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Abstract
In high-throughput omics disciplines like transcriptomics, researchers face a need to assess the
quality of an experiment prior to an in-depth statistical analysis. To efficiently analyze such
voluminous collections of data, researchers need triage methods that are both quick and easy to
use. Such a normalization method for relative quantitation, CONSTANd, was recently
introduced for isobarically-labeled mass spectra in proteomics. It transforms the data matrix of
abundances through an iterative, convergent process enforcing three constraints: (I) identical
column sums; (II) each row sum is fixed (across matrices) and (III) identical to all other row
sums. In this study, we investigate whether CONSTANd is suitable for count data from
massively parallel sequencing, by qualitatively comparing its results to those of DESeq2.
Further, we propose an adjustment of the method so that it may be applied to identically
balanced but differently sized experiments for joint analysis. We find that CONSTANd can
process large data sets with about 2 million count records in less than a second whilst removing
unwanted systematic bias and thus quickly uncovering the underlying biological structure when



combined with a PCA plot or hierarchical clustering. Moreover, it allows joint analysis of data
sets obtained from different batches, with different protocols and from different labs but without
exploiting information from the experimental setup other than the delineation of samples into
identically processed sets (IPSs). CONSTANd’s simplicity and applicability to proteomics as well
as transcriptomics data make it an interesting candidate for integration in multi-omics workflows.

Introduction

Any omics experimentation is prone to systematic effects (bias) introduced by latent or known
factors, such as protocol and instrument variation. When the variation introduced by such a
factor is of the same (or even higher) order of magnitude as the biological variation, then this
effect must be accounted for. Otherwise, the biological effect under scrutiny can be obscured
and wrong conclusions can be derived from the data. Normalization procedures or statistical
analysis methods can be used to remove this bias.

RNA-Seq is a high-throughput technology used in transcriptomics that allows the relative
quantification of thousands of RNA molecules simultaneously. A standard RNA-Seq workflow
typically consists of the following steps: (1) Extraction, purification and quality control of the total
RNA from the organism and experimental conditions of interest. (2) Purification of the relevant
pool of RNA, e.g. enrichment of poly-A containing mRNA, or depletion of ribosomal RNA. (3)
cDNA generation: the relevant RNA is converted to (more stable) cDNA using reverse
transcription. (4) Library preparation and PCR amplification: adapters are added to the
RNA/cDNA molecules of interest. These adapters typically contain sequences for compatibility
with the sequencing platform, as well as barcodes to allow multiplexing of samples during a
single sequencing run. After these adapters are added, we call the pool of molecules a ‘library’.
If needed, the size of this library can be amplified with PCR. (5) Sequencing: sample libraries
are pooled together and the molecules are sequenced in a massive parallel fashion. Millions of
sequencing reads are generated. (6) Reads are demultiplexed if necessary and then
bioinformatically mapped to the reference genome and gene read counts are summed per
sample. (7) This data is merged to a count table, where the rows represent the genes, the
columns the sample, and the values the gene read counts. This count table needs normalisation
at two main levels before differential expression can be appropriately calculated: the library size
and the experimental bias.

The first source of systematic variation, library size, corresponds to the number of reads for
each sample. This number typically varies across samples, because it is impossible to add
exactly the same number of molecules from each library to the sequencing instrument. The
simplest way to correct for this would be to divide by the number of mapped reads, however,
this can result in skewed differential expression results. Indeed, highly expressed genes have
proportionally more reads, and if these vary systematically in expression level between
conditions, they will disproportionately affect the number of reads, rendering the correction
invalid. Hence, RNA-Seq data analysis software uses more sophisticated methods to correct for



this. The core principle is always that the majority of genes do not change expression between
samples. In DESeq2[1], this is done by first calculating the geometric mean read count for each
gene across all samples. Then the read counts for each gene in a sample are divided by the
mean across all samples to create a ratio. The final correction factor for each sample is the
median of the ratios calculated for each gene in the sample. An alternative method, edgeR[2],
uses trimmed mean of M-values (TMM) as its default normalization. Another common
normalisation technique (though mostly used in micro-array processing) is Quantile
normalisation, where the distributions of gene expression levels are made identical in statistical
properties, across samples.

The second source of systematic variation, experimental bias, is caused by variables and
confounders linked to the experimental particularities and design. For example, large
experiments could be split over different days, labs or handling personnel which could all
introduce unwanted sources of variation. In addition, the samples could be derived from a
population of individuals with different age categories, different genetic backgrounds, etc. Most
RNA-Seq analysis software can, however, account for this. For example, DESEQ2 and edgeR
fit a negative binomial generalized linear model, which allows correction for covariates by
explicitly adding them as factors to be fitted in the final model. As these factors need to be fitted
alongside the biological variation, they are only available at the end of the statistical analysis.
Moreover, their effects must still be explicitly applied to the partly normalized quantification
matrix in case the researcher wants to use the latter to, for instance, make visualizations.

The subject of this paper is CONSTANd, which was originally built for the proteomics use case,
presented by Maes et al.[3] as a method for the normalization of isobarically-labeled mass
spectra that are being multiplexed in a pooled sample. Its main rationale is to correct for all
sample-wise and peptide-wise systematic effects as well as scaling all quantification values to
the same order of magnitude. To do so, it relies on three constraints: in the quantification matrix,
all column sums should be equal, all row sums should be fixed to some value (identical across
multiplexes) and this row sum value should be the same for all rows. Even though these
constraints seem mutually exclusive, it is possible to suffise all three through constrained
standardization (CONSTANd), a variant of the Iterative Proportional Fitting Procedure (IPFP)
described by Deming and Stephan[4]. The second rationale of this normalization is that the
quantification values in the same ‘run’ are identically affected by the same systematic variation,
unlike those from other runs. As an immediate consequence of the two rationales, one can
choose the constraint constants (row and column sums) such that normalized measurements
from different runs may be directly combined for further analysis. Although the balance between
conditions should be identical across such runs (e.g. 4vs2 cannot be combined with 3vs3), a
novel adaptation detailed in this article does allow them to have different sizes (e.g. combine
4vs4 with 3vs3). Note that all of this is possible because CONSTANd can correct for both for the
sample size and the experimental bias. Our main conjecture is that the CONSTANd
normalisation method can also be applied on data from other types of -omics fields that do not
strictly require multiplexing (because of excellent technical reproducibility). This will require a
generalization of the ‘run’ from proteomics to an ‘identically processed (sub)set’ (IPS) of
samples, where we explicitly exclude the systematic (biological) effect/treatment of interest from



the concept of ‘processing’. In other words, samples in an IPS have been subject to identical
experimental protocols that introduce little or no bias between them, so that the (biological)
effect of interest ought to be the main source of systematic variation between the samples. In
this manuscript, we demonstrate that CONSTANd is indeed suitable for RNA-seq experiments
by applying it to three data sets of varying size, organism, and complexity. We also benchmark
its performance compared to DESeq2, since it is considered the ‘golden standard’ and other
methods have been shown to attain similar performance[5]. The quality of the normalisation is
evaluated with principal component analysis (PCA).

Results
We compare PCA plots and hierarchical clustering dendrograms of raw count data, DESeq2-
normalized data and CONSTANd-normalized data from three different RNA-seq experiments.
Note: In order to properly visualize data normalized for both library size and experimental biases
by DESeq2, one first needs to explicitly remove the experimental bias by calling the
‘removeBatchEffect’ function, after applying the ‘DESeq’ function. The default DESeq2 PCA
plot only accounts for library size normalisation, and would not be a fair comparison for
DESeq2’s ability to correct for experimental biases.

Leishmania (Cuypers et al.[6])
The Leishmania data set was generated in-house on a single instrument, in a single run. A total
of 16 samples were prepared by two different library preparation methods, spliced leader
sequencing (SL) and Illumina TruSeq (IL), each contributing an IPS of 8 samples. Each IPS
contains 4 samples of each of two life stages (LOG and STAT) of the same Leishmania strain.

Figure 1 shows how both DESeq2 and CONSTANd succeed at removing the experimental bias
that is present in the raw data due to the different library preparation methods, and uncover the
biological differences between the two life stages.

Figure 1: While the PCA does not group raw (non-normalized) data samples in the Leishmania
data set (although they are separable according to library preparation method, see Fig. S5),
both DESeq2 (after also correcting for experimental bias) and CONSTANd succeed at



separating them according to their life stage on PC1. The PC2 axis in the CONSTANd plot was
inverted to increase comparability.

Mouse (Sarantopoulou et al.[7])
The Mouse data was taken from a publicly available data set generated on multiple runs, in a
single site (lab). A total of 18 samples were prepared using three different library preparation
methods (Pico, V4, TruSeq), corresponding to three separate runs, each contributing an IPS of
6 samples. Each IPS contains 3 samples (technical replicates from those in the other two IPSs)
of each of two treatments (ILB and UNT).

Figure 2 shows how both DESeq2 and CONSTANd succeed at removing the experimental bias
that is present in the raw data due to the different library preparation methods, and uncover the
differences between the biological groups. This result was unexpected, because Sarantopoulou
et al. performed the same analysis using DESeq2 and did not find grouping based on condition.
However, in the Supplementary Information we argue that they have probably accidentally used
non-normalized quantification values during some of their visualizations.

Figure 2: While the PCA groups raw (non-normalized) data samples according to library
preparation method (see Figure S2), both DESeq2 (after also correcting for experimental bias)
and CONSTANd succeed at separating the samples in the Mouse data set according to their
biological condition on PC1.

Human (Li et al.[8])
The Human data was taken from a publicly available data set generated by multiple runs, in
multiple sites (L, R, V, W). A total of 50 samples were prepared, of which 32 in site W using two
different library preparation methods (RiboDepletion, PolyA). Each lab contributes to an IPS of 6
samples (all RiboDep), except for lab W which gives rise to two IPSs (corresponding to RiboDep
and PolyA): 16 samples each. Each IPS contains 3 samples (technical replicates from those in
the other two IPSs) of each of two biological tissues A (pooled tumor) and B (brain tumor),
except for the IPSs from site W which contain 4 samples of each A, B, C=¾A+¼B, D=¼A+¾B.



Figure 3 shows how both DESeq2 (runtime: about 120s) and CONSTANd (runtime: <1s) largely
succeed at removing the site and library preparation bias that are present in the raw data (see
also Fig.S6 and Fig.S7), and instead highlight the differences between the biological groups.
Even though sample types C and D were present in only one site, this did not throw off either
DESeq2 nor CONSTANd. All sample types A, D, C, B are spread out along the first principal
component axis as one would expect based on their constituent fractions of pooled tumor and
brain tumor (1:0, 0.75:0.25, 0.25:0.75, 0:1, respectively). In this case, the samples from site W
were also split into two IPSs according to library preparation type for CONSTANd normalization.
However, in the case where we normalize them together, that secondary experimental bias is
still subordinate to the biological effect, as discussed in the Supplementary Information. The
variability in samples from site W is noticeably larger than those from other sites, but Fig. S8
proves that this is not due to the presence of sample types C and D.

Figure 3: While the PCA only partially and only weakly groups raw (non-normalized) data
samples according to all influential factors (see als Fig. S6 and Fig. S7), both DESeq2 (after
also correcting for experimental bias) and CONSTANd succeed at separating the samples in the
Human data set according to their biological condition on PC1.

Discussion
In this manuscript, we illustrated that CONSTANd - an algorithm initially conceived to normalize
label-based, multiplexed proteomics data - can also operate equally well on RNA-seq data. We
illustrated this through analysis of three data sets of varying size, organism and complexity, and
through comparison of the results with those of DESeq2, the current golden-standard software
in the RNA-Seq field. All of our results clearly suggest that DESeq2 and CONSTANd are
successful and comparable in their ability to properly normalize RNA-seq count data by
removing all systematic bias while leaving effects of biological interest intact.

The results depicted in Fig. 3 and Fig. S1 of the Human data set indicate that it is indeed
appropriate to delineate CONSTANd’s IPSs according to putatively influential latent factors in
the data like site and library preparation method. In practice, these would be exactly those
factors which one would use in the statistical model required by DESeq2, so this does not
require any additional effort. In any omics experiment based on relative quantitation, there is



always a level in the experimental set-up at which the samples can be put into IPSs. For labeled
proteomic data, this level is defined by the pool of samples that are multiplexed. For other,
potentially non-multiplexed types of data, this level is not clearly defined, but depends on the
factors that introduce experimental bias in the data. One word of caution: even when technical
reproducibility of instrumentation is excellent, a maintenance event or change in consumables
may trigger a systematic effect. In such cases, still, the samples measured prior and after this
event can be considered as two IPSs.

We deem CONSTANd is very easy to use for the following four reasons.
First, it performs all necessary data transformations in one procedure: the library size correction,
the removal of experimental bias, and a magnitude-rescaling whose effect on the variance
resembles that of vst. This stands in contrast with DESeq2, where each step requires a
separate action by the user. Unifying these steps prohibits users from making mistakes, which is
a non-negligible feature as we see demonstrated here by the putative mistake we have found
(see Supporting Information) in the report by Sarantopoulou et al.[7], published in Nature
Scientific Reports. We leave the assessment of any scientific implications up to the authors.
Second, CONSTANd’s methodology and implementation are extremely straightforward to
understand: matrix raking as opposed to the statistical framework behind (generalized) linear
models (GLMs). Even though the library size correction in DESeq2 is comparable in simplicity,
any experimental biases (such as batch effects) need to be explicitly modeled in the GLM.
Second,
Third, the normalization of different IPSs is done entirely independently. Therefore, in case one
has an experiment spanning multiple instrument runs or even labs, one could immediately use
CONSTANd after the data acquisition of the first part of the experiment as a QC step. Once all
data has been collected and individually normalized, one only has to merge the output tables.
This stands in contrast with model-based approaches like DESeq2, where one would have to
re-specify the statistical model at each step and re-run the entire computation if one wants to do
such preliminary analyses in addition to a final analysis. This is a step towards a faster analysis
of massive parallel sequencing experiments.
Fourth, we have shown that CONSTANd is fast: its total runtime on all data of the Human data
set was less than one second, which is more than two orders of magnitude shorter than the time
it took DESeq2 to get to the point where a meaningful visualization of normalized data could be
produced. This speed is a critical trait for any method that aims to quickly triage data sets
according to quality and added value in a high-throughput field of study like transcriptomics and
other -omics disciples alike.

Taking everything above into consideration, we believe that this normalization method would
also be an excellent candidate for use in other -omics disciplines. CONSTANd’s putative
applicability to these disciplines could enable the uniformization of the normalization layer in
multi-omics studies.



Methods

CONSTANd: a method borrowed from different fields.
CONSTANd is a data-driven normalization method for relative quantification experiments
developed by Maes et al.[3]. Initially, CONSTANd was tailored towards the needs of multiplexed
experiments in mass spectrometry-based proteomics. In this set-up, all proteins are digested in
the wet lab and the resulting peptides are marked by an isobaric label whose type is unique for
each sample. The samples are then multiplexed in a pool that is then measured and further
analyzed. Three important requirements are derived from the nature of the scientific question
(studying differential expression between proteomes) and the restrictions of wet lab procedures
(requiring multiple instrument runs). Note that the manuscript by Maes et al.[3] mentions only
two requirements because the third was included in the second.
First, to make quantification values comparable between different samples within a multiplex,
we need to take into account that each is measured in proportion to the total size of that
sample’s proteome. We are not interested in how many peptide or protein copies were in the
test tube, but rather we would like to know whether there would be more or less of each type
when comparing between equally-sized proteomes corresponding to different conditions of
interest.
Second, in order to compare these values between different multiplexes, we need to also make
sure they are not dependent on any processing steps that influence which parts of the proteome
are measured and to what extent. Therefore, we need to also express each quantification value
of a single peptide within a sample as a proportion of the total abundance of that peptide across
all samples of the same multiplex, and make these total abundances uniform across multiplexes.
Third, we do not want any protein to make disproportionate contributions to the proteome size
for which we will correct (first requirement), nor to any visualizations (e.g. PCA plot) we will
make. For instance, having a high quantification value is not equivalent to being abundant in-
vivo since some peptides/proteins are more prone to getting measured than others. Therefore,
we will rescale the magnitude of all observations by fixing all total abundances from the second
requirement to the same value.
These three requirements are translated into constraints on the quantification matrix as follows:
1. For a particular sample: all intensities across the list of peptides should sum to m/n with

m the number of peptides (rows) and n the number of multiplexed samples (columns).
2. For a particular peptide: all intensities across samples from the same multiplex (rows)

must sum to the same fixed value across all multiplexes.
3. These row sums which are fixed across multiplexes should also be fixed to the same

(arbitrary) value across all rows in each multiplex, which we choose to be one.
The careful, more mathematically inclined reader may notice that subjecting the quantification
matrix to the first constraint prohibits it from satisfying the second and third, and vice-versa.
Remarkably, though, there are several ways to circumvent this and solve such a constrained
optimization problem, but CONSTANd employs this principle of ‘matrix raking’. In econometry
this method is known as the iterative proportional fitting procedure (IPFP[4]) or also as the RAS
procedure. In fact, RAS is a specific, very simple and computationally efficient implementation of
the IPFP, first described by Stone et al.[9]. In fact, the pseudo-code of CONSTANd is depicted



in Fig. 4 and comprises only a handful lines of code. The procedure iteratively rakes the original
data matrix by each step re-scaling all values in each row or column so that their mean equals
the ‘target’ value 1/n, until the L1-norm of the difference between consecutive K matrices is
small enough. The convergence is log-linear, so that typically after 10 to 20 iterations one
obtains the final, normalized matrix K.

Figure 4: The CONSTANd variant of the RAS implementation of IPFP is very simple: it takes up
only a handful lines of code. The mean here is defined as the ‘nanmean’, which ignores missing
values. The authors believe a picture can say a thousand words even if, ironically, in this case it
exists of nothing but a handful of words.

There are three assumptions the input data must adhere to. These apply to most data-driven
normalization algorithms, but for completeness we mention them in a nutshell: (I) Most
peptides/proteins are not differentially expressed; (II) The amount of overexpression in the data
is roughly equal to the amount of underexpression; (III) The magnitude of any systematic bias is
directly proportional to the intensity of the measurement. Further mathematical details are
available in Maes et al.[3], and the up-to-date (see next section) online implementation of
CONSTANd as well as detailed documentation are available at qcquan.net, where it also
appears as part of the QCQuan proteomics workflow[10].

CONSTANd: now applicable to differently-sized runs.
This rationale of CONSTANd is sensible in case of labeled data and multiplexed samples as
laboratories have only limited freedom to choose the size of the labeling-cassette. The

https://www.qcquan.net


disadvantage of the ‘original’ CONSTANd described above is that one cannot jointly analyze
experiments that are balanced (as they ought to be) but are differently sized, e.g., 3vs3 samples
in a run versus 5vs5 samples in a run. This is because the row and column means of the
different experimental cassettes were constrained to 1/n for different values of n (6 and 10,
respectively). A straightforward, yet effective fix for this problem is to make the method invariant
to the number of columns in a run by setting the row and column mean target value equal to 1,
or in other words fixing n=1 in the constraints, regardless of experiment size. This allows one to
first separately normalize and then jointly analyze multiple experiments of different sizes, as we
demonstrate on the Human data set in this manuscript.

Translation to a transcriptomics context
Transcriptomics data is generated in a completely different way then proteomics data. Despite,
there are quite some similarities in the data that comes out of both technologies. Both are semi-
quantitative -omic profiling technologies which in the end generate an -omics matrix in which the
columns represent the samples, the rows the transcripts/proteins, and the intersection a
quantification. In proteomics, these quantifications are mass-spectrometry based intensities,
while in RNA-Seq these are read counts obtained by massive parallel sequencing. Importantly,
in both disciplines a very common type of scientific question is that of differential expression
between two or multiple types of -omic profiles, which requires no absolute but only relative
quantification (with which CONSTANd is compatible). In quantitative proteomics, unless one
wishes to use reference samples, multiplexing and labeling is an absolute necessity, because
the technical variability at platform level (due to, e.g., slight variations in a peptide’s elution
profile in the LC column, during LC-MS) between all sample measurements is enormous. In
transcriptomics, however, RNA molecules are converted to small DNA fragments during library
preparation. In contrast to peptides, these have very similar and reproducible properties, so that
they do not meaningfully affect the experimental outcome. Therefore, even an entire series of
RNA-seq sequencing runs may under the right conditions be treated in a similar fashion as the
multiplexed proteomics samples from a single run. By ‘right conditions’ we mean that there
exists no significant source of variability that may distinguish one sample from the other; they
form an identically processed set (IPS). A counterexample: samples prepared using a different
library preparation protocol, or the same library prep method at different moments, would not be
in the same IPS. Other possible influential factors include ischemic time, centrifuge time, day
effects, type of instrument, maintenance, etc. In general, the factors that delineate each IPS are
exactly those that (might) constitute an additional source of (significant) variability. Although it is
difficult to record all these factors, it is reasonable to treat samples that are measured together
over a short period of time with the same protocol as belonging to the same IPS. In conclusion,
we may apply CONSTANd separately to each count matrix corresponding to a specific IPS
(which may span multiple runs), and afterwards re-combine them for joint analysis.

Evaluation procedure
In order to evaluate whether the updated CONSTANd method is suitable for normalization of
RNA-seq count data, a comparison with the state-of-the-art method DESeq2 is performed on
three selected data sets. We also compare the result of the normalisation with the raw,
unnormalized data. The measure of merit used for this comparison is based on the visual



separation of the samples in PCA plots and/or hierarchical clustering dendrograms. The
selected datasets are chosen because of the presence of three characteristics. First, the data
sets are subject to an effect that is of scientific interest, like a treatment effect or biological
condition. Second, there are biological replicates corresponding to this factor of interest that
ought to group together. Third, there are one or multiple pronounced experimental biases due to
differences in processing steps (e.g., different library preparation or instrument) that might
jeopardize the grouping of these biological replicates. In a principal component analysis it is the
idea to project the high-dimensional data set in an unsupervised manner onto a lower-
dimensional space so that the information (variation) in the data becomes more pronounced. In
an ideal world the PCA plot, which projects the data onto the two most information-rich
dimensions, would reveal that biological replicates cluster together. The first principal
component would separate the clustered biological replicates in relation to the effect of interest,
whilst any experimental bias is removed from the data. Instead, without removal of such
processing effects one risks grouping of the biological replicates according to the different
processing factors they correspond to. A completely analogous rationale applies a fortiori to the
interpretation of the hierarchical clustering dendrograms (with Euclidean distance metric),
because they are a representation of information/variability from all principal components
instead of just the first (though most important) two.

For all data sets in this manuscript, before normalization, we removed genes for which half or
more of the count records were equal to zero. Any raw, unnormalized data were scaled by the R
software’s ‘prcomp’ function when making the PCA plot. Similarly, any DESeq2-normalized data
had their experimental bias explicitly removed using the ‘removeBatchEffect’ function from the
‘limma’ R package, and underwent a variance stabilizing transformation using DESeq2’s ‘vst’
function, but were not scaled by prcomp. Any CONSTANd-normalized data were not further
modified before making plots, except for merging the count tables from multiple IPSs and zero-
imputating any remaining missing values.

Materials

Leishmania data (Cuypers et al.)
A first data set was generated in-house and comprises 16 NGS samples as described in
Cuypers et al.[6] that exhibit a severe experimental bias. A bias was artificially introduced when
evaluating two alternative protocols for RNA library preparation. Eight Leishmania samples from
two different growth stadia (LOG and STAT) were prepared with two library preparation
methods and analyzed on the same NGS device. The library preparation methods spliced
leader sequencing (SL) and Illumina TruSeq (IL) each delineate an IPSto which we apply
CONSTANd separately, while the two life stages LOG and STAT are considered of biological
interest. The same factors were specified in the model used by DESeq2. Any other remaining
factors are ignored, because they would be confounded with a library preparation method.



Mouse data (Sarantopoulou et al.)
In their comparative study of library preparation methods, Sarantopoulou et al.[7] performed
RNA-Seq on liver samples from six twelve-week old male C57/B6J mice. Three were treated
with IL-1β (ILB) and the other three with saline (UNT) by intraperitoneal injection. They then
“performed RNA-seq on those 6 samples using three different library preparation kits. [...] (1)
Pico: [...] Takara Bio SMARTer: SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input
Mammalian, with rRNA depletion. [...] sequenced on Illumina HiSeq 4000. [...] (2) V4: [...]
Takara Bio SMART-Seq: SMART-Seq v4 Ultra Low Input RNA Kit, with PolyA selection for ribo
depletion. [...] sequenced on Illumina HiSeq 4000. [...] (3) TruSeq: [...] Stranded mRNA Sample
Preparation Kit, with PolyA selection for ribo depletion. [...] sequenced on Illumina HiSeq 2500.
[...] The experiment with the libraries prepared with the TruSeq kit was performed by Lahens et
al.[11]. The Pico libraries were reproduced to repeat the experiment and ensure reproducibility”.
More information is available in their publication’s Methods section.

We obtained their count data (comprising 16184 genes observed in each of 18 samples) from
the NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) with accession
number GSE124167, which entails one count matrix per library preparation method. Then, we
applied CONSTANd to each matrix separately, which means we let each library preparation
method delineate an IPS. The distinction between ILB- and UNT-treated samples is considered
a factor of biological interest. The same factors were specified in the model used by DESeq2.
Any other remaining factors are ignored, because they would be confounded with a library
preparation method.

Human data (Li et al.)

This data set is a subset from the study by Li et al.[8], where standardized, commercial RNAs
were sent to multiple sites (we consider sites L, R, V, W) for RNA-seq library preparation using
ribo-depletion and/or poly-adenylation. A HiSeq 2500 was used for the libraries (both ribo-
depletion and poly-adenylation) from site W; all other Illumina libraries (only ribo-depletion) were
sequenced on a HiSeq 2000. “Universal Human Reference RNA (740000, Agilent Technologies)
and Ambion FirstChoice Human Brain Reference RNA (AM6000, Life Technologies) were used
as the primary input RNAs for this study. These samples were labeled as [...] A and B,
respectively. [...] External RNA Control Consortium (ERCC) "spike-in" synthetic transcripts were
added at manufacturer recommended amounts (4456739, Life Technologies) to A and B
standards". Then, they produced samples C and D by mixing a portion of samples A and B in
3:1 (C) and 1:3 ratios (D), respectively, as depicted in Figure 6. More information is available in
their publication’s Online Methods section.



Figure 6: In the Human data set study, a total of 50 technical replicates of 4 types of samples
(17xA, 17xB, 8xC, 8xD) were sequenced at 4 different sites using ribo-depletion-based libraries.
At site W, some were also sequenced using a poly-adenylation-based library. Image source:
adapted from Li et al.[8].

We obtained their count data (comprising 35779 genes observed in each of 50 samples) from
GEO with accession number GSE48035, which entails one count table including all samples.
We split that table into different tables according to sequencing site. For site W, we considered
both the case where we left its site-specific table intact, as well as the case where we split it
further into two tables according to library preparation method. As such, the IPSs are defined
according to site and/or library preparation. We consider the distinction between the types of
replicates A, B, C, D to be of biological interest. The same factors were specified in the model
used by DESeq2. Any other remaining factors are ignored, because they would be confounded
with either a site or a library preparation method.
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Supplementary Information

CONSTANd result without splitting Human data according to library preparation method
Figure S1 illustrates how a factor that introduces variability should delineate the IPSs. Even
though all samples were collected with the same instrument in the same lab (W), the difference
in library preparation protocol introduces enough variability to separate the samples according
to library preparation in PC2. Hence, we should carefully take all such factors into account when
defining our IPSs for normalization in a transcriptomics context in order to appropriately analyze
the data.

Figure S1: Splitting the count matrix of site W of the Human data set into two matrices based on
the library preparation protocol and normalizing them separately will introduce a clear distinction
between those samples in PC2.

Sarantopoulou et al. did not use removeBatchEffects in DESeq2 analysis of Mouse data
Strangely enough, the clustering dendrogram from Sarantopoulou et al.[7] corresponds well to
our dendrogram of the original (un-normalized) data. This is unexpected, since the following
quote (clearly suggesting the data ought to be normalized) appears in their discussion of this
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figure: “Hierarchical clustering by normalized expression correlation of all 18 samples shows
clear distinction of the samples first by kit type and secondly by treatment. [...] Thus the
differences between the kits are more pronounced than the differences between the samples, in
spite of a powerful treatment affecting thousands of genes with large effect sizes.”

Figure S2: The hierarchical clustering (right) of the so-called normalized expression data taken
directly from Sarantopoulou et al.[7] looks suspiciously similar to our clustering (left) of raw data.

Moreover, after our own DESeq2 (as well as CONSTANd) normalization we had obtained a very
clear separation on PC1 due to biological condition, as shown in Fig. S3.

Figure S3: our hierarchical clustering of DESeq2-normalized data perfectly separates the
samples based on biological treatment (ILB: red, UNT: blue).

This leads us to believe that the data depicted in the figure from Sarantopoulou’s paper has not
had its kit effects removed by DESeq2’s removeBatchEffects function. We can double-check
that last claim by reproducing Sarantopoulou’s result through not removing the kit effect
ourselves. Indeed, in Fig. S4 we obtain a separation by kit on PC1. This putative mistake is a



clear example suggesting that relatively simple and easy-to-use methods like CONSTANd may
be preferred (at least in the triage phase) over more complicated and thus error-prone methods.

Figure S4: when not using removeBatchEffects after DESeq2, both the PCA plot and
hierarchical clustering show the library preparation method as the primary source of variability.

Additional figures

Figure S5: The PCA partially shows the raw data from the Leishmania data set is separable
based on library preparation method. Both DESeq2 or CONSTANd normalization are able to
largely remove this systematic effect.



Figure S6: The PCA partially separates raw data from the Human data set based on library
preparation protocol. Both DESeq2 or CONSTANd normalization are able to largely remove this
systematic effect.

Figure S7: The PCA partially separates raw data from the Human data set based on site. Both
DESeq2 or CONSTANd normalization are able to largely remove this systematic effect, except
for the pooled tumor (A) samples from site W (purple, bottom-left; see Fig.5 in the main text).



Figure S8: Even when considering only sample types A and B (omitting C and D to avoid
confounding), the variability between samples from site W is still noticeably larger than those
from other sites.


