � i�
f � y1; . . . ; yi j r � i� f �r � i�

� f � yi�1; . . . ; yT j y1; . . . ; yi; r � i�
�9�

Equating expressions (8) and (9) for Q we see that

f � yi�1; . . . ; yT j y1; . . . ; yi; r � i� � f � yi�1; . . . ; yT j y1; . . . ; yi�: �10�

To show that (10) implies the ACMV conditions (7), we will use the induction

principle on t. First, consider the case t � 2.

Using (10) for i � 1, and integrating over y3; . . . ; yT , we obtain

f � y2 j y1; r � 1� � f � y2 j y1�

leading to, using Lemma 1,

f � y2 j y1; r � 1� � f � y2 j y1; r � 2�
#VVS, 1998
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Suppose by induction ACMV holds 8t � i. We will now prove the hypothesis for

t � i � 1. Choose j � i. Then from the induction hypothesis and Lemma 1, it follows

that

8j < t � i : f � yt j y1; . . . ; ytÿ1; r � j� � f � yt j y1; . . . ; ytÿ1; r � t�
� f � yt j y1; . . . ; ytÿ1�

Taking the product over t � j � 1; . . . ; i then gives

f � yj�1; . . . ; yi j y1; . . . ; yj; r � j� � f � yj�1; . . . ; yi j y1; . . . ; yj� �11�

After integration over yi�2; . . . ; yT , equation (10) leads to

f � yj�1; . . . ; yi�1 j y1; . . . ; yj; r � j� � f � yj�1; . . . ; yi�1 j y1; . . . ; yj� �12�

Dividing (12) by (11) and equating the left and right hand sides, we ®nd that

f � yi�1 j y1; . . . ; yi; r � j� � f � yi�1 j y1; . . . ; yi�

This holds 8j � i, and Lemma 1 shows this is equivalent with ACMV.

ACMV)MAR

Starting from the ACMV assumption and Lemma 1, we have

8t � 2; 8j < t : f � yt j y1; . . . ; ytÿ1; r � j� � f � yt j y1; . . . ; ytÿ1� �13�

We now factorise the full data density as

f � y1; . . . ; yT ; r � i� � f � y1; . . . ; yi; r � i� f � yi�1; . . . ; yT j y1; . . . ; yi; r � i�

� f � y1; . . . ; yi; r � i�
YT

t� i�1
f � yt j y1; . . . ; ytÿ1; r � i�

Using (13), it follows that

f � y1; . . . ; yT ; r � i� � f � y1; . . . ; yi j r � i� f �r � i�
YT

t� i�1
f � yt j y1; . . . ; ytÿ1�

� f � y1; . . . ; yi j r � i� f �r � i� f � yi�1; . . . ; yT j y1; . . . ; yi�

� f � y1; . . . ; yi j r � i� f �r � i�
f � y1; . . . ; yi�

� f � y1; . . . ; yi� f � yi�1; . . . ; yT j y1; . . . ; yi�

� f � y1; . . . ; yi j r � i� f �r � i�
f � y1; . . . ; yi�

f � y1; . . . ; yT �

� f �r � i j y1; . . . ; yi� f � y1; . . . ; yT � �14�
#VVS, 1998
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An alternative factorisation of f � y; r� gives
f � y1; . . . ; yT ; r � i� � f �r � i j y1; . . . ; yT � f � y1; . . . ; yT � �15�

It follows from (14) and (15) that

f �r � i j y1; . . . ; yT � � f �r � i j y1; . . . ; yi�

completing the proof of Theorem 1.

#VVS, 1998
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