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Abstract 30 

Background and Objectives: Pathological myopia (PM) is the seventh leading cause of blindness, with 31 

a reported global prevalence up to 3%. Early and automated PM detection from fundus images could 32 

aid to prevent blindness in a world population that is characterized by a rising myopia prevalence. We 33 

aim to assess the use of convolutional neural networks (CNNs) for the detection of PM and semantic 34 

segmentation of myopia-induced lesions from fundus images on a recently introduced reference data 35 

set. 36 

Methods: This investigation reports on the results of CNNs developed for the recently introduced 37 

Pathological Myopia (PALM) dataset, which consists of 1200 images. Our CNN bundles lesion 38 

segmentation and PM classification, as the two tasks are heavily intertwined. Domain knowledge is 39 

also inserted through the introduction of a new Optic Nerve Head (ONH)-based prediction 40 

enhancement for the segmentation of atrophy and fovea localization. Finally, we are the first to 41 

approach fovea localization using segmentation instead of detection or regression models.  Evaluation 42 

metrics include area under the receiver operating characteristic curve (AUC) for PM detection, 43 

Euclidean distance for fovea localization, and Dice and F1 metrics for the semantic segmentation tasks 44 

(optic disc, retinal atrophy and retinal detachment). 45 

Results: Models trained with 400 available training images achieved an AUC of 0.9867 for PM 46 

detection, and a Euclidean distance of 58.27 pixels on the fovea localization task, evaluated on a test 47 

set of 400 images. Dice and F1 metrics for semantic segmentation of lesions scored 0.9303 and 48 

0.9869 on optic disc, 0.8001 and 0.9135 on retinal atrophy, and 0.8073 and 0.7059 on retinal 49 

detachment, respectively.  50 

Conclusions: We report a successful approach for a simultaneous classification of pathological myopia 51 

and segmentation of associated lesions. Our work was acknowledged with an award in the context of 52 

the “Pathological Myopia detection from retinal images” challenge held during the IEEE International 53 

Symposium on Biomedical Imaging (April 2019). Considering that (pathological) myopia cases are 54 

often identified as false positives and negatives in glaucoma deep learning models, we envisage that 55 

the current work could aid in future research to discriminate between glaucomatous and highly-myopic 56 



eyes, complemented by the localization and segmentation of landmarks such as fovea, optic disc and 57 

atrophy. 58 

Key words: pathological myopia, fovea localization, peripapillary atrophy, retinal detachment, 59 

convolutional neural network, fundus image, glaucoma 60 

Introduction 61 

Myopia or nearsightedness currently affects approximately 34% of the world population.1 High myopia, 62 

often defined as a spherical equivalent that exceeds -6.00 diopter or an axial length of 26.5mm or 63 

more, has a prevalence ranging from 1% in African Americans2 and up to 5.5% in the Japanese Tajimi 64 

study3. Approximately 1-3% of the world population develops vision-impairing macular lesions (lacquer 65 

cracks, choroidal neovascularization, and Fuchs spots) as a result of high myopia, referred to as 66 

myopic maculopathy.4,5 Both the presence of myopic maculopathy and posterior staphyloma are used 67 

to define pathological myopia (PM), which causes uncorrected and irreversible visual impairment.6 68 

Other retinal changes due to myopia include: fundus tessellation, (peripapillary) atrophy, optic disc 69 

tilting, retinal tear and retinal detachment. Additionally, myopia increases the risk of developing open-70 

angle glaucoma7, presumably because myopic eyes have thinner and weaker lamina cribrosa tissue8. 71 

Optic nerve head (ONH) changes such as temporal disc flattening and tilting9, as a consequence of 72 

myopia, hampers glaucoma detection through ONH assessment during fundoscopy or fundus image 73 

analysis10. Peripapillary atrophy (PPA), being attenuation of retinal pigment epithelium (RPE) 74 

neighboring the ONH, is associated with both myopia and glaucoma, and is one of the causes for a 75 

high number of myopic patients being diagnosed as glaucoma suspects. 76 

Previous work on automated pathological myopia detection from retinal images is limited. Liu et al 77 

described a methodology dubbed PAMELA (Pathological Myopia Detection Through Peripapillary 78 

Atrophy), in which a support vector machine (SVM) is trained using exclusively PPA texture features 79 

from fundus images.11 They reported sensitivity and specificity of 0.85 and 0.90, respectively, on 40 80 

test images. As mentioned above, PPA is not unique to pathological myopia, and not the only retinal 81 

change induced by the disease.  82 



Zhang et al also employed an SVM, but expanded on the feature set by incorporating additional retinal 83 

information such as ONH-related parameters and socio-demographic variables including age and 84 

race.12 10-fold cross validation led to accuracies ranging from 84.9% to 89.3% on a private data set 85 

encompassing imaged eyes of 800 primary school students.  86 

Deep learning-based classification of pathological myopia has not been previously explored, although 87 

convolutional neural networks (CNNs) are showing great potential in ophthalmic research for disease 88 

identification and staging13. Relevant for this manuscript is refraction estimation from fundus images 89 

using deep learning by Varadarajan et al., who developed a regression model that estimates refractive 90 

error with high accuracy (<1 diopter mean absolute error).14 Their approach could be useful in 91 

stratifying fundus images into emmetropia (normal refraction), hyperopia (farsightedness), myopia 92 

(nearsightedness), and high myopia (exceeding -6.0 diopters). The last group could then be further 93 

analyzed to detect myopia-induced lesions.  94 

Semantic segmentation or pixel-wise classification has experienced major advances through the 95 

introduction of fully convolutional networks (FCN) in 2015.15 For fundus images, ample FCN-based 96 

segmentation networks have been described in popular tasks like vessel extraction16, artery/vein 97 

discrimination17, and optic cup/disc estimation18. Recent work on retinal lesion segmentation in fundus 98 

images is dominated by microaneurysms, hard exudates and cotton wool spots induced by diabetic 99 

retinopathy.19 Segmentation of myopia-related lesions (e.g. PPA) from fundus images has been 100 

obtained using classic computer vision methods. Lu et al. employed a modified Chan-Vese 101 

segmentation tool with shape constraints to delineate both optic disc and PPA, reporting 92.5% 102 

accuracy in PPA size estimation on 40 test images.20  103 

Here, we report our CNN-based methods and results developed for the classification of (non-104 

)pathological myopia, fovea localization, and semantic segmentation of optic disc, retinal atrophy and 105 

detachment on a novel reference data set. The multitude of tasks encouraged us to fuse classification 106 

and segmentation tasks when proven to be beneficial on the validation set. Joint disease classification 107 

and lesion segmentation systems have been described in deep learning literature, leading to improved 108 



classification performance.21 We also introduce a novel ONH-based prediction enhancement that 109 

results in improved performance for the tasks of lesion segmentation and fovea localization. The latter 110 

task is being obtained through a segmentation approach for the first time, improving vastly on 111 

coordinate regression. Our results are benchmarked against a holdout validation set, other state-of-112 

the-art methods, and evaluated on external labeled data sets where possible. 113 

Methodology 114 

Dataset and evaluation 115 

Retinal images were made available in the context of the “Pathological Myopia detection from retinal 116 

images” challenge held on the occasion of the IEEE International Symposium on Biomedical Imaging 117 

organized in April 2019.22 The PALM dataset consists of 1200 anonymized color fundus images that 118 

were captured with a Zeiss VISUCAM device at a 45° angle with a 2124 x 2156 resolution or 30° with 119 

a 1444 x 1444. The images are macula- or optic disc-centered of left eyes with no disclosure of the 120 

number of different eyes or patients that were included in the dataset. The 1200 images are split into 121 

equally sized train, validation, and test sets sharing the same characteristics. Publicly available labels 122 

for the training set of 400 images encompass (1) the binary label for (non-)pathological myopia 123 

classification, (2) cartesian coordinates corresponding to the location of the fovea, and (3) semantic 124 

segmentation ground truth on pixel level for optic disc, peripapillary/retinal atrophy and retinal 125 

detachment. The myopia labels were extracted from the health records of the Zhongshan Ophthalmic 126 

Center, Sun Yat-sen University (China) and were determined during an ophthalmic examination, 127 

including optical coherence tomography (OCT) and visual field (VF) testing. The fovea coordinates 128 

and segmentation masks were generated by seven independent ophthalmologists from the same 129 

clinic. The PM detection training labels are balanced (53% PM images), but do not match the 130 

prevalence encountered in screening context (up to 3%). Ground truth of optic discs is available for 131 

most images, with an empty ground truth mask in case of an absent or partially visible disc. An 132 

overview of official training set characteristics is provided in Table 1. Differences in PM and non-PM 133 

characteristics were analyzed using a two-tailed t-test.  134 



PM detection was quantified using area under the receiver operating characteristic (AUC), while the 135 

fovea localization was evaluated using the average Euclidean distance between the predicted 136 

cartesian coordinates and ground truth. The three predicted segmentation masks (optic disc, atrophy, 137 

detachment) were evaluated using a weighted combination of Dice23 similarity coefficient 138 

(segmentation) and test’s accuracy using the F1 score (detection). See supplementary information for 139 

full details on evaluation framework as defined by PALM organizers.  140 

Additional data to evaluate the generalization ability of trained models was included where possible. 141 

For PM detection, we evaluated on the recently-introduced Ocular Disease Intelligent Recognition 142 

(ODIR) data set aimed at multi-disease classification.24 The original competition did not include PM 143 

detection as task, but structured labels are available in the file with diagnostic keywords. We selected 144 

the subset of images having either ‘normal fundus’ or ‘pathological myopia’ in the diagnostic keywords 145 

(3350 out of 7000 fundus images). Fovea localization was evaluated on Messidor25, for which 1136 146 

out of 1200 fundus images have official fovea coordinates.   147 

Network architectures and loss functions 148 

UNet++26, a nested variant of the widely used U-Net27, was selected for the segmentation tasks 149 

because of its reported improved performance. The widely used ResNet28 encoders were tested as 150 

feature extractors to enable transfer learning with pretrained ImageNet29 weights. We selected a 151 

pretrained ResNet-18 encoder as feature extractor as it satisfies our preset conditions of minimizing 152 

the amount of trainable weights (there is a limited amount of labeled training images), while maximizing 153 

the input size that fits on GPU memory (larger size yields the best performance for segmentation). At 154 

the end of the contracting path (ResNet-18), where the input image is converted to a representation 155 

in latent space (shape 9x9x512), we added a second output branch for PM classification in light of co-156 

regularization.30 Figure 1 displays the full architecture, with the contracting path extracting and refining 157 

feature maps through convolutional, batch normalization and pooling layers (ResNet-18). In UNet++, 158 

these feature maps are connected to a number of dense convolution blocks, before being inserted in 159 

the expanding path (decoder). The principle of dense convolution blocks as extended skip connections 160 



is illustrated in Figure 1 as well (highlighted in dark green). The UNet++ with ResNet-18 encoder 161 

amounts to a total of 16 million trainable weights, with the detection branch adding 513 trainable 162 

weights because of the additional 1x1 convolutional layer.  163 

The employed loss function for PM classification is standard binary cross-entropy. Fovea localization 164 

labels are cartesian coordinates, but were converted to filled circles with varying radii to allow for 165 

segmentation, as an alternative approach to standard coordinate regression. All segmentation models 166 

employed standard binary/categorical cross-entropy as loss function, complemented by Dice similarity 167 

coefficient. Finally, we experimented with the Lovàsz-Softmax31 as third loss component. The latter 168 

serves as a tractable surrogate for the optimization of intersection over union (IoU), and has proven 169 

itself as finetuning loss in recent semantic segmentation challenges.32   170 

Preprocessing, Data augmentation, Training details 171 

Color fundus images are unevenly illuminated due to the curvature of the retina. Local contrast 172 

enhancement through background subtraction estimated by a large Gaussian kernel was used to 173 

correct this33. Data augmentation techniques used throughout all experiments include random 174 

cropping, mild elastic deformation, and horizontal flips. Random cropping was performed selecting 175 

patches of 288 x 288 within resized images of a random size between half and original image size to 176 

teach the model features at multiple resolutions. Data augmentation was not applied to the 40 holdout 177 

images used to select the best model weights. The model input of 288 x 288 was selected based on 178 

a balance between the merits of pretrained weights (224 x 224) and segmentation output (higher 179 

resolution leads to better results). 180 

Due to the severe class imbalance of the retinal detachment segmentation, we adopted a sampling 181 

strategy that oversamples images with retinal detachment at earlier stages of the training process to 182 

an equal mini-batch distribution, only to gradually slim down to the original data distribution (x 0.75 per 183 

five epochs). As such, the model is less likely to treat the detachment label as noise at training start.  184 



Model development was done in Keras v2.2.4 with TensorFlow v1.4.1 backend. All models used 185 

Adam34 optimizer with a default starting learning rate at 0.001. A plateau callback decreased the 186 

learning rate by 25% after ten successive epochs of stagnation in validation metric (Dice). To obtain a 187 

wider optimum, model weights were averaged over the last twenty epochs when the learning rate 188 

reached a value of 1e-5.35 Internal validation was performed on a holdout set of 40 images, 189 

representing 10% of available training data.  190 

ONH-based prediction enhancement 191 

Theoretically, there should be no overlap between atrophy and optic nerve head (ONH). Peripapillary 192 

atrophy represents loss of RPE and choriocapillaris, which ends/starts in Bruch’s membrane opening 193 

(BMO), and simultaneously delineates the optic disc boundary. Leveraging this domain knowledge, 194 

the optic disc and peripapillary/retinal atrophy segmentation tasks were bundled by fusing the two 195 

ground masks. Retinal detachment ground truth does overlap with atrophy in certain cases, hence this 196 

ground truth was left unprocessed.  197 

In addition to standard coordinate regression, we rebranded the fovea localization task as a 198 

segmentation problem. The ground truth masks were generated by drawing filled circles (varying radii 199 

between 25 and 75 pixels) based on the official cartesian coordinates as centroids. The optic disc is 200 

located on the nasal side of the fovea. Hence, the optic disc segmentation ground truth was added to 201 

the fovea ground truth, to implicitly insert this domain knowledge. We also experimented with the 202 

implementation of cutout36, a common regularization technique, to improve the learning of the ONH – 203 

fovea relation.  204 

The predicted fovea segmentations required post-processing in case of missing or unlikely predictions. 205 

Two sanity checks were performed prior to reconversion to coordinates: (1) whether there is a fovea 206 

prediction made, and (2) whether it falls within normal range compared to optic disc location. Normal 207 

range was defined as mean ± 2 x standard deviation, with population mean and deviation estimated 208 

from the training labels (grouped by image resolution). If the assertions failed, the predicted fovea 209 

coordinates were determined based on optic disc centroid and mean distance between optic disc and 210 



fovea. For benchmarking purposes, we also report on experiments without joint optic disc 211 

segmentation. Here, the postprocessing was limited to the use of image center coordinates in case of 212 

missing fovea prediction.  213 

Ensembling on image and model level 214 

Ensembling on image and model level tend to lead to small performance gains due to its decrease in 215 

prediction variance. Hence, final predictions of (non-)pathological myopia classification on the test 216 

images were obtained through commonly-used test-time augmentation (TTA) techniques (elastic 217 

deformation and horizontal flips). We further enhanced TTA predictions by ensembling on model level 218 

through the averaging of predictions obtained on seven separately trained models with different 219 

random seed on train/holdout split. Segmentation results were generated using averaged predictions 220 

on overlapping 288 x 288 patches from resized images (288 x 288, 294 x 294, and 302 x 302). 221 

Overlapping patches were only possible in the last two resolutions.  222 

Results 223 

Table 1 reveals that the largest group of available training images are 45° macula-centered images, 224 

whereas its disc-centered variant contains only 3 images. Complete optic discs are missing in all 30° 225 

macula-centered images, and in some PM cases imaged at 45° as well. Optic disc area ranged 226 

between 1-4%, and was significantly larger in 30° disc-centered PM images. Retinal atrophy was 227 

present in almost all PM cases, and in roughly half of non-PM images. The area covered by atrophy 228 

was larger in PM images for all modalities. The fovea is visible in nearly all images.  229 

The Dice score on ONH segmentation was found to be the highest in the vanilla setup with a single 230 

model (0.9481 Dice). For retinal atrophy however, multi-class segmentation with Lovász as loss 231 

component did lead to better performance (0.6948 Dice) when compared to two individual models 232 

(0.6210 Dice). The balanced data generator did lead to better performance in segmentation of retinal 233 

detachment (0.9998 Dice).  234 



Table 2 summarizes our quantitative results on a holdout validation set, the official test set, obtained 235 

through the online competition evaluation server hosted at 236 

http://ai.baidu.com/broad/subordinate?dataset=pm, and external data if available. We also provide the 237 

official test results obtained by other onsite PALM participants. All PM cases were correctly classified 238 

in both experiments on the holdout validation set (n=40), but the validation loss was significantly lower 239 

in the setup with combined ONH and atrophy segmentation (0.0824 versus 0.1146). Our trained 240 

models for detection of pathological myopia achieve a final AUC value of 0.986 on the test set. There 241 

is no statistical significant difference observed between AUC values among PALM participants (range 242 

0.987-0.997). Without having to retrain the model for PM classification with ONH/atrophy 243 

segmentation, a high AUC of 0.924 is recorded on fundus images of the ODIR data set, which is 244 

significantly higher compared to using a classification-only model (AUC = 0.858). The ROC curves of 245 

both PM models on ODIR are plotted in Figure 2. An overview of all PM experiments and results are 246 

given in the first section of Table 2.  247 

The move from regression to segmentation for fovea localization seems to be beneficial, with average 248 

Euclidean distance at 229 and 129 pixels, respectively recorded on the internal holdout validation set 249 

(n=40). The result using a segmentation approach also improved when employing a larger fovea 250 

radius of 75 pixels (110 pixels Euclidean distance). Our proprietary ONH-based prediction 251 

enhancement led to a major performance gain (87 pixels Euclidean distance). Finally, the post-252 

processing that deals with missing and unrealistic predictions resulted in the best observed 253 

performance (62 pixels Euclidean distance). The result on the official PALM set (n=400) is equivalent, 254 

with a Euclidean distance of 58.3 pixels. Euclidean distances reported by other PALM participants 255 

differed considerably, ranging from 55.7-172.9. Furthermore, our findings are confirmed on the 256 

Messidor data set for which the best performance (lowest Euclidean distance) is also obtained using 257 

a segmentation approach complemented with our ONH-based prediction enhancement. A complete 258 

results overview for fovea localization can be found in section 2 of Table 2. 259 

http://ai.baidu.com/broad/subordinate?dataset=pm


Table 2 also shows that the Dice score on ONH segmentation was found to be the highest in the 260 

vanilla setup with a single model (0.9481 Dice on holdout validation set). For retinal atrophy however 261 

(4th section of Table 2), multi-class segmentation with Lovász as loss component did lead to better 262 

performance (0.6948 Dice) when compared to two individual models (0.6210 Dice). ONH 263 

segmentation on PALM test data achieved a Dice of 0.93. Other participants reported results ranging 264 

from 0.91-0.95. The atrophy segmentation Dice result on the PALM test set (0.8001) is considerably 265 

higher than the best Dice recorded on the holdout validation set, which is likely caused by the low 266 

number of validation images. Again, there existed a small variability in atrophy segmentation Dice 267 

results among participants (0.77-0.82). 268 

Finally, the F1 metric for retinal detachment segmentation reveals that the test set contain 11 cases 269 

of retinal detachment. The trained deep learning model identified six correct cases. For this subtask, 270 

we obtained the highest Dice score (0.8073) among all participants (0.0030-0.7449), as can be 271 

retrieved from the last section of Table 2. 272 

Ground truth for validation and test sets on image level will be made publicly available at a later date 273 

by the organizers of the PALM challenge. Hence, the qualitative results of four test images displayed 274 

in Figure 3 cannot be visually compared to the official ground truth. The optic disc – outlined in green 275 

– is detected in both non-pathological (A) and pathological (B,C) fundus images (not present in D), 276 

and does not overlap with peripapillary atrophy (B,C). The fovea – indicated by a cross – is localized 277 

well in cases of a clear (A) and covered (C,D) macula, or added during postprocessing (B). Atrophy – 278 

outlined in white – is segmented at both peripapillary (A,B,C,D) and macular (B) regions. In images 279 

where 30% of the image is predicted to be retinal detachment, the prediction is replaced with the size 280 

of the image mask (yellow outline of image C).  281 

Figure 4 showcases two examples of bad segmentations for both atrophy and optic disc tasks. These 282 

cases were quantitatively selected on the 40 holdout validation images for which the ground truth is 283 

publicly available at this time. For atrophy segmentation, we observe the lowest scores in images that 284 

feature a small amount of peripapillary atrophy (often healthy eyes). The highest Dice scores are 285 



obtained on images with a lot of retinal atrophy present (eyes with pathological myopia). For optic disc 286 

segmentation, the roles are reversed. Lower performance is recorded in challenging cases with 287 

atrophy surrounding the disc; while the highest performance is obtained in healthy eyes. 288 

Discussion 289 

This deep learning study on fundus images describes (1) the detection of pathological myopia (PM), 290 

(2) the localization of the fovea, and (3) the segmentation of optic disc, retinal atrophy and retinal 291 

detachment. The results are obtained after training on 400 labeled fundus images and relies on 292 

transfer learning and co-regularization through weight sharing. The methodology described in the 293 

manuscript led to a third place in PALM challenge hosted at ISBI 2019. The PALM dataset provides 294 

novel challenges to existing research topics, as myopic optic discs are often tilted (optic disc 295 

segmentation), and the fovea obscured due to tessellation and macular atrophy in some cases of 296 

pathological myopia (fovea localization). 297 

The PM detection task scored an AUC of 0.9867 on the official test set of 400 images. PM detection 298 

from fundus images has not been covered in deep learning literature prior to the launch of PALM. The 299 

work of Varadajaran et al (2018) comes closest, but employs a whole different setup. Their goal was 300 

to develop a data-driven regression model that estimates refractive error (including cases of 301 

pathological myopia), using the spherical equivalent as target. In our investigation, the task of PM 302 

detection was approached in a different manner, given the different nature of the task and materials. 303 

The definition of PM states that a highly myopic case is converting to pathological once a posterior 304 

myopia-specific pathology from axial elongation is developing, such as vision-impairing myopia-305 

induced lesions. This is corroborated by the explorative analysis of the training set, given in Table 1. 306 

Retinal atrophy, being progressive RPE thinning and attenuation, is present in 98.3% cases of PM, 307 

versus 52.6% in non-PM images (restricted to the modality of 45° macula-centered images). By 308 

combining atrophy segmentation and PM classification, one forces the model to focus on lesions as 309 

main features that contribute to PM classification. This implies a step towards explainable AI or 310 



sufficient transparency to gain clinicians’ trust in the future use of deep learning detection systems in 311 

ophthalmology. 312 

All valid PM detection results at the onsite PALM challenge scored above 0.98 AUC. Although an 313 

official rank is maintained, there exists no statistical significant difference in results between teams, 314 

due to the low amount of test images (at 95% confidence interval). Other participants also relied on 315 

transfer learning, but not in combination with segmentation. For example, team Vistalab employed a 316 

ResNet-50 pretrained on ImageNet, reporting an AUC of 0.998.37 Their data augmentation strategy 317 

included Gaussian noise addition and random rotations.  318 

Our PM detection model trained on PALM also generalizes well to images captured with multiple 319 

fundus cameras (Figure 2). On data from the recent ODIR challenge, we obtain AUC values of 0.858 320 

and 0.924 using a standard classification model and using a combined lesion segmentation branch, 321 

respectively. This further illustrates that segmentation on related tasks (myopia-induced lesions) can 322 

augment classification performance.  323 

For fovea localization, we obtained the 2nd place among all PALM participants. We initially considered 324 

adding a regression branch to the segmentation model for optic disc and retinal atrophy. However, 325 

due to subpar performance (229 pixels Euclidean distance), this idea was discarded and replaced by 326 

a standalone segmentation model. One potential explanation for poor regression performance could 327 

be the combination of scarcity in available regression labels (1 per image) when compared to 328 

segmentation labels (1 per pixel), and low variance in coordinate values (the fovea is centrally located 329 

in macula-centered images). However, the winning submission by Vistalab did follow a regression 330 

approach, using a modified pretrained VGG1938 model. The main disadvantage of a segmentation 331 

approach is the loss of direct optimization on the competition metric. Thoughtful post-processing that 332 

relies on domain knowledge further enhanced our final predictions. Fovea localization in fundus 333 

images has been investigated with deep learning prior to PALM, but primarily in clean datasets with 334 

clear macular depression.39 To illustrate this, we evaluated on diabetic retinopathy cases from the 335 

Messidor data, without retraining. The significantly lower Euclidean distance obtained on this data 336 



emphasizes the difficulty aspect introduced by the novel PALM data. Our domain knowledge insertion 337 

– combined optic disc and fovea localization – is considered useful in the move towards general deep 338 

learning models that can process large amounts of fundus images with unclear macular regions. Such 339 

fovea localizing models can assist future big data research. One application would be the automated 340 

image cropping of the macula area to facilitate diabetic retinopathy screening.  341 

The optic disc segmentation model obtained a Dice similarity coefficient of 0.9303, scoring in line with 342 

relevant work.40 Due to axial elongation, myopia induces anatomical changes to the optic nerve head, 343 

resulting in tilted and oval-shaped optic discs, often surrounded by peripapillary atrophy. These 344 

alterations are significant, as a pretrained optic disc segmentation model on non-myopic fundus 345 

images failed to properly delineate the discs in the PALM dataset. Another factor could be the larger 346 

optic disc size observed in myopic eyes41,42. From Table 1, there is a moderate significance (P < 0.01) 347 

found between PM and non-PM (which also includes high myopia) in the 30° disc-centered images. 348 

Hence, optic disc size is unlikely to be an informative predictor in PM detection.  349 

This original investigation also introduces a pioneering result of 0.8001 Dice on the segmentation of 350 

retinal atrophy (PPA, lacquer cracks and Fuch’s spots) in fundus images. This type of segmentation 351 

can support future research in discriminating between myopia- and glaucoma-induced peripapillary 352 

atrophic changes. This is relevant because in previous work it has been observed that false positive 353 

and negative predictions in glaucoma classification models are often due to cases of high/degenerative 354 

myopia. For example, Liu et al (2019) observed that the most common reason for both false-negative 355 

and false-positive grading by their DL model (46.3% and 32.3%) and manual grading (44.2% and 356 

34.0%) was pathological or high myopia.10 Several studies investigated the discriminatory properties 357 

of beta- (area with intact Bruch’s membrane) and gamma-PPA (lacking Bruch’s membrane) for myopia 358 

and glaucoma using OCT, but report contradictory findings and low discriminatory power.43,44 Another 359 

recent study discovered a relationship between PPA shape and glaucoma progression, stating that 360 

progression is more correlated with eccentric PPA than concentric PPA.45 DL may assist in analyzing 361 

PPA in a larger set of patients than previous investigations.  362 



The fusion of optic disc and atrophy segmentation tasks ensured no overlap in final predictions. This 363 

form of joint prediction increases the odds of generalization to unseen samples (in this case, 800 364 

images split in validation and test set of equal size). Ground truth fusion did lead to better performance 365 

for atrophy segmentation, but not for ONH segmentation. Another important motivation for joint training 366 

is explainable artificial intelligence, as previously discussed.  367 

Finally, this study reports a top-ranked Dice score of 0.8073 on the task of retinal detachment 368 

segmentation. The high performance is mainly due to the correct predictions of empty masks in the 369 

high number of cases (~97% of images) without retinal detachment. The actual performance would be 370 

much lower when the images with retinal detachment would be isolated. In most cases, retinal 371 

detachment covers more than half of the field of view (FOV) in the fundus. Hence, one could question 372 

the added value of segmentation over a classification approach.  373 

Other participating teams also heavily relied on the combination of FCN architectures and existing 374 

feature extractors pretrained on ImageNet for the segmentation tasks. For optic disc segmentation, 375 

Vistalab (2nd place) combined ResNet-34 followed by an Atrous Spatial Pyramid Pooling (ASPP)46(p) 376 

operator in a U-Net architecture. The winning submission in all segmentation tasks is obtained using 377 

a lesion-aware segmentation network described by team PingAn Smart Health.47 They introduce three 378 

innovations: an additional classification branch to aid the network in becoming better aware of lesion 379 

presence in images; a custom feature fusion module, and lastly a loss function dubbed edge overlap 380 

rate that boosts the accuracy of lesion edge segmentation.  381 

The strengths of our work are significant. We describe a CNN architecture that bundles classification 382 

and segmentation tasks when deemed relevant (domain knowledge) and when empirically proven on 383 

the validation set. Next, we introduce a new approach to obtain fovea localization in fundus images 384 

through the reformulation as a segmentation problem. Further domain knowledge is inserted through 385 

a custom ONH-based post-processing scheme that leverages anatomical properties of the retina. We 386 

describe and compare our state-of-the-art results on a novel reference data set that is expected to be 387 



widely used. Finally, our models on PM detection and fovea localization generalize well to unseen 388 

heterogeneous data sets without recalibration to the target domain.  389 

This study also suffers from several limitations. The ground truth on image level for PALM validation 390 

and test sets are currently unavailable, hampering the qualitative comparison of semantic 391 

segmentation results, and the calculation of specificity and sensitivity. On the other hand, the 392 

introduction of medical labeled datasets and robust online evaluation server should be encouraged, 393 

as they allow the objective comparison of innovations in deep learning for medical imaging.  394 

Conclusions 395 

We report a successful approach for a simultaneous classification of pathological myopia and 396 

segmentation of associated lesions. These award-winning results were obtained in the context of the 397 

“Pathological Myopia detection from retinal images” challenge held on the occasion of the IEEE 398 

International Symposium on Biomedical Imaging organized in April 2019. Considering that 399 

(pathological) myopia cases are often found as false positives in glaucoma deep learning models, we 400 

envision that the current work could aid in future research to discriminate between glaucomatous and 401 

highly-myopic eyes, complemented by the localization and segmentation of landmarks such as fovea, 402 

optic disc and atrophy. 403 
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Figures 568 

 569 

 570 
Figure 1: Overview of the final model architecture used for inference on the PALM official validation and test set. Our 571 
model is aimed at PM classification with simultaneous segmentation of ONH and retinal atrophy. The ResNet encoder 572 
accepts resized fundus images of (288 x 288) and outputs (9 x 9 x 512) at the latent space. The decoder upscales this 573 
output back to the original image size, using a plethora of skip connections (principle given in bottom center). The 574 
graphic on the upper right represents the generated segmentation map of the ONH (grey) and retinal atrophy (olive). 575 
The output of the encoder is also separately transformed to a single prediction for PM classification (through average 576 
pooling and a convolution operation). The model for fovea localization employs a similar architecture as for 577 
ONH/atrophy segmentation, but generates a circle. This circle is then transformed to coordinates using its centroid 578 
(visualized by the orange cross on the right bottom segmentation map). Finally, the UNet++ model for segmentation of 579 
retinal detachment is identical to the other models, but outputs detachment.  580 
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Figure 2: ROC curves of models trained on 
PALM data, evaluated on 3350 images of ODIR. 
The model with combined lesion segmentation 
significantly outperforms the classification-only 
model. 
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 647 

Figure 3: Qualitative results giving four cases of the official test set. The optic nerve head (outlined in green) is 648 
detected and segmented in A, B and C. Retinal atrophy is detected and segmented (outlined in white) in B and C. 649 
Retinal detachment was detected in C, for which the whole fundus is outlined in yellow. Finally, the fovea is localized 650 
in all cases, indicated by a purple cross. Image D does not feature an optic disc, but clear retinal atrophy on the left. 651 
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 656 
Figure 4: Selected samples of atrophy (top row) and optic disc (bottom row) segmentations. Per row, the images with 657 
lowest Dice scores on the holdout set of 40 images are visualized (left and middle column), complemented with the 658 
image for which the best prediction was obtained (far right).  659 
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Tables 672 

Table 1: Overview of characteristics of labeled training set of 400 images. Significance level between PM and Non-673 
PM on same camera settings provided with asterisks (where applicable, * <0.05, ** <0.01, *** <0.001, **** <0.0001).  674 

Centering Macula Disc 

Angle 30° 45° 30° 45° 

 PM Non-PM PM Non-Pm PM Non-PM PM Non-PM 

Number of images 6 4 174 173 31 9 2 1 

Images with full 
optic disc  0% 0% 94.8% 100% 100% 100% 100% 100% 

Images with 
atrophy 100% 75% 98.3% 52.6% 100% 77.8% 100% 0% 

Images with fovea 100% 100% 99.4% 100% 96.8% 88.9% 100% 100% 

Optic disc area - - 1.66% 1.72% 3.38% 2.61%** 1.69% 1.15% 

Atrophy area 5.93% 0.41%* 11.77% 0.25%**** 13.97% 0.70%**** 42.37% - 

Fovea x mean  768 758 1236 1102**** 1261 1387* 1748 1792 

Fovea y mean 713 741 1026 1081**** 754 715 1144 1049 
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Table 2: Results for five tasks, obtained on holdout validation set (PALM holdout), the official PALM test set, and 690 
external data sets when available (ODIR and Messidor). PM detection is measured in AUC, fovea localization in 691 
Euclidean distance. Dice and F1 are given for the three segmentation tasks (ONH, atrophy, detachment).  692 

PM detection (AUC) PALM holdout (n=40) PALM test set (n=400) ODIR (n=3350) 
Classification 1 (loss: 0.1446) - 0.8584 
Classification combined with 
ONH/atrophy segmentation 

1 (loss: 0.0824) 0.9867 0.9245 

    
Fovea localization (Euclidean dist) PALM holdout (n=40) PALM test set (n=400) Messidor (n=1136) 
Regression 229.428 - 53.488 
Segmentation, radius 25 pixels 129.182 - 25.765 
Segmentation, radius 75 pixels 109.770 - 20.220 
Segmentation, combined with ONH 86.675 - 18.296 
Segmentation, combined with ONH, 
postprocessing 

61.924 58.3 - 

    
ONH segmentation PALM holdout (n=40) PALM test set (n=400) 
Metric Dice Dice F1 
Segmentation 0.9481 0.9303 0.9869 
Segmentation combined with 
atrophy 

0.9462 - - 

Segmentation combined with 
atrophy, Lovász loss 

0.9414 - - 

    
Atrophy segmentation  PALM holdout (n=40) PALM test set (n=400) 
Metric Dice Dice F1 
Segmentation 0.6210 - - 
Segmentation combined with 
atrophy 

0.6810 - - 

Segmentation combined with 
atrophy, Lovász loss 

0.6948 0.8001 0.9135 

    
Detachment segmentation PALM holdout (n=40) PALM test set (n=400) 
Metric Dice Dice F1 
Segmentation 0.9500 - - 
Segmentation with a balanced data 
generator 

0.9998 0.8073 0.7059 
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Supplementary material 705 

Tables 3-7: Results for five tasks, obtained on holdout validation set (PALM holdout), the official PALM test set, and 706 
external data sets when available (ODIR and Messidor). Team A-F correspond to Vistalab, Masker, LAIS, PingAn 707 
Smart Heatlh, CUHK, and RYE-NUS, respectively.  708 

PM detection PALM holdout (n=40) PALM test set (n=400) ODIR (n=3350) 
Classification 1 (loss: 0.1446) - 0.8584 
Classification combined with 
ONH/atrophy segmentation 

1 (loss: 0.0824) 0.9867 0.9245 

    
Team A - 0.9974 - 
Team B - 0.9960 - 
Team C - 0.9957 - 
Team D - 0.9934 - 
Team E - - - 
Team F - - - 

 709 

Fovea localization PALM holdout (n=40) PALM test set (n=400) Messidor (n=1136) 
Regression 229.428 - 53.488 
Segmentation, radius 25 pixels 129.182 - 25.765 
Segmentation, radius 75 pixels 109.770 - 20.220 
Segmentation, combined with ONH 86.675 - 18.296 
Segmentation, combined with ONH, 
postprocessing 

61.924 58.3 - 

    
Team A - 55.7 - 
Team B - 172.9 - 
Team C - 71.3 - 
Team D - 66.6 - 
Team E - - - 
Team F - - - 

 710 

ONH segmentation PALM holdout (n=40) PALM test set (n=400) 
Metric Dice Dice F1 
Segmentation 0.9481 0.9303 0.9869 
Segmentation combined with 
atrophy 

0.9462 - - 

Segmentation combined with 
atrophy, Lovász loss 

0.9414 - - 

    
Team A - 0.9362 0.9909 
Team B - 0.9367 0.9806 
Team C - 0.9093 0.9855 
Team D - 0.9508 0.9974 
Team E - - - 
Team F - 0.9288 0.9871 

 711 

Atrophy segmentation  PALM holdout (n=40) PALM test set (n=400) 
Metric Dice Dice F1 
Segmentation 0.6210 - - 
Segmentation combined with 
atrophy 

0.6810 - - 

Segmentation combined with 
atrophy, Lovász loss 

0.6948 0.8001 0.9135 

    
Team A - 0.7879 0.8972 
Team B - 0.7702 0.8372 
Team C - 0.7798 0.9091 
Team D - 0.8220 0.9303 
Team E - 0.8183 0.9199 
Team F - - - 



 712 

Detachment segmentation PALM holdout (n=40) PALM test set (n=400) 
Metric Dice Dice F1 
Segmentation 0.9500 - - 
Segmentation with a balanced data 
generator 

0.9998 0.8073 0.7059 

    
Team A - 0.1584 0.1667 
Team B - 0.0030 0.0541 
Team C - 0.5546 0.7273 
Team D - 0.6617 0.9091 
Team E - 0.7449 0.8571 
Team F - - - 
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