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Abstract

Although COVID-19 has been spreading throughout Belgium since February,

2020, its spatial dynamics in Belgium remain poorly understood, due to the

limited testing of suspected cases. We analyse data of COVID-19 symptoms, as

self-reported in a weekly online survey, which is open to all Belgian citizens. We

predict symptoms’ incidence using binomial models for spatially discrete data,

and we introduce these as a covariate in the spatial analysis of COVID-19 inci-

dence, as reported by the Belgian government during the days following a survey

round. The symptoms’ incidence predictions explain a significant proportion of

the variation in the relative risks based on the confirmed cases, and exceedance

probability maps of the symptoms’ incidence and the confirmed cases’ relative

risks pinpoint the same high-risk region. We conclude that these results can

be used to develop public monitoring tools in scenarios with limited lab testing

capacity, and to supplement test-based information otherwise.
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1. Introduction

COVID-19 is a respiratory disease caused by a highly infectious single-

stranded RNA corona virus, SARS-CoV-2 (Chen et al. 2020, Wu et al. 2020).

It was first observed in Wuhan, the capital of the Hubei province in the People’s

Republic of China, in December 2019 (Zhu et al. 2020). The virus most likely

has a zoonotic origin, but human-to-human transmission, which happens mainly

via droplets and fomites, combined with a high basic reproductive number, has

caused the disease to rapidly spread across continents. It has been declared a

global pandemic on March 11, 2020 (WHO 2020).

The first imported COVID-19 case in Belgium was reported on February 4,

2020, in Brussels; this case did not lead to further infections. Due to various

further introductions, the disease spread throughout the country. The Belgian

government has undertaken several measures to slow down community trans-

mission, the most notable of which has been the implementation of a lockdown

of the country on March 18, 2020. Due to limited capacity, only a fraction of

suspected Belgian COVID-19 patients has been tested to confirm SARS-CoV-2

infection. These are primarily severe cases, which has complicated the assess-

ment of the true extent of the disease’s spatio-temporal spread.

The University of Antwerp, in collaboration with Hasselt University and KU

Leuven, has designed an ethically approved weekly online COVID-19 survey

(https://www.uantwerpen.be/en/projects/corona-study/), which is open to the

general Belgian public. A key objective of the survey is to collect information

on COVID-19 symptoms from the general public. The weekly number of partic-

ipants has been large; during its first four rounds, the survey reached 537, 172;
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334, 935; 397, 529; and 215, 138 respondents, respectively, with complete resi-

dential and personal information to conduct a spatial analysis. However, as the

survey may not reach all segments of society equally (Alessi & Martin 2010;

Andrews et al. 2003), it remains unclear whether sampling bias invalidates

statistical inference on the spatial dynamics of COVID-19-like symptoms as a

proxy for the distribution of COVID-19.

Geostatistical models are often applied to analyse and predict disease risk in

a population (Diggle & Robeiro 2007). Using methods for spatially discrete out-

comes (Besag et al. 1991; Lawson 2013), we can predict COVID-19 incidence

via crowd-sourced data of symptoms obtained by self-reporting in the online

survey. We can use these predictions to optimally model the geographical risk

distribution of confirmed COVID-19 cases, as reported by the Belgian govern-

ment. This additionally allows to investigate routes to develop an early-warning

framework aimed at detecting COVID-19 cases by self-reporting citizens, when

large-scale testing and tracing of the general public is not feasible, and to sup-

plement information obtained from testing and tracing otherwise.

In this study, we fit spatial models to data obtained during the third round of

the online survey, conducted on March 31, 2020, and data of confirmed cases, as

reported by the Belgian population health institute (Sciensano) between April

7 and April 9, 2020. We use approximate Bayesian estimation methods to spa-

tially analyse self-reported COVID-19 symptoms. We then use mean incidence

predictions as a plug-in covariate in a spatial model to analyse confirmed cases.

Our aim is to investigate whether symptoms that are reported in an online sur-

vey, which is ordinarily subject to sampling bias, are useful to predict the spatial

spread of detected COVID-19 disease approximately one week later.
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2. Methodology

2.1. Data

We make use of Belgian data of 5183 confirmed COVID-19 cases with known

residential, age, and gender information, as reported by the Belgian population

health institute on April 7, April 8, and April 9, 2020 (henceforth, covid data).

Fig. 1 depicts the standardized incidence rates, SIRi = Oi/Ei, with Oi and

Ei the observed number of cases and the internally age-gender standardised

expected counts, respectively, for municipality i = 1, . . . , 589, using data of

all confirmed cases between April 7 and April 9, 2020, in Belgium. We use

age groups in the standardisation process, more specifically the age intervals,

0 − 24, 25 − 44, 45 − 64, and +65 years old. The widths of the age intervals

are based on considerations related to the online survey data set; more informa-

tion is provided in Section 2.2. Note that on Jan 1, 2019, a number of Belgian

municipalities have been geographically and administratively united, which re-

duced the total number of Belgian municipalities from 589 to 581. We use the

Belgian municipality structure of 2018 to improve spatial resolution, along with

demographical information from the same year, which differs only minimally

from the demography in 2020.

Secondly, we use data on COVID-19 symptoms, as self-reported by par-

ticipants in the third round of the online COVID-19 survey (March 31, 2020;

henceforth, symptoms data), for which all necessary ethical approvals have been

obtained. The survey can be filled in by all members of the public and is designed

to collect data about spatial trends in COVID-19 symptoms within Belgium,

the extent to which members of the public adhere to measures taken by the gov-

ernment, contact behaviour, and mental health dynamics, among others. We

investigate data of the third round in the main analysis presented here, since (i)

the survey in round 1 only contained one general question that gauged whether

individuals experienced any flu-like symptoms. From round 2 onwards, this

question was replaced by thirteen separate questions regarding specific COVID-
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19 symptoms; (ii) of the remaining surveys, round 3 had the largest sample size

and the best coverage in Wallonia, the southern part of Belgium; (iii) during

rounds 1 and 2, there was considerable overlap with the end of the influenza sea-

son, while exploratory analyses of symptom shifts through time signal the start

of the pollen allergy season in round 4. We provide analysis results of survey

rounds 2 and 4 as an Appendix (Section 6.2). We use data of males and females

- not intersex due to the category’s limited sample size - with available age and

residential information. Note that the online survey collected residential infor-

mation on the postal code level, a subdivision of the municipality level. This

yields 397, 529 data records for 1083 out of the 1133 Belgian postal code areas,

with at least one respondent from each of the 589 Belgian municipalities. The

majority of the respondents comes from Flanders, the northern part of Belgium

Figure 1: SIR of COVID-19 cases per municipality, based on all confirmed cases between April

7 and April 9, 2020.
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(Fig. 2). All participants were asked to indicate which of the following COVID-

19-like symptoms they experienced during the week preceding the online survey

(March 24 − 30, 2020), if any: (i) a rapidly increasing fever, (ii) a high fever,

(iii) a dry cough, (iv) shortness of breath, (v) chest pain, (vi) muscle pain, (vii)

exhaustion, (viii) chills, (ix) nausea, (x) painful eyes, (xi) a sore throat, (xii) a

rattling cough, and/or (xiii) a running nose. A binary variable Yjk takes a value

1 when person k = 1, . . . , nj in postal code j = 1, . . . , 1133 experienced at least

one of the most typical symptoms, which we define as symptoms (i)-(iv), based

on Jiang et al. (2020), Yang et al. (2020), and WHO (2020); otherwise, Yjk = 0.

2.2. Statistical methods

We fit conditional autoregressive (CAR) convolution models (Besag et al.

1991) to the symptoms and covid data, using integrated nested Laplace approx-

Figure 2: The proportion of the population per municipality taking the survey on March 31,

2020.
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imation (INLA, Rue et al. 2009). INLA is a convenient approximate Bayesian

estimation method that computes approximations of posterior marginal distri-

butions for latent Gaussian models. We apply it in R 4.0.0 (R Core Team 2020),

through the package R-INLA.

For the symptoms data, the CAR convolution model is given by

P (Yjk = 1) = expit(α0 + α1singlejk + α2agecat1jk + α3agecat2jk + α4agecat3jk+

α5malejk + α6agecat1jk ∗malejk + α7agecat2jk ∗malejk+

α8agecat3jk ∗malejk + v1j + u1j)

(1)

where single denotes a binary variable taking the value 1 when a participant is

the only member of a household and 0 otherwise; agecat1, agecat2, and agecat3

are dummy variables that indicate whether participants belong to the age groups

25 − 44, 45 − 64, and +65, respectively, the interval widths of which we have

chosen to categorise the data into groups expected to showcase different social

behaviour, while maintaining balanced sample sizes among these categories;

male = 1 for males, 0 for females. We correct for spatially uncorrelated het-

erogeneity on the postal code level (UH) with a normally distributed random

effects term:

v1j ∼ N(0, σ2
v1). (2)

Spatially correlated heterogeneity (CH) is accommodated by uj , an intrinsic

conditional autoregressive (CAR) random effects term, such as introduced by

Besag & Kooperberg (1995),

u1j |u1l,j 6=l ∼ N
(
µ̄1j , σ

2
1j

)
,

µ̄1j =
1∑N1

l=1 wjl

N1∑
l=1

wjlu1l, (3)

σ2
1j =

σ2
u1∑N1

l=1 wjl

.

Here, wjl = 1 if areas j and l are adjacent and 0 otherwise, and N1 = 1133.

We then predict P̂ (Yj. = 1), the predicted probability of a postal code area’s
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inhabitant to experience at least 1 typical COVID-19 symptom, which is cor-

rected for the age, gender, and single households dynamics of the municipality

in which the postal code area is situated, since this demographic information

on the postal code level is not at our disposal.

For the covid data, we fit a Poisson CAR convolution model,

Oi ∼ Poisson(EiRi),

Ri = exp[β0 + β1P̂ (Yi = 1)s + v2i + u2i], (4)

where Ri denotes the relative risk for municipality i. v2i and u2i are defined

similarly as v1j and u1j in (2) and (3), respectively, but with different separate

heterogeneity terms denoted by σ2
v2, µ̄2i, σ

2
2i, σ

2
u2, and N2 = 589 instead of

σ2
v1, µ̄1j , σ

2
1j , σ

2
u1, and N1, respectively. The probability of a municipality’s

inhabitant to experience at least 1 typical COVID-19 symptom is calculated as,

P̂ (Yi = 1) =

∑ni

j=1 P̂ (Yj. = 1)

ni
, (5)

with P̂ (Yj. = 1) as predicted by (1), and where ni denotes the number of postal

code areas that municipality i consists of. We include it in its standardised

form, which we denote as P̂ (Yi = 1)s, as a risk factor in the model.

We use vague priors: N(0, 1000) for all covariate effects, and Gamma(1, 0.0005),

here parameterised with a shape and rate parameter, for τu1 = 1/σ2
u1, τv1 =

1/σ2
v1, τu2 = 1/σ2

u2, and τv2 = 1/σ2
v2. A sensitivity analysis for the choice of

the prior distribution, where we use Gamma(1, 0.01) as a prior for the precision

parameters, has been documented in the Appendix (Section 6.1). Although the

use of these priors affects the precision estimates, the estimates of covariate

effects and the maps displaying predictions and exceedance probabilities, re-

main almost unchanged. We denote covariate effects as significant, when their

associated 95% credible interval does not include 0.
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3. Results

The upper panel of Table 1 reports parameter estimates for the analysis of

the symptoms data. Being single is significantly associated with a lower prob-

ability to report at least 1 typical COVID-19 symptom. However, its effect is

small. Age and gender have significant interaction effects; we see the largest

probability among non-single females between 25 and 44 years old, while the

lowest probability is seen in single elderly males. Note that the UH random

effects explain little variability. We do not remove it from the model, since we

would then assume that there is no small-scale extra-variability. Fig. 3 and 4

show, respectively, P̂ (Yj. = 1), after correcting for demographic variation in age,

gender, and household, i.e., singles vs. non-singles, and the exceedance proba-

bilities, P{P̂ (Yj. = 1) > median[P̂ (Yj. = 1)]} = P [P̂ (Yj. = 1) > 0.149].

The lower panel of Table 1 presents parameter estimates for the covid data

analysis. The symptoms’ incidence, as predicted by (1), is significantly and

positively associated with the relative incidence risk, based on the confirmed

cases. Fig. 5 and 6 show, respectively, R̂i and the exceedance probabilities,

P (R̂i > 1.5). The cluster of postal code areas with elevated predicted incidence

of typical COVID-19 symptoms in the central-east of Belgium, situated around

the city of Sint-Truiden, in Fig. 4, overlaps well with the cluster of municipalities

in Fig. 6 that has a high probability, i.e., 95%, to have at least a 150% increase

in relative incidence risk.

The symptoms that were self-reported to be experienced during the period

of March 24 − 30, have a significant predictive effect on the incidence risk of

confirmed cases within a period that spans more days than the period of April

7−9 (Table 2). We find significant results for the effect of P̂ (Yi = 1)s on the in-

cidence risk of confirmed cases for all three-day periods throughout April 2 and

April 10, and a borderline significant effect when analysing all cases that were

confirmed between April 2 and April 10 together. Based on the effect size and
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Table 1: Estimation results.

effect parameter estimate 95% credible interval

symptoms data

Intercept α0 -1.6012 [-1.6358,-1.5669]

single α1 -0.0553 [-0.0827,-0.0280]

agecat1 α2 0.1787 [0.1471,0.2104]

agecat2 α3 -0.0920 [-0.1262,-0.0577]

agecat3 α4 -0.6648 [-0.7289,-0.6014]

male α5 -0.0980 [-0.1544,-0.0420]

agecat1 ∗male α6 0.0686 [0.0073,0.1302]

agecat2 ∗male α7 0.0882 [0.0237,0.1528]

agecat3 ∗male α8 0.0040 [-0.0960,0.1039]

Precision UH τv1 3801.5526 [994.1001,10089.0437]

Precision CH τu1 142.2567 [84.8450,227.4753]

covid data

Intercept β0 -0.2848 [-0.3559,-0.2153]

P̂ (Yi = 1)s β1 0.1820 [0.0798,0.2636]

Precision UH τv2 2.4223 [1.9480,3.0045]

Precision CH τu2 27.2139 [2.4711,137.9474]

the credible intervals’ widths, the optimal predictive performance is suggested

for the period between April 7 and April 9. Although it is uncommon to con-

sider traditional issues related to multiple testing in the context of a Bayesian

analysis, we note that for results that we consider as borderline significant, sig-

nals might reflect spurious correlations.
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Figure 3: Predicted probabilities for a citizen to experience at least 1 of 4 typical COVID-19

symptoms per postal code area.

4. Discussion and conclusion

Our study shows that, when using geographical crowd-sourced information

on COVID-19 that is obtained by self-reporting within a large-scale survey

study, model-based symptom incidence predictions are capable of explaining

a significant proportion of the heterogeneity that is seen in the number of con-

firmed COVID-19 cases, as reported by the government, within 3 to 18 days

after these symptoms were experienced. Moreover, exceedance probabilities,

based on the analysis of the symptoms data, pinpoint an important cluster of

elevated COVID-19 risk around the city of Sint-Truiden in central eastern Bel-

gium, which aligns well with a region that has since then received increased

attention, due to a number of local outbreaks.
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Figure 4: Exceedance probabilities per postal code area for the predicted probability for a

citizen to experience at least 1 of 4 typical COVID-19 symptoms, with threshold = 0.149.

Note that we have conducted the same analyses, using symptoms data from

rounds 2 and 4 of the online survey, which we document as an appendix (Section

6.2). Similarly as in the analysis based on survey 3, the predictive means of the

symptoms’ incidence significantly explain variation in the number of confirmed

cases, but for a more restricted set of three-day periods within a 14-day time

span after the day of the respective surveys. Their predictive performances are

weaker than those obtained from survey 3 and it is less clear to pinpoint a time

frame for which the survey data optimally predict confirmed cases. As explained

in Section 2.1, this is likely due to a combination of the overlapping influenza

and allergy season during rounds 2 and 4, respectively, and a lower amount

of participants from Wallonia, which may obstruct the detection of all spatial
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Table 2: Estimation results for β1, the effect of P̂ (Yi = 1)s, when investigating different time

periods of confirmed cases. An asterisk (*) denotes a significant effect on a 5% significance

level.

period estimate 95% credible interval no. cases

March 31 – April 2 0.0908 [-0.0093,0.1900] 4565

April 1 – April 3 0.0991 [-0.0036,0.1995] 4567

April 2 – April 4 0.1570 [0.0520,0.2591]* 3989

April 3 – April 5 0.1675 [0.0576,0.2725]* 3205

April 4 – April 6 0.1612 [0.0653,0.2461]* 3415

April 5 – April 7 0.1642 [0.0629,0.2527]* 3977

April 6 – April 8 0.1159 [0.0003,0.2169]* 4881

April 7 – April 9 0.1820 [0.0798,0.2636]* 5183

April 8 – April 10 0.1564 [0.0248,0.2800]* 5990

April 9 – April 11 0.1348 [-0.0067,0.2757] 5446

April 10 – April 12 0.0701 [-0.0866,0.2258] 3768

April 11 – April 13 0.0713 [-0.0962,0.2387] 2020

April 12 – April 14 0.0197 [-0.1326,0.1708] 2473

April 13 – April 15 0.1018 [-0.0402,0.2410] 3543

April 2 – April 10 0.1185 [0.0171,0.2148]* 13956

dynamics of COVID-19 symptoms in Belgium. Note that the symptoms data

reflect symptoms that were experienced during the week preceding the respec-

tive rounds of the survey. This period does not necessarily reflect the moment of

the symptoms’ onsets, which may have taken place earlier. Future studies will

investigate how data of COVID-19 symptoms’ onsets can be optimally linked

to data of confirmed cases.

Note that, for the data from round 3 of the survey, not all high-risk areas

in Fig. 6 could be detected by the symptoms data analysis (Fig. 4). We believe

that this might be due to a considerably large amount of small-scale variation

13

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2020. ; https://doi.org/10.1101/2020.05.18.20105627doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.18.20105627


Figure 5: Predicted COVID-19 relative risk per municipality, based on data of confirmed cases

between April 7 and April 9, 2020.

in virus transmission, such that our model is currently best at pinpointing clus-

ters that are occurring on a moderately large scale. This might be explained

by the quarantine measures that obstruct typical transmission routes, such that

infection mostly occurs very localised (Ganyani et al. 2020). However, what

is defined as small-scale spatial variation depends on the spatial resolution of

data; in order to develop COVID-19 monitoring tools, analysts will need spatial

information on finer scales than the municipality or postal code level. Further-

more, similarly to the previous conclusions with respect to rounds 2 and 4 of the

survey, the relatively small sample sizes in the southern part of Belgium for the

symptoms data likely hamper the detection of high-incidence areas in the anal-

ysis of round 3 as well. This highlights the need for investments in monitoring

tools, and promotional campaigns to engage the general public throughout the
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Figure 6: Exceedance probabilities for the relative risk per municipality, based on data of

confirmed cases between April 7 and April 9, 2020, with relative risk threshold = 1.5.

whole region to participate in these online surveys, in combination with such

other measures as, for example, tracing strategies.

With respect to demographic heterogeneity in typical COVID-19 symptoms,

the analysis results report the lowest symptoms’ incidence for elderly, while

symptoms occur mostly among persons between 25 and 44 years old, especially

females with at least one additional household member. These differences might

be a result of variation in the social distancing behaviour between age groups.

Preliminary analyses of contact behaviour, based on the online survey data (not

shown), suggest that Belgian elderly started to engage in social distancing signif-

icantly sooner than younger individuals during the COVID-19 outbreak; among

individuals who are younger than 65 years, those younger than 25 are suggested
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to be the slowest to adapt to social distancing measures. A plausible reason

why the latter is not reflected in the symptoms data analysis results, is that

among COVID-19 patients, children and adolescents in general are less likely to

experience typical COVID-19 symptoms (Dong et al. 2020).

This study can be improved by investigating the outcomes spatio-temporally.

However, the correct extraction of the specific day of the symptoms’ onset from

the online survey data should be undertaken with care and will be investigated

in the future. We have therefore analysed symptoms data that were aggregated

in time. Moreover, we plan to develop a joint modelling framework in which we

simultaneously model symptoms and confirmed cases, e.g., by extending corre-

lated random-effects models proposed by Neyens et al. (2016). This will allow

us to exploit spatial dependence that is likely to occur between symptoms’ in-

cidence and the confirmed cases’ disease risk. This can improve the current

two-step approach where we use model-based symptom predictions as a plug-in

covariate to model the spatial dynamics of the confirmed cases’ disease risk.
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6. Appendix

6.1. Sensitivity analysis

In the sensitivity analysis, we use Gamma(1, 0.01) instead of Gamma(1, 0.0005)

as a prior for the precision parameters for the UH and CH random effects terms.

Table 3: Estimation results.

effect parameter estimate 95% credible interval

symptoms data

Intercept α0 -1.6018 [-1.6364,-1.5673]

single α1 -0.0556 [-0.0831,-0.0283]

agecat1 α2 0.1786 [0.1470,0.2103]

agecat2 α3 -0.0920 [-0.1262,-0.0577]

agecat3 α4 -0.6649 [-0.7289,-0.60142]

male α5 -0.0980 [-0.1544,-0.0420]

agecat1 ∗male α6 0.0686 [0.0072,0.1302]

agecat2 ∗male α7 0.0881 [0.0237,0.1528]

agecat3 ∗male α8 0.0041 [-0.0960,0.1040]

Precision UH τv1 666.2017 [375.0517,1099.2037]

Precision CH τu1 148.0921 [88.0472,235.2848]

covid data

Intercept β0 -0.2849 [-0.3559,-0.2155]

P̂ (Yi = 1)s β1 0.1804 [0.0781,0.2621]

Precision UH τv2 2.4286 [1.9496,3.0140]

Precision CH τu2 25.0809 [2.4016,123.9483]
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Figure 7: Sensitivity analysis - Predicted probabilities for a citizen to experience at least 1 of

4 typical COVID-19 symptoms per postal code area.
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Figure 8: Sensitivity analysis - Exceedance probabilities per postal code area for the predicted

probability for a citizen to experience at least 1 of 4 typical COVID-19 symptoms, with

threshold = 0.149.
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Figure 9: Sensitivity analysis - Predicted COVID-19 relative risk per municipality, based on

data of confirmed cases between April 7 and April 9, 2020.
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Figure 10: Sensitivity analysis - Exceedance probabilities for the relative risk per municipality,

based on data of confirmed cases between April 7 and April 9, 2020, with relative risk threshold

= 1.5.
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6.2. Analyses of rounds 2 and 4

Table 4: Estimation results for β1, the effect of P̂ (Yi = 1)s, obtained from the analysis of

341, 320 respondents in the second round of the online survey, when investigating different time

periods of confirmed cases. An asterisk (*) denotes a significant effect on a 5% significance

level.

period estimate 95% credible interval no. cases

March 24 - March 26 0.1109 [0.0211,0.2003]* 3705

March 25 - March 27 0.0543 [-0.0439,0.1523] 4016

March 26 - March 28 0.0691 [-0.0353,0.1732] 3663

March 27 - March 29 0.0610 [-0.0473,0.1687] 2987

March 28 - March 30 0.0722 [-0.0325,0.1756] 3206

March 29 - March 31 0.0947 [-0.0102,0.1988] 4039

March 30 - April 1 0.0481 [-0.0568,0.1523] 4848

March 31 - April 2 0.0801 [-0.0264,0.1858] 4565

April 1 - April 3 0.0591 [-0.0490,0.1653] 4567

April 2 - April 4 0.1068 [-0.0053,0.2166] 3989

April 3 - April 5 0.1231 [0.0047,0.2367]* 3205

April 4 - April 6 0.0903 [-0.0196,0.1933] 3415

April 5 - April 7 0.1043 [-0.0062,0.2086 ] 3977

April 6 - April 8 0.0609 [-0.0593,0.1729] 4881
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Table 5: Estimation results for β1, the effect of P̂ (Yi = 1)s, obtained from the analysis of

217877 respondents in the fourth round of the online survey, when investigating different time

periods of confirmed cases. An asterisk (*) denotes a significant effect on a 5% significance

level.

period estimate 95% credible interval no. cases

April 7 - April 9 0.2094 [0.1303,0.2855]* 5183

April 8 - April 10 0.1986 [0.0594,0.3272]* 5990

April 9 - April 11 0.1243 [-0.0329,0.2813] 5446

April 10 - April 12 0.0753 [-0.0959,0.2461] 3768

April 11 - April 13 0.1775 [-0.0092,0.3629] 2020

April 12 - April 14 0.1259 [-0.0407,0.2892] 2473

April 13 - April 15 0.1483 [-0.0069,0.2986] 3543

April 14 - April 16 0.0998 [-0.0614,0.2608] 4643

April 15 - April 17 0.1346 [-0.0295,0.2940] 4532

April 16 - April 18 0.1602 [-0.0147,0.3266] 3652

April 17 - April 19 0.2057 [0.0253,0.3695]* 2468

April 18 - April 20 0.2325 [0.0676,0.3875]* 2345

April 19 - April 21 0.1419 [-0.0089,0.2880] 2867

April 20 - April 22 0.1364 [-0.0105,0.2781] 3179
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