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Abstract 
To understand biology and differences among various tissues or cell types, one typically 
searches for molecular features that display characteristic abundance patterns. Several 
specificity metrics have been introduced to identify tissue-specific molecular features, but 
these either require an equal number of replicates per tissue or they can’t handle replicates 
at all. We describe a non-parametric specificity score that is compatible with unequal 
sample group sizes. To demonstrate its usefulness, the specificity score was calculated on all 
GTEx samples, detecting known and novel tissue-specific genes. A webtool was developed 
to browse these results for genes or tissues of interest. An example python implementation 
of SPECS is available at https://github.ugent.be/ceeverae/SPECs. The precalculated SPECS 
results on the GTEx data are available through a user-friendly browser at specs.cmgg.be. 
 

1 Introduction  
To understand biology and differences among various tissues or cell types, one typically 
searches for molecular features (i.e. RNA, protein, metabolites) that display characteristic 
abundance patterns. In the most extreme case, these features display tissue- or cell-type 
restricted abundance profiles. Such specific features can provide insights in functional, 
development or disease mechanisms (Leucci et al., 2016) or serve as biomarkers (Stutterheim 
et al., 2008; Prensner et al., 2013). Various consortium-based efforts have generated vast 
amounts of molecular data that can be exploited for this purpose. The Genotype-Tissue 
Expression (GTEx) project (https://gtexportal.org) and The Cancer Genome Atlas (TCGA) 
(https://www.cancer.gov/tcga) are examples of such rich resources containing RNA-
sequencing based molecular features for thousands of samples derived from various 
individuals and tissue types (Lonsdale et al., 2013). To identify tissue-specific molecular 
features, several specificity metrics have been introduced, but these can suffer from data loss 
introduced by the requirement to collapse data from biological replicates. Moreover, those 
metrics that can handle biological replicates require equal sample sizes. In this application 
note, we describe a novel non-parametric specificity score that is compatible with unequal 
sample group sizes and enables the detection of features that are specifically present or 
absent in one or more tissue types. 
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2 Methods 
Let the index d = 1,...,md refer to a particular sample state. Depending on the application 
and whether the user wants to give weight to a certain state, πd is the prevalence of state d 
in the target population or πd is equilibrated. Suppose there are mg candidate features, i.e. g 
= 1,...,mg . Let Ygd denote the outcome of feature g in state d with ngd observations, so that 
the individual outcomes are denoted by Ygdi, i = 1, …,ngd. The Yg-d notation denotes the 
outcome of feature f in all groups but the state d. The index g will be dropped in further 
notations. A feature is a characteristic for a given state if its outcome distribution for the 
given state shows no overlap with the outcome distributions of the other states. This means 
a larger AUC, given by: 
 
𝑝" = 𝑃{𝑌'" < 𝑌"} = ∑ 𝑃{𝑌+ < 𝑌"}𝜋++-"    (1) 
If pd is close to zero or one, the distributions are well separated. The probabilities P{Yk<Yd} 
are computationally fast to calculate. The probability Pkd = P{Yk<Yd} is then estimated as: 
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with 𝐼+3;"5  a 0/1 indicator for the event Yki<Ydj. 
Hence, an estimator of pd is given by: 
 

�̂�" = 1𝑃.+"𝜋+
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Further selection of features can be performed based on the distributions of �̂�"as explained 
in Supplemental Methods 1. As this is a computationally intensive step for large data 
matrices, one can opt to select features based on a threshold. In our use case, we defined 
state-specific features as those where the score (�̂�") for one state was above 0.95 and 
features that were specifically absent in one state as those with a score (�̂�") lower than 
0.05. If the score of 0.95 or 0.05 was reached in multiple states, the feature was defined as 
specific (present or absent) for all these states. The python implementation of the method is 
available at https://github.ugent.be/ceeverae/SPECs. 

3 Results 
The Genotype-Tissue Expression (GTEx v7) project (Lonsdale et al., 2013) consists of RNA 
sequencing data from 12 766 samples belonging to 31 different tissues (7 to 1854 samples 
per tissue). We calculated the SPECS specificity score on normalized counts for all Ensembl 
(GRCh38.v85) genes (n=56 202) using all samples. For 30 of the 31 tissues, 2 (esophagus) to 
7948 (testis) specifically expressed genes were identified. Most of these genes are protein 
coding (n=10 959), followed by lincRNAs (n=3080), antisense genes (n=2022) and 
pseudogenes (n=1976) (Figure 1A and Supplemental Figure 1). In addition, the method has 
the ability to identify genes that are highly specific for two (or more) tissues, with specificity 
scores that are slightly lower. As expected, the tissues with the highest number of common 
specific genes are biologically related such as spleen and blood, or brain and pituitary or 
muscle and hart. 
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Figure 1 Known and novel genes are detected as specific for various biotypes.  
A) The number of specific genes for each GTEx tissue and biotype shows that most specific genes are protein-coding. B) 
Cumulative distribution of the mean expression of specific genes, shows that specific protein-coding genes are higher 
expressed compared to the other biotypes. C) Cumulative distribution of the fold changes of specific genes and the 2nd 
tissue shows larger differences for lincRNA genes compared to other biotypes. D) Examples of well-known specific genes; 
UPK2 for bladder, KLK3 for prostate, MUC7 for adrenal gland and AMY2A for pancreas. 
 

Besides genes that are specifically abundant in a tissue, our method also enables the 
identification of genes that are specifically repressed in a given tissue. These so-called 
disallowance genes (Thorrez et al., 2010) were found for 17 tissues ranging from 2 (salivary 
gland) to 1989 (blood) genes. Most of these are protein coding genes (Supplemental Figure 
2).  
For all specifically abundant genes we calculated fold changes between the specific tissue(s) 
and all other tissues. The fold changes for lincRNAs were typically higher than for other 
biotypes, in line with previous studies in which lincRNAs were shown to be more specific 
compared to protein coding genes (Cabili et al., 2011) (Figure 1B and Figure 1C). 
From our analyses, known specific genes are readily confirmed, such as kallikrein related 
peptidase 2 (KLK2) and 3 (KLK3, also known as PSA) for prostate, uroplakin 2 (UPK2) for 
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bladder, mucin 7 (MUC7) for the salivary gland and amylase alpha 2A (AMY2A) for pancreas 
(Figure 1D). For each tissue in GTEx, rank percentiles for the specific genes are pre-
calculated and distilled into a web tool (specs.cmgg.be) where a user can select either their 
gene of interest to evaluate its specificity or a tissue of interest to identify the most specific 
genes. 
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