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Abstract20

Lates perches of the genus Lates (Latidae) are large piscivorous fishes, with a strikingly disjunct 21 

distribution range in coastal areas and estuaries of the Indo-Pacific region and in some large African 22 

freshwater systems. Previous phylogenetic hypotheses based on osteological and ontogenetic data 23 

suggested paraphyly of the African representatives, or even the small Lake Tanganyika species 24 

assemblage, with respect to the remaining Lates species. Based on a multilocus phylogeny, however, 25 

we show that extant African lates perches are monophyletic. The Nile perch, L. niloticus, which is 26 

widely distributed in the Nilo-Sudan region and Central Africa, comprises three distinct lineages and 27 

is paraphyletic with respect to the four endemic Lake Tanganyika species. We find that diversification 28 

of extant African Lates happened only as recently as the Pliocene. With the extensive, in part much 29 

older fossil record, this suggests repeated extinction and (re-)colonization of hydrological systems. 30 

We further find that Lates started to diversify in Lake Tanganyika only in the Pleistocene, which is 31 

much more recent than other fish radiations endemic to Lake Tanganyika, implying that they 32 

radiated in the presence of other top predators already in this ecosystem. 33 

 34 

Keywords: Africa, divergence time estimation, freshwater fish, multilocus phylogeny, radiation 35 
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Introduction37

Lates perches (Latidae) are a family of large piscivorous fishes that occur in marine, brackish and 38 

freshwater habitats in the Indo-Pacific region and in African freshwater systems. Previously, lates 39 

perches were together with snooks (Centropomus) in Centropomidae, but Mooi and Gill (1995) 40 

recommended the recognition of two distinct families, Centropomidae and Latidae. Thus, currently 41 

Latidae is considered a distinct family of three extant genera and fourteen species (Van der Laan et 42 

al., 2014; Iwatsuki et al., 2018; Fricke et al., 2021; but see Betancur-Rr et al., 2017 for an alternative 43 

view). Hypopterus and Psammoperca include one and two species, respectively, and inhabit marine 44 

and brackish environments in the Indo-Pacific (Iwatsuki et al., 2018). Lates includes marine and 45 

freshwater species with a strikingly disjunct distribution range (Fig. 1a). Four species of Lates, L. 46 

calcarifer (Bloch, 1790), L. japonicus Katayama & Taki, 1984, L. lakdiva Pethiyagoda & Gill, 2012 and 47 

L. uwisara Pethiyagoda & Gill, 2012, occur in coastal areas and estuaries of the Indo-Pacific region, 48 

but not along the African coast or Madagascar. The remaining seven Lates species inhabit large 49 

African freshwater systems. Several species of Lates can grow large (>1m) and are thus highly 50 

valuable food and game fish in both commercial and artisanal fisheries, such as the Barramundi (L. 51 

calcarifer) or the Nile perch (L. niloticus (Linnaeus, 1758)) (Fig. 1b,c). 52 

Among the seven African species, the Nile perch has by far the largest distribution range, being 53 

native to numerous large river systems and lakes in the Nilo-Sudanic zone and Central Africa. In Lake 54 

Albert and Lake Turkana, it occurs sympatrically with L. macrophthalmus Worthington, 1929 and L. 55 

longispinis Worthington, 1932, respectively. It was also introduced in several rivers and lakes, 56 

including Lake Victoria, where it caused a well-documented ecological disaster (Goldschmidt 1996). 57 

Four species, L. angustifrons Boulenger, 1906, L. mariae Steindachner, 1909, L. microlepis 58 

Boulenger,1898 and L. stappersii (Boulenger, 1914) are endemic to Lake Tanganyika. Lates perches 59 

are among the top predators in their ecosystems, with spatial segregation according to habitat 60 

preference when different Lates species occur sympatrically (Harrison, 1991; Coulter, 1991).  61 
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Greenwood (1976) and Otero (2004), mainly based on osteological characteristics, suggested 62

paraphyly of the African species of Lates and Otero et al. (2004) even found some weak support for a 63 

paraphyletic Lake Tanganyika assemblage (Fig. 1d). Non-monophyly of Lates in Lake Tanganyika was 64 

also supported by ontogenetic data (Kinoshita and Tshibangu, 1997). A recent study on the molecular 65 

phylogenetic relationships among snooks and lates perches had insufficient taxon coverage to test 66 

either of these two scenarios (Li et al., 2011). Considering the uncertain intrageneric relationships, it 67 

is still not clear whether inhabiting freshwater or marine systems is the ancestral state in Lates and 68 

how often marine-freshwater transitions occurred during latid evolution. 69 

We used multilocus sequence data to test whether i) living in freshwater or marine systems is the 70 

ancestral state within Lates, and ii) African Lates is monophyletic and iii) the Lake Tanganyika 71 

endemics constitute a monophylum. Furthermore, we provide a temporal framework for latid 72 

diversification. 73 

 74 

Material and Methods 75 

Our study comprises 31 newly sequenced samples of African Lates spp. and some previously 76 

published latid and centropomid data (Li et al., 2011). Samples (ethanol-preserved fin clips) were 77 

obtained from museum collections, local fish markets, or the aquarium trade (Suppl. Table 1). 78 

Unfortunately, no unambiguously identified material of the Lake Albert and Lake Turkana endemics 79 

L. macrophthalmus and L. longispinis, respectively, could be obtained. These species, however, 80 

appear to be closely related to the local L. niloticus (Hauser et al., 1998), such that the general 81 

 82 

DNA was extracted from fin clips using a rapid Chelex protocol (Richlen and Barber, 2005) or the 83 

DNeasy Blood and Tissue Kit (Qiagen). One mitochondrial (16S rDNA) and 11 nuclear genes (FIC 84 

domain-containing protein (ficd), kelch repeat and BTB (POZ) domain containing 4 (KBTBD4), 85 

LOC562320 (KIAA1239), cardiac muscle myosin heavy chain 6 alpha (myh6), pleiomorphic adenoma 86 
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protein-like 2 (plagl2), receptor-interacting serine threonine kinase 4 (RIPK4), si:dkey-174m14.3 87

(sidkey), zgc:85947 (SLC10A3), brain super conserved receptor 2 gene (sreb2), zic family member 1 88 

(zic1), zinc finger 536 protein fragment (znf536)) were amplified and sequenced following Li et al. 89 

(2011). Sequencing products were purified with SephadexTM G-50 (GE Healthcare) and visualized on 90 

an ABI 3130xl capillary sequencer (Applied Biosystems). All newly generated sequences have been 91 

deposited on GenBank (see Suppl. Table 1). 92 

Sequences were aligned using MUSCLE (Edgar, 2004) as implemented in MEGA 7.0 (Kumar et al., 93 

2016). Three different datasets were subjected to phylogenetic analysis: (i) mtDNA, (ii) all nuclear 94 

genes concatenated, and (iii) nuclear plus mitochondrial genes concatenated. Representatives of 95 

Psammoperca and Centropomus were used as outgroups. (Li et al., 2011) Standard phylogenetic 96 

analyses were conducted via the PhyloSuite platform (Zhang et al., 2020). Maximum likelihood (ML) 97 

and Bayesian inference (BI) phylogenetic analyses employed the partitioning schemes and 98 

2 (Lanfear et 99 

al., 2017) with the Bayesian information criterion (BIC), with a starting scheme that partitioned by 100 

locus and codon position within each locus (for best partitioning schemes and substitution models 101 

see Suppl. Table 2). A standard maximum likelihood tree search was conducted using IQ-TREE 102 

(Nguyen et al., 2015). Node support was assessed with 1000 standard bootstrap replicates. Bayesian 103 

phylogenetic inference was performed in MrBayes v.3.2.6 (Ronquist et al., 2012). Posterior 104 

probabilities were obtained from Metropolis-coupled Markov chain Monte Carlo simulations (2 105 

independent runs; 6 chains; 10 million (dataset i) or 20 million (datasets ii & iii) generations, sampling 106 

frequency 1,000; 25% burn-in). Chain stationarity and parameter convergence were assessed in 107 

Tracer 1.7 (Rambaut et al., 2018) and via the average standard deviation of split frequencies (well 108 

below 0.01 in all datasets), and post burn-in trees were summarized in a 50% majority rule consensus 109 

tree. Visualization of ML and BI trees was done in FigTree 1.4.2 (available at 110 

http://tree.bio.ed.ac.uk/software/figtree). 111 
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Additionally, a multispecies coalescent analysis based on all loci was conducted using the StarBeast2 112

package (Heled and Drummond, 2010) implemented in BEAST v.2.5.2 (Bouckaert et al., 2014). Here, 113 

following Li et al. (2011) and Betancur-R et al. (2013), the tree was rooted with representatives of 114 

Centropomus (Supplementary Table 1). Substitution, clock, and tree models were unlinked across all 115 

loci. For each locus we employed the best fitting substitution model inferred based on the BIC in 116 

ModelFinder (Kalyaanamoorthy et al., 2017) (Supplementary Table 2). As likelihood ratio tests in 117 

TREE-PUZZLE 5.3.rc16 (Schmidt et al., 2002) rejected a clock-like evolution only for the ficd and 118 

KIAA1239 data, we applied an uncorrelated lognormal relaxed clock model for these two loci and a 119 

strict clock model for all other loci under a birth-death tree prior and analytical population size 120 

integration. Absolute divergence times were obtained by employing two calibration schemes. The 121 

first calibration scheme employed a lognormal prior (mean = 0.67, s.d. = 0.8, offset = 50 MYA) for the 122 

Centropomidae-Latidae divergence, a secondary calibration following Betancur-R et al. (2013) and 123 

references therein, and a lognormal prior (mean = 1.9, s.d. = 0.7, offset = 29.5 MYA) for the 124 

Psammoperca-Lates split, based on the oldest Lates fossil (L. qatraniensis from the Jebel Qatrani 125 

Formation, Fayum Depression, Egypt, 29.5-30.2 MYA; Murray and Attia, 2004) and the assumed 126 

minimum root age of 50 mya (Betancur-R et al., 2013). The second calibration scheme used the same 127 

two calibration points, but in addition employed a lognormal prior (mean = 1.8, s.d. = 0.5, offset = 128 

15.5) for the split of the African Lates from the Indo-Pacific species, based on the oldest L. niloticus 129 

fossils (L. cf. niloticus from the Ghaba deposits in Oman, 15.5-17.5 MYA & L. niloticus from the As-130 

Sarrar deposits in Saudi Arabia, 15.0-17.0 MYA; Otero and Gayet, 2001). Two independent replicates 131 

were run with random starting seeds and chain lengths of 5 × 108 generations and parameters were 132 

sampled every 5,000 steps. Chain convergence and stationarity of model parameter posterior 133 

distributions were assessed in Tracer 1.7, runs were combined with LogCombiner (part of the BEAST2 134 

package), and species trees were visualized in DensiTree2 (part of theBEAST2 package). 135 

 136 

Results 137 
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Phylogenetic inference based on BI and ML produced highly consistent tree topologies and was also 138

largely congruent among all datasets (Fig. 1 and Supplementary Figs. 3, 4). Inconsistencies concerned 139 

nodes that received low statistical support in at least one of two tree building algorithms. In 140 

particular the branching order among L. calcarifer, L. japonicus and the African Lates differed among 141 

datasets and tree building algorithms. Within African Lates, four main lineages were resolved: L. 142 

niloticus from western Africa, L. niloticus from the Nile system (Lakes Albert and Turkana), L. niloticus 143 

from the Congo basin, and the Lake Tanganyika species flock. Lates niloticus always resulted as 144 

paraphyletic. In all but the mitochondrial trees, western and Nilotic L. niloticus were resolved as 145 

sister groups in all but the mitochondrial trees, but nodal support for the alternative mitochondrial 146 

relationships was low. A sister group relationship between Lake Tanganyika Lates and L. niloticus 147 

from the Congo basin was recovered in all analyses. Within the Lake Tanganyika lineage, all analyses 148 

but those based on mtDNA, resolved L. microlepis as sister group to the rest, followed by L. 149 

stappersii, L. mariae and L. angustifrons. A sister group relationship between the latter two species 150 

was well supported by the mitochondrial and full datasets, whereas the nuclear data resolved L. 151 

stappersii and L. angustifrons as sister species, albeit with low statistical support. 152 

A congruent topology was also recovered by the multispecies coalescent tree (Fig. 2), but L. calcarifer 153 

and L. japonicus were resolved as sister species, albeit with weak statistical support. Divergence time 154 

estimates suggest that, depending on the calibration scheme, the African and Indo-Pacific 155 

representatives diverged 11.61 (95% HPD, 9.85 - 13.46) or 17.76 (95% HPD, 16.41  19.32) MYA and 156 

that extant African lineages of Lates diverged only very recently, with a most recent common 157 

ancestor (MRCA) 2.62 (95% HPD, 2.01 - 3.26) or 3.69 (95% HPD, 2.85  4.59) MYA and the onset of 158 

the radiation in Lake Tanganyika 1.27 (95% HPD, 0.87  1.70) or 1.76 (95% HPD, 1.20  2.35) MYA.  159 

 160 

Discussion 161 
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We investigated the phylogenetic relationships of lates perches, with emphasis on African 162

representatives. We found that African Lates constitutes a monophylum, with L. niloticus being 163 

composed of three distinct lineages and paraphyletic with respect to the monophyletic, endemic 164 

Lake Tanganyika species flock, the ancestors of which colonized the lake only well after its formation 165 

and much later than the ancestors of most other endemic fish radiations.  166 

Our inferred phylogenetic relationships are in stark contrast to previous morphology-based 167 

phylogenetic hypotheses that suggested either a sister group relationship between the Lake 168 

Tanganyika Lates species flock and all other African and Indo-Pacific species (Greenwood, 1976) or a 169 

sister group relationship between three of the Lake Tanganyika species (L. mariae, L. microlepis, L. 170 

stappersii) and all other Lates species (Otero, 2004). Lates spp. have a conserved general morphology 171 

with considerable intraspecific variation, but  with the exception of the Lake Tanganyika species  172 

often little interspecific differences. Indeed, even detailed analysis of osteological characters did not 173 

fully resolve the intrageneric relationships in Lates. The hypothesis that the Lake Tanganyika species 174 

and all other Lates species are reciprocally monophyletic entities was mainly based on an elongation 175 

of the ethmovomerine region in the Lake Tanganyika species (Greenwood, 1976). A non-176 

monophyletic Lake Tanganyika assemblage on the other hand, was supported by the presence of a 177 

well-developed pleurosphenoid pedicle in L. angustifrons and all non-Lake Tanganyika species, and 178 

its absence in L. mariae, L. microlepis and L. stappersii (Otero, 2004). We show that the Lake 179 

Tanganyika species did not diverge earliest but occupy a derived position in the Lates tree. This 180 

implies that the elongation of the ethmovomerine region happened only late in the evolution of 181 

Lates. Also, the well-developed pleurosphenoid pedicle evolved independently in L. angustifrons and 182 

the non-Lake Tanganyika species, or, alternatively, was lost in the other Lake Tanganyika species. 183 

Lates niloticus comprises three lineages: in western Africa, in the Nile basin (including Lake Turkana), 184 

and the Congo basin. The Congo lineage is sister to the Lake Tanganyika flock, rendering L. niloticus 185 

paraphyletic. Analysis of microsatellite data (Basiita et al., 2018) and mitochondrial control region 186 

sequences (Mwanja et al., 2013) already showed a deep east-west divergence (Lakes Victoria, 187 
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Nabugabo, Albert, Kyoga, Turkana & Chamo versus Senegal and Niger Rivers) in L. niloticus. Yet, the 188

third lineage and the paraphyly are unexpected. Similar to the pattern we found in L. niloticus, what 189 

has been assumed to be a single species L. calcarifer, turned out to include two to three deeply 190 

divergent genetic lineages (Lin et al., 2006; Vij et al., 2014). Only recently, L. lakdiva and L. uwisara 191 

were described upon critical morphological examination of museum specimens originally assigned to 192 

L. calcarifer (Pethiyagoda and Gill, 2012). Therefore, we suggest that the rather conserved 193 

morphology throughout Lates and especially within the allegedly widespread L. niloticus (in Africa) 194 

and L. calcarifer (in the Indo-Pacific) might have caused an underestimation of species numbers. Non-195 

monophyly of a widespread African freshwater fish species with respect to a lacustrine species flock 196 

was also found for the African sharptooth catfish, Clarias gariepinus (Burchell, 1822) and the species 197 

assemblage of Bathyclarias endemic to Lake Malawi (Van Steenberge et al., 2020).  198 

The fossil record suggests that a marine or estuarine lifestyle is the ancestral state within Lates 199 

(Otero et al., 2017). Several fossil Lates species are known from freshwater environments in Africa, 200 

Europe, Asia Minor and the Arabian Peninsula, potentially pointing to repeated colonization of 201 

continental freshwater systems (Otero et al., 2017). Regarding the extant species only, colonization 202 

of freshwaters happened once in the ancestor of the African Lates species. Lates appeared in the 203 

fossil record along the African Tethyan coast in the Oligocene and started to diversify in coastal 204 

waters prior to the closure of the Tethys (Otero, 2018). Considering the long and extensive fossil 205 

record (15.5 MYA; Otero and Gayet, 2001) and paraphyly of L. niloticus, it seems plausible that the 206 

Indo-Pacific Lates diverged from L. niloticus well after fossils assigned to the latter species appeared. 207 

Therefore, we inferred divergence times both with and without L. niloticus as calibration point. 208 

Including the L. niloticus calibration point produced divergence time estimates for the split between 209 

the African and the Indo-Pacific lineages consistent with a proposed origin of L. calcarifer shortly 210 

before the closure of the Tethys in the Lower Miocene (Otero et al., 2017). Alternatively, a 211 

colonization of the Indian Ocean from the Mediterranean Sea via potential connections during 212 

periods of high sea level in the early Middle Miocene may have given rise to the Indo-Pacific lineages 213 
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of Lates (Otero et al., 2017). Divergence times inferred without the L. niloticus calibration point214

suggested an even more recent origin of the Indo-Pacific lineages in the Middle to Upper Miocene. 215 

Whether these represent a monophylum or two distinct lineages that independently colonized the 216 

Indo-Pacific still remains unclear. We emphasize, however, that absolute divergence times need to 217 

be regarded with caution here, as only very few and comparatively old calibrations points were 218 

available for inferring rather recent events. Hence, if anything, the inferred age estimates for recent 219 

events should have been overestimated and actual divergence times might be even younger (Zheng 220 

et al. 2011). 221 

Regardless of the calibration scheme used, there is a considerable time lag between the divergence 222 

of the African and Indo-Pacific lineages and that of extant African species of Lates, that started only 223 

in the Pliocene, indicating repeated extinction and (re-)colonization of hydrological systems. The 224 

large-scale phylogeographic pattern of extant African Lates is somewhat reminiscent of the patterns 225 

observed in tigerfish, Hydrocynus spp., another large top predator (Goodier et al., 2011), suggesting 226 

that in both genera the present-day patterns were mainly shaped by geomorphic evolution that 227 

fragmented and reconfigured drainage basins (Goodier et al., 2011; and references herein). Yet, 228 

unlike in L. niloticus, some haplotype sharing and closely related haplotypes were found in 229 

Hydrocynus spp. from distinct drainage basins (Goodier et al., 2011), indicating that headwater 230 

captures and extreme flooding events in geographically close swampy and/or headwater regions 231 

seem to have had a more profound effect on the phylogeographic structure of Hydrocynus spp. than 232 

L. niloticus. Clarias gariepinus, another large fish occurring across large parts of Africa, shows more 233 

recent intraspecific divergence than Nile perch and tigerfish (Van Steenberge et al., 2020). Being able 234 

to survive conditions that cause other taxa to go extinct, C. gariepinus does not have the (at least in 235 

part) discontinuous distribution ranges that, in the other two taxa, presumably result from local 236 

extinctions (Cotteril & de Wit, 2011).  237 

Our divergence time analyses suggest, regardless of the calibrations scheme employed, that 238 

colonization of Lake Tanganyika by L. niloticus and radiation into the four extant species L. 239 
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angustifrons, L. mariae, L. microlepis and L. stappersii, is much more recent than for other endemic 240

fish radiations (spiny eels: Brown et al., 2010; squeaker catfishes: Day et al., 2013; claroteid catfishes: 241 

Pear et al., 2014; cichlids: Irisarri et al., 2018; Ronco et al., 2021) which all colonized and started to 242 

radiate in the lake right with the onset of its formation 9-12 MYA and/or the establishment of a truly 243 

lacustrine habitat with deepwater conditions 5-6 MYA (Cohen et al., 1993). Notably, also 244 

morphological and genetic data on monogenean and digenean parasites of Lates spp. are consistent 245 

with our results (Kmentová et al., 2020a, b). The four Lake Tanganyika endemics are clearly the top 246 

and show some clear niche differentiation 247 

with respect to their preferred habitat. As juveniles, L. mariae and L. microlepis are found in the 248 

shallow littoral habitat, whereas as adults they are pelagic top predators, with L. mariae typically 249 

found at greater depth (Coulter, 1991). Lates angustifrons prefers, throughout its life, inshore rocky 250 

habitat and L. stappersii is a pelagic species throughout its life, forming large shoals that follow and 251 

).  252 

Throughout the Pleistocene, the time frame of Lates diversification in Lake Tanganyika, Lake 253 

Tanganyika experienced recurrent drastic lake level fluctuations. Although for most of this period 254 

detailed information on these fluctuations is lacking, extrapolations from Lake Malawi, for which a 255 

good lake level record is available for the last 1.2 MY (Ivory et al., 2016), indicate that there were 256 

-basins might have been separated. During these periods of 257 

separation allopatric divergence might have taken place, followed by character displacement (i.e. 258 

specialization to particular niches) upon secondary contact once lake levels rose. Lates spp. are highly 259 

mobile species that can easily cover large distances in short time. They share their niche with large 260 

piscivorous benthopelagic and eupelagic cichlid species of the genera Boulengerochromis, 261 

Bathybates and Hemibates. These cichlids show no to very little phylogeographic structure on a lake-262 

wide scale (Koblmüller et al., 2015, 2019), and there is no reason to assume this would be different in 263 

Lates spp..  264 
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The propensity of Lates to diversify in lakes becomes further evident from L. macrophthalmus and L. 265

longispinis, endemics of Lakes Albert and Turkana, respectively, where they probably diverged from, 266 

and occur in sympatry with, L. niloticus. As in Lake Tanganyika, the Lates species in these two smaller 267 

and younger rift lakes diverged in their habitat preferences. Whereas in both lakes L. niloticus 268 

appears to be most common in inshore waters, L. macrophthalmus and L. longispinis are smaller 269 

offshore species (Harrison, 1991). Even if morphologically intermediate individuals seem to exist in 270 

these lakes, the little genetic data available on L. macrophthalmus and L. longispinis suggest that they 271 

are indeed distinct, recently diverged species (Hauser et al., 1998). 272 

To conclude, our multilocus phylogenetic analysis recovered phylogenetic relationships among extant 273 

Lates species that are entirely different to what has been previously suggested based on 274 

morphological data. Divergence time estimates indicate recent divergence of African taxa and a very 275 

recent colonization of and radiation in Lake Tanganyika. The observed deep divergence within and 276 

paraphyly of L. niloticus points to the urgent need of more detailed phylogeographic studies and 277 

thorough morphological investigation, of especially museum specimens, to get an idea about the 278 

natural distribution limits of the distinct L. niloticus lineages. This is particularly important in the light 279 

to various African water bodies as important food and sport fish. 280 
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Figure 1. Diversity of Lates spp. (A) Natural distribution ranges of extant Lates species (after Otero et 447

al., 2017) and sampling sites/regions for the newly sequenced African Lates individuals. Regions 448 

where L. niloticus has been introduced are not considered here. Taxa in bold are included in this 449 

study. *, These two species have been described only recently; their exact distribution range is 450 

unknown, only the type localities are indicated for these two species. (B) Lates perches are highly 451 

valued food and game fish in both commercial and artisanal fisheries. Several of the species, like L. 452 

microlepis, grow to considerable size (>1m). (C) The mythical golden perch is a very rare golden 453 

morph of L. angustifrons. (D) Alternative phylogenetic hypotheses for the genus Lates based on 454 

osteological characters (Greenwood, 1976; Otero, 2004). (E) Maximum Likelihood (ML) tree showing 455 

the phylogenetic relationships among Lates spp. based on one mitochondrial and eleven nuclear 456 

markers. As measures of nodal support bootstrap support values (for ML; only values >50 are shown) 457 

and posterior probabilities (from Bayesian inference; only values >0.7 are shown) are depicted.  458 

 459 

Figure 2. Time calibrated multispecies coalescent trees of lates perches with representatives of 460 

Centropomus used as outgroup. The consensus phylogenies from the two alternative calibration 461 

schemes are superimposed on DensiTree cloudograms of alternative sampled trees, with contrasting 462 

topologies highlighted by different colors. Nodal support is given as posterior probabilities (only 463 

values >0.7 are shown). Black dots indicate calibration points. 464 
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