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Abstract

For differential expression studies in all omics disciplines, data normalization is a crucial

step that is often subject to a balance between speed and effectiveness. To keep up with

the data produced by high-throughput instruments, researchers require fast and easy-to-

use, yet effective methods that fit into automated analysis pipelines. The CONSTANd

normalization method meets these criteria, so we have made its source code available for

R/BioConductor and Python. We briefly review the method and demonstrate how it can

be used in different omics contexts, for experiments of any scale. Widespread adoption

across omics disciplines would ease data integration in multi-omics experiments.

Keywords: normalization, transcriptomics, quantitative, proteomics, mass spectrome-

try, data-driven, multi-omics, workflow, quality control

Introduction

Due to the use of modern, high-throughput instruments in most omics disciplines, the

data analysis has become one of the most labour-intensive steps, requiring a high level

of expertise and effectively creating a bottlenck1 2 3. Typically, omics – and specifically in

this paper: transcriptomics and proteomics – data analysis can be split into two parts:

characterization and quantification. Although a variety of characterization software exists,

this step is rather monolithic and usually highly automated. There is also no shortage of

quantification software applications4, although here the user typically has more freedom

to choose the optimal steps involved.

Although the quantification workflow can differ significantly between omics disciplines,

it always involves a normalization step – responsible for removing systematic errors (bias)

due to experimental variation – which can make or break the analysis. In differential ex-

pression studies – where one is interested in differences between groups of biological

samples with different phenotypes – it is sufficient to do a relative quantification between
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the biological samples or conditions, as opposed to revealing absolute abundances. One

can take either a simpler, purely data-driven normalization approach, or a more complex

approach based on statistical models as f.i. proposed by Oberg et al. 5 and Hill et al. 6

et al. for proteomics. Although based on a very rigorous statistical framework, a model-

based approach can be computationally intensive and in the proteomics case even be-

come computationally infeasible as the number of features runs in the thousands5. On

the other hand, data-driven methods are sometimes limited in efficacy and become un-

suitable when combining data from multiple runs, despite their popularity and widespread

use (e.g., quantile normalization). As such, choosing an appropriate normalization method

involves a balance between speed and effectiveness, though often one resorts to data-

driven approaches due to the ease of implementation – at least, if the method is publicly

available. Fortunately, some methods like NOMAD7 (only for specific proteomics experi-

ments) and median sweeping8 (generally applicable) seem to be both fast and effective,

or at least strike an excellent balance. Amethod we developed, CONSTANd9 seems to be

on-par with normalization by median sweeping, DE-Seq2 (in transcriptomics10) and linear

mixed models, but comes with few caveats or additional processing steps (e.g. no multi-

ple stages of normalization, nor data transformations). It had already been implemented

in QCQuan11, an online workflow for proteomics, and is also available as a standalone

version on the same website (qcquan.net/constand).

CONSTANd has been updated since its initial publication and to make the method fully

integratable in researchers’ in-house workflows, we have now made it available as an R

BioConductor package12 and for Python via GitHub13. In this technical note, we briefly

review the updated methodology and when to use it, in a generalized context (i.e., not tied

to a particular omics discipline). Then, we demonstrate how to use the R BioConductor

package on both a small-scale proteomics data set from a single instrument run, as well

as a larger transcriptomics data set spanning multiple instruments, labs, and wet lab pro-

tocols. To do this, we also review the recently introduced concept of ‘identically processed
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subsets’ (IPSs)10, again in a generalized context.

Materials & methods

IPS

Although CONSTANd normalization has only been shown to work on transcriptomics and

proteomics data, it is conjectured to work on any type of quantitative omics data set as

long as it is applied to each IPS separately. An identically processed subset (IPS) is a col-

lection of quantification values (usually in a matrix) w.r.t. some omics features (e.g., genes

or proteins) that belong to a subset of biological samples which have been identically pro-

cessed in the wet lab and by the instrument, i.e., exposed to exactly the same (significant)

sources of variability. An extreme example is multiplexing, where samples are labeled

and then pooled for simultaneous processing. This guarantees that only the biological

systematic effects (which we exclude from aforementioned sources) can be restricted to

a particular part of the IPS’ quantification matrix (e.g., all genes related to cell division in a

sample of cancerous cells). All other remaining systematic effects in an IPS are due to ex-

perimental biases which affect only entire samples (columns; e.g., library size variations in

transcriptomics) or features (rows; e.g. ionization efficiency in mass spectrometry-based

omics).

CONSTANd v1.1

TheCONSTANdmethod (updated since the initial publication of v1.0, see further) removes

these remaining experimental biases within each IPS and simultaneously removes any

bias affecting entire IPSs, by imposing two constraints on each IPS’ M × N matrix of

quantification values:

• the mean of all observed values in each row is 1;
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• the mean of all observed values in each column is 1;

and missing values are ignored. These constraints are theoretically impossible to accom-

plish in a finite number of operations while keeping ratio’s between quantification values

meaningful. However, there exists an iterative proportional fitting procedure (IPFP)14 to

get a matrix arbitrarily close to satisfying both constraints while conserving the quantity

xr1c1xr2c2

xr2c1xr1c2
, where xij is the value at position i, j. The meaningfulness of this conserved

quantity is not immediately obvious, but the RAS15 implementation of the IPFP is actually

very intuitive. It is sometimes called ‘matrix raking’ and is used in CONSTANd as follows:

1. Divide each of the M rows by its mean.

2. Divide each of the N columns by its mean.

3. Repeat until all such means are close to 1, within some given precision.

One could loosely state that the column operations more or less correspond to a sample

size correction, and the row operations to a standardization. If the row and column oper-

ations are collected in diagonal matrices R and S, respectively, the normalized matrix K

can be written in terms of the original matrix A as K = RAS.

Note how CONSTANd sets the average quantification value to 1 in each row and col-

umn, independently of the matrix sizeM×N . This particular choice constitutes the update

we have made to the algorithm since its inception (v1.0), when these targets used to be

1 and M
N
, respectively, and average value 1

N
. However, the matrix size independence of

(updated) version 1.1 allows comparisons between measurements of the same feature in

a differently sized matrix (but with the same balance). For instance, if one conducted two

instrument runs of condition A versus B, one can now compare the results from a 3vs3 run

with those of a 4vs4 run (but not, e.g., with a 4vs2 run) without making further adjustments.
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Properties

The procedure described above has a couple of noteworthy effects on the measurements,

leading to proprties which we list here. First, as mentioned earlier, CONSTANd ‘normal-

izes’ the data, in the strict sense that it removes unwanted biases, while keeping values

meaningfully comparable within the same feature and even across IPSs, but not across

features. The latter is because secondly, the method entails a mild form of standardiza-

tion: the observations in each feature are centered around the mean value 1, but this is

done by a single multiplication (division) instead of substracting the mean and dividing by

the standard deviation like in z-scores. Moreover we divide by the mean instead of the

standard deviation, which somewhat resembles a variance stabilizing transformation16;

dividing by a measure of the magnitude brings the variances ‘on the same scale’ and this

‘captured variability’ is stored in the row multipliers R, which can be of use in visualiza-

tions like the MA plot (see further). As for CONSTANd’s effect on log2-transformed fold

changes: this can be interpreted roughly as an up or down shift, as shown in Figure S2.

Lastly, there are two additional advantages to this ‘standardization’. One is that the distri-

bution of values is rendered more symmetrical (see Figure S3), which removes the need

for a log-transformation. The other is that one can look at an isolated value in the normal-

ized matrix and immediately judge whether it represents an up- (> 1) or down-regulated

(< 1) feature measurement. Lastly, Figure S3 shows how the normalization effect can be

roughly interpreted as a shift in fold changes.

Use cases

As with all data-driven methods, CONSTANd relies on the entirety of all measurements to

act as an ‘internal reference’ and uses them to compute a central tendency. Therefore, the

data to be normalized must adhere to the following assumptions, which may all be verified

in an MA plot (e.g. Figure 3a) of the raw data:
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1. Most features are not differentially expressed (e.g., housekeeping proteins). MA-

plot: the observations form a single ‘cloud’ with a dense center and less dense

edges. It is assumed that up-down shifts of the cloud are not due to biological causes

and can safely be removed from the data.

2. The amount of downregulated features is roughly equal to the amount of upregulated

ones. MA-plot: the cloud of observations exhibits a bilateral symmetry about some

axis (which is usually completely horizontal, but it may be somewhat inclined).

3. The magnitude of any systematic bias is directly proportional to the intensity of the

measurement. The axis of bilateral symmetry is a straight line (which may be in-

clined), i.e., the moving average of M-values form an (approximately) straight line.

No banana-like lines allowed.

An example of such a ‘good’ MA plot can be found in Figure 3a, and a ‘bad’ one in Fig-

ure S1.

CONSTANd works on raw intensities (not log-transformed) and assume variability and

systematic effects to work on a multiplicative scale (which justifies the multiplictive matrix

raking approach). The authors believe that this is a widespread assumption and to the

best of our knowledge there exists no method which makes a different assumption.

One may use CONSTANd to combine relative measurements from all kinds of different

samples, as long as they can be split into IPSs which all have the same balance between

the same biological conditions, although the size may vary. In principle, one could even

combine a run with experimental design balance 2vs2vs2 samples of conditions A,B,C

together with a run with balance 3vs3 samples of conditionsA,C if one drops the B samples

from the first run (and for this case also IPS) before normalization. To combine any number

and type of instrument run quantification matrices:

1. Split each matrix into IPSs (often, a matrix corresponds to an IPS).
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2. Make sure their experimental design balances are identical and drop (parts of) IPSs

if necessary.

3. Normalize each IPS separately from the others.

4. Merge the resulting matrices (inner join by features).

After the use of CONSTANd, one may proceed with differential expression testing17 as

usual, calculating log fold changes of features by taking the log2 of a ratio of normalized

intensity values. As CONSTANd is a data-driven method (not based on statistical models)

there is no formal statistical estimation of ‘effect sizes’. The fold changes are the intended

outcome variables

Data sets

In our demonstrations, we use two publicly available data sets.

The ‘Spike-in’ data from PXD000001 is obtained in the RforProteomics vignette. It is

a rather small (about 36 × 103 quantification values) TMT-labeled, single-run proteomics

data set entailing 6 different conditions (only 1 sample each) consisting of a background

and 4 spike-in proteins: “[...] (ENO) at 10:5:2.5:1:2.5:10, [...] (BSA) at 1:2.5:5:10:5:1, [...]

(PHO) at 2:2:2:2:1:1 and [...] (CYT) at 1:1:1:1:1:2”18. All things considered, this data set

is a single IPS – any systematic differences in the background (technical replicate) are

unlikely to be of significance.

The ‘ABRF’ data can be obtained by downloading the supplementary file with counts

from GSE48035 (GEO database). It is a large (about 1.2 × 106, excluding sites M,N and

conditions C,D) transcriptomics data set that entails four biological conditions ‘brain’ (A)

and ‘tumor’ (B), and then a 3:1 (C) and 1:3 (D) mixture of A and B. They have been mea-

sured at different sites (L,R,V,W,M,N), sometimes using two or more different protocols

(‘RiboDepletion’, ‘PolyA’, and others), so there are multiple IPSs. In the demonstration,

we will exclude mixed conditions C and D (not present at every site) and disregard site M
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and N (used other wetlab procedures), to illustrate how to properly subset a rather complex

data set.

Results

We havemade CONSTANd available for R4 as a BioConductor package named CONSTANd,

and for Python3 via github: https://github.com/PDiracDelta/CONSTANd-py. Here, we

use R to demonstrate the use of CONSTANd, although a Python3 script is also available

in the Supporting Information. The scripts to load and clean the data can be found in the

Supporting Information.

Figure 1: The complex ABRF data set is first split and filtered into IPSs. Samples that

cannot form an IPS with a balance identical to that of other IPSs are discarded (filtered

out). After normalizing each IPS individually, they may be merged into one large matrix of

values, comparable within each feature (row). For the intricacies of how to do this in R:

see the ABRF.R file in the Supporting Information.

A simple data set like the Spike-in can be cleaned and then normalized using R code

similar to that in Figure 2a. Asingle, multiplexed LC-MS run in proteomics is usually its own

IPS, so no data splitting is necessary. Since CONSTANd returns the normalized_data,

as well as the attained precision and the vectors R and S (row and column multipliers), it

is good practice to save its output as a separate object. With the help of PCA plots, we
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Figure 2: a) A single IPS can be easily extracted from, for instance, an MSnSet object

and immediately normalized. b) A more complex experimental design should be split into

multiple IPSs, which may be re-combined after normalization. c) After normalization, one

can still produce a meaningful MA-like plot by exploiting the feature magnitude information

in the vector R which contains the row multipliers used in CONSTANd. Note that some

features have been removed during the merge of IPSs after normalization.

can see in Figure S5 that the normalization has maximized the PC1 and PC2 distances

between dissimilar samples.

A more complex experimental design should be split into multiple IPSs, which may be

re-combined after normalization. In the ABRF transcriptomics data, we are interested in

theAvsB comparison. Figure 1 and Figure 2b show howwe first drop all samples from sites

M and N, because some of the samples there have been prepared with protocols other

than RiboDepletion and PolyA, and the remaining samples cannot constitute a balanced

IPS anymore. We also drop samples from conditions C,D (not relevant for us) from site W.

We do so before the normalization because their presence changes the design balance to

AvsBvsCvsD and thus would in principle affect the normalization outcome (although this

is an exceptional case, see Supporting Information). Then, we split the samples from site

W into two IPSs, one for each protocol. The skilled person can recognize the splitting of

the data into IPSs as an equivalent to adding fixed ‘batch’ effects to a linear model. After

independent normalization, the IPSs are merged back together (here, by inner join on

gene name) and may be compared. The PCA plots in Figure 4 show how the remaining
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variability in the normalized data is dominated by the biological conditions, suggesting

the procedure was successful. A similar conclusion can be drawn from the heatmaps of

correlations between samples in Figure S4, which suggests CONSTANd greatly improves

separation between the conditions.

Unfortunately, a regular MA plot of normalized data can look unusual (see Figure S6)

as M and A values are correlated after setting all mean row marginals to 1. This can be

remedied by using information on the feature magnitudes stored in the R vector from the

CONSTANd output to construct a pseudo-MAplot. One could either adapt the A values by

dividing byR (as in Figure 3b), or by replacing themwith the ordering inR (as in Figure S7).

(a) Regular MA plot of raw data, which seems to

adhere to the three assumptions.

(b) Pseudo-MA plot of normalized data.

Figure 3: MA and pseudo-MA plot of Tumor versus Brain from site L of the ABRF study.

After normalization, there seems to be less variability (5.14) in the M values than before

(5.87), and the artifacts (diagonal lines) in the low count region have been abolished.

Discussion

We have shown that using CONSTANd can be as simple as a one- or two-line coding

endeavour, although in more complex study designs the data sets have to be partitioned

and afterwards re-combined according to the experimental setup. The concept of the
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Figure 4: While the PCA only partially and only weakly groups raw (left) data samples

according to all influential factors, CONSTANd (right) succeeds at separating the samples

according to their biological condition (red: brain (A), blue: tumor (B)) on PC1.

IPSs provides an intuitive way of doing this: if two samples are in the same partition, they

should have been identically processed. In principle, no additional steps are required to

visualize or further use the normalized data, although we have demonstrated a trick to

improve the interpretative potential of the MA plot, which is otherwise limited. Scripts that

demonstrate the use of CONSTANd in both R and Python are available in the Supporting

Information.Although CONSTANd has only been shown to work on transcriptomics and

proteomics data, it is conjectured to work on any type of quantitative data sets as long

as it adheres to the usual assumptions for data-driven methods, mentioned in the section

on use cases. By making the method available not only as an online tool but also as

an open source project, the authors hope to ease adoption of the method in researchers’

customized workflows. Themethod should be widely tested in other omics disciplines, as it

is designed for both horizontal and vertical integrative omics19. This versatile applicability

can increase the uniformity and comparability of analytic pipelines in multi-omics studies,

leading to more comparable measures and thus better integration of results.
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Supporting Information

The following supporting information is available free of charge at ACS website http:

//pubs.acs.org

1. Why it would be acceptable to compare anAvsBvsCvsD IPS with anAvsB IPS in the

ABRF study.

2. How to use CONSTANd in Python.

3. Example of MA plot that violates all assumptions Figure S1.

4. Correlation plot of log2 fold changes Figure S2.

5. Boxplots before and after CONSTANd normalization Figure S3.

6. Correlation heatmaps of ABRF samples before and after CONSTANd normalization

Figure S4.

7. PCA plots of Spike-in data, before and after normalization Figure S5.

8. Regular MA plot of CONSTANd-normalized ABRF data Figure S6.

9. Rank-based MA plot of raw and normalized ABRF data Figure S7.

10. Text files with Python andR-code for processing data sets (ABRF.py.txt, ABRF.R.txt,

Spikein.R.txt): scripts.zip.
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The supporting information has the following contents

1. Why it would be acceptable to compare anAvsBvsCvsD IPS with anAvsB IPS in the

ABRF study.

2. How to use CONSTANd in Python.

3. Example of MA plot that violates all assumptions Figure S1.

4. Correlation plot of log2 fold changes Figure S2.

5. Boxplots before and after CONSTANd normalization Figure S3.

6. Correlation heatmaps of ABRF samples before and after CONSTANd normalization

Figure S4.

7. PCA plots of Spike-in data, before and after normalization Figure S5.

8. Regular MA plot of CONSTANd-normalized ABRF data Figure S6.

9. Rank-based MA plot of raw and normalized ABRF data Figure S7.

10. Text files with Python andR-code for processing data sets (ABRF.py.txt, ABRF.R.txt,

Spikein.R.txt): scripts.zip.

Why it would be acceptable to compare an AvsBvsCvsD IPS with an

AvsB IPS in the ABRF study.

If one were interested in the AvsBvsCvsD comparison, including the AvsB IPSs might

make the differences between A and B more robust and reliable. In principle this is not

allowed, as C,D affect the balance of the experiment. However, the malignant effect of

such a balance disturbance lies in the fact that this would change the row means in the

quantification matrices, in other words it may move the internal reference. However, in this
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experimental design the additional conditions C,D are symmetrical mixtures (1:3 and 3:1)

of all of the other conditions A,B, so the expected values of their (isolated) row means are

identical to those of just the A,B samples. Therefore, one may normalize them together,

as has been done in Van Houtven et al.S1

How to use CONSTANd in Python.

Instructions on how to install CONSTANd in Python can be found in the README file on

the project’s GitHub page: https://github.com/PDiracDelta/CONSTANd-py.

Additional Figures

Figure S1: This MA plot violates all assumptions: there is more than one cloud, there are

more upregulated entities, and the bias changes strongly in the region with small magni-

tudes (A-values).
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Figure S2: Correlation between CONSTANd-normalized values and ‘raw’ (non-

normalized) values, where ‘values’ are log2 fold changes of condition B versus A (using

rowmeans) of site L of theABRF data set. The red line is a straight line with slope 1 and in-

tercept 0, so in this example all fold changes were shifted downwards after normalization.

For details, see the ABRF.R file in the Supporting Information.
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Figure S3: In the ABRF data set, CONSTANd normalization renders the distributions of

quantification values in each sample even less skewed than taking the log2 would. The

red line (bottom panel) indicates the targeted average value of 1, and deviations are due

to the removal of features during the inner join after normalization.
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Figure S4: These heatmaps of (Pearson) correlations of non-normalized (top) as well as

CONSTANd-normalized (bottom) quantification values between samples illustrates how,

in theABRF data set, CONSTANd greatly improves the similarity of samples from the same

condition (A in red or B in blue), while improving dissimilarity of samples from different

conditions.

S-6



Figure S5: Even though the raw data (left) already exhibited a relatively logical positioning

of samples, the normalization has maximized the PC1 and PC2 distances between dis-

similar samples. For instance, 129 (low ENO) is maximally separated from 126 and 131

(high ENO) on PC1 (ENO fold change is large), while the separation between 131 and

130 (low PHO) and the others (high PHO) along PC2 (PHO fold change is low) is more

pronounced.

Figure S6: M and A values are correlated in the MA plot of normalized values in site L of

the ABRF data. This can be remedied by using the R vector from the CONSTANd output,

see main text.
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(a) Raw data (b) Normalized data

Figure S7: Rank-based MA plots of Tumor versus Brain. a) The raw quantification values

seems to adhere to the three assumptions. b) After normalization, there seems to be less

variability (5.135706) in the M values than before (5.870335). Some features have been

removed during the merge of IPSs after normalization.
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