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Abstract

Rough set theory is a granular computing formalism that allows analyzing a

given dataset through well-defined measures. Some of these measures aim to

characterize datasets used to discover knowledge, mostly in traditional classifi-

cation problems. Measuring the data quality is pivotal to estimate beforehand

the problem’s difficulty since a classification model’s accuracy heavily depends

on the data quality. However, to the best of our knowledge, there are no mea-

sures devoted to analyzing the quality of multi-label datasets. In this paper,

we propose six data quality measures for multi-label problems, which are based

on different granular approaches. Some of these measures redefine the decision

class concept, while others redefine the consistency concept. Moreover, we study

the impact of the similarity threshold parameters and the distance functions on

the behavior of these measures. The numerical simulations show a statistical

correlation between the measures that redefine the consistency concept and the

performance of the ML-kNN classifier.
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1. Introduction

Multi-label classification (MLC) refers to the case where an object is associ-

ated with more than one class simultaneously [1, 2, 3]. Let mlDS = (U,A ∪ L)

be a multi-label decision system, where the set U is a non-empty finite set of

objects, A is a non-empty finite set of attributes that describe each observation,5

and L = {l1, l2, . . . , lk} is a non-empty finite set of labels such that the label

domain is Li = {0, 1}. The traditional classification task is generalized to the

prediction of several labels simultaneously.

Multi-label learning is still in an early development stage with respect to

other machine learning fields. Some measures have been defined to characterize10

multi-label datasets, such as label cardinality, label density, mean imbalance

ratio, concurrence among labels, etc. [4, 5, 6]. Nevertheless, none of them are

intended to measure the quality of the data.

The data quality analysis used for the knowledge discovery process is re-

lated to topics such as data complexity [7, 8] and metalearning. According to15

[9], the complexity of classification problems depends on factors such as class

ambiguity, class overlap, and the complexity of class separation boundaries. On

the other hand, metalearning is the study of principled methods that exploit

metaknowledge to obtain efficient models and solutions by adapting machine

learning and data mining processes [10]. This definition emphasizes the notion20

of metaknowledge, that is, knowledge that relates the characteristics of datasets

with the performance of the available algorithms.

Some research efforts [5, 11, 9] have been oriented to characterizing the data

using granular computing principles while relating these characteristics to the

performance of the classifiers. In [12] the author presented a measure —termed25

quality of classification— that is used to quantify the degree of consistency in a

classification problem. Consistency is understood as the extent to which objects

that are similar according to predictive attributes are associated with the same

decision classes. This provides a measure to quantify the separability of the

decision classes. The quality of classification measure is based on the Rough Set30
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Theory (RST) [13], which is probably the most suitable approach to deal with

data inconsistency. In [14] the authors proposed an extension of this measure

for decision systems in which the domain of prediction and condition variables

can be both discrete and continuous. Caballero et al. [15] further studied the

relationship between this measure and the performance of several classifiers, but35

the simulations were mainly dedicated to standard classification problems.

Within the MLC context, the literature reports some studies related to im-

balance measurement [16] and other complexity facts, such as the concurrence

among frequent and infrequent labels [4]. However, since the efficacy of MLC

methods depends on the data used to build the model, it would be convenient40

to have some data quality measure shedding light on the prediction accuracy

we can obtain. The lack of such a measure in the MLC literature served as the

main driving force behind this research.

In this paper, we study the problem of estimating the consistency degree in

multi-label data and propose measures to quantify the quality of data in MLC45

problems. Our proposal fills the gap that has existed until now to assess the

quality in multi-label datasets since, as far as we know, existing data quality

measures operate with traditional classification datasets. The first approach at-

tempts to adapt the quality of classification measure to the multi-label scenario.

This leads to three measures that differ in the way that the information gran-50

ules are derived. While this sounds straightforward, a problem comes to light:

a multi-label object can be associated with several labels simultaneously. We

redefine the decision class concept to carry out the universe’s granulation. The

second approach is devoted to adjusting the consistency concept to the multi-

bale setting. The numerical results using 12 multi-label datasets show that55

the proposed measures allow estimating the consistency of the MLC datasets.

Moreover, their values are correlated with the prediction rates attained by the

MLC algorithm adopted for the simulations.

The rest of the paper is organized as follows: Section 2 discusses important

concepts to this research. Section 3 presents the new measures for assessing the60

quality of MLC dataset while Section 4 elaborates on the performance of the
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proposed data quality measures. Section 5 formalizes some concluding remarks

and future research directions to be explored.

2. Theoretical background

This section discusses important concepts to this study: the foundations of65

the classical and extended RST formalisms.

2.1. Rough Set Theory

The RST formalism allows handling uncertainty in the form of inconsistency.

This theory involves two components: an information system and an insepara-

bility relation. The former is defined as IS = (U,A), where U denotes a non-70

empty finite set of objects, and A represents a non-empty finite set of attributes

or features describing each object. The latter is defined as R = {(x, y) ∈ U ×U |

∀a ∈ A, x(a) = y(a)} [17, 18].

Any subset X ⊆ U can be approximated by using two crisp sets: the lower

and the upper approximation [19]. They are defined as A∗X = {x ∈ U : [x]A ⊆75

X} and A∗X = {x ∈ U : [x]A ∩ X 6= ∅} respectively, where [x]A (i.e. an

equivalence class) denotes the set of inseparable objects associated to x using

an indiscernibility relation defined by A. The objects in A∗X are categorically

members of X, while the objects in A∗X are possible members of the subset

X. This model does not consider any tolerance of errors: if two inseparable80

objects belong to different classes, then the decision system will be inconsistent.

The definition of indiscernibility as an equivalence relation is excessively strict,

especially when it comes to numerical features.

2.2. Extended Rough Set Theory

The lack of flexibility of the classical RST becomes more serious for clas-85

sification and decision-making problems having numerical attributes where the

equivalence relation is less likely to hold. This issue can be solved by extending

the concept of inseparability relation such that we can replace the equivalence
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relation with a weaker binary relation [20]. Equation (1) shows an indiscerni-

bility relation based on a similarity function,90

R1 : xRy ⇐⇒ ϕ(x, y) ≥ ξ1 (1)

where 0 ≤ ϕ(x, y) ≤ 1 is a similarity function. This weak binary relation states

that objects x and y are deemed inseparable as long as their similarity degree

ϕ(x, y) exceeds a similarity threshold 0 ≤ ξ1 ≤ 1. This relation actually defines

a similarity class R̄(x) = {y ∈ U : yRx} that replaces the equivalence class.

In this paper, we assume that ϕ(x, y) = 1 − δ(x, y), where δ(x, y) denotes the95

distance between objects x and y.

Equation (2) and (3) show how to compute the lower and upper approxima-

tions, respectively, as described in [20],

A∗X = {x ∈ U : R̄(x) ⊆ X} (2)

A∗X =
⋃

x∈U :R̄(x)∩X 6=∅

R̄(x). (3)

Another extension of the classical RST is the inclusion of the fuzzy approach

to obtain more flexible models. Fuzzy-rough sets [21, 22] use a fuzzy similarity100

relation to replace the equivalence relation. The fuzzy relation [23, 24] quanti-

fies the strength of the similarity relationship between two objects in the [0, 1]

interval. This implies that all objects in U are related to each other but with

different membership degrees. The advantage of using a fuzzy relation is that

the threshold in Equation (1) is not necessary.105

3. Data quality measures for multi-label decision systems

In this section, we propose several measures to quantify the quality of multi-

label datasets. The measures proposed in this paper allow estimating the de-

pendence degree between the decision attributes (i.e., the set of labels) and the
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predictive attributes by using different granular approaches. Using such estima-110

tion will allow us to quantify the consistency degree of the dataset. In that way,

we could adjust our expectations about the performance of MLC algorithms on

a particular dataset. In the end, we should not expect an algorithm to produce

impressive prediction rates on poor-quality datasets. The data quality measures

presented in this section differ from each other in the way they determine the115

similarity between predictive and decision granules.

3.1. Adaptations to the quality of classification measure

The first three measures presented next attempt to adapt the quality of

classification measure [12] to the multi-label scenario. This RST-based data

quality measure, defined in Equation (4), quantifies the percentage of objects120

that can be correctly classified in a decision system,

γA(Y ) =

∣∣∣⋃k
i=1 A∗Yi

∣∣∣
|U |

(4)

where Y represents the set of classes, Yi the set of objects that belong to the

i-th class, and k the number of classes of the problem. This measure produces

values in the [0, 1] interval such that one indicates that all indiscernible objects

share the same decision classes (which indicates total consistency). In contrast,125

zero indicates a total inconsistency of the dataset.

Note that this measure was originally conceived for traditional pattern clas-

sification problems where each instance is associated with a single decision class.

This implies that Yi defines a partition over the universe.

Aiming at deriving new data quality measures based on the rationale of the130

quality of classification measure, we need to calculate the lower approximation

associated with each decision class. However, this brings the problem of defin-

ing the concept of decision class in the multi-label context. In this paper, we

consider the following variants:

• Each label combination is a decision value. For example, let L = {l1, l2, l3}135

denote the set of labels, then a combination of labels could be “101”, point-
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ing out that the object is associated with labels l1 and l3. Consequently,

“101” defines a decision class, and all the objects that are associated with

labels l1 and l3 belong to it. This approach is derived from the label

powerset method [6], which transforms the multi-label problem into a140

single-label problem with a single class.

• Each label is considered a decision value such that all objects with that

label belong to this decision class. According to this definition, in the

example above, there would be three decision classes.

• Decision classes are derived using a clustering algorithm [25, 26]. In this145

case, we cluster the objects by considering only the labels such that each

cluster would represent a decision class.

The first measure is based on the first variant, where each possible combina-

tion in the dataset is considered a decision class. Hence, we can easily compute

the multi-classification of quality (MCQ) measure as the ratio between the ob-150

jects that belong to the lower approximation with respect to the cardinality of

the universe. Equation (5) formalizes this measure,

MCQA =

∣∣∣⋃k
i=1 A∗Yi

∣∣∣
|U |

(5)

where k is the number of label combinations, and Yi is the i-th decision class con-

taining all objects associated with the i-th combination. This approach trans-

forms the MLC problem into a traditional classification problem, and therefore,155

Equations (4) and (5) are equivalent.

The intuition of the second data quality measure is that each label represents

a decision class. This means that the i-th decision class will contain all objects

associated with the i-th label. For example, if the object x is associated with l1,

and x and y are inseparable, then y must also be associated with l1. Otherwise, x160

does not belong to the lower approximation of l1 because there is inconsistency.
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Equation (6) defines this measure,

MCQB =

∣∣∣⋃k
i=1 A∗Li

∣∣∣
|U |

(6)

where k denotes the number of labels, Li is the i-th decision class that contains

all objects that have the i-th label. Observe that the set of decision classes

in a multi-label dataset generates a covering of the universe, not a partition.165

A covering is a family of non-empty finite subsets whose union is equal to the

universe but their intersection may be non-empty.

The third measure is based on the idea that clusters generated from the

labels are fair representatives of the decision classes. No particular clustering

algorithm [25, 26] is needed for this measure. However, it requires a distance170

function for binary spaces [27, 28].

This measure is computed according to Equation (7), such that k represents

the number of clusters, Ci is the i-th decision class that contains all the objects

contained in the i-th cluster,

MCQC =

∣∣∣⋃k
i=1 A∗Ci

∣∣∣
|U |

. (7)

If the clustering is strict and requires the objects to be associated with the175

same labels, then the problem is reduced to the first variant, thus leading to a

partition. In contrast, if the clustering is flexible, then this approach produces

a covering of the universe of discourse.

3.2. Quality measure based on a granulation approach with thresholds

The measures introduced in the previous subsection attempt to adapt the180

quality of classification measure to the multi-label scenario. These measures

establish a relation between the similarity classes of objects and the decision

classes. This relationship could be generalized from other forms of granulation

of the universe, such as the relationship between the granulation by condition

and the granulation by decision.185
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The granulation process divides the universe of discourse into subsets of in-

dividual objects (granules) that share similar properties [17]. In this process,

informative relationships emerge when relating the granules formed from predic-

tive features (predictive granules) with the ones derived from decision features

(decision granules). From the perspective of data consistency, it is reasonable190

to assume that predictive and decision granules should be related to each other,

i.e., there is some similarity between them [29]. Thus, we could define data

quality measures for multi-label datasets by measuring the similarity between

the granulation by condition and decision.

The rationale of the measure proposed in this subsection consists of measur-195

ing the extent to which the granules by condition and decision are similar. The

granule by condition of an object x ∈ U consists of all objects inseparable to x

when considering the condition attributes. In contrast, the granule by decision

can be defined as the set of inseparable objects to x when considering the labels.

For each object in the dataset, the similarity degree between both granules can200

be calculated using the following equation,

αB(x) =
| COND(x) ∩DEC(x) |

0.5 | COND(x) | +0.5 | DEC(x) |
(8)

where COND(·) is the granule by condition and DEC(·) is the granule by

decision. These granules can be defined by using the indiscernibility relation

defined in Equations (1) and (9), respectively,

R2 : xRy ⇐⇒ ϑ(x, y) ≥ ξ2 (9)

such that 0 ≤ ϑ(x, y) ≤ 1 is a similarity function, and ϑ(x, y) = 1 − H(x, y),205

where H is the normalized Hamming distance (see Definition 1) between the

label sets associated to the object x and y, respectively [30].

Definition 1. Given two vectors x, y ∈ Rn we define the Hamming Distance

between x and y, H(x, y), to be the number of places where x and y differ.

The relation R2 states that x and y are deemed inseparable as long as their210
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similarity degree ϑ(x, y) exceeds a similarity threshold 0 ≤ ξ2 ≤ 1. After com-

puting the similarity between the granules COND(·) and DEC(·), we can cal-

culate the MCQ measure as follows:

MCQD =

∑
∀x∈U αB(x)

|U |
. (10)

Larger measure values suggest consistency in the dataset. This means that

the granules by condition and decision lead to similar coverings of the universe215

of discourse. At the same time, having larger consistency values is a reasonable

heuristic indicator for the algorithms to perform well.

3.3. Quality measures based on a granulation approach without thresholds

The reader can observe that the granules COND(·) and DEC(·) are built us-

ing similarity relations involving a similarity function and the similarity thresh-220

old parameters. These components might have a significant impact on the gran-

ulation process, thus leading to quite dissimilar results. To suppress the need

for the threshold parameters, we could only use the degree to which an object

is similar to the others according to some ordinal scale.

An alternative to do this is using rankings. A ranking establishes the order225

of a set of objects based on a value associated with them. Hence, two rankings

(i.e., by condition Rc(x) and by decision Rl(x)) could be established for each

object x based on its degrees of similarity with respect to the others according

to the condition attributes (c) and the labels (l), respectively. These rankings

can be compared using a distance function.230

In this approach, the rankings Rc(x) and Rl(x) contain all objects ordered

according to their similarity values with respect to the object x. The MCQ

measure in Equation (11) formalizes this idea,

MCQE =

∑
∀x∈U 1− d(Rc(x), Rl(x))

|U |
(11)
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where d(., .) is the normalized Spearman distance [31], which is given as follows,

d(σ, τ) =
∑
i∈U

|σ(i)− τ(i)| (12)

such that σ and τ denote the rankings generated from a finite set of objects, and235

σ(i) and τ(i) represent the position (or order) of the i-th object in the rankings

σ and τ , respectively. Note that several values with the same position might be

observed in Rc or Rl. This must be considered when implementing the distance

between the rankings to ensure consistent results.

Let us suppose the ranking generated by an object with respect to the con-240

dition features is the same as the one for the labels. In that case, we could infer

that the relation between the objects according to the predictive features and

the labels is similar. Thus, we can say that the data is consistent with a specific

degree, which is given by the distance between both rankings.

Another alternative to avoid using the similarity thresholds when granulating245

the information space is to replace the hard similarity relations with fuzzy ones.

As a result, the granules by condition COND(·) and decision DEC(·) will have

soft boundaries (fuzzy sets to which all objects belong to with some degree).

This approach is similar to the fuzzy-rough sets [22, 32] since the fuzzy relation

replaces the crisp similarity function. In a nutshell, this alternative requires to250

rewrite the crisp similarity relations R1 and R2 as fuzzy relations as depicted

in Equations (13) and (14), respectively,

xR1y ⇐⇒ ϕ(x, y) (13)

xR2y ⇐⇒ ϑ(x, y). (14)

The fuzzy relations R1 and R2 are computed using the condition attributes

and the similarity function ϕ, and the decision attributes and the similarity

function ϑ, respectively. Therefore, for any object in the universe of discourse,255

two fuzzy sets N1(x) and N2(x) are built (the former is based on the condition
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features and the latter is based on the decision features). These fuzzy sets are

defined in Equations (15) and (16), respectively,

N1(x) = {(y, µR1
(x, y)) ∀y ∈ U} (15)

N2(x) = {(y, µR2(x, y)) ∀y ∈ U} (16)

where µR1
(x, y) and µR2

(x, y) denote the membership degrees of the object y to

N1(x) and N2(x), respectively, with µR1(x, y) = ϕ(x, y) and µR2(x, y) = ϑ(x, y).260

Finally, Equation (17) shows how to compute the MCQ measure according to

the fuzzy sets N1(x) and N2(x),

MCQF =
1

|U |
∑
∀x∈U

∑
∀y∈U 1− |µR1(x, y)− µR2(x, y)|

|U |
. (17)

Overall, the intuition of this measure is that rather consistent multi-label

problems should generate similar fuzzy sets in the granulation process. This

information can be understood as a data quality measure that does not depend265

on the similarity threshold parameters.

3.4. A simple example

In this subsection, we present a toy example illustrating how to compute the

proposed measures. Let us suppose we have a multi-label decision system (as

depicted in Table 1) with four objects {x, y, z, w}, three attributes {a1, a2, a3}270

and three labels {l1, l2, l3} such that the label sets {l1, l3} and {l1, l2} overlap.

Table 2 portrays the similarity values between those objects according to the

attributes and labels derived from the similarity functions ϕ and ϑ, respectively.

Moreover, the clusters obtained with k-means algorithm are C1 = {x, z, w} and

C2 = {y}. In this example, we used the Hamming distance for handling objects275

in the label space [27]. Observe that objects y and w are inseparable but they

are associated with different label sets.

MCQA reports a value of 0.5. The related knowledge structures are given as follow:

the decision classes are Y101 = {x, z, w}, Y110 = {y}, the similarity classes
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Table 1: Example of a multi-label dataset.

a1 a2 a3 l1 l2 l3

x 5 1 648 1 0 1

y 3 1 29 1 1 0

z 6 3 0 1 0 1

w 3 1 30 1 0 1

Table 2: Similarity values between object by condition (left) and decision (right).

x y z w

x 1 0.2 0 0.2

y 0.2 1 0.18 0.99

z 0 0.18 1 0.18

w 0.2 0.99 0.18 1

x y z w

x 1 0.33 1 1

y 0.33 1 0.33 0.33

z 1 0.33 1 1

w 1 0.33 1 1

are R̄(x) = {x}, R̄(y) = {y, w}, R̄(z) = {z}, R̄(w) = {w, y} with ξ1 = 0.75,280

and the lower approximations are B∗Y101 = {x, z}, B∗Y110 = {}.

MCQB reports a value of 1. The related knowledge structures are given as fol-

low: the decision classes are Yl1 = {x, y, z, w}, Yl2 = {y}, Yl3 = {x, z, w},

the similarity classes are R̄(x) = {x}, R̄(y) = {y, w}, R̄(z) = {z}, R̄(w) =

{w, y} with ξ1 = 0.75, and the lower approximations are B∗Yl1 = {x, y, z, w},285

B∗Yl2 = {}, B∗Yl3 = {x, z}.

MCQC reports a value of 0.5. The related knowledge structures are given as

follow: the decision classes are YC1
= {x, z, w}, YC2

= {y}, the similarity

classes are R̄(x) = {x}, R̄(y) = {y, w}, R̄(z) = {z}, R̄(w) = {w, y} with

ξ1 = 0.75, and the lower approximations are B∗YC1 = {x, z}, B∗YC2 = {}.290

MCQD reports a value of 0.52. The related knowledge structures are given as

follow: the granules by condition are COND(x) = {x}, COND(y) =

{y, w}, COND(z) = {z}, COND(w) = {w, y} where ξ1 = 0.75, and the

granules by decision are DEC(x) = {x, z, w}, DEC(y) = {y}, DEC(z) =
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{z, x, w}, DEC(w) = {w, x, z} where ξ2 = 0.5.295

MCQE reports a value of 0.44. The related knowledge structures are given as

follow: the ranking by condition are Rc(x) = {x ≺ w ≺ y ≺ z}, Rc(y) =

{y ≺ w ≺ x ≺ z}, Rc(z) = {z ≺ y ≺ w ≺ x}, Rc(w) = {w ≺ y ≺ x

≺ z}, and the ranking by decision are Rl(x) = {(x ∧ z ∧ w) ≺ y}, Rl(y)

= {y ≺ (x∧ z ∧w)}, Rl(z) = {(x∧ z ∧w) ≺ y}, Rl(w) = {(x∧ z ∧w) ≺ y}300

where Oi ≺ Oj means that Oi proceeds Oj in the ranking and (Oi ∧ Oj)

indicates an equal score in the ranking for Oi and Oj .

MCQF reports a value of 0.56. The related knowledge structures are given as fol-

low: the fuzzy sets by condition are N1(x) = {(x, 1), (y, 0.2), (z, 0), (w, 0.2)},

N1(y) = {(x, 0.2), (y, 1), (z, 0.18), (w, 0.99)}, N1(z) = {(x, 0), (y, 0.18), (z,305

1), (w, 0.18)}, N1(w) = {(x, 0.2), (y, 0.99), (z, 0.18), (w, 1)}, and the fuzzy

sets by decision are N2(x) = {(x, 1), (y, 0.33), (z, 1), (w, 1)}, N2(y) = {(x,

0.33), (y, 1), (z, 0.33), (w, 0.33)}, N2(z) = {(x, 1), (y, 0.33), (z, 1), (w, 1)},

N2(w) = {(x, 1), (y, 0.33), (z, 1), (w, 1)}.

3.5. Further discussion310

As mentioned, the proposed data quality measures allow quantifying the

quality of a multi-label decision system by assessing its consistency. In a multi-

label context, consistency can be understood as the relationship between objects

according to their predictive features and labels. The difference from one mea-

sure to another resides in the way this relationship is determined. The main315

features of each measure are highlighted below:

• MCQA is based on the quality of classification measure. Each combination

of labels is considered a decision class.

Advantages:

– It allows using the quality of classification measure in the MLC set-320

ting without any modification.

Disadvantages:

− It requires to set up a threshold to compute the granules.
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− The value of this measure depends on the total inclusion of the con-

ditional granules into the decision granules.325

− The computational complexity is O(k|A||U |2), where |U | is the car-

dinality of the universe, |A| is the cardinality of attribute set, and k

the number of label combinations.

• MCQB is based on the quality of classification measure. Each label is

considered a decision class.330

Advantages:

– It allows using the quality of classification measure in the MLC set-

ting without any modification.

Disadvantages:

− It requires to set up a threshold to compute the granules.335

− The value of this measure depends on the total inclusion of the con-

ditional granules into the decision granules.

− It is not considered the possible correlation among the labels.

− The computational complexity is O(k|A||U |2), where |U | is the cardi-

nality of the universe, |A| is the cardinality of the attribute set, and340

k is the number of labels.

• MCQC is based on the quality of classification measure. Each decision

class is a cluster of similar objects according to the label space.

Advantages:

– It allows using the quality of classification measure in the MLC set-345

ting without any modification.

Disadvantages:

− It requires to set up a threshold to compute the granules.

− The value of this measure depends on the total inclusion of the con-

ditional granules into the decision granules.350

− It requires a clustering method to define the decision classes.

− The computational complexity is O(k|A||U |2), where |U | is the car-

dinality of the universe, |A| denotes the cardinality of attribute set,

and k the number of clusters.
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• MCQD is based on the similarity relation between the granules by condi-355

tion and by decision. Its value depends on the extent to which the granules

by condition and by decision match.

Advantages:

– It is not necessary to define the decision classes.

Disadvantages:360

− It is necessary to establish two thresholds to calculate the granulation

by condition and by decision.

− The computational complexity is O(|U |3max{|A|, |L|}), where |U | is

the cardinality of the universe, |A| and |L| are the cardinality of the

attribute set and label set, respectively.365

• MCQE is based on the similarity relation between the granules by condi-

tion and by decision. Its value depends on the similarity between rankings

by condition and decision of each object.

Advantages:

– It is not necessary to define the decision classes.370

– It is not necessary to define any similarity threshold when computing

the information granules.

Disadvantages:

− The construction of rankings by condition and decision could be com-

putationally demanding.375

− The computational complexity is O(|U |2max{|A|, log(|U |), |L|}), where

|U | is the cardinality of the universe, |A| and |L| are the cardinality

of the attribute set and label set, respectively.

• MCQF is based on the similarity relation between the granules by con-

dition and by decision. Its value depends on the similarity between the380

fuzzy sets by condition and decision of each object.

Advantages:

– It is not necessary to define the decision classes.

– It is not necessary to define any similarity threshold when computing

the information granules.385
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Disadvantages: The computational complexity is O(|U |2max{|A|, |L|}),

where |U | is the cardinality of the universe, |A| and |L| are the cardinality

of the attribute set and label set, respectively.

4. Numerical experiments and discussion

The purpose of this section is to study the behavior of the proposed measures390

in different multi-label datasets. Firstly, we compute the values of the measures

for different parameter settings to evaluate the impact of these parameters on

the results. Afterward, we analyze the correlation between those measure values

and the performance achieved by the ML-kNN classifier [33, 34]. This empirical

analysis allows us to conclude that three out of six measures correlate with395

algorithms’ performance in MLC settings.

4.1. Dataset characterization

We leaned upon 12 multi-label datasets corresponding to three application

areas in which multi-label data is frequently observed: text categorization, mul-

timedia classification and bioinformatics. All datasets were taken from the MU-400

LAN [35] and RUMDR [36] repositories.

Table 3 outlines the number of objects (|U |), nominal attributes (nominal),

numerical attributes (numeric), and labels for each dataset (|L|). The number

of distinct label sets (LSet), calculated as the number of distinct combinations

of labels found in the dataset is also given.405

The TCS metric is often used as a theoretical complexity indicator [5]. This

measure is calculated as the product of the number of attributes, the number

of labels, and the number of distinct label sets. In order to avoid working with

very large values, whose interpretation and comparison would be difficult, the

log() function is used to adjust the scale resulting from the previous product.410

Hence, the larger the value, the more complex the processing of the dataset [5].

Remark that TCS values are logarithmic, so a difference of only one unit implies

one order of magnitude smaller or larger.
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Table 3: Characterization of the multi-label datasets.

Dataset Domain |U | numeric nominal |L| Lset TCS

bibtex text 7,395 0 1,836 159 2,856 20.54

birds audio 645 258 2 19 133 13.39

cal500 music 502 68 0 174 502 15.59

corel5k images 5,000 0 499 374 3,175 20.20

emotions music 593 72 0 6 27 9.36

enron text 1,702 0 1,001 53 753 17.50

flags images 194 10 9 7 54 8.87

genbase biology 662 0 1,186 27 32 13.84

medical text 978 0 1,449 45 94 15.62

scene images 2,407 294 0 6 15 10.18

slashdot text 3,785 1,079 0 22 156 15.12

yeast biology 2,417 103 0 14 198 12.56

4.2. Assessing classifier performance with Hamming Loss

The literature reports several measures to quantify the performance of MLC415

models such that accuracy, precision, recall, F-measure, among others. However,

the Hamming Loss (HL) formalized in Equation (18) is probably the most used

performance metric [1, 37] in MLC settings,

HL =
1

|U |
1

|L|

|U |∑
i=1

|Yi∆Zi| (18)

where the ∆ operator returns the symmetric difference between Yi (the real

labelset of the i-th object) and Zi (the predicted one). Observe that, since the420

mistakes counter is divided by the number of labels, this metric will result in

different assessments for the same amount of errors when used with datasets

having a label set with a large cardinality.

4.3. Heterogeneous distance functions

Neighborhood measures characterize the superposition of classes by analyz-425

ing the local vicinity of the data points. In that regard, the similarity function
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plays a key role. In [38] the authors studied several distance functions (which

are the complement of the similarity functions). Such functions allow compar-

ing the dissimilarity between two heterogeneous objects, i.e., objects comprising

both numerical and nominal attributes.430

Let A = {a1, . . . , aM} denote the attribute set, where aj can be either nu-

merical or nominal, and it has a weight 0 ≤ ωj ≤ 1 quantifying its relevance.

The similarity function ϕ(x, y) between two objects x and y can be computed

using one of the following distance functions:

• The Heterogeneous Euclidean-Overlap Metric (HEOM) in Equations (19)435

and (20) computes the normalized Euclidean distance between numerical

attributes and an overlap metric for nominal attributes,

δ(x, y) =

√√√√∑|A|
j=1 ωjσj(x, y)∑|A|

j=1 ωj

(19)

where

σj(x, y) =


0 if aj is nominal ∧ x(j) = y(j)

1 if aj is nominal ∧ x(j) 6= y(j)

(x(j)− y(j))2 if aj is numerical.

(20)

• The Heterogeneous Manhattan-Overlap Metric (HMOM) is similar to the

HEOM function, but it replaces the Euclidean distance with the Man-440

hattan distance when computing the dissimilarity between two numerical

values. Equations (21) and (22) show this distance function,

δ(x, y) =

∑|A|
j=1 ωjσj(x, y)∑|A|

j=1 ωj

(21)

where

σj(x, y) =


0 if aj is nominal ∧ x(j) = y(j)

1 if aj is nominal ∧ x(j) 6= y(j)

|x(j)− y(j)| if aj is numerical.

(22)
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The reader can notice that the main difference between these distance func-

tions is that the latter replaces the squared difference with the absolute differ-445

ence when computing the dissimilarity between numerical attributes. Hence,

it is reasonable to expect the HEOM distance to produce smaller values than

those produced by the HMOM distance.

4.4. Computing the consistency value

Aiming at visualizing the simulation results, we split the proposed data qual-450

ity measures into two groups. The first one includes measures MCQA, MCQB

and MCQC , while the second group contains measures MCQD, MCQE and

MCQF . The criteria for forming these groups are derived from the semantics

of the proposed measures discussed in Section 3.

Figures 1 and 2 show the consistency values attached to the first group of455

measures for the HEOM and HMOM distance functions, respectively. Similarly,

Figures 3 and 4 display the consistency values for the second group of measures.

In our simulations, we arbitrarily set the similarity thresholds to ξ1 = 0.75 and

ξ2 = 0.5, although other values are possible. Later on, we will study the effect

of these parameters on the proposed measures.460

Figures 1 and 2 show that the consistency values reached by the measures

MCQA, MCQB and MCQC are small in most datasets. Usually, larger values

of these measures are achieved for datasets having smaller TCS values (such as

bird, flag and emotion). The values obtained when using the HEOM function

are larger than the ones when using the HMOM function.465

Figures 3 and 4 indicate that the consistency values obtained by MCQD,

MCQE and MCQF are larger when compared with the ones produced by the

measures in the first group. The simulation results suggest that the more com-

plex the problem (with respect to the TCS values reported in Table 3), the

larger the consistency value. This behavior holds for bibtex, corel5k, medical470

and slashdot. In the first group, the opposite happens. For this second group of

measures, the values obtained when using the HMOM function are larger than

the ones when using the HEOM function.
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Figure 1: Consistency values obtained by the first group of data quality measures when using

the HEOM distance to build the similarity relations.
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Figure 2: Consistency values obtained by the first group of data quality measures when using

the HMOM distance to build the similarity relations.

4.4.1. Analyzing the impact of the threshold parameters

In the following experiment, we explore the impact of the similarity threshold475

parameters ξ1 and ξ2 on the consistency values calculated by the measures. By

doing so, we report the average consistency values across all datasets for ξ1 ∈
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Figure 3: Consistency values obtained by the second group of data quality measures when

using the HEOM distance to build the similarity relations.
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Figure 4: Consistency values obtained by the second group of data quality measures when

using the HMOM distance to build the similarity relations.

[0.5, 0.95] and ξ2 ∈ [0.3, 0.9] with step size 0.05.

Figure 5 shows the consistency values when changing the ξ1 parameter for

measures MCQA, MCQB and MCQC . The results indicate that the values480

obtained by measures MCQA, MCQB and MCQC are larger as ξ1 approaches
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1. This is somehow expected if we consider that larger threshold values lead to

the subsets of indiscernible objects generated by the similarity relation contain-

ing fewer elements. Therefore, it is more likely to obtain a total inclusion of the

object’s similarity class in the decision class.485

0.5 0.6 0.7 0.8 0.9
1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

MCQA MCQB MCQC

Figure 5: Average consistency values obtained with the first group of data quality measures for

different values of the ξ1 parameter in Equation (1). These measures report larger consistency

values as the similarity threshold increases.

Figure 6 displays the consistency values when changing both ξ1 and ξ2 pa-

rameters for the MCQD measure. The results show that the MCQD measure

reports larger values when ξ1 ∈ [0.5, 0.75] and ξ2 ∈ [0.3, 0.75]. Unlike the first

group of measures, MCQD attempts to reach a consensus between the granu-

lation by condition and the granulation by decision. This means that we will490

obtain larger consistency values with more flexible thresholds. Note that, at the

lower limits of the intervals, the largest values of the measures were reached, i.e.

0.5 and 0.3 for ξ1 and ξ2, respectively.
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Figure 6: Average consistency values obtained with the MCQD measure for different values

of the ξ1 and ξ2 parameters in Equations (1) and (9). This measure reports larger consistency

values for smaller similarity threshold values.

It is worth mentioning that we did not carry out this simulation for MCQE

and MCQF since these fuzzy measures can be effectively computed without495

specifying any similarity threshold parameter.

4.4.2. Analyzing the impact of the distance function

The analysis carried out at the beginning of this subsection indicated that,

in some cases, the consistency values differ when changing the distance function,

i.e. the HMOM distance often reports larger differences than HEOM. Therefore,500

we need to investigate whether the qualitative behavior of a certain measure

holds when changing the distance function.

To conduct such a study, we transform numerical variables into symbolic

representations with the aid of fuzzy variables. The states of these fuzzy vari-

ables are fuzzy sets associated with the following linguistic terms: Very Low,505

Low, Medium, High, and Very High. These linguistic terms provide a suitable
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representation of the consistency values although more fuzzy sets will lead to

more informative representations. Equations (23), (24), (25), (26), and (27)

show the triangular membership functions for these fuzzy sets,

FV eryLow(x) =


0.2−x
0.2 0 ≤ x ≤ 0.2

0 x ≥ 0.2,

(23)

FLow(x) =



0 x < 0.1

x−0.1
0.15 0.1 ≤ x ≤ 0.25

0.4−x
0.15 0.25 < x ≤ 0.4

0 x > 0.4,

(24)

FMedium(x) =



0 x < 0.3

x−0.3
0.2 0.3 ≤ x ≤ 0.5

0.7−x
0.2 0.5 < x ≤ 0.7

0 x > 0.7,

(25)

FHigh(x) =



0 x < 0.6

x−0.6
0.15 0.6 ≤ x ≤ 0.75

0.9−x
0.15 0.75 < x ≤ 0.9

0 x > 0.9,

(26)
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FV eryHigh(x) =


0 x < 0.8

x−0.8
0.2 0.8 ≤ x ≤ 1.

(27)

Tables 4 and 5 show the symbolic consistency values for each measure using510

both the HEOM and HMOM distance functions, respectively. To obtain these

symbolic values, we first evaluate each consistency value in each membership

function and then apply the principle of maximum membership [39] which gives

the linguistic term with the largest membership value. Notice that the maximum

membership principle is equivalent to using a crisp partition with boundaries in515

the crossing points of membership functions.

Table 4: Symbolic consistency values when using the HEOM distance function.

DataSet MCQ_A MCQ_B MCQ_C MCQ_D MCQ_E MCQ_F

bibtex Very Low Very Low Very Low High High Very High

birds Very High Medium Very High Very Low Very Low Very Low

cal500 Low High Low Very Low Very Low Very Low

corel5k Very Low Very Low Very Low Very High High Very High

emotions Very High Very High Very High Very Low Very Low Very Low

enron Very Low Low Low Medium High Very High

flags Very High Very High Very High Very Low Very Low Very Low

genbase Very Low Very Low Very Low Very High Very High Very High

medical Very Low Very Low Very Low Very High Very High Very High

scene Very Low Very Low Very Low Medium Very High Very Low

slashdot Very Low Very Low Very Low Very High Very High Very High

yeast Very Low Very Low Very Low Very High High Very Low

In order to explore whether or not there are significant differences between

the values obtained by each measure when using different distance functions,

we resorted to the Wilcoxon signed-rank test [40]. Table 6 reports the p-values

computed with this test, the negative and positive ranks, and whether or not520

the null hypothesis was rejected.
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Table 5: Symbolic consistency values when using the HMOM distance function.

DataSet MCQ_A MCQ_B MCQ_C MCQ_D MCQ_E MCQ_F

bibtex Very Low Very Low Very Low Very High Very High Very High

birds Medium Medium Medium Very Low Very Low Very Low

cal500 Very Low Very Low Very Low Medium High Very Low

corel5k Very Low Very Low Very Low Very High Very High Very High

emotions Low Medium Low Very Low Low Very Low

enron Very Low Very Low Very Low Very High Very High Very High

flags Very High Very High Very High Very Low Very Low Low

genbase Very Low Very Low Very Low Very High Very High Very High

medical Very Low Very Low Very Low Very High Very High Very High

scene Very Low Very Low Very Low Very High High Very Low

slashdot Very Low Very Low Very Low Very High Very High Very High

Table 6: Results of the Wilcoxon signed rank test.

p-value
Negative

ranks

Positive

ranks
Ties

Null

hypothesis

MCQA − HEOM vs

MCQA − HMOM
0.1088 0 3 9 Not rejected

MCQB − HEOM vs

MCQB − HMOM
0.1088 0 3 9 Not rejected

MCQC − HEOM vs

MCQC − HMOM
0.0656 0 4 8 Not rejected

MCQD − HEOM vs

MCQD − HMOM
0.0587 4 0 8 Not rejected

MCQE − HEOM vs

MCQE − HMOM
0.0955 5 1 6 Not rejected

MCQF − HEOM vs

MCQF − HMOM
0.3173 1 0 11 Not rejected

For this experiment, the Wilcoxon test fails to reject the null hypothesis in

each pairwise comparison (i.e., p-value > 0.05 for a 95% confidence interval).

Therefore, we can conclude that the distance function does not significantly
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affect the behavior of our measures.525

4.5. Correlation analysis

This subsection analyses the correlation between the consistency values com-

puted by the proposed data quality measures and a multi-label classifier’s effi-

cacy. In this experiment, we use the ML-kNN classifier for being a state-of-

the-art lazy learner [9, 11]. In this case, we used the implementation available530

in MULAN [41] and the default parameter settings. Tables 7 and 8 show the

consistency values reported by each measure and the HL values achieved by the

ML-kNN algorithm across all datasets.

Table 7: HL and consistency values obtained using the HEOM distance.

DataSet MCQ_A MCQ_B MCQ_C MCQ_D MCQ_E MCQ_F HL

bibtex 0.0549 0.0626 0.0565 0.6681 0.7880 0.9880 0.0136

birds 1.0000 0.5442 1.0000 0.0036 0.0000 0.0073 0.0472

cal500 0.3187 0.7729 0.3187 0.0241 0.0646 0.0763 0.1388

corel5k 0.0000 0.0000 0.0000 1.0000 0.8382 0.9987 0.0094

emotions 0.9629 0.9865 0.9764 0.0049 0.0000 0.0102 0.1951

enron 0.1298 0.2591 0.1486 0.4186 0.7544 0.9416 0.0523

flags 0.9794 1.0000 0.9794 0.0162 0.0000 0.1066 0.2536

genbase 0.0000 0.0000 0.0000 1.0000 0.9731 0.9903 0.0048

medical 0.0000 0.0000 0.0000 1.0000 0.9238 0.9737 0.0151

scene 0.0245 0.0266 0.0382 0.6136 0.8849 0.0059 0.0862

slashdot 0.0000 0.0000 0.0000 1.0000 0.9655 0.9960 0.0517

yeast 0.0000 0.0000 0.0000 0.9469 0.7975 0.0042 0.1933

To analyze the possible correlation between the estimated quality values and

the performance values, we compute the Spearman correlation coefficient [42].535

This measure quantifies the strength and direction of the monotonic association

between two variables X and Y . Tables 9 and 10 show the correlation between

the variable X (measure value) and Y (HL value) for each measure using HEOM

and HMOM, respectively. In these tables, the first value represents the correla-

tion coefficient while the second one reports the p-value for this test. The null540
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Table 8: HL and consistency values obtained using the HMOM distance.

DataSet MCQ_A MCQ_B MCQ_C MCQ_D MCQ_E MCQ_F HL

bibtex 0.0000 0.0000 0.0000 1.0000 0.9664 0.9880 0.0136

birds 0.5829 0.4651 0.6109 0.0417 0.0000 0.0073 0.0472

cal500 0.0239 0.0677 0.0239 0.4947 0.8457 0.0765 0.1388

corel5k 0.0000 0.0000 0.0000 1.0000 0.9852 0.9987 0.0094

emotions 0.1838 0.3744 0.2496 0.0276 0.3255 0.0102 0.1951

enron 0.0082 0.0264 0.0106 0.9143 0.9042 0.9416 0.0523

flags 0.8660 0.9794 0.8918 0.0197 0.0000 0.3241 0.2536

genbase 0.0000 0.0000 0.0000 1.0000 0.9220 0.9903 0.0048

medical 0.0000 0.0000 0.0000 1.0000 0.9658 0.9737 0.0151

scene 0.0004 0.0004 0.0025 0.9406 0.8426 0.0060 0.0862

slashdot 0.0000 0.0000 0.0000 1.0000 0.9170 0.9960 0.0517

yeast 0.0000 0.0000 0.0000 0.9469 0.7713 0.0044 0.1933

hypothesis will be rejected (and it will be concluded that there is a monotonic

correlation) when the p-value is lower than the level of significance (i.e., less than

0.05 if we adopt a 95% confidence interval). A negative correlation coefficient

means that, for any two variables X and Y , an increase in X is associated with

a decrease in Y . The intuition dictates that the HL values should decrease as545

the consistency values increase. In a nutshell, a large consistency value should

serve as a strong indicator that the problem is easy to solve by a multi-label

classifier, regardless of the TCS value.

The results indicate that there is a strong negative monotonic correlation

between the values reported by MCQ_D, MCQ_E, and MCQ_F and the550

performance measure. Such a result aligns well with our hypothesis. This

means that the consistency values are heavily related to the classifier’s efficacy,

such that larger consistency values often yield smaller HL values (i.e., larger

prediction rates). More consistent datasets should be less difficult to solve since

the data have less overlap among the classes, and thus, the machine learning555

algorithms are more likely to be effective. However, the measures MCQ_A,
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Table 9: Correlation between HL and our measures by using the HEOM distance.

Spearman Correlation Sig. Hypothesis

X: MCQ_A, Y: HL value 0.507580 0.092071 Not rejected

X: MCQ_B, Y: HL value 0.630849 0.027839 Rejected

X: MCQ_C, Y: HL value 0.507580 0.092071 Not rejected

X: MCQ_D, Y: HL value -0.626776 0.029178 Rejected

X: MCQ_E, Y: HL value -0.605649 0.036880 Rejected

X: MCQ_F, Y: HL value -0.678322 0.015317 Rejected

Table 10: Correlation between HL and our measures by using the HMOM distance.

Spearman Correlation Sig. Hypothesis

X: MCQ_A, Y: HL value 0.641961 0.024411 Rejected

X: MCQ_B, Y: HL value 0.641961 0.024411 Rejected

X: MCQ_C, Y: HL value 0.641961 0.024411 Rejected

X: MCQ_D, Y: HL value -0.790374 0.002215 Rejected

X: MCQ_E, Y: HL value -0.781087 0.002705 Rejected

X: MCQ_F, Y: HL value -0.678322 0.015317 Rejected

MCQ_B, and MCQ_C do not align with our hypothesis since the negative

correlation between the consistency values and the HL values is not evident.

Therefore, the MCQ_D, MCQ_E, and MCQ_F measures are more suitable

than the others to calculate the consistency value.560

4.6. Comparison between MCQX and TCS

This subsection elaborates on the differences between our measures (mainly

MCQD, MCQE , and MCQF ) with the TCS measure since both are intended

to estimate some characteristics of the dataset. While the TCS measure is an

indicator of theoretical complexity based on structural characteristics (i.e., the565

number of input features, the number of labels, and the number of different label

combinations), the proposed measures are intended to measure the consistency
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of the information contained in the dataset.

While the TCS measure quantifies the problem size, our measures quantify

the quality of the data describing the problem. Notice that a bigger dataset is570

not necessarily any more consistent or inconsistent. According to [1], the higher

the TCS value, the more complex it should be to process the dataset, which

can be reflected in a higher error in the learning process. Therefore, one would

expect a directly proportional relationship between the TCS and HL values.

The Spearman correlation test (see Table 11) indicates a negative monotonic575

correlation between TCS and HL measures.

Table 11: Correlation between HL and TCS measures.

Spearman Correlation Sig. Hypothesis

X: TCS, Y: HL value -0.699301 0.011374 Rejected

Although the TCS measure could be used as an estimator of the learning

process’s efficacy, it does not always provide consistent results. For instance,

the datasets medical and cal500 have a similar TCS values but report different

errors during the learning process. More explicitly, the HL value obtained in580

the medical dataset is less than the one obtained in the cal500 dataset, and

however, its complexities are almost the same.

• cal500 reports a TCS value of 15.59 (rather high), the HL value is 0.1388

(rather high), while the consistency values are MCQD = 0.0241, MCQE

= 0.0646, and MCQF = 0.0763. The values of our measures and the HL585

value suggest that cal500 is an inconsistent dataset.

• medical reports a TCS value of 15.62 (rather high), the HL value is 0.0151

(rather low), while the consistency values are MCQD=1, MCQE=0.9238,

and MCQF =0.9737. The values of our measures and the HL value suggest

that medical is a consistent dataset.590

It should be mentioned that the above counterexample is not intended to

neglect the relationship between the problem’s structural complexity and the
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learning error. Nevertheless, that relation is neither trivial nor straightforward.

It goes without saying that, as often happens in the artificial intelligence field,

there could be situations in which our measures could not capture the data595

quality as accurately as the TCS measure. But certainly, that is not what we

have observed in the numerical simulations.

5. Concluding remarks

In this paper, we presented six data quality measures for MLC problems.

Overall, the rationale behind the proposed measures consists of evaluating the600

quality of classification in situations in which an observation can be associated

with multiple labels simultaneously. It should be noted that the proposed mea-

sures do not use any machine learning algorithm, so they are agnostic data

quality measures. Therefore, the advantage of having such measures is that we

can get insight into the expected complexity of solving a particular problem605

even before running any MLC algorithm.

The first three measures proposed in this paper (MCQA, MCQB , and

MCQC) attempted to use the original quality of classification measure. To

do that, we explored some definitions of what could be considered a decision

class in a multi-label dataset. However, the attempt to directly adapt the quality610

of the classification measure to the multi-label scenario was rather unsuccessful.

However, the remaining measures (MCQ_D, MCQ_E and MCQ_F ) make it

possible to estimate the complexity of the data at both global and local levels.

It is worth mentioning that the local measures are particularly useful to iden-

tify which objects are difficult to classify. To derive these measures, we adapted615

the consistency concept to the multi-label setting. The numerical simulations

for these measures show a strong negative correlation between the consistency

values obtained by these three measures and the algorithm’s performance. This

result confirms that we do not need to build a classification model to estimate

the problem’s complexity beforehand.620

The future research work will be oriented the connecting the proposed mea-
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sures with the meta-learning field. The envisaged research includes obtaining

“meta” rules providing guidelines for selecting multi-label classifiers when a new

problem arises. Likewise, further strategies to lighten the computational com-

plexity of our measures need to be explored.625
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