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Abstract

Background: A diverse community of microbes naturally exists on the phylloplane, the surface of leaves. It is one
of the most prevalent microbial habitats on earth and bacteria are the most abundant members, living in
communities that are highly dynamic. Today, one of the key challenges for microbiologists is to develop strategies
to culture the vast diversity of microorganisms that have been detected in metagenomic surveys.

Results: We isolated bacteria from the phylloplane of Hedera helix (common ivy), a widespread evergreen, using
five growth media: Luria–Bertani (LB), LB01, yeast extract–mannitol (YMA), yeast extract–flour (YFlour), and YEx. We
also included a comparison with the uncultured phylloplane, which we showed to be dominated by
Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. Inter-sample (beta) diversity shifted from LB and LB01
containing the highest amount of resources to YEx, YMA, and YFlour which are more selective. All growth media
equally favoured Actinobacteria and Gammaproteobacteria, whereas Bacteroidetes could only be found on LB01,
YEx, and YMA. LB and LB01 favoured Firmicutes and YFlour was most selective for Betaproteobacteria. At the genus
level, LB favoured the growth of Bacillus and Stenotrophomonas, while YFlour was most selective for Burkholderia
and Curtobacterium. The in vitro plant growth promotion (PGP) profile of 200 isolates obtained in this study
indicates that previously uncultured bacteria from the phylloplane may have potential applications in
phytoremediation and other plant-based biotechnologies.

Conclusions: This study gives first insights into the total bacterial community of the H. helix phylloplane, including
an evaluation of its culturability using five different growth media. We further provide a collection of 200 bacterial
isolates underrepresented in current databases, including the characterization of PGP profiles. Here we highlight the
potential of simple strategies to obtain higher microbial diversity from environmental samples and the use of high-
throughput sequencing to guide isolate selection from a variety of growth media.
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Background
An abundant and diverse community of microorganisms
naturally exists on the surface of above-ground parts of
plants, known as the phyllosphere [1]. The phyllosphere
can be subdivided into the caulosphere (stems), phyllo-
plane (leaves), anthosphere (flowers), and carposphere
(fruits). The phyllosphere is one of the most prevalent
microbial habitats on earth and bacteria are by far the
most abundant and persistent phyllosphere organisms,
with a typical cell density of 106–107 cells cm− 2 [1, 2].
Phyllosphere microbial community studies to date have
mainly focused on plant species such as Arabidopsis
thaliana (thale cress), Lactuca sativa (lettuce), Glycine
max (soy bean), Trifolium repens (white clover), and
Oryza sativa (rice) and the greatest microbial diversity
has been described using metagenomic tools. Broadly,
leaf microbial communities mainly comprise bacteria
belonging to the phyla Proteobacteria, Actinobacteria,
Bacteroidetes, and Firmicutes. Further, Proteobacteria
species have been reported to comprise about half of the
phyllosphere community suggesting that, at higher
taxonomic levels, phyllosphere bacterial communities
are similar across various host plant species [1, 3–8].
Increased knowledge of plant–microbe interactions en-
ables a better understanding of their role during natural
plant growth and development [9], and this knowledge
can be translated into improved agricultural biomass
production and microbe-assisted phytotechnologies [10].
In this study, the bacterial phylloplane community of
Hedera helix (common ivy) is explored using culture-
dependent and -independent techniques. H. helix is an
evergreen plant known for its hardiness and climbing
ability [11], and has widespread distribution in the
northern hemisphere in diverse environments such as
private gardens, city centers, municipal parks, nature re-
serves, and forests.
To enhance our understanding about the diversity and

function of microbial communities living in the phyllo-
plane, culture-independent approaches are indispensable.
Nevertheless, one of the key challenges for microbiologists
remains to develop strategies to culture the vast diversity
of microorganisms. There has been a recent resurgence in
the application of classical culture techniques to interro-
gate the microbial world, with particular success in envi-
ronments such as the human gut [12–14]. In general, a
wide diversity of cultured bacteria may be retrieved by in-
creasing the diversity of growth media used to include
complex media rich in macro- and micronutrients, and
custom media formulations that are more oligotrophic.
This includes growth media with low concentrations of
mineral salts [15, 16], the addition of (host) plant extracts
[17], separated preparation of growth medium compo-
nents [18], and the use of a range of solidifying agents
[19]. Monitoring for colony formation over extended

incubation periods is also useful [16]. Once a collection of
bacterial isolates is obtained and maintained in the labora-
tory their functional characteristics can be evaluated, in-
cluding plant growth-promoting (PGP) potential through
the biosynthesis of PGP hormones and production of spe-
cific enzymes.
Here, we deployed microbial community metabarcod-

ing to evaluate the culturing efficiency of bacteria from
the H. helix phylloplane, specifically evaluating the use
of Luria–Bertani (LB) [20], LB01 (1/10 dilution of LB),
yeast extract–mannitol (YMA) [21], yeast extract–flour
(YFlour) [22], and YEx (custom formulation). Addition-
ally, for each growth medium, representative bacterial
isolates were purified such that their PGP potential
could be evaluated. This study highlights the usefulness
of high-throughput sequencing to evaluate the diversity
of bacterial communities present on growth media in
comparison to uncultured samples from the original en-
vironment. The information obtained can guide targeted
single-colony isolation, focusing on growth conditions
that favour certain taxa thereby increasing the likeliness
to isolate previously uncultured or underrepresented
bacterial species.

Results and discussion
The Hedera helix phylloplane and its culturable fraction
In an effort to expand the library of phylloplane bacterial
isolates from H. helix host plants, phylloplane samples
were analysed in a culture-dependent and -independent
way. Metabarcoding was applied to picture the H. helix
phylloplane bacterial diversity. Broad characterization of
the culturable fraction, using both metabarcoding of
Petri dish rinsates and Sanger sequencing of individual
isolates, was carried out using five different growth
media. The metabarcoding effort of both uncultured and
cultured samples yielded 177,872 high-quality 300 bp
V3–V4 16S rRNA gene sequences, representing 1482
amplicon sequence variants (ASVs). Bacterial intra-sample
(alpha) diversity was estimated by rarefaction analysis
(Figure A1) and by calculating three alpha diversity indi-
ces: (i) the observed number of ASVs, (ii) Shannon’s diver-
sity index, and (iii) Simpson’s diversity index (Fig. 1b). The
uncultured phylloplane samples showed the highest intra-
sample diversity, while community diversity of cultures
grown on LB01 and YMA was higher compared to LB,
YEx, and YFlour. Overall, community diversity for all
growth medium samples was low relative to uncultured
phylloplane samples, as expected. To infer bacterial inter-
sample (beta) diversity, we employed PCoA on a Bray–
Curtis dissimilarity matrix (Fig. 1a). Statistical analysis
revealed that the choice of growth medium contributes
significantly to diversity (R2 = 0.2925, p < 0.001). Visual
examination of the PCoA plot shows that inter-sample
bacterial diversity shifts from LB, and to a lesser extent
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LB01, which contain the highest amount of resources
(especially nitrogen sources), to YMA and YFlour, which
are more selective, and to YEx, which is more limited but
also most varied in resources. Differences in carbon-to-
nitrogen ratio and carbon sources between the growth
media likely contributed to the alpha and beta diversity
and prevailing taxonomic groups observed, as it is the case
in other bacterial (culture) systems [23–25].
In order to take a closer look at the composition of

the bacterial communities from uncultured and cultured
samples, ASVs were taxonomically assigned using the
latest version of the Ribosomal Database Project (RDP)
database. From this, differences between the uncultured
phylloplane and the cultured samples were evident
(Fig. 2). For uncultured phylloplane samples at the
phylum level (Fig. 2a), an average of 90.7% of ASVs
could be taxonomically classified within four major
phyla with the following relative abundances: Proteobac-
teria (51.1%; subdivided as 30.9% Alphaproteobacteria,
14.9% Gammaproteobacteria, and 5.9% Betaproteobac-
teria), Actinobacteria (15.5%), Bacteroidetes (19.2%),
and Firmicutes (4.9%). For the remaining 5.6%, ASVs
were classified within 12 other phyla (Acidobacteria,
Armatimonadetes, Chlamydiae, Cyanobacteria, Deinococ-
cus–Thermus, Fusobacteria, Gemmatimonadetes, Nitros-
pirae, Planctomycetes, Saccharibacteria, Verrucomicrobia,
and candidate phylum WPS-1). Finally, 3.7% could not be

classified at phylum level. It was previously reported for
different plant species, including Arabidopsis thaliana
(thale cress), Lactuca sativa (lettuce), Glycine max (soy
bean), Trifolium repens (white clover), and Oryza sativa
(rice) that their phyllosphere communities are mainly
comprised of bacteria belonging to phylum Proteobacteria
(with classes Alphaproteobacteria and Gammaproteobac-
teria in particular), Actinobacteria, Bacteroidetes, and
Firmicutes [1, 3–8]. Members of Proteobacteria consti-
tuted about 50% of the community composition. Here we
showed that this holds true for H. helix. This strengthens
the observation that the phyllosphere microbiome com-
position on higher taxonomic level is stabilized by factors
such as host plant species and geographical location [1].
Host plant species can be the primary factor driving the
composition of the phyllosphere microbiome [26, 27],
while in other cases geographic location can have the
greatest influence on community composition [4, 28, 29].
For growth medium samples, all ASVs were taxonomic-

ally classified within the phyla Proteobacteria, Actinobac-
teria, Bacteroidetes, and Firmicutes. This may be expected,
given the overall taxonomic structure of the H. helix
phylloplane and the general finding that the vast majority
of cultured bacteria are affiliated with these phyla [30].
All selected growth media favoured Actinobacteria and
Gammaproteobacteria, with average relative abundances
of 19.0 and 34.7%, respectively, while Bacteroidetes were

Fig. 1 Intra- and inter-diversity of growth medium and phylloplane samples. Intra-sample diversity was assessed with amplicon sequence variant
(ASV) observations, Shannon diversity and Simpson diversity (b; n = 24, 4 per growth medium and 4 uncultured phylloplane samples). Inter-
sample diversity was measured with principal coordinates analysis (PCoA) on a Bray–Curtis dissimilarity matrix (a). The x- and y-axes are indicated
by the first and second principal coordinate (PC), respectively, and the values in parentheses show the percentages of the variation explained
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only recovered from LB01, YEx, and YMA. LB and LB01
favoured Firmicutes compared to the other growth media,
with an average relative abundance of 36.1 and 27.1%, re-
spectively. YFlour was most selective for Betaproteobac-
teria (20.6%). Figure 2b illustrates the relative abundances
of the 10 most abundant genera across all growth media
and the uncultured bacterial phylloplane. LB favoured the
growth of Bacillus and Stenotrophomonas, with average
relative abundances of 19.2 and 16.3%, respectively, while
YFlour was most selective for Burkholderia (13.9%) and
Curtobacterium (14.7%). Rhizobium was found on all
growth media except on LB. In the uncultured phylloplane
an average of 18.1% of ASVs could not be classified at the
genus level. For growth medium samples this was 4.7% for
LB, 5.4% for LB01, 9.0% for YEx, 11.0% for YFlour, and
6.8% for YMA. This suggests that more potentially novel
bacterial species were cultured on YFlour, while LB and
LB01 yielded the highest abundance of known bacteria.
To understand the importance of culturing conditions

to capture a substantial part of the total phyllospheric
bacterial community of H. helix, the proportion of
shared and unique ASVs for each growth medium was
determined. The highest proportion of ASVs (76.3%)
was unique for the growth media, 21.9% was shared

between at least two of the growth media and only 1.8%
was shared between all growth media (Fig. 3). This
exemplifies the added value of using varied growth
conditions, such as different types of growth media, in
the context of culturing a higher proportion of the
microorganisms from a given environment. However, it
is important to note that ASV abundance is not consid-
ered in this picture. The 50 most abundant ASVs in the
uncultured bacterial phylloplane samples and their
phylogenetic relationships are shown in Fig. 4. The
growth conditions that were used allowed for culturing
of 18 of the top 50 ASVs observed in uncultured
samples. These ASVs all classified within the phyla Pro-
teobacteria, Actinobacteria, Bacteroidetes, or Firmicutes
except one (ASV 49) that was classified as Fusobacter-
ium within the phylum Fusobacteria. Many of these
ASVs classified as genera typically associated with the
phyllosphere [1, 3–8], including Bacteroides, Curtobac-
terium, Methylobacterium, Pseudomonas, Rhizobium,
Sphingomonas, and Stenotrophomonas.
Another, more traditional, method to assess culturing

efficiency is to count the viable bacterial colonies grow-
ing on Petri dishes. A comparison of the viable count of
phylloplane colonies growing on the selected growth

Fig. 2 Taxonomic diversity of cultured phylloplane bacteria on the selected growth media and relation with the uncultured phylloplane. Relative
abundances of the four major phyla Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes (a) across all samples (n = 24, 4 per growth
medium and 4 uncultured phylloplane samples). The relative abundances of the top 10 genera across all growth medium samples and their
relation with the uncultured bacterial phylloplane is also shown (b). uncl.: unclassified
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media, expressed in colony-forming units (CFU) per
gram of fresh leaf material, is shown in Fig. 5b. LB and
LB01 allowed for growth of significantly higher numbers
of bacterial colonies compared to YEx, YFlour and YMA
(p < 0.05). Not surprisingly, LB and LB01 contained the
highest concentration of (nitrogen) resources, making it
easier for r-selected species to grow.

Plant growth-promoting potential of 200 bacterial
isolates
Evaluation of PGP potential was determined as indole-3-
acetic acid (IAA), 3-hydroxy-2-butanone (acetoin), and
1-aminocyclopropane-1-carboxylic acid (ACC) deami-
nase production by 200 bacterial isolates cultured with
the selected growth media (Fig. 5a). IAA is the most
common phytohormone of the auxin class, and induces
cell elongation and division for plant growth and devel-
opment [31]. The volatile phytohormone acetoin has
been shown to promote growth and induce systemic
resistance in A. thaliana [32, 33], and ACC deaminase
reduces ethylene levels, which is related to plant growth
promotion [34]. In our study regarding phylloplane bac-
teria, those capable of IAA production were abundant
on LB and LB01, and nearly absent on YFlour. YEx
yielded bacterial isolates showing relatively high produc-
tion of acetoin. Isolates producing ACC deaminase were
rare on all growth media. The bacterial 16S rRNA gene

of all 200 isolates was partially sequenced and these
sequences were taxonomically assigned to genus level
(Fig. 5c). Most isolates were assigned to the genera
Curtobacterium (41) and Methylobacterium (37). Frigori-
bacterium (16), Bacillus (13), Rathayibacter (11), Sphin-
gomonas (10), and Pantoea (9) were also common. That
one-fifth of cultured bacteria were classified within the
genus Curtobacterium may not be surprising, as this
genus is ubiquitously reported to be associated within
phyllosphere habitats [35–38]. In one comprehensive
isolation study comprising 200 leaf samples of soybean
and corn plants, Curtobacterium species could be iso-
lated from every sample [39]. Also, previous culture-
independent phyllosphere studies paired with isolation
have allowed the identification of representative bacteria
from various genera, including Methylobacterium [40],
Frigoribacterium [36], Sphingomonas [41, 42], and
Pantoea [43]. Most isolated Curtobacterium and Methy-
lobacterium species in this study were able to produce
IAA and acetoin, while correlations with ACC deami-
nase production were not evident. PGP profiles can help
to select bacterial isolates with specific PGP traits that
can be exploited in microbe-assisted plant biomass pro-
duction, plant protection, and phytoremediation [10].
However, it is important to note that evaluating PGP
traits based on in vitro experiments solely has its caveats
[44]. For example, it is possible that the production of
phytohormones does not occur in the natural plant–mi-
crobe partnership or that production occurs in a pathogenic
context [45]. Follow-up in vivo inoculation experiments are
necessary to conclusively evaluate PGP potential, but never-
theless in vitro PGP screening remains an important first
step.

Expanding on current culture databases
Here we highlight the potential of simple strategies to
obtain higher microbial diversity from environmental
samples. Next to relatively minor tweaks such as the
addition of (host) plant extracts [17] or the use of a
range of incubation periods [16], we showed that the use
of different growth media proves to be effective in order
to capture a substantial part of the total phyllospheric
bacterial community of H. helix. Recently, this strategy
also proved to be successful in the human gut [14] and a
dryland environment [46], and likely is applicable on a
wider basis.
Our isolation of phylloplane bacteria resulted in a collec-

tion of 200 bacterial isolates underrepresented in current
databases. Most isolates (104/200) were taxonomically clas-
sified within the phylum Actinobacteria, which represented
20 out of a total of 37 genera, including Curtobacterium
(41), Frigoribacterium (16), Rathayibacter (11), Glaciibacter
(5), Cellulomonas (4), Frondihabitans (4), Microbacterium
(4), Nocardioides (3), Cellulosimicrobium (2), Leifsonia (2),

Fig. 3 Venn diagram showing shared and unique amplicons
sequence variants (ASVs) for the selected growth media. All 379
ASVs that were obtained by culturing are depicted according the
selected growth media. The highest proportion of ASVs (76.3%) is
unique for the growth media, 21.9% is shared between at least two
of the growth media and only 1.8% is shared between all growth
media. Note that ASV abundance is not considered in this diagram
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Nocardia (2), Sediminihabitans (2), Arthrobacter (1), Brevi-
bacterium (1), Flexivirga (1), Gordonia (1), Herbiconiux (1),
Micrococcus (1), Patulibacter (1), and Rhodococcus (1). This
is interesting given the fact that Actinobacteria members
are well-known for their secondary metabolite production
[47] and abundant occurrence in extreme environments,
characterized by acidic/alkaline pH, low or high tempera-
tures, salinity and radiation, and low levels of moisture and
resources [48]. For example, Frigoribacterium and Glacii-
bacter are typical psychrophilic genera containing a rare
group of B-type peptidoglycan [49, 50], and Frondihabitans
species are well-adapted to colder and ultraviolet light-
exposed environments such as the phylloplane [51].
Additionally, in the context of the coordinated efforts

to expand our understanding about plant-associated
bacteria and life in general, several isolates from this
study were selected for whole-genome sequencing in the
framework of the U.S. Department of Energy (DOE)

Joint Genome Institute (JGI) project the “Genomic
Encyclopedia of Bacteria and Archaea (GEBA)” [52]. A
further (pan)genomic study including a comparison with
all publicly available genomes to understand which
properties are specific to the phylloplane is ongoing.

Conclusions
This study gives first insights into the total bacterial
community of the H. helix phylloplane and contributes
as case study of bacterial culturability of this habitat
assessed using high-throughput sequencing technology,
including an evaluation of the growth media LB, LB01,
YMA, YFlour, and YEx. We provide a collection of 200
bacterial isolates underrepresented in current databases,
including the characterization of PGP profiles to
facilitate better understanding of the putative ecological
roles of phylloplane bacteria that can also guide selection
of inoculants for plant–microbe biotechnologies. In the

Fig. 4 Most abundant amplicons sequence variants (ASVs) and relation with the selected growth media. The top 50 ASVs in uncultured bacterial
phylloplane samples are given with their phylogenetic relationship and taxonomic classification (order | family | genus). ASVs depicted in bold are
part of the core microbiome, here defined by presence in all phylloplane samples. For each ASV, it is indicated if culturing was successful on the
selected growth media with a corresponding symbol. P: Proteobacteria, α: Alphaproteobacteria, β: Betaproteobacteria, γ: Gammaproteobacteria, A:
Actinobacteria, B: Bacteroidetes, Fi: Firmicutes, Fu: Fusobacteria, uncl.: unclassified
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context of international microbial culture collection
initiatives aiming to culture at least one member of each
functionally diverse group of the microbiota associated
with plant hosts, this study highlights the potential of
simple strategies to obtain higher microbial diversity
from environmental samples and the use of high-
throughput sequencing to guide isolate selection from a
variety of growth media.

Methods
Collection and preparation of phylloplane samples
Leaves (n = 80, 20 per site) from H. helix plants ranging
in age from three to 6 months old were collected at four
sites around Hasselt, Belgium (coordinates in WGS84
format: 50.936546, 5.317226 (A); 50.928680, 5.332674
(B); 50.940104, 5.438675 (C); 50.921694, 5.433951 (D)).
The distances in km between the sites are: A–B, 1.4; A–
C, 8.5; A–D, 8.4; B–C, 7.6; B–D, 7.2; C–D, 2.1. The soil
type at the four sites was characterized to be sandy loam
with an average pH of 6.4 ± 0.1 (A: 6.41 ± 0.02, B: 6.56 ±
0.02, C: 6.42 ± 0.01, D: 6.37 ± 0.02) and average soil
organic matter content of 958 ± 154mg kg− 1 (A: 766 ±

61mg kg− 1, B: 932 ± 28mg kg− 1, C: 1169 ± 35mg kg− 1,
D: 965 ± 26mg kg− 1). Permission for sampling was ob-
tained and performed in accordance with institutional
and international guidelines. Plant leaves were identified
as specimens belonging to H. helix by the first author,
and verified by all co-authors; voucher specimens are
available from Hasselt University. Leaves were cut from
the plants at shoulder height using sterile forceps, put in
sterile tubes (five leaves per tube) filled with autoclaved
phosphate buffer (50mM Na2HPO4∙7H2O, 50mM NaH2-

PO4∙H2O, 0.8 mM Tween 80, pH 7.0) and immediately
transferred to the laboratory. Leaf weight was determined
gravimetrically and microbial cells were detached from
the leaf surface by sonication (100W, 42 kHz, 3min),
followed by shaking on an orbital shaker (240 rpm, 30
min). Next, 16 resulting leaf wash suspensions (four per
site, each suspension resulted from five leaves) were cen-
trifuged (4000 rpm, 15min) and the resuspended pellets
were randomly pooled into four samples. For each sample,
an aliquot was immediately stored at − 80 °C until DNA
isolation; another aliquot was stored overnight at 4 °C for
culturing of phylloplane bacteria.

Fig. 5 Plant growth-promoting potential and viable count of the selected growth media. Four weeks after inoculation, the number of colony-
forming units (CFU) per gram of fresh leaf material on the growth media was determined (b; n = 40, 8 per growth medium), with “x” and “y”
indicating two significantly different groups (p < 0.05). Plant growth-promoting (PGP) potential was evaluated for isolates from each growth
medium (a; n = 200, 40 per growth medium). The taxonomic classification at the genus level of these 200 isolates tested for PGP potential is also
shown (c). ACCd: 1-aminocyclopropane-1-carboxylic acid deaminase, acetoin: 3-hydroxy-2-butanone, IAA: indole-3-acetic acid
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Metabarcoding of the bacterial phylloplane
Leaf wash suspensions (n = 4) were centrifuged (13200
rpm, 20min, 4 °C) and genomic DNA was isolated using a
NucleoSpin Soil kit (Macherey–Nagel, Düren, Germany).
The V3–V4 hypervariable region of the bacterial 16S
rRNA gene was PCR-amplified using 341F (5′-CCTA
CGGGNGGCWGCAG-3′) and 785R (5′-GACTACHV
GGGTATCTAATCC-3′) primers with attached GS FLX
Titanium adaptors, the sequencing key TCAG, and a
sample-specific multiplex identifier. PCR products were
purified by gel electrophoresis (1.5% agarose gel, 90 V, 45
min) and the 514 bp bacterial amplicon was excised and
further purified using the UltraClean GelSpin DNA ex-
traction kit (Mo Bio Laboratories, Carlsbad, CA, USA).
Samples were brought to an equimolar concentration
(1010 molecules μL− 1) using the Quant-iT PicoGreen
dsDNA assay kit (Thermo Fisher Scientific, Waltham,
MA, USA). Correct amplicon size and integrity were
checked on an Agilent 2100 Bioanalyzer system (Agilent

Technologies, Santa Clara, CA, USA), followed by sequen-
cing on a Genome Sequencer FLX system (Roche Applied
Science, Penzberg, Germany) with GS FLX Titanium
series reagents by Macrogen Europe (Amsterdam, The
Netherlands).

Characterization of cultured phylloplane bacteria
Leaf wash suspension aliquots of 10 μL (n = 4) were
pooled, diluted 1/100 and inoculated on 120 × 120mm
square Petri dishes containing LB [20], LB01 (1/10 dilu-
tion of LB), YMA [21], YFlour [22], or YEx (this study)
and incubated at 30 °C (10 replicates per growth medium).
Gellan gum was used as solidifying agent because of its
thermal stability and resistance to desiccation, which
makes it possible to incubate at 30 °C for a longer time
compared to agar [53]. Phosphate-containing components
were autoclaved separately to prevent the formation of
growth-inhibiting molecules such as H2O2 [18]. The com-
positions of the growth media are summarized in Table 1.

Table 1 Composition of the growth media. Products are given in g L− 1 distilled water. Products marked in grey were filter-sterilized
before being added to the other autoclaved components. Phosphate-containing components (underlined) were separately
autoclaved. All growth media have pH 7.0
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Four weeks after inoculation, the number of CFU per
gram of fresh leaf material was determined for eight repli-
cates per growth medium. Subsequently, biomass was
rinsed from the surface of each plate using sterile 10mM
MgSO4. Followed by centrifugation (4000 rpm, 15min),
resuspended pellets were pooled into four samples per
growth medium. Pellets were immediately stored at −
80 °C until DNA isolation. Genomic DNA was isolated as
described previously and the V3–V4 hypervariable regions
of the bacterial 16S rRNA genes were PCR-amplified,
purified and prepared for sequencing.

Evaluation of plant growth-promoting potential
Bacterial phylloplane colonies were randomly picked
from two replicates per growth medium. Isolated col-
onies (n = 200, 40 per growth medium) were checked for
purity by streaking, and grown for 24 h in their respect-
ive liquid growth medium at 30 °C on a shaker (150
rpm), washed and resuspended in 2 mL of sterile 10 mM
MgSO4 solution to obtain suspensions containing bac-
teria in mid-exponential phase (OD600 nm = 0.4). Next,
20 μL of this bacterial suspension was used for the de-
tection of IAA production using the Salkowski’s reagent
method [54], for the detection of acetoin production
using the Voges–Proskauer test [55], and for assessing
ACC deaminase activity by monitoring the amount of α-
ketobutyrate generated by the enzymatic hydrolysis of
ACC [56]. Genomic DNA of all 200 isolates was extracted
using a MagMAX DNA Multi-Sample Kit (Life Technolo-
gies, Carlsbad, CA, USA) and a MagMAX Express-96
Deep Well Magnetic Particle Processor (Life Technolo-
gies, Carlsbad, CA, USA). The portion of the bacterial 16S
rRNA gene was PCR-amplified using 27F (5′-AGAGTT
TGATCMTGGCTCAG-3′) and 1492R (5′-TACGGYTA
CCTTGTTACGACTT-3′) primers, and 20 μL of the PCR
product was used for unidirectional Sanger sequencing
using the 27F primer by Macrogen Europe (Amsterdam,
The Netherlands).

Processing of sequencing data
Sequencing data were received in FASTQ format with
GS FLX Titanium adaptors and the sequencing key
TCAG trimmed from all sequences, demultiplexed based
on the sample-specific multiplex identifier and further
processed with DADA2 1.12.1 [57] for single-end ana-
lysis. All reads were quality-filtered by truncation to 340
bp (discarding all reads with fewer than 340 bp), with
subsequent trimming of 40 bp from the 5′-end with
maxEE = 2 (maximum number of expected errors),
resulting in a data set consisting only of high-quality
V3–V4 16S rRNA gene sequences of exactly 300 bp with
all irrelevant sequences removed. For error model learning,
dereplication, sample inference and chimera removal, de-
fault parameter settings were used. Taxonomy was assigned

to each resulting ASV with IDTAXA [58] using the RDP
16S rRNA training set v16 [59]. The ASV table with
assigned taxonomy was imported into phyloseq 1.28.0 [60]
for making phylogenetic bar charts, and for rarefaction and
diversity analysis. Intra-sample diversity was assessed with
ASV observations, Shannon diversity and Simpson diver-
sity. Inter-sample diversity was measured with principal
coordinates analysis (PCoA) on a Bray–Curtis dissimilarity
matrix, and different outcomes were tested using permuta-
tional multivariate analysis of variance (PERMANOVA, 999
permutations). Phylogenetic tree construction was done
with PhyML 3.1 [61] after alignment of the sequences with
MUSCLE 3.8.31 [62]. Differences in CFU between growth
media were tested with a Kruskal–Wallis test followed by
pairwise comparisons using a Wilcoxon rank-sum test with
Benjamini–Hochberg correction. MicEco 0.9.11 was used
for making a Venn diagram. Sanger sequencing data were
processed using sangerseqR 1.20.0 and sangeranalyseR 0.1.0
[63], and resulting high-quality sequences were taxonomic-
ally assigned with BLAST+ 2.9.0 [64] using the RDP 16S
rRNA training set v16 [59]. All data handling was done
within R 3.6.3 [65].
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