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Single cell RNA sequencing (scRNA-seq) data

e profiles gene expression
patterns in individual cells

e data typically presented in a

matrix
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from statistical point of view
@ opportunity: high number of
cells

o challenge: high noise level
from various sources

e technical noise because of
low input material

e intrinsic biological
variability

= scRNA-seq data

@ sparse data

e complex distribution of gene
expression
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Differential gene expression (DGE) in scRNA-seq

DGE in scRNA-seq

=> identifies a set of genes with different distribution of expression across
groups of cells

e parametric methods are often used for testing DGE
e.g. NB or ZINB models
-+ are flexible and easy for interpretation
-+ account for various sources of variation
-+ adaptable to many experimental design

e parametric assumptions do not always hold
=> tools relying on such assumption may thus under-perform
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Benchmarking result by Soneson et al. Nature methods (2018)
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IG @ methods for bulk RNA-seq also
work
@ simple methods, such as t-test,
IPW WMW show good performance

non-parametric tools for testing DGE
in scRNA-seq data

@ showed better performance than
many of the parametric tools
but

@ have limited scope

@ no interpretable measure of

fold-change (effect size)
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Therefore, we suggest Probabilistic Index Models (PIM)! to widen the

scope of non-parametric tools while
@ being robust
@ can be used for simple and complex experimental designs

e provide interpretable measure of the effect size

'Thas et al. JRSS-B (2012)
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PIM

In PIM, we model the conditional probability

1
P(Ygi = YyjlXi, Xj) = P(¥gi < Yg51Xi, X;) + 5P (Vgi = Y51 X, X;)

where Yy; and Y,; are the gene expression of gene g in cell ¢ and j with their
corresponding covariate information X; and Xj, resp.

P(Yy = Yy;|Xs, X;) is called the Probabilistic Index (PI)
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PIM

e using a function m(.) with range [0, 1], we model the PI as a
function of X,

P(Ygi = ng’XivXj) = m(XiaXﬁﬁg)

m(X;, X;; By) satisfies some particular restrictions, see Thas et al. (2012)

e the parameter 3, represents the effect of X on the PI

e with an appropriate link function g(.), such as logit,

m(Xs, Xj; Bg) = g~ (Z58,)

where Z;; = X; — X; — one possible choice
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Example

Let (Yy, X;),i=1,...,n are n i.i.d. r.v., where Yy; is the normalized gene
expression of gene g in cells 7 and X is a treatment group indicator of cell ¢
(X; =1 for treatment and 0 for control).

Therefore, with a logit link function, we define PIM as

[ logit {P(Yyi < Y| X, X))} = B,(X; — Xy)

o if ,Bg = 0, P(Ygz = ng’Xi = O,Xj = 1) =0.5
=> probability that expression of gene g in a randomly selected cell from the
control group is smaller than that of a randomly selected cell from the

treatment group is 50% (and vice versa)

B
1 P(Ygl j YTQJ|X’L = O,XJ = ]_) = 1—7—;59 € [0, ].]
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Example ... cont’d

@ parameter estimation equation (score function)

S Ay 8) (I — 97 @58)} =0

(1,5)€ln

where I;; = I(Y; < Y;)+0.51(Y; =Y;) € (0, 0.5, 1) — pseudo observations

e testing for no treatment effect, Hy : 84 = 0,
= using Wald test of Thas et al (2012)?

o treatment effect size & PI

P(Yyi = Yyl Xi = 0,X; = 1) = expit{fy} € [0,1]

o Testing DGE for G >> 1 genes results in a vector of p-values
= Benjamini-Hochberg procedure to control false discovery rate (FDR)

2Thas et al. JRSS-B (2012)
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Example: testing for DGE using PIMs

@ Data:

o Neuroblastoma cell line scRNA-seq data (SMARTer/C1)

o two groups of cells: nutlin-3 treated (n;=31) and control (ny=>52)

e all cells came from a single biological sample and processed in a
single batch

e ~12,000 genes, each with expression in at least 5 cells

@ Objective: testing for DGE between nutlin-3 treated and control
group of cells (X) adjusting for library size (N)

e PIM specification

logit{P(Yy: = Yy;|Xi, Xj, Ni, Nj)} =
By (Xj — Xi) + B3 (log Nj — log N;)

-~ -~

treatment effect adjust for library size
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Example: testing for DGE using PIMs ... cont’d

e PIM specification

logit{P(Yyi < Yy;|X;, Xj, Ny, Nj)} =
B (X — Xi) + By (log Nj — log N;)

treatment effect adjust for library size

o the effect of nutlin-3 treatment for gene g given N; = N; = n,

logit{P(Yy; < Yg;|X; = 0,X; =1,N; =n,N; =n)} = B

e ranking genes based on their estimated marginal PI of nutlin-3, i.e.

left edge middle right edge
PI—0 PI~ 05 PI—1
down regulated | no DGE | up regulated
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Example: testing for DGE using PIMs ... results

(a) 1.0

probablistic index

! #down-reg. genes = 237

(b)

#up-reg. genes = 150 ;
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Performance evaluation ... simulation methods

Two sets of simulation methods

@ Splat simulation®: gamma-Poisson hierarchical model
= Negative Binomial
= fast and several scenario can be simulated

@ semi-paramatric simulation
= sampling new data from the actual distribution of a real
scRNA-seq data
= involves two steps: construct density, and sample from the
constructed density
= generates realistic data

3Zappia et al Genome Biology (2017)
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Performance evaluation ... simulation results

semi-parametric simulation splat simulation
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sim. design: 5000 genes, 2 group o f cells (ny = ny = 50), 10% DE genes,
source data generated using SMARTer/C1 protocol, gene expression data in
terms of read-counts.
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Performance evaluation ... simulation results

semi-parametric simulation Splat simulation
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sim. design: 5000 genes, 2 group o f cells (n; = ny = 100), 10% DE genes,
source data generated using Chromium (10x Genomics) protocol, gene

expression data in terms of UMI-counts.
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Summary
PIM for testing DGE

@ requires minimal distributional assumption
= robust

e generalization of non-parametric methods
= can be used for simple and complex experimental designs
= PIM is more flexible than SAMSeq*

o interpretable effect size in terms of PI
= meaningful gene ranking based on PI (in combination with
p-values ot its standard error)

@ valid under the presence of tied observations

@ can be used for different measures of gene expression, such as
read-counts and UMI-counts

4Li et al, Statistical methods in medical research (2013)
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