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Abstract The NPMLE of a distribution function from doubly truncated data
was introduced in the seminal paper of Efron and Petrosian [1]. The consistency
of the Efron-Petrosian estimator depends however on the assumption of indepen-
dent truncation. In this work we introduce an extension of the Efron-Petrosian
NPMLE when the variable of interest and the truncation variables may be de-
pendent. The proposed estimator is constructed on the basis of a copula function
which represents the dependence structure between the variable of interest and the
truncation variables. Two different iterative algorithms to compute the estimator
in practice are introduced, and their performance is explored through an intensive
Monte Carlo simulation study. We illustrate the use of the estimators on two real
data examples.

Keywords random double truncation · copula function · dependence · interval
sampling

1 Introduction

Censored and truncated data appear in fields like Astronomy, Epidemiology or
Survival analysis, among others. For instance, censored survival data appear be-
cause of lost to follow-up cases or due to time limitations in the following-up of
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the individuals. A common censoring pattern that appears in many medical ap-
plications is the so called interval censoring. Such type of censoring arises when
the occurrence of the final event of interest cannot be exactly observed and the
inter-event time is only known to lie in an interval [2], [3]. Random truncation
occurs when only event times falling on a given time interval (which varies from
individual to individual) can be observed. Left-truncation and right-truncation are
special truncation patterns emerging when the truncation interval is unbounded
from above (left-truncation) or from below (right-truncation). Both issues of cen-
soring and truncation may introduce a systematic bias in estimation, so specific
methods to overcome these problems must be applied. This paper is focused on
random double truncation.

Let X∗ be the random variable of ultimate interest, the target variable, with
distribution function (df) F , and assume that it is doubly truncated by the random
pair (U∗, V ∗) with joint df G, where U∗ and V ∗ (U∗ ≤ V ∗) are the left and
right truncation variables respectively. This means that the triplet (U∗, X∗, V ∗)
is observed if and only if U∗ ≤ X∗ ≤ V ∗, while no information is available when
X∗ < U∗ or X∗ > V ∗. We assume that the truncation comes from the existence
of an observational window of non-random length φ, and therefore V ∗ = U∗ + φ
(φ > 0). In Survival Analysis this model is suitable when the sample reduces
to individuals with event dates between two fixed calendar times (e.g. Moreira
and de Uña-Álvarez [4]). Austin and Betensky [5] termed this type of truncation
as ’complete truncation dependence’, while Zhu and Wang ([6]; [7]) referred this
problem as ’interval sampling’. Efron and Petrosian [1] introduced the NPMLE
of F under the assumption of independence between the truncation variables and
the target X∗. In order to generalize Efron-Petrosian estimator, we assume that
U∗ may depend on the variable of interest, and that the dependence structure of
(X∗, U∗) is given by a copula function such that (cfr. Nelsen [8])

P (X∗ ≤ x, U∗ ≤ u) = Cθ (F (x),K(u)) ,

where K(u) = G(u,∞) is the marginal df of U∗ and Cθ a parametric family of
copula’s, with θ belonging to a certain euclidean parametric space Θ. With interval
sampling, dependent truncation may appear when, for example, the birth date of
the process (U∗) has influence on the subsequent variable of interest (X∗); Austin
and Betensky [5] introduced a test for independence based on a Kendall’s Tau in
this setting. For example, in the study of transfusion-related AIDS in Section 4,
the incubation time X∗ is doubly truncated by the time from HIV infection to
January 1, 1982 (U∗) and the lapse time from HIV infection to the end of study
(July 1, 1986) (V ∗). Hereby we note that several persons in this study were in-
fected a long time ago with the HIV virus without developing AIDS. AIDS was
not well known in the early days of the epidemic and, therefore, infected people
may have gone unnoticed for some time; this could result in a positive dependence
between X∗ and U∗. This dependence is confirmed in Section 4.1, where the cop-
ula parameter is found to be significantly different to the value corresponding to
independence. The situation is the opposite for the Immune Reconstitution Inam-
matory Syndrome (IRIS) data analyzed in Section 4.2, where the independence
assumption between the truncation variables and the target can be accepted.
For one-sided truncation, Chaieb et al. [9] proposed a semiparametric copula model
to assess the degree of dependence between the variable of interest and trunca-
tion variable. In the same setting of one-sided truncation, Emura et al. [10] and
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Emura and Wang [11] considered estimators based on conditional likelihood and
nonparametric likelihood, respectively. The referred author Emura [12] revisited
the estimation approach in Chaieb et al. [9] and proposed a different algorithm to
solve their estimation function. For the best of our knowledge no similar approach
has been proposed so far for doubly truncated data. This paper presents new sta-
tistical methods for modelling a possible dependency between X∗ and (U∗, U∗+φ)
when only triplets such that U∗ ≤ X∗ ≤ U∗ + φ are observed.

Let (Ui, Xi, Vi), i = 1, ..., n, denote the sampling information, these are iid data
with the distribution of (U∗, X∗, V ∗) conditionally on U∗ ≤ X∗ ≤ V ∗. Under the
given model where V = U+φ and X and U are linked through the copula function,
the full likelihood of the data can be written as depending on the X-masses fi,

the U -masses ki and the weights Wij = C(1,1)θ (Fi,Kj), with Fi =

n∑
m=1

fmI[Xm≤Xi]

and Ki =

n∑
m=1

kmI[Um≤Ui], where C(1,1)θ denotes the density of the copula family,

as:

L(θ, f, k) =

n∏
i=1

Wiifiki
n∑
j=1

n∑
m=1

WjmfjkmJmj

. (1)

Further details are provided in Appendix A.1.

For independent truncation, we have C(1,1)θ = 1 and the likelihood (1) reduces to
that in [1]. When X∗ and U∗ are dependent, the weights Wij introduce a suit-
able correction of the Efron-Petrosian NPMLE. The goal is the estimation of the
r + 2n parameters θ, fi and ki, i = 1, . . . , n, where r denotes the dimension of Θ.
Then, the NPMLE’s of F (x) and K(u) under truncation are simply obtained as

F̂ (x) =

n∑
i=1

f̂iI[Xi≤x] and K̂(u) =

n∑
i=1

k̂iI[Ui≤u], where f̂i and k̂i are the maximiz-

ers for equation (1).
For one-sided truncation approaches other than the copula-based have been sug-
gested in order to cope with dependence, including transformation approaches
and frailty models [13]. Frailty models operate under the assumption of condi-
tional independence between the target and the truncation variables given the
frailty variable; they are closely related to copula models in the sense that both
the frailty parameter and the nonparametric margins must be estimated. On the
other hand, the transformation approach assumes the existence of a latent, inde-
pendent truncation variable that would have been attached to the target in the
absence of dependence; full theoretical developments for this approach as well as
extensions beyond one-sided truncation are missing however. Copula-based esti-
mators have been successfully used in many instances with incomplete data; in
this paper we show that copulas are convenient to model for dependence under
double truncation too.
This paper is organized as follows. In Section 2 two different algorithms to esti-
mate the parameter θ and the distributions F and K are introduced. The finite
sample behaviour of the estimators is investigated through simulations in Section
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3. An application to the analysis of AIDS incubation times and Immune Recon-
stitution Inflammatory Syndrome (IRIS) diagnosis times are provided in Section
4, while the conclusions are deferred to Section 5. Technical details are provided
in the Appendices A.1 - A.3.

2 The estimators

The algorithm that we propose optimizes the global likelihood in pieces, i.e, in
which θ, K and F are optimized iteratively. For K and F , we set up the score
equations which are solved in two different ways: the simple algorithm which have
the same philosophy as the iterative method of Jacobi to solve a set of linear equa-
tions. For the full algorithm, there is a similar link to the numerical method of
Gauss-Seidel.
First, we introduce a simple algorithm to estimate the parameters. Here we assume
for the moment that the weights Wij are free of f and k. Then, by differentiating
the loglikelihood with respect to the fm’s and km’s we obtain the following simple
score equations:

∂logL

∂fm
= 0⇔ fm =

[
n∑
i=1

1

Kw
i

]−1

1

Kw
m
, m = 1, . . . , n (2)

with Kw
i =

m∑
j=1

WijkjJji, and

∂logL

∂km
= 0⇔ km =

[
n∑
i=1

1

Fwi

]−1

1

Fwm
, m = 1, . . . , n (3)

with Fwi =

m∑
j=1

WijfjJij . Equations (2) and (3) can be used to introduce the

following iterative simple algorithm.

Step 0 Take the Efron-Petrosian NPMLE for independent truncation f (0) = (fEP1 , ..., fEPn ),
k(0) = (kEP1 , ..., kEP2 ) as initial solution for f and k, and compute

θ(0) = argmaxθL
(0)(θ),

where,

L(0)(θ) =

n∏
i=1

C(1,1)θ

(
F

(0)
i ,K

(0)
i

)
f
(0)
i k

(0)
i

n∑
j=1

n∑
m=1

C(1,1)θ

(
F

(0)
j ,K(0)

m

)
f
(0)
j k(0)m Jmj

,

and where F
(0)
i =

n∑
m=1

f (0)
m I[Xm≤Xi] and K

(0)
i =

n∑
m=1

k(0)m I[Um≤Ui]
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Step 1 Use (3) to improve k(0):

k(1)m =

[
n∑
i=1

1

Fw0,0
i

]−1

1

Fw0,0
m

, m = 1, . . . , n

where w0 = {W (0)
ij : 1 ≤ i, j ≤ n}, W (0)

ij = C(1,1)
θ(0)

(
F

(0)
i ,K

(0)
j

)
and Fw0,0

i =
n∑
j=1

W
(0)
ij f

(0)
j Jij

Step 2 Use (2) to improve f (0):

f (1)
m =

[
n∑
i=1

1

Kw0,1
i

]−1

1

Kw0,1
m

, m = 1, . . . , n

where Kw0,1
i =

n∑
j=1

W
(0)
ij k

(1)
j Jji

Step 3 Improve θ(0) by taking

θ(1) = argmaxθL
(1)(θ),

where

L(1)(θ) =

n∏
i=1

C(1,1)θ

(
F

(1)
i ,K

(1)
i

)
f
(1)
i k

(1)
i

n∑
j=1

n∑
m=1

C(1,1)θ

(
F

(1)
j ,K(1)

m

)
f
(1)
j k(1)m Jmj

,

and where F
(1)
i =

n∑
m=1

f (1)
m I[Xm≤Xi], K

(1)
i =

n∑
m=1

k(1)m I[Um≤Ui]

Step 4 Repeat steps (1)− (3) until convergence.

That is, algorithm Step 0-Step 4 fits the copula function by starting with the
Efron-Petrosian NPMLE estimator under independent truncation. Then, it im-
proves first k and then f by using the simple score equations (3) and (2); and, fi-
nally, it updates θ by maximizing the loglikelihood (based on the improved k and f)
with respect to the copula parameter. This procedure is repeated until a stable so-
lution is reached. As convergence criterion, we have used max

1≤i≤n
|fq−1
i −fqi | ≤ 1e−06

and max
1≤j≤n

|kq−1
j −kqj | ≤ 1e−06 and max |θq−1−θq| ≤ 1e−06. Then, the NPMLE’s

F̂ (x) and K̂(u) are constructed from the q-th solution fqi , kqj and θq.

A second algorithm to estimate the different parameters is called the full algo-
rithm and is obtained if one differentiates the loglikelihood with respect to f and
k by taking the dependence of the Wij ’s on these parameters into account. Then,
the substitutes for equations (3) and (2) are (see the Appendix A.1 for details):
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∂logL

∂fm
= 0⇔

fm =

[
n∑
i=1

1

nAi + nKw
i −αBi

]−1

1

nAm + nKw
m−αBm

, m = 1, . . . , n (4)

with Am =

n∑
i=1

n∑
j=1

W
(2,1)
ij fikjJjiI[Xm≤Xi], Bm =

n∑
i=1

W
(2,1)
ii I[Xm≤Xi]

W
(1,1)
ii

and

α =

n∑
j=1

n∑
m=1

W
(1,1)
jm fjkmJmj , and

∂logL

∂km
= 0⇔

km =

[
n∑
i=1

1

nCi + nFwi −αDi

]−1

1

nCm + nFwm−αDm
,m = 1, . . . , n (5)

with Cm =

n∑
i=1

n∑
j=1

W
(1,2)
ij fikjJjiI[Um≤Ui] and Dm =

n∑
i=1

W
(1,2)
ii I[Um≤Ui]

W
(1,1)
ii

.

In (4) and (5) we use the notation W
(l,m)
ij , 1 ≤ l,m ≤ 2, for C(l,m)

θ (Fi,Kj),

where C(l,m)
θ (u, v) = ∂l+m

∂ul∂vm
Cθ(u, v). Note that Wij = W

(u,v)
ij with this notation.

The ’full’ algorithm we propose is defined following Steps 0-4 above, but using
these two equations (4) and (5) in the place of (3) and (2). Note that moving from
the simple algorithm to this full algorithm implies changing the way in which k
and f are improved, while the updating of θ (Step 0) remains the same.

In Section 3 we investigate through simulations the performance of these two
algorithms for several copula functions and marginal models. Interestingly, it is
seen that the simple algorithm is accurate enough for practical purposes, while
giving a more efficient solution in terms of computational speed. For the final
implementation we multiply Am, Bm, Cm and Dm by n/n+ 1; this is equivalent

to replace each Wij = C(1,1)θ (Fi,Kj) by W ∗
ij = C(1,1)θ

(
n
n+1Fi,

n
n+1Kj

)
, which

avoids problems at the upper-right corner of the copulas function.
Since the truncation interval (U∗, V ∗) prevents us from always observing the

variable of interest X∗, we are not able to fully see the dependence structure
between (X∗, U∗) which was expressed using a copula function C. Hence, it is not
possible to estimate the association copula function and the marginal distributions
without introducing extra assumptions. In Appendix A.2 we formally study the
identifiability of the copula model, following ideas similar to those in Ding [14] for
dependent left-truncation. The copula functions used in the simulations (Section
3) and real data analyses (Section 4) fulfill the given identifiability condition.

In practice, it is important to report standard errors to know the accuracy of a
given estimator for the triplet (θ, F,G). To this end, we propose to use a bootstrap
algorithm based on the fitted chosen copula. To be specific, let (T1, T2) be a pair

of U(0, 1) random variables following the fitted copula C
θ̂
. Let U∗ = K̂−1(T1) and
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X∗ = F̂−1(T2) where F̂ and K̂(.) = Ĝ(.,∞) are the estimators based on the simple

or the full algorithm, and F̂−1 and K̂−1 are their respective quantile functions.
Reject the pair (U∗, X∗) if U∗ ≤ X∗ ≤ U∗ + φ is violated. Form a resample of
n data following this scheme, and repeat up to forming B resamples. Then, the
bootstrap standard error of θ̂, F̂ or Ĝ is defined as the standard deviation of these
estimators along the B resamples. In Section 3 we include some simulation results
for this method when the goal is the estimation of the standard error of θ̂; these
results suggest that the copula-based bootstrap performs well.

3 Simulations

In this section we investigate the finite sample performance of the algorithms
proposed in Section 2 through simulations. We simulate the scenario X∗ ∼ U(0, 1),
U∗ ∼ U(−0.6, 0.4) and then we take V ∗ = U∗ + φ, with φ = 1.5. Note that, in
this way, the df of X∗ is identifiable, because the lower (resp. upper) limit of
the support of U∗ (resp. V ∗) is smaller than the lower (resp. upper) limit of the
support of X∗ [15]. We consider three different copula families: the Farlie-Gumbel-
Morgentein (FGM) copula (Case 1), the Frank copula (Case 2) and the Clayton
copula (Case 3).
In Case 1 the variables X∗ and U∗ follow a FGM copula family with parameter
θ, that is, Cθ(u1, u2) = u1u2 + θu1u2(1 − u1)(1 − u2), θ ∈ [−1, 1]. The Kendall’s
Tau (τθ) corresponding to this copula is τθ = 2

9θ. We consider the cases θ =
−1,−0.5, 1 reporting association levels between X∗ and U∗ equal to −0.2,−0.1
and 0.2 (Models 1.1-1.3 respectively). Specifically, the simulation algorithm is as
follows (cfr. Exercise 3.23 in Nelsen [8]):

Step 1 Generate two independent uniform (0, 1) variables X∗ and T ;

Step 2 Set a = 1 + θ(1− 2X∗) and b =
√

(a2 − 4(a− 1)T );

Step 3 Set U∗ = a−b
2(a−1) ;

Step 4 Update U∗ to be U∗ − 0.6 according to its support (−0.6, 0.4);
Step 5 The desired pair is (X∗, U∗), satisfying the condition U∗ ≤ X∗5 ≤ U∗ + φ.

In Case 2 the variables X∗ and U∗ follow a Frank copula family with pa-

rameter θ, given by Cθ(u1, u2) = − 1
θ log

[
1 +

(e−θu1−1)(e−θu2−1)
e−θ−1

]
, θ ∈ R\{0}.

For this copula the Kendall’s Tau is the solution of the equation [D1(θ)−1]
θ =

τθ−1
4 , where D1(α) = 1

α

∫ α
0

t
et−1dt is a Debye function of the first kind. We con-

sider the cases θ = −2.1,−1, 1.86, 5.74, 20.9 corresponding to association levels of
−0.2,−0.1, 0.2, 0.5 and 0.9 respectively (Models 2.1-2.5). The simulation algorithm
is as follows (cfr. Exercise 4.17 in [8]):

Step 1 Generate two independent uniform (0, 1) variables T and U∗;
Step 2 Set X∗ = −(1/θ) log(1 + (T (exp(−θ)− 1))/(T + (1− T ) exp(−θ × U∗)));
Step 3 Update U∗ to be U∗ − 0.6 according to its support (−0.6, 0.4);
Step 4 The desired pair is (X∗, U∗), satisfying the condition U∗ ≤ X∗ ≤ U∗ + φ.
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In Case 3 the variables X∗ and U∗ follow a Clayton copula family with gen-

erator ψθ(t) = θ−1(t−θ − 1), θ > 0, i.e., Cθ(u1, u2) =
(
u−θ1 + u−θ2 − 1

)−1/θ
, θ ∈

(0,∞). This copula implies a Kendall’s Tau τθ = θ
θ+2 . We consider the cases

θ = 0.5, 2, 18 corresponding respectively to association levels of 0.2, 0.5 and 0.9
(Models 3.1-3.3). The simulation algorithm is as follows (cfr. Exercise 4.17 in
Nelsen [8]):

Step 1 Generate independent random variables Y1, Y2 ∼ Exp(1);
Step 2 Independently generate Z0 ∼ Γ (1/θ, 1/θ), and compute U∗ = (1+θY2/Z0)(−1/θ);
Step 3 Finally compute X∗ = (1 + θY1/Z0)(−1/θ);
Step 4 Update U∗ to be U∗ − 0.6 according to its support (−0.6, 0.4);
Step 5 The desired pair is (X∗, U∗), satisfying the condition U∗ ≤ X∗ ≤ U∗ + φ.

The values of θ for the several copulas correspond to the same association levels
(Kendall’s Tau). This will be interesting when interpreting the simulation results.
The simulated scenarios result in different truncations proportions according to
the different copula families and parameter values (θ) considered. For instance, in
Case 1, the proportion of truncation ranges from 4% (Model 1.3) to 13% (Model
1.1); in Case 2, from 1% (Model 2.4) to 13% (Model 2.1); and in Case 3, from 1%
(Model 3.1) to 8% (Model 3.3).

In Figures 1 to 3 we report the MSE of the proposed estimators (F̂ and Ĝ)
for each θ and for the several copulas, computed along 1000 Monte Carlo tri-
als of size n = 250 and n = 500, at the deciles of the distribution of X∗. We
performed simulations for lower sample sizes (n = 50, 100) too, reporting sim-
ilar results (see Appendix A.3). The MSEs decrease when increasing the sam-
ple size thus suggesting the consistency of the proposed methods. In Figure 1
(Models 1.1 to 1.3, FGM copula) we report the results of both simple and full
algorithms (top from bottom). In these figure we see that, in general, the simple
algorithm provides MSE’s slightly larger than those of the full algorithm. Since
the full algorithm is computationally heavier see Table 3, we have evaluated the
relative increase of the MSE when moving from the full to the simple algorithm
(RMSE = (MSE(simple) − MSE(full))/MSE(full)) for the four sample sizes
n = 50, 100, 250, 500 and all the simulated scenarios. For each copula family we
computed the quartiles of the RMSE throughout the several values of θ, the var-
ious sample sizes and the two target curves (F and G), see Table 1. In this table
we see that the median increase is only of 1.19%, 0.65%, or 0% depending on the
copula (FGM, Frank and Clayton resp.). Besides, by looking at the first quartile
of RMSE we see that the simple method is doing it better than the full method at
least 25% of the times. On the other hand, the third quartiles reveal that 75% of
the times the RMSE is below 5%, 3.8% or 2.43% depending again on the copula.
Models for which the full algorithm reports the best relative performance are those
with large negative association between the variable of interest and the truncation
variables, particularly when estimating G. Overall, the simple algorithm seems
to be the best option according to its good relative performance and computa-
tional speed. This is why we only display the results corresponding to the simple
algorithm for Frank and Clayton copulas.

In Table 2 we display the bias and standard deviation of the estimator θ̂ ob-
tained from the simple algorithm along the 1,000 trials, for each copula function
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Fig. 1 MSE’s of the proposed estimators F̂ and Ĝ, in each decile, for FGM copula. n = 250
(left) n = 500 (right), for simple and full algorithms (from top to bottom). FGM copula.
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Fig. 3 MSE’s of the proposed estimators F̂ and Ĝ, in each decile, for Clayton copula. n = 250
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Table 1 The quartiles and mean of the overall RMSE’s throughout the several values of θ,
the various sample sizes and the two target curves F and G.

Q1 Q2 Q3 Mean
FGM -0.0045 0.0119 0.0500 0.0221
Frank -0.0166 0.0065 0.0280 0.0026

Clayton -0.0248 0.0000 0.0243 0.0010

and sample sizes n = 250, 500. As expected, it is seen that the bias and the stan-
dard deviation decrease when increasing the sample size. The bias and the standard
deviation get larger as the association degree increases, although an exception to
this is found for the standard deviation and FGM copula. In Appendix A.3, Table
8, additional simulation results for n = 50 and n = 100 can be found.

We have computed the bias and variance of the NPMLE proposed by Shen [16]
for the functions F and G, which ignores the possible dependence between X∗ and
U∗. While the variance of the NPMLE and that of the copula-based estimator are
of the same order (results not shown), the bias of the NPMLE can be two orders of
magnitude larger than that corresponding to the proposed estimator. This can be
seen from Figure 4, in which the bias of the NPMLE for the three copulas under
several dependence degrees is depicted for n = 500 (the case n = 250 reported
similar results). As expected, this bias becomes more visible as the association
level grows. For instance, in Case 1, the bias of the NPMLE of F when θ = 1 is
approximately 1.8 times that corresponding to θ = −0.5 (Figure 4, top left panel);

similar results hold for Ĝ (Figure 4, top right panel). In Case 2, the bias of the
NPMLE of F when θ = 20.9 is approximately 2.4 times that corresponding to
θ = 1.86.

As mentioned in Section 2, the bootstrap method can be applied to estimate
the standard error of both the marginal distributions and the copula parameter.
We have evaluated the performance of the copula-based bootstrap method when
estimating the standard error of θ̂. To this end, we have computed the ratio be-
tween the bootstrap standard error and the true standard deviation of θ̂ along 500
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Table 2 The bias and the standard deviation of the estimator θ̂ obtained from the simple
algorithm along the 1,000 trials, for each copula function and sample sizes n = 250, 500.

Copula n θ Bias(θ̂) sd(θ̂)
-1 0.0712 0.1133

250 -0.5 -0.0122 0.2307
1 -0.0851 0.1293

FGM -1 0.0505 0.0817
500 -0.5 -0.0020 0.1634

1 -0.0574 0.0915

-2.1 -0.0844 0.6568
-1 -0.0482 0.5358

250 1.86 0.0086 0.4535
5.74 0.0327 0.5453
20.9 -0.1879 1.3279

Frank -2.1 -0.0125 0.4609
-1 -0.0063 0.3904

500 1.86 0.0076 0.3353
5.74 0.0130 0.3895
20.9 -0.1145 0.9041

0.5 0.0564 0.0725
250 2 -0.0723 0.1338

18 -0.0852 0.2523
Clayton 0.5 0.0412 0.0548

500 2 0.0523 0.0929
18 0.0684 0.1786

Monte Carlo trials (the true standard error was approximated by the Monte Carlo
standard deviation). In Table 3 we report the mean and the standard deviation
of this ratio Q along the simulated runs for the three copula functions with and
sample sizes n = 50 and n = 250, in order to investigate the performance of the
bootstrap when the sampling information is scarce to moderate. From this table
it is seen that the bootstrap performs well, giving a more accurate estimation of
the standard error of θ̂ as the sample size increases.

Table 3 Mean and standard error of the quotient Q.

n Copula mean (Q) sd(Q)
FGM 0.8804 0.2108

50 Clayton 0.9102 0.2019
Frank 1.0828 0.1909

FGM 1.0047 0.1135
250 Clayton 0.9872 0.1023

Frank 1.0001 0.0900

4 Real data illustrations

For illustration purposes, in this section we consider epidemiological data on
transfusion-related Acquired Immune Deficiency Syndrome (AIDS) and Immune
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Fig. 4 Bias of the NMPLE proposed by Shen, in each decile, and each functions F (left)
and G (right), for FGM, Frank and Clayton copulas (from top to bottom), with sample size
n = 500 and different τ ’s.

Reconstitution Inflammatory Syndrome (IRIS). In both cases the variable of in-
terest is doubly truncated and its independence of the truncation variables may be
questionable. For the AIDS data this has been discussed in the Introduction, and
in principle a similar situation could hold for the IRIS data described in Section
4.2 below. To assess the possible dependence between the target variable and the
truncation variables in our two real data applications we first apply the quasi-
independence test based on the conditional Kendall’s Tau proposed by [18] and
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then we apply our proposed estimator to correct the Efron-Petrosian estimator of
F to accommodate such possible dependence.

4.1 AIDS Blood Transfusion Data

The AIDS Blood Transfusion Data are collected by the Centers for Disease Control
(CDC), which is from a registry data base, a common source of medical data (see
Bilker and Wang [17]; Kalbfleisch and Lawless [19]). The variable of interest (X∗)
is the induction or incubation time, which is defined as the time elapsed from
Human Immunodeficiency virus (HIV) infection to the clinical manifestation of
full-blown AIDS. The CDC AIDS Blood Transfusion Data can be viewed as being
doubly truncated. The data were retrospectively ascertained for all transfusion-
associated AIDS cases in which the diagnosis of AIDS occurred prior to the end
of the study, thus leading to right-truncation. Besides, because HIV was unknown
prior to 1982, any cases of transfusion-related AIDS before this time would not
have been properly classified and thus would have been missed. Thus, in addition
to right-truncation, the observed data are also truncated from the left. See Bilker
and Wang [17], section 5.2, for further discussions.

The data include 494 cases reported to the CDC prior to January 1, 1987, and
diagnosed prior to July 1, 1986. Of the 494 cases, 295 had consistent data, and the
infection could be attributed to a single transfusion or short series of transfusions.
Our analyses are restricted to this subset, which is entirely reported in Kalbfleisch
and Lawless [19], Table 1. Values of U∗ were obtained by measuring the time from
HIV infection to January 1, 1982; while V ∗ was defined as time from HIV infection
to the end of study (July 1, 1986). Note that the difference between V ∗ and its
respective U∗ is always 4.5 years.

We performed the quasi-independence test of Martin and Betensky [18], be-
tween the incubation time and the date of HIV infection and we found no evidence
to reject quasi-independence assumption (p = 0.15). However, we proceed with the
application of the copula-based extension of the Efron-Petrosian estimator to see if
the semiparametric copula model brings evidences on dependence. Specifically, our
goal is to correct the Efron-Petrosian estimator of F for the possible dependence
between AIDS incubation time and the date of HIV infection (left truncation vari-

able). In order to assess this dependence, in Table 4 we report the value of θ̂ (as
well as the corresponding Kendall’s Tau τθ) obtained from the two proposed algo-
rithms (full and simple), for two copula families (FGM and Frank). The number
of iterations needed for each convergence for each algorithm and copula function
are included. Bootstrap standard errors and 95% confidence intervals based on the
bootstrap and the normal approximation are reported too. From this Table 4 it
is seen that (a) the two copulas indicate a positive association between U∗ and
X∗, as it was anticipated in Section 1, and (b) the full algorithm is more compu-
tationally demanding. For the FGM copula, we note that the optimal value of θ
is reached at the upper limit of the parameter space of possible θ values for this
copula. This means that the association is in-fact larger than what can be obtained
by this copula function. Hence this copula function is not properly suited to look
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at the association between the incubation time and the truncation time.

In Figure 5 (simple and full algorithms) the cumulative df for the incubation
times (left panels) and the truncation time U∗(right panels) using the two copulas
and the NPMLE under independence are jointly depicted. From this figure it is
seen that the choice of the copula has some influence in the resulting estimator;
however, the two copulas agree when shifting the Efron-Petrosian NPMLE of F
(left panel) and G (right panel), although the correction entailed by the Frank
copula is stronger. In this aspect, we note that the Frank copula function is able to
take the full association between the incubation time and the truncation time into
account. The FGM-copula is restricted by its limited parameter space and therefore
delivers a result between the result of the Frank copula and the independence
setting. We also performed the analysis for the Clayton copula (results not shown).
The full algorithm based on the Clayton copula failed to provide a likely value for θ.
A possible explanation for this is that the full algorithm is unable to get away from
the initial values of (θ, F,G) (the ones corresponding to the independent setting)
when using this particular copula. The second and third order derivatives of the
Clayton copula are unbounded when u1, u2 approach zero, so, for small values of
F and G, the different weights W containing these second order derivatives get
large and dominate the likelihood function and also the optimum. This suggests
a numerical issue probably related to the instability of the third-order derivatives
of the Clayton copula around zero. For the AIDS data, the number of iterations
needed to achieve the optimal value for the Clayton copula was much smaller than
for the other copula functions. This indicates that possibly a local optimum was
reached instead of the global optimum. These limitations of the Clayton copula
did not occur with the simple algorithm, which provided results consistent with
those of the FGM and Frank copulas.

Table 4 Number of iterations, estimated θ, the correspondent Kendall’s τ , the standard error

and the confidence interval for θ̂, using both algorithms, simple (top) and full (bottom). AIDS
data.

Copula n. iter θ̂ SEboot Interval Kendall’s τ
FGM 55 0.982 0.3273 (0.3404;1.6235) 0.22
Frank 179 3.350 0.7758 (1.8294;4.8706) 0.38

FGM 131 1.000 0.2425 (0.5246;1.4754) 0.22
Frank 186 3.460 0.6452 (2.1954;4.7245) 0.38

4.2 Immune Reconstitution Inflammatory Syndrome

Data on Immune Reconstitution Inflammatory Syndrome (IRIS) were collected
from January 2008 to December 2017 in tertiary care teaching hospital at north-
ern region of Portugal. 43 adult patients with HIV infection who first initiated
antiretroviral therapy (TARV) and with CD4 cell counts < 200/mmc or an AIDS-
defining illness developed IRIS during that period. The time from TARV to IRIS
diagnosis (X∗) is doubly truncated by the time from beginning of the study (Jan-
uary 2008) and TARV initiation (U∗) and the time from TARV initiation and the
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Fig. 5 Cumulative distribution function for the incubation times (left) and the truncation
time U (right) using FGM copula (red dashed line) and Frank copula (green dotted line)
and the NPMLE of Efron and Petrosian (black solid line). Simple algorithm (top) and Full
algorithm (bottom). AIDS data.

end of the study, December 2017 (V ∗). The difference between U∗ and its respec-
tive V ∗ is always 10 years.

We have tested the quasi-independence between the time from TARV to IRIS
diagnosis and the TARV initiation, based on the conditional Kendall’s Tau of
Martin and Betensky [18], and the quasi-independence assumption was widely ac-

cepted (p = 0.98). To confirm this finding we report in Table 5 the value of θ̂ (as
well as the corresponding Kendall’s Tau τθ) obtained from the two proposed algo-
rithms (full and simple), for three copula families (FGM, Clayton and Frank). The
number of iterations needed for the convergence of each algorithm are included.
Bootstrap standard errors and 95% confidence intervals based on the bootstrap
and the normal approximation are reported too, indicating no association between
U∗ and X∗ in all cases. Therefore, there is no need to correct the Efron-Petrosian
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estimator for the IRIS data analysis. Indeed, the corrected estimator based on the
FGM, Clayton and Frank copulas overlaps the Efron-Petrosian NPMLE in this
case (results not shown).

Table 5 Number of iterations, estimated θ, the correspondent Kendall’s τ , the standard error

and the confidence interval for θ̂, using both algorithms, simple (top) and full (bottom). IRIS
data.

Copula n. iter θ̂ SEboot Interval Kendall’s τ
FGM 11 -0.059 0.716 (-1.461;1.342) -0.006

Clayton 12 0.257 0.325 (-0.360;0.881) 0.110
Frank 11 -0.089 1.780 (-3.590;3.414) -0.009

FGM 17 -0.007 0.502 (-1.051;0.917) -0.001
Clayton 16 0.286 0.263 (-0.614;0.419) 0.030
Frank 14 -0.097 1.245 (-2.537;2.342) -0.011

5 Conclusions and final discussion

In this paper we have introduced an extension of the Efron-Petrosian NPMLE
for double truncation when the variable of interest and the truncation variables
may be dependent. We assume that U∗ depends on the variable of interest, and
that the dependence structure of (X∗, U∗) is given by a copula function, with ar-
guments θ, F and G. Two different algorithms to estimate the parameter θ and
the distributions F and G have been introduced, the full and the simple algorithms.

The performance of these two algorithms has been evaluated though simula-
tions for several copula functions and marginal models. The estimators (of F )
computed by the two algorithms converge to the same solution. While the simple
algorithm provides MSE’s slightly larger than those of the full algorithm, the full
algorithm has revealed computationally heavier. The evaluations of the RMSE’s
allows to concluded that the simple algorithm is the best option according to its
good relative performance and computational speed. The systematic bias of the
Efron-Petrosian NPMLE under dependence has been evaluated too, being more
evident for a stronger dependence degree, as expected.

In order to estimate the standard error of both the marginal distributions and
the copula parameter we have introduced a bootstrap procedure. In our simula-
tion studies the bootstrap performed well, giving a more accurate estimation of
the standard error of θ̂ with an increasing sample size.

Two real data illustration have been provided. We have applied both algorithms
to correct the Efron-Petrosian estimator of F for the possible dependence between
AIDS incubation time and the date of HIV infection, for different copula families.
The copulas indicated a positive association between U∗ and X∗ when applying
both algorithms. For the IRIS data, the proposed method based on copula function
indicated no association between the time from TARV to IRIS diagnosis and the
TARV initiation, and no correction of the Efron-Petrosian estimator was needed.
The choice of the copula family is important since it has an impact in the final
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estimator. A possible approach for copula selection is an information criterion such
as the AIC. For the AIDS data, were the correction for dependence is relevant, the
minimum AIC was achieved by the Frank copula. This is in agreement with the
discussion in Section 4.1, in which the Frank copula was found to be more suitable
to depict the dependence structure between the truncation and target variables.
Of course, there exist many other copula families that can be used to model for
dependence ([8]). Formal goodness-of-fit tests for the copula model are missing
however; this is an interesting topic for future research.

Appendix

Appendix A.1: Likelihood calculations and score equations

With the notations in Section 2, the joint density of (X∗, U∗) conditionally on
U∗ ≤ X∗ ≤ U∗ + φ at point (x, u) is given by

C(1,1)θ (F (x),K(u)) f(x)k(u)∫
u≤x≤u+φ

∫
C(1,1)θ (F (x),K(u)) f(x)k(u)dxdu

,

where f(x) and k(u) denote the densities corresponding to F (x) and K(u), re-
spectively.
This justifies the likelihood (1). In order to get the NPMLE for θ, f and k, we max-

imize the likelihood function (1) , under the constraints

n∑
i=1

fi = 1 and

n∑
i=1

ki = 1.

The loglikelihood is given by

logL(θ, f, k) =

n∑
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and similarly

∂logL(θ, f, k)
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Solving the equation
∂logL(θ,f,k)

∂fm
= 0 we get
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Then,
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.

This proves the score equation (4).

To justify the score equation (5), from
∂logL(θ,f,k)

∂km
= 0, we have similarly:
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From this equation and since
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Appendix A.2: Identifiability of the copula model

Assume P (X∗ ≤ x, U∗ ≤ u) = C(F (x),K(u)), (x, u) ∈ [aF , bF ] × [aG, bG], where C is a
copula function and [aF , bF ] and [aG, bF ] denote the supports of X∗ and U∗. For identifi-
ability of F and K assume aF − φ ≤ aG ≤ aF and bG ≤ bF ≤ bF + φ ([15]). The joint

density of (X∗, U∗) is given by f(x, u) = C(1,1)(F (x),K(u))f(x)k(u) where C(1,1)(w1, w2) =
∂2C(w1, w2)/∂w1∂w2 is the copula density and f(x) and k(u) denote the densities of F and K.
On the other hand, due to the interval sampling, the joint density of the observable variables
is f̃(x, u) = C(1,1)(F (x),K(u))f(x)k(u)/P (U∗ ≤ X∗ ≤ U∗ + φ), u ≤ x ≤ u + φ. Note that

when one changes f(x, u) for x < u (lower right corner) this does not affect f̃ but leads to
a different copula function and attached marginals in the copula model. Hence, as in Ding
[14], we introduce an identifiability condition for C, where the notation h(1) stands for the first
derivative of the function h.

Definition. A copula family F = {C(w1, w2), 0 ≤ w1, w2 ≤ 1} is called double truncated
identifiable if for C, C∗ ∈ F and differentiable non-decreasing functions w∗

1(w1), w∗
2(w2),

C(1,1)(w1, w2) = b× C∗(1,1)(w∗
1(w1), w∗

2(w2))w
∗(1)
1 (w1)w

∗(1)
2 (w2) (7)

for a constant b on an open set in {(w1, w2), 0 ≤ w1 ≤ w2, 0 ≤ a1(w1) ≤ w2 ≤ a2(w1) ≤ 1},
with a1(w1), a2(w1) non-decreasing functions on [0, 1], implies that C = C∗, b = 1, w∗

1(w1) =
w1 and w∗

2(w2) = w2.

In order to prove that the Definition above indeed allows for an identifiable copula model
with interval sampling, take two sets of functions C, F , f , K, k and C∗, F ∗, f∗, K∗, k∗ leading
to the same f̃(x, u). Then, on u ≤ x ≤ u+ φ,

C(1,1)(F (x),K(u)) =
c

c∗
× C∗(1,1)(F ∗(x),K∗(u))f∗(x)k∗(u)/f(x)k(u),

where (in an obvious notation) c = P (U∗ ≤ X∗ ≤ U∗ + φ) and c∗ = P ∗(U∗ ≤ X∗ ≤ U∗ + φ).
Introduce b = c/c∗, w∗

1(w1) = K∗(K−1(w1)), w∗
2(w2) = F ∗(F−1(w2)). Then, (7) holds with

a1(w1) = F (G−1(w1)) and a2(w1) = F (K−1(w1) + φ). The Definition above implies C = C∗,
F = F ∗, K = K∗ and the copula model is identifiable, as announced.
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Appendix A.3: Simulation results for small sample sizes

Table 6 MSE’s of the proposed estimators F̂ and Ĝ, in each decile and each copula’s family,
for the full algorithm and n = 50 and n = 100.

Copula n θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-1 0.00281 0.00551 0.00656 0.00712 0.00669 0.00590 0.00499 0.00357 0.00206

-0.5 F̂ 0.00331 0.00588 0.00673 0.00703 0.00645 0.00559 0.00469 0.00335 0.00197
1 0.00233 0.00424 0.00511 0.00567 0.00551 0.00478 0.00417 0.00306 0.00179

50 -1 0.00202 0.00354 0.00454 0.00549 0.00615 0.00657 0.00622 0.00548 0.00347

-0.5 Ĝ 0.00204 0.00331 0.00427 0.00534 0.00630 0.00692 0.00682 0.00604 0.00393
1 0.00184 0.00311 0.00393 0.00454 0.00483 0.00515 0.00509 0.00463 0.00286

FGM -1 0.00172 0.00297 0.00354 0.00352 0.00323 0.00292 0.00246 0.00180 0.00099

-0.5 F̂ 0.00188 0.00312 0.00366 0.00354 0.00324 0.00292 0.00245 0.00173 0.00095
1 0.00116 0.00193 0.00231 0.00246 0.00243 0.00229 0.00204 0.00152 0.00084

100 -1 0.00099 0.00184 0.00224 0.00269 0.00296 0.00322 0.00338 0.00294 0.00183

-0.5 Ĝ 0.00096 0.00165 0.00219 0.00264 0.00291 0.00328 0.00354 0.00308 0.00194
1 0.00082 0.00161 0.00195 0.00224 0.00239 0.0026 0.00243 0.00202 0.00119

-2.1 0.00222 0.00454 0.00531 0.00584 0.00535 0.00478 0.00499 0.00327 0.00189
-1 0.00281 0.00551 0.00656 0.00712 0.00669 0.00590 0.00499 0.00357 0.00206

1.86 F̂ 0.00233 0.00424 0.00511 0.00567 0.00551 0.00478 0.00417 0.00306 0.00179
5.74 0.00331 0.00588 0.00673 0.00703 0.00645 0.00559 0.00469 0.00335 0.00197
20.9 0.00198 0.00379 0.00418 0.00455 0.00517 0.00474 0.00378 0.00327 0.00174

50 -2.1 0.00212 0.00314 0.00424 0.00449 0.00515 0.00557 0.00522 0.00448 0.00247
-1 0.00202 0.00354 0.00454 0.00549 0.00615 0.00657 0.00622 0.00548 0.00347

1.86 Ĝ 0.00184 0.00311 0.00393 0.00454 0.00483 0.00515 0.00509 0.00463 0.00286
5.74 0.00204 0.00331 0.00427 0.00534 0.0063 0.00692 0.00682 0.00604 0.00393
20.9 0.00180 0.00312 0.00410 0.00492 0.00510 0.00502 0.00453 0.00316 0.00201

Frank -2.1 0.00112 0.00161 0.00208 0.00219 0.00235 0.00262 0.00198 0.00239 0.00098
-1 0.00172 0.00297 0.00354 0.00352 0.00323 0.00292 0.00246 0.0018 0.00099

1.86 F̂ 0.00106 0.00194 0.00228 0.00237 0.00244 0.00235 0.00200 0.00156 0.00088
5.74 0.00118 0.00199 0.00242 0.00261 0.00275 0.00231 0.00196 0.00148 0.00087
20.9 0.00920 0.00142 0.00185 0.00231 0.00265 0.00231 0.00206 0.00188 0.00085

100 -2.1 0.00109 0.00171 0.00226 0.00251 0.00263 0.00203 0.00233 0.00194 0.00135
-1 0.00099 0.00184 0.00224 0.00269 0.00296 0.00322 0.00338 0.00294 0.00183

1.86 Ĝ 0.00105 0.00167 0.00203 0.00226 0.00232 0.00245 0.00242 0.00198 0.00120
5.74 0.00089 0.00166 0.00211 0.00241 0.00258 0.00266 0.00253 0.00194 0.00130
20.9 0.00092 0.00146 0.00201 0.00221 0.00238 0.00246 0.00213 0.00154 0.00092
0.5 0.00202 0.00354 0.00431 0.00484 0.00530 0.00476 0.00399 0.00297 0.00169

2 F̂ 0.00179 0.00341 0.00427 0.00478 0.00498 0.00475 0.00417 0.00300 0.00177
18 0.00198 0.00389 0.00488 0.00545 0.00547 0.00484 0.00378 0.00293 0.00164

50 0.5 0.00202 0.00354 0.00454 0.00549 0.00615 0.00657 0.00622 0.00548 0.00347

2 Ĝ 0.00167 0.00295 0.00373 0.00439 0.00472 0.00486 0.00459 0.00337 0.00217
18 0.00183 0.00308 0.00410 0.00472 0.00505 0.0053 0.00514 0.00423 0.00244

Clayton 0.5 0.00110 0.00171 0.00228 0.00239 0.00245 0.00232 0.00191 0.00139 0.00085

2 F̂ 0.00107 0.00170 0.00229 0.00242 0.00245 0.00235 0.00195 0.00144 0.00087
18 0.00118 0.00199 0.00242 0.00261 0.00275 0.00231 0.00196 0.00148 0.00087

100 0.5 0.00089 0.00161 0.00206 0.00221 0.00243 0.00243 0.00221 0.00174 0.00105

2 Ĝ 0.00077 0.00132 0.00181 0.00223 0.00286 0.00335 0.00341 0.00279 0.00164
18 0.00089 0.00166 0.00211 0.00241 0.00258 0.00266 0.00253 0.00194 0.00120

Acknowledgements Work supported by the Grant MTM2017-89422-P (MINECO/AEI/FEDER,
UE) and by Portuguese Funds through FCT — Fundação Ciência e Tecnologia, within the



Double truncation under dependence 21

Table 7 MSE’s of the proposed estimators F̂ and Ĝ, in each decile and each copula’s family,
for the simple algorithm for different θ’s and n = 50 and n = 100.

Copula n θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-1 0.00303 0.00585 0.00687 0.00744 0.00693 0.00604 0.00503 0.00358 0.00207

-0.5 F̂ 0.00339 0.00606 0.00694 0.00728 0.00665 0.00571 0.00473 0.00335 0.00197
1 0.00233 0.00424 0.00507 0.00562 0.00542 0.00476 0.00418 0.00308 0.00183

50 -1 0.00190 0.00354 0.00471 0.00588 0.00671 0.00719 0.00674 0.00582 0.00359

-0.5 Ĝ 0.00197 0.00335 0.00441 0.00561 0.00662 0.00725 0.00711 0.00626 0.00398
1 0.00178 0.00311 0.00405 0.00477 0.00505 0.00534 0.00515 0.00458 0.00274

FGM -1 0.00181 0.00314 0.00376 0.00374 0.00342 0.00307 0.00257 0.00187 0.00101

-0.5 F̂ 0.00190 0.00313 0.00369 0.00357 0.00326 0.00294 0.00247 0.00175 0.00095
1 0.00156 0.00265 0.00316 0.00317 0.00304 0.00273 0.00233 0.00167 0.00091

100 -1 0.00092 0.00184 0.00236 0.00292 0.00330 0.00360 0.00375 0.00316 0.00182

-0.5 Ĝ 0.00094 0.00168 0.00227 0.00277 0.00303 0.00339 0.0036 0.00307 0.00186
1 0.00090 0.00155 0.00220 0.00253 0.00285 0.00306 0.00315 0.00262 0.00156

-2.1 0.00958 0.01420 0.01487 0.01317 0.01081 0.00818 0.00596 0.00393 0.00196
-1 0.00748 0.01085 0.01116 0.01028 0.00877 0.00685 0.00521 0.00364 0.00189

1.86 F̂ 0.00240 0.00394 0.00461 0.00506 0.00473 0.00449 0.00397 0.00312 0.00173
5.74 0.00187 0.00333 0.00408 0.00442 0.00467 0.00459 0.00383 0.003 0.00187
20.9 0.00190 0.00316 0.00410 0.00470 0.00485 0.00458 0.00404 0.00329 0.00182

50 -2.1 0.00184 0.00383 0.00578 0.00840 0.01106 0.01355 0.01576 0.01607 0.01277
-1 0.00172 0.00356 0.00514 0.00708 0.00888 0.01047 0.01164 0.01153 0.00884

1.86 Ĝ 0.00168 0.00312 0.00395 0.00491 0.00526 0.00499 0.00475 0.00386 0.00239
5.74 0.00171 0.00316 0.00401 0.00485 0.00510 0.00476 0.00433 0.00331 0.00198
20.9 0.00172 0.00313 0.00398 0.00484 0.00508 0.00465 0.00420 0.00315 0.00199

Frank -2.1 0.00498 0.00743 0.00748 0.00651 0.00533 0.00415 0.00298 0.00195 0.00095
-1 0.00305 0.00460 0.00492 0.00452 0.00379 0.00312 0.00244 0.00166 0.00085

1.86 F̂ 0.00104 0.00193 0.00230 0.00241 0.00247 0.00238 0.00202 0.00157 0.00088
5.74 0.00086 0.00152 0.00203 0.00222 0.00236 0.00236 0.00204 0.00159 0.00094
20.9 0.00093 0.00155 0.00196 0.00224 0.00240 0.00240 0.00209 0.00159 0.00086

100 -2.1 0.00100 0.00194 0.00301 0.00420 0.00555 0.00698 0.00802 0.00786 0.00572
-1 0.00092 0.00171 0.00249 0.00331 0.00405 0.00490 0.00538 0.00495 0.00322

1.86 Ĝ 0.00090 0.00155 0.00203 0.00240 0.00252 0.00263 0.00251 0.00196 0.00111
5.74 0.00094 0.00155 0.00204 0.00232 0.00233 0.00237 0.00217 0.00163 0.00093
20.9 0.00096 0.00156 0.00202 0.00231 0.00233 0.00234 0.00214 0.00161 0.00091
0.5 0.00164 0.00329 0.00422 0.00464 0.00502 0.0045 0.00402 0.00310 0.00173

2 F̂ 0.00202 0.00354 0.00431 0.00484 0.00530 0.00476 0.00399 0.00297 0.00169
18 0.00214 0.00408 0.00474 0.00515 0.00525 0.00470 0.00385 0.00294 0.00167

50 0.5 0.00167 0.00308 0.00430 0.00465 0.00485 0.00461 0.00413 0.0033 0.00182

2 Ĝ 0.00182 0.00312 0.00389 0.00449 0.00474 0.00496 0.00483 0.00367 0.00223
18 0.00178 0.00318 0.00421 0.00479 0.00500 0.00540 0.00515 0.00427 0.00245

Clayton 0.5 0.00088 0.00159 0.00202 0.00246 0.00245 0.00231 0.00197 0.00147 0.00087

2 F̂ 0.00110 0.00171 0.00228 0.00239 0.00245 0.00232 0.00191 0.00139 0.00085
18 0.00125 0.00205 0.00246 0.00256 0.00266 0.00240 0.00193 0.00145 0.00088

100 0.5 0.00090 0.00156 0.00203 0.00232 0.00243 0.00241 0.00212 0.00163 0.00094

2 Ĝ 0.00089 0.00161 0.00206 0.00221 0.00243 0.00243 0.00221 0.00174 0.00105
18 0.00096 0.00163 0.00216 0.00240 0.00262 0.00263 0.00241 0.00195 0.00115
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cia (Centro singular de investigación de Galicia accreditation 2019-2022) and the EU (ERDF),
Ref. ED431G2019/06, is acknowledged too. The authors would like to gratefully acknowl-
edge the financial support from the Interuniversity Attraction Poles Programme (IAP-network
P7/06) of the Belgian Science Policy Office.
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Table 8 The bias and the standard deviation of the estimator θ̂ obtained from the simple
algorithm along the 1,000 trials, for each copula function, different θ’s and sample sizes n =
50, 100.

Copula n θ Bias(θ̂) sd(θ̂)
-1 0.1856 0.3028

50 -0.5 -0.0366 0.4633
1 -0.2209 0.3481

FGM -1 0.1321 0.2041
100 -0.5 0.0331 0.3521

1 -0.1225 0.1967

-2.1 -0.1995 1.5008
-1 -0.1266 1.4246

50 1.86 0.0859 1.1165
5.74 0.1375 1.2837
20.9 -0.8447 3.0419

Frank -2.1 -0.1529 1.1036
-1 -0.0743 0.9541

100 1.86 0.0532 0.7854
5.74 0.1098 0.9002
20.9 -0.3990 2.1974

0.5 1.6045 0.6073
50 2 -1.3871 0.3235

18 -17.8531 0.1901
Clayton 0.5 1.5517 0.4047

100 2 -1.2312 0.2269
18 -16.8930 0.1246
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4. Moreira, C. and J.deUña-Álvarez, Bootstrappping the npmle for doubly truncated data,
Journal of Nonparametric Statistics, 22, 567–583 (2010)

5. Austin, M.D. and R.A. Betensky, Eliminating bias due to censoring in kendall’s tau esti-
mators for quasi-independence of truncation and failure, Computational Statatistics Data
Analysis, 73, 16–26 (2014)

6. Zhu, H. and M.-C. Wang (2012). Analysing bivariate survival data with interval sampling
and application to cancer epidemiology, Biometrika, 99 (2), 345–361 (2012)

7. Zhu, H. and M.-C. Wang, Nonparametric inference on bivariate survival data with interval
sampling: association estimation and testing, Biometrika,101 (3), 519–533 (2014)

8. Nelsen, R. B, An Introduction to Copulas (Springer Series in Statistics), Secaucus, NJ,
USA: Springer-Verlag New York, Inc. (2006)

9. Chaieb, L., L.-P. Rivest, and B.Abdous, Estimating survival under a dependent truncation,
Biometrika, 93, 655–669 (2006)

10. Emura, T., W.Wang, and H.-N. Hung (2011). Semi-parametric inference for copula models
for truncated data, Statistica Sinica,21(1), 349–367 (2011)

11. Emura, T. and W.Wang (2012). Nonparametric maximum likelihood estimation for de-
pendent truncation data based on copulas, Journal of Multivariate Analysis, 110, 171 – 188
(2012)

12. Emura, T.and Murotani, K., An algorithm for estimating survival under a copula-based
dependent truncation model, TEST, 24(4), 734–751 (2015)



Double truncation under dependence 23

13. Chiou, H. and Austin, MD. and Qian, J. and Betensky, RA. (2019). Transformation model
estimation of survival under dependent truncation and independent censoring, Statistical
Methods in Medical Research, 28, 3785–3798 (2019)

14. Ding, A. A., Copula identifiability conditions for dependent truncated data model, Lifetime
Data Analysis,18(4), 397–407 (2012)

15. Woodroofe, M., Estimating a distribution function with truncated data, The Annals of
Statistics, 13, 163–177(1985)

16. Shen, P., Nonparametric analysis of doubly truncated data. Annals of the Institute of
Statistical Mathematics,62, 835–853 (2010)

17. Bilker, W.B. and M.-C. Wang, A semiparametric extension of the mann-whitney test for
randomly truncated data, Biometrics, 52, 10–20 (1996)

18. Martin, Emily C, and Rebecca A. Betensky, Testing Quasi-Independence of Failure and
Truncation Times via Conditional Kendall’s Tau, Journal of the American Statistical Asso-
ciation,100, 484-492 (2005)

19. Kalbfleisch, J.D. and J.F. Lawless, Inference based on retrospective ascertainment: An
analysis of the data on transfusion-related aids, American Statistical Association, 84, 360–
372(1989)



24 Carla Moreira et al.

Table 9 Bias of the NMPLE proposed by Shen, in each decile, and each functions F and G ,
for FGM, Frank and Clayton copulas, with sample size n = 50 and n = 100 and different τ ’s.

Copula n τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.22 0.02534 0.03838 0.04180 0.03774 0.03067 0.02367 0.01664 0.00960 0.00257
-0.11 F 0.01843 0.02642 0.02807 0.02522 0.02063 0.01604 0.01149 0.00694 0.00232

0 -0.00968 -0.01547 -0.01722 -0.01555 -0.01270 -0.00990 -0.00702 -0.00412 -0.00109
0.22 -0.02335 -0.03512 -0.03803 -0.03431 -0.02813 -0.02203 -0.01576 -0.00953 -0.00324

50 -0.22 -0.00260 -0.00962 -0.01668 -0.02390 -0.03108 -0.03813 -0.04222 -0.03887 -0.02559
-0.11 G -0.00249 -0.00699 -0.01177 -0.01617 -0.02072 -0.02533 -0.02838 -0.02700 -0.01881

0 0.00114 0.00410 0.00694 0.0099 0.01270 0.01568 0.01728 0.01565 0.00984
0.22 0.00334 0.00963 0.01578 0.02186 0.02810 0.03442 0.03813 0.03528 0.02337

FGM -0.22 0.02534 0.03838 0.04180 0.03774 0.03067 0.02367 0.01664 0.00960 0.00257
-0.11 F 0.01667 0.02437 0.02613 0.02357 0.01924 0.01497 0.01069 0.00644 0.00212

0 0.00133 0.00140 0.00124 0.00105 0.00086 0.00069 0.00054 0.00046 0.00031
0.22 -0.02229 -0.03417 -0.03564 -0.03223 -0.02653 -0.02024 -0.01373 -0.00757 -0.00205

100 -22 -0.00260 -0.00962 -0.01668 -0.02390 -0.03108 -0.03813 -0.04222 -0.03887 -0.02559
-0.11 G -0.00215 -0.00645 -0.01086 -0.01515 -0.01953 -0.02386 -0.0264 -0.02455 -0.01695

0 -0.00031 -0.00052 -0.00067 -0.00091 -0.00105 -0.00116 -0.00128 -0.00139 -0.00136
0.22 0.00253 0.00696 0.01303 0.01850 0.02383 0.03212 0.03586 0.03236 0.02103

-0.22 0.05300 0.06978 0.07123 0.06258 0.05121 0.03970 0.02819 0.01672 0.00472
-0.11 0.03055 0.03920 0.03960 0.03492 0.02860 0.02249 0.01624 0.00989 0.00331

0 F 0.01789 0.02604 0.02782 0.02508 0.02059 0.01604 0.01151 0.00699 0.00228
0.22 -0.02256 -0.03397 -0.03754 -0.03456 -0.02857 -0.02255 -0.01669 -0.01049 -0.00406
0.5 -0.04592 -0.07100 -0.07961 -0.07414 -0.06255 -0.05064 -0.03864 -0.02558 -0.01172
0.9 -0.04796 -0.07799 -0.08883 -0.08364 -0.07119 -0.05872 -0.04563 -0.03189 -0.01680

50 -0.22 -0.00465 -0.01648 -0.02828 -0.03997 -0.05214 -0.06481 -0.07481 -0.07564 -0.05945
-0.11 -0.00341 -0.00992 -0.01641 -0.02275 -0.02925 -0.03598 -0.04128 -0.0416 -0.03277

0 G 0.00004 -0.00360 -0.00870 -0.01420 -0.02003 -0.02571 -0.02945 -0.02849 -0.02014
0.22 0.00423 0.01059 0.01672 0.02258 0.02844 0.03423 0.03724 0.03375 0.02180
0.5 0.01194 0.02564 0.03830 0.05015 0.06178 0.07333 0.07874 0.07006 0.04463
0.9 0.01686 0.03138 0.04476 0.05740 0.06988 0.08231 0.08741 0.07604 0.04647

Frank -0.22 0.04584 0.06426 0.06634 0.05840 0.04727 0.03642 0.02544 0.01466 0.00401
-0.11 0.02302 0.03241 0.03356 0.02981 0.02432 0.01878 0.01330 0.00787 0.00260

0 F 0.01719 0.02537 0.02740 0.02478 0.02018 0.01566 0.01117 0.00669 0.00209
0.22 -0.02421 -0.03686 -0.04050 -0.03699 -0.03057 -0.02404 -0.01753 -0.01083 -0.00411
0.5 -0.04747 -0.07421 -0.08263 -0.07646 -0.06401 -0.05133 -0.03819 -0.02478 -0.01084
0.9 -0.05041 -0.07994 -0.09032 -0.08406 -0.07071 -0.05722 -0.04335 -0.02927 -0.01414

100 -0.22 -0.00402 -0.01476 -0.02564 -0.03669 -0.04786 -0.05902 -0.06733 -0.06604 -0.04860
-0.11 -0.00257 -0.00796 -0.01339 -0.01886 -0.02443 -0.02994 -0.03385 -0.03288 -0.02382

0 G -0.00024 -0.00411 -0.00912 -0.01458 -0.02027 -0.02566 -0.02880 -0.02719 -0.01912
0.22 0.00410 0.01083 0.01738 0.02384 0.03029 0.03668 0.04020 0.03649 0.02368
0.5 0.01078 0.02457 0.03767 0.05051 0.06323 0.07576 0.08200 0.07329 0.04674
0.9 0.00067 0.00100 0.00130 0.00164 0.00199 0.00249 0.00290 0.00278 0.00196

0 0.00164 0.00329 0.00422 0.00464 0.00502 0.00450 0.00402 0.00310 0.00173
0.22 F -0.05036 -0.07621 -0.08337 -0.07646 -0.06415 -0.05153 -0.03841 -0.02500 -0.01065
0.5 -0.02829 -0.03898 -0.04023 -0.03591 -0.02958 -0.02307 -0.01679 -0.01010 -0.00348
0.9 -0.00704 -0.00950 -0.00970 -0.00855 -0.00692 -0.00530 -0.00361 -0.00199 -0.00044

50 0 0.00167 0.00308 0.00430 0.00465 0.00485 0.00461 0.00413 0.00330 0.00182
0.22 G 0.00941 0.02171 0.03378 0.04579 0.05801 0.07070 0.07626 0.06715 0.04175
0.5 0.00636 0.01285 0.01915 0.02534 0.03143 0.03766 0.03927 0.03327 0.02001
0.9 0.00163 0.00351 0.00520 0.00682 0.00836 0.00988 0.01022 0.00853 0.00510

Clayton 0 0.00088 0.00159 0.00202 0.00246 0.00245 0.00231 0.00197 0.00147 0.00087
0.22 F -0.00651 -0.00863 -0.00866 -0.00754 -0.00608 -0.00463 -0.00322 -0.00182 -0.00039
0.5 -0.03055 -0.04118 -0.04195 -0.03709 -0.03036 -0.02380 -0.01704 -0.01029 -0.00339
0.9 -0.05139 -0.07809 -0.08441 -0.07673 -0.06382 -0.05058 -0.03742 -0.02394 -0.01005

100 0 0.00090 0.00156 0.00203 0.00232 0.00243 0.00241 0.00212 0.00163 0.00094
0.22 G 0.00113 0.00271 0.00421 0.00567 0.00709 0.00846 0.00875 0.00726 0.00428
0.5 0.00544 0.01221 0.01889 0.02555 0.03213 0.03865 0.04036 0.03398 0.02043
0.9 0.00961 0.02258 0.03564 0.04825 0.06103 0.07388 0.07959 0.06966 0.04333


