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Abstract 

Objective: We investigate the impact of biomarker-assay’s accuracy on the operating characteristics 

of a Bayesian biomarker-driven outcome-adaptive randomization (OAR) design. 

Methods: In a simulation study, we assume a trial with two treatments, two biomarker-based strata, 

and a binary clinical outcome (response). Denote by 𝑃𝑏𝑡  the probability of response for treatment 𝑡 

(𝑡 = 0 or 1) in biomarker-stratum (𝑏 = 0 or 1). Four different scenarios in terms of true underlying 

response probabilities are considered: a null (𝑃00 = 𝑃01 = 𝑃10 = 𝑃11 = 0.25) and consistent (𝑃00 =

𝑃10 = 0.25, 𝑃01 = 𝑃11 = 0.5) treatment-effect scenario, as well as a quantitative (𝑃00 = 𝑃01 = 𝑃10 =

0.25, 𝑃11 = 0.5) and a qualitative (𝑃00 = 𝑃11 = 0.5, 𝑃01 =  𝑃10 = 0.25) stratum-treatment 

interaction. For each scenario, we compare the case of a perfect with the case of an imperfect 

biomarker-assay with sensitivity and specificity of 0.8 and 0.7, respectively. In addition, biomarker-

positive prevalence values 𝑃(𝐵 = 1) = 0.2 and 0.5 are investigated.  

Results: Results show that the use of an imperfect assay affects the operational characteristics of the 

Bayesian biomarker-based OAR design. In particular, the misclassification causes a substantial 

reduction in power accompanied by a considerable increase in the type-I-error probability. The 

magnitude of these effects depends on the sensitivity and specificity of the assay, as well as on the 

distribution of the biomarker in the patient population. 

Conclusion: With an imperfect biomarker-assay, the decision to apply a biomarker-based outcome-

adaptive randomization design may require careful reflection. 
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Introduction 

Bayesian outcome-adaptive randomization (OAR) designs for clinical trials are becoming popular.1 

While traditional designs for two-arm trials consider a fixed, e.g., 1:1 or 2:1 randomization ratio, OAR 

designs make use of the outcome information obtained for patients already included in the trial to 

continuously update the ratio. Since this generally results in more patients being assigned to the ‘more 

promising’ treatment, the adaptation is suggested to increase patient-specific benefits in clinical 

trials.2,3 

Other extensions of the traditional randomized clinical trials are ’targeted‘4 and ‘stratified’5 designs. In 

‘targeted’ designs, patients are pre-screened by using, e.g., biomarkers. Patients with a specific 

biomarker status are then selected and randomized to treatments which would be deemed the most 

promising for the status. Of course, this assumes that the mode of action of the treatment under 

investigation is well-known and that a biomarker assay is available. In case the assay misclassifies 

patients, the trial may suffer from a considerable loss of efficiency.4 ‘Stratified’ biomarker designs 

randomize patients within each biomarker group to identify group-specific treatments. In case patients 

are misclassified in a ‘stratified’ biomarker trial, a considerable loss of power may be observed.5 

By using OAR in ‘stratified’ designs, it is possible to assign patients within a particular biomarker 

stratum to the most promising treatment(s) during the course of the trial.6 Such combined designs 

have also been proposed to test the efficacy of a novel targeted treatment while simultaneously 

identifying predictive markers for the treatment.7 

Advantages of Bayesian biomarker-driven OAR designs, as compared to the fixed-randomization-ratio 

designs have been reported. Among others, a reduced total sample size or a decrease in the variation 

of the accrued sample size have been discussed.6,7,8 However, several issues with OAR designs have 

also been identified, including potential bias due to time trends in the prognostic characteristics of the 

patient population,9 statistical inefficiency due to imbalance in the number of patients assigned to 
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different treatment arms,10 and a non-trivial probability of ending up with a substantially larger 

number of patients on the worse treatment arm.11 

Given the demonstrated impact of assay accuracy on the results of ‘targeted’ and ‘stratified’ designs, 

one can ask whether similar effects apply to biomarker-based OAR designs. In this paper, we attempt 

to investigate this issue by using a simulation study. 
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Methods 

We consider a phase-II trial design with Bayesian biomarker-based OAR as proposed by Barry et al.8, 

reminiscent of the methodology developed in the influential BATTLE trial.12 In the proposed design, 

patients are stratified into 𝑆 mutually exclusive and exhaustive biomarker-based strata. The objective 

is to evaluate the efficacy of 𝑇 treatments within each stratum by using a binary clinical outcome. 

Hierarchical probit model 

Probability of response is modelled by using a probit model.6,8 Let 𝑦𝑖𝑠𝑡 denote the response of patient 

𝑖 in stratum 𝑠 treated with treatment 𝑡. Assume a latent, normally-distributed random variable 𝑧𝑖𝑠𝑡 ∼

𝑁(𝜇𝑠𝑡 , 1) and let 𝑦𝑖𝑠𝑡 = 1 if 𝑧𝑖𝑠𝑡 > 0. Then the probability of response 𝑃𝑠𝑡 ≡ 𝑃(𝑦𝑖𝑠𝑡 = 1) = 𝑃(𝑧𝑖𝑠𝑡 >

0) = Φ(𝜇𝑠𝑡), where Φ() is the standard-normal cumulative-distribution function. 

Subsequently, we define a hierarchical model by specifying that  

𝑃(𝑦𝑖𝑠𝑡 = 1) = Φ(𝜇𝑠𝑡), 

𝜇𝑠𝑡 ∼ 𝑁(𝜔𝑡 , 𝜎2), 

𝜔𝑡 ∼ 𝑁(𝛼, 𝜏2), 

with hyper-parameters 𝛼,  𝜎2, and 𝜏2. The prior distribution for 𝜇𝑠𝑡 allows ’borrowing‘ information 

across strata within each treatment, with the extent of ’borrowing‘ controlled by parameter 𝜎2. The 

prior distribution for 𝜔𝑡  allows ’borrowing‘ information across treatments, with 𝜏2 controlling the 

extent of ’borrowing’. 

The assumed Gaussian priors are conjugate. Hence, the resulting conditional posteriors have a closed 

form. Consequently, as proposed by Barry et al.8, Gibbs sampling can be used to estimate response 

probabilities 𝑃𝑖𝑠𝑡. 
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 Biomarker assay 

In the remainder of the paper we assume availability of a binary biomarker. The true underlying 

biomarker-status of a patient is denoted by 𝐵, with possible values 0 and 1. The prevalence of 

biomarker-positive patients is 𝜃 ≡ 𝑃(𝐵 = 1). The biomarker-status of individual patients is 

established by using an assay 𝐴. Consequently, there are two assay-defined strata, indexed by 𝑠 = 0 

(assay-negative) and 𝑠 = 1 (assay-positive). We allow the assay to be imperfect, i.e., to misclassify the 

biomarker-status of the patients. The accuracy of the assay is defined in terms of sensitivity  

𝑆𝑒𝐴 ≡ 𝑃(𝑆 = 1|𝐵 = 1) 

and specificity 

𝑆𝑝𝐴 ≡ 𝑃(𝑆 = 0|𝐵 = 0). 

 Trial design 

Estimation of the hierarchical model by the Gibbs sampler requires that there is at least one patient in 

each stratum-by-treatment combination. Thus, initially, the fixed 1:1 randomization ratio is used 

during the accrual of the first 𝑛0 patients. Afterwards, OAR is initiated. The randomization ratios within 

the strata are updated, following Barry et al.8, by using the ’max-mapping‘ strategy. In particular, the 

randomization probability, 𝑟𝑠𝑡, is defined to be equal to the posterior probability that, in stratum 𝑠, 

treatment 𝑡 is superior to all other treatments still under consideration in that stratum. 

When a new patient is recruited in the OAR stage, the biomarker status of the patient is established 

by using the biomarker assay. Subsequently, the patient is randomized, using the current 

randomization ratios, to treatments available in the stratum to which the patient belongs. The 

response of the patient is observed and the updated data are used in a test for futility (Appendix A of 

the Supplementary Materials) which may result in irreversible suspension of one or more treatments 

in various strata. Subsequently, the randomization ratios are updated and used for the next patient to 

be accrued. 
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When the maximum number, 𝑁𝑚𝑎𝑥 say, of accrued patients has been reached, the trial is terminated 

and the data are used to conduct a final test of futility. In case no significant futility result is obtained, 

a Bayesian test of the hypothesis of efficacy is performed (Appendix B of the Supplementary Materials). 

Note that the trial can also be stopped before reaching 𝑁𝑚𝑎𝑥 if all stratum-treatment groups have 

become closed for accrual based on the results of the futility test. In that case, no efficacy tests are 

conducted at the time of closing accrual to the last group. 

 Simulation study 

We consider a trial with two biomarker-based strata (biomarker-negative and -positive) and two 

treatments (control and experimental, say, indexed by 0 and 1, respectively). OAR is initiated after 

accruing 𝑛0 = 25 patients. This choice ensures that, with a high probability, at least two patients are 

assigned to each stratum-treatment combination before starting OAR.  

Four different scenarios are defined based on the value of the underlying true response probability 𝑃𝑏𝑡 

of treatment 𝑡 in biomarker-stratum 𝑏 (see Table 1). In Scenario 1, the null setting, the response 

probability is unacceptably low for both treatments, i.e., 𝑃𝑏𝑡 = 𝜋0 = 0.25. Scenario 2, the consistent 

treatment-effect setting, is characterised by the experimental treatment being efficacious in both 

strata, i.e., 𝑃𝑏1 = 𝜋1 = 0.5. In Scenario 3, there is a quantitative stratum-by-treatment interaction: 

both treatments are inefficacious in the biomarker-negative stratum, while the experimental 

treatment is efficacious in the biomarker-positive stratum. Finally, in Scenario 4, there is a qualitative 

stratum-by-treatment interaction: the control treatment is efficacious in the biomarker-negative 

stratum, while the experimental treatment is efficacious in the biomarker-positive stratum. 

[Place Table 1 about here] 

We also want to compare the case of a perfect biomarker-assay to the case of an imperfect assay. For 

the latter, the assay-accuracy is defined by 𝑆𝑒𝐴 = 0.8 and 𝑆𝑝𝐴 = 0.7. These values are motivated by 

the diagnostic accuracy of the clinical diagnosis for Alzheimer’s13 or a PIK3CA mutation in breast 

cancer.14 Additionally, we consider two biomarker-positive prevalence settings: 𝜃 = 0.5 and 0.2.  
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Note that, depending on the assay accuracy, the actual prevalence of assay-positive patients and 

response probabilities may differ from the assumed true values. Table 2 presents ‘actual’ prevalences 

and response probabilities for each combination of the prevalence, assay-accuracy, and true 

response-probability scenario (see Table 1). It can be observed that, for the imperfect assay, the assay-

positive prevalence 𝑃(𝑆 = 1) is larger than true prevalence 𝜃. This is due to the fact that the assay 

misclassifies the biomarker-status of some individuals. Misclassification has also an effect on the 

response probabilities for treatments. The effect is seen in Scenarios 3 and 4, in which an interaction 

between the biomarker-status and treatment-specific response probability is assumed (see Table 1). 

In particular, worth noting is the fact that, in scenario four and 𝜃 = 0.2, misclassification in the 

assay-positive stratum changes the response probabilities so that the control treatment would appear 

as more efficacious than the experimental treatment, contrary to the assumed true values (see Table 

1). 

[Place Table 2 about here] 

To examine the effect of misclassification on the operating characteristics of trials, 1000 trials were 

simulated for each of the ten settings indicated by the bold rectangles in Table 2. Maximum sample 

sizes Nmax = 25, 50, 75, and 100 were considered to investigate the type-I-error probability and power 

to conclude efficacy for a treatment with the unacceptable and desired response probability, i.e., 𝑃𝑏𝑡 =

0.25 and 0.5, respectively. 

As suggested by Barry et al.8, parameters defining the prior distribution for 𝜇𝑗𝑘  were chosen based on 

the goal of the analysis. Specifics of the prior distributions can be found in Appendix C of the 

Supplementary Materials. 

The parameters for the tests for futility and efficacy were set as follows: 𝜋1 = 0.5, 𝛿𝐹 = 0.01, and 𝜋0 =

0.25, 𝛿𝐸 = 0.9, respectively. These values imply that treatment 𝑡 is suspended indefinitely for futility 

in stratum 𝑠 when the 99th percentile of the resulting futility-posterior of 𝜇𝑠𝑡 is smaller than or equal 

to 0.5. On the other hand, treatment 𝑡 in stratum 𝑠 is considered as efficacious when the 10th percentile 
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of the resulting efficacy-posterior of 𝜇𝑠𝑡 is larger than 0.25 (see Appendix A and B of the Supplementary 

Materials). 

 Practical implementation 

The hierarchical model was fitted by using the Gibbs sampler code developed by Barry et al.8, updated 

to allow for imperfect-assay results (Appendix D of the Supplementary Materials). Based on the Raftery 

& Lewis diagnostic, 15 15,000 posterior samples were retained after a 15 iteration burn-in, to achieve 

convergence for estimation of the required quantiles. No thinning was applied. The Gibbs sampler was 

run and results were analysed in R 3.4.2 (x64).16 Computation time for one simulated OAR trial with 

𝑁𝑚𝑎𝑥 =  100 was equal to about 3 hours on a 64-bit, 2.6 GHz, 8GB RAM machine. 
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Results 

The results of the simulation study are summarized in terms of four operational characteristics. First, 

the average number of accrued patients across the different stratum-treatment combinations is 

evaluated. Second, the proportion of statistically significant efficacy-test results, in function of Nmax, is 

investigated. Finally, we inspect the effect of an imperfect assay on the average proportion of patients 

receiving an efficacious treatment, as well as the average proportion of patients having a positive 

response, in a trial with Nmax=100. 

Scenarios 1 and 2 

The detailed results of Scenarios 1 and 2 are summarized in Appendix E of the Supplementary 

Materials. For the perfect-assay setting in Scenario 1, there is no clear preference for any treatment in 

neither of the strata and the probability of concluding efficacy, i.e., the type-I-error probability, is 

smaller than 0.05 for all combinations. For Scenario 2, considering a perfect-assay leads to a clear 

preference for the experimental treatment in both strata; for trials with 𝑁𝑀𝑎𝑥 = 100, the power is 

approximately 0.9 and the type-I-error probability is less than 0.1. 

In both scenarios, treatment-specific response probabilities are constant across strata (Table 2). Thus, 

no effect of using the imperfect assay is to be expected. However, the results show a slight over-

representation of assay-positive patients in the trial for the imperfect assay (see Table 2). For 𝑁𝑚𝑎𝑥 <

100, this over-representation leads, in the assay-positive stratum, to an increase of power and a 

decrease of the type-I-error probability. 

Regarding patient-specific outcomes in trials with Nmax=100, in Scenario 1, both treatments are 

inefficacious, so none of the patients can be deemed as having received an efficacious treatment. 

Under Scenario 2, irrespectively of assay accuracy, about 76% of the patients receive an efficacious 

treatment. In addition, the proportion of responders is about 24% and 44% for Scenario 1 and Scenario 

2, respectively, irrespectively of assay accuracy. It is worth noting that the value of 44% exceeds the 

response probability of (0.25 + 0.5)/2 = 0.375 expected under the fixed 1:1 randomization ratio. 
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This is the result of OAR assigning more patients to the ‘most promising’ (experimental) treatment arm 

in both strata. 

Scenario 3 

The results of Scenario 3 with 𝜃 = 0.5 are shown in Figure 1 and Table 3. Panels a and b of Figure 1 

present the average number of patients included in each stratum-treatment group in function of Nmax. 

Panel a of Figure 1 shows that, after 𝑛0 = 25 patients in the perfect-assay case, the accrual of patients 

to the experimental treatment in the assay-positive stratum enjoys the highest rate. Consequently, the 

accrual to the control treatment is substantially lower. This is the result of OAR putting more patients 

on the ‘most promising’ treatment in this stratum. Somewhat surprisingly, more patients are also 

randomized to the experimental treatment in the assay-negative stratum. This is due to the 

‘borrowing’ of information between strata when testing for futility. Inspection of the prior distribution 

for this test reveals that the intra-treatment (across strata) correlation of 𝜇𝑠𝑡 is equal to 0.5 (see 

Appendix C of the Supplementary Materials). 

Panel b of Figure 1 shows that the use of the imperfect assay reduces the number of assay-positive 

patients randomized to the experimental treatment. On the other hand, in the assay-negative stratum, 

the number of patients randomized to the experimental treatment increases. This is due to the effect 

of misclassification on the response probabilities, as described before and shown in Table 2. The effect 

is reflected in the randomization ratios and, consequently, the sample sizes for the experimental 

treatment. 

[Place Figure 1 about here] 

Panels c and d of Figure 1 present the estimated probability of concluding efficacy in function of Nmax. 

For Nmax=100, the power for the experimental treatment in the assay-positive stratum is substantially 

reduced from about 0.86 for the perfect biomarker-assay (see panel c of Figure 1 and Table 3) to about 

0.65 for the imperfect assay (see panel d of Figure 1 and Table 3). Also, the estimate of the type-I-error 

probability for the experimental treatment in the assay-negative stratum doubles to about 0.2. The 
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decrease of power is due to the reduced response probability for assay-positive patients assigned to 

the experimental treatment (see Table 2). On the other hand, misclassification causes an increase in 

the response probability to the experimental treatment of assay-negative patients (see Table 2) and 

inflation of the type-I-error probability. There is no effect of the use of the imperfect assay on the 

estimated type-I-error probabilities for the control treatment, because the response probability for 

the control treatment is the same in both strata. 

In terms of patient-specific outcomes, the average proportion of patients receiving an efficacious 

treatment is reduced from 0.6 (empirical standard error SE=0.17) for the perfect assay to 0.41 

(SE=0.12) for the imperfect assay. Moreover, the number of positive-response patients is reduced from 

0.39 (SE=0.07) to 0.34 (SE=0.07). 

Scenario 4 

The results of Scenario 4 with 𝜃 = 0.5 are shown in Figure 2 and Table 3. Panels a and b of Figure 2 

indicate that the accrual of patients to the efficacious stratum-treatment combinations is higher than 

for the inefficacious ones. For the perfect assay, the accrual rate is essentially the same for both 

efficacious combinations; a similar conclusion can be drawn for both inefficacious combinations. For 

the imperfect assay, the situation remarkably changes: the difference in the accrual rate between the 

efficacious and inefficacious treatments is reduced due to misclassification that alters the actual 

response probabilities. Moreover, the accrual rate of assay-positive patients is higher than that of 

assay-negative patients due to the increased assay-positive prevalence (Table 2). 

[Place Figure 2 about here] 

Panels c and d of Figure 2 present the estimated probability of concluding efficacy in function of Nmax. 

For trials with a perfect biomarker-assay and 𝑁𝑚𝑎𝑥 = 100, the estimated probability (power) for the 

two efficacious combinations (green color) is equal to about 0.90. The estimated type-I-error 

probability for the two inefficacious combinations (red color) is slightly below 0.1 (Table 3).  
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For the imperfect assay, the estimated power substantially decreases, as compared to the 

perfect-assay case. Moreover, there is a slight difference in favor of the control treatment in the 

assay-negative stratum. On the other hand, for the two inefficacious combinations, the estimated 

type-I-error probability substantially increases, with slightly higher values for the control treatment in 

the assay-positive stratum. 

The reduction of power and increase of the type-I-error probability can again be attributed to the 

change of the response probabilities due to the imperfect nature of the biomarker assay (see Table 2). 

Additionally, the imbalance in the stratum-specific sample size, due to a higher accrual of assay-

positive patients, increases power and decreases the type-I-error probability. As such, the imbalance 

mitigates the effects of misclassification. 

Concerning the patient-specific outcomes, the average probability of patients receiving an efficacious 

treatment is reduced from 0.75 (SE=0.09) for the perfect assay to 0.57 (SE=0.08) when using the 

imperfect assay. Moreover, the use of the imperfect assay reduces the average proportion of 

positive-response patients from 0.44 (SE=0.06) to 0.39 (SE=0.07). 

The results of Scenario 4 with 𝜃 = 0.2 are shown in Figure 3 and Table 3. Panels a and b of Figure 3 

show that, compared to 𝜃 = 0.5 (panels a and b of Figure 2), more assay-negative subjects are enrolled 

in the trial and more subjects are being randomized to the treatment with the highest ’actual’ response 

probability. This means that, in the imperfect-assay case, the inefficacious control treatment gets more 

patients in the assay-positive stratum (Table 2). 

Panels c and d of Figure 3 present the estimated probability of concluding efficacy in function of Nmax. 

In case of the perfect assay (panel c of Figure 3), assuming 𝜃 = 0.2 results in a reduced power for the 

efficacious experimental treatment in the assay-positive stratum, as compared to 𝜃 = 0.5. However, 

for 𝑁𝑚𝑎𝑥 = 100, the power is still around 0.7 (see Table 3). The type-I-error probability is equal to 

around 0.1 in both strata. For the assay-negative stratum, no effect of the imperfect assay is observed 

neither for power nor for the type-I-error probability (panel d of Figure 3 and Table 3). For the assay-
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positive stratum, however, the type-I-error probability to conclude the inefficacious control treatment 

as efficacious (0.56) is higher than the power to conclude the experimental treatment as efficacious 

(0.34). This result is due to the fact that, for the imperfect assay, the ‘actual’ response probability for 

the control treatment is higher than for the experimental treatment (see Table 2). 

With respect to the patient-specific outcomes, the average probability of patients receiving an 

efficacious treatment is reduced from 0.77 (SE=0.09) for the perfect assay to 0.63 (SE=0.09) for the 

imperfect assay. Moreover, the use of the latter assay reduces the average proportion of 

positive-response patients from 0.44 (SE=0.06) to 0.41 (SE=0.06). 

[Place Table 3 about here] 

Discussion and conclusion 

The presented results for the case of a perfect biomarker-assay are in line with current findings 

regarding Bayesian OAR. In particular, the results for our Scenario 3 (quantitative stratum-by-

treatment interaction) and Scenario 4 (qualitative interaction) correspond to those reported by Barry 

et al.8 In particular, Barry et al.8 concluded a power of ≥ 0.8, with the type-I-error probability ≤ 0.1 

for 𝑁 = 55 and 𝑁 = 59, for their single- and complementary-markers scenario, respectively. Panel c 

of Figures 1 and 2 show that, for our Scenarios 3 and 4, the same power and type-I-error probability 

are achieved at the same trial size.  

It is worth noting that panel d of Figure 1 and 2 suggests a slight decrease of power when larger sample 

sizes are considered. Although discussion of this issue is beyond the scope of the current paper, this 

counterintuitive observation can be explained by the fact that sequentially testing for futility after 

every patient leads to an increasing type-II-error probability with an increasing sample size, restricting 

the maximally reachable power. 

The use of an imperfect assay affects the operational characteristics of the Bayesian biomarker-driven 

OAR trial in several aspects.  
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First, assuming different sensitivity and specificity causes the assay prevalence to differ from the true 

underlying biomarker prevalence, as seen in Table 2. This, in turn, affects the power and the type-I-

error probability. The effect is seen even if the response probability for a treatment is completely 

independent of biomarker-status, as in our Scenario 2. 

Second, the assay misclassification alters the actual response probabilities for treatments within 

different strata (see Table 2). This is the case for the considered setting of two treatments, but also 

holds for the setting of multiple treatment arms within multiple strata. In this general setting, one can 

show that, in case of treatments with a different response probability, misclassification will always 

cause the smallest and largest response probability to increase and decrease, respectively (see 

Appendix F of the Supplementary Materials). The remaining response probabilities within the stratum 

may or may not increase or decrease, possibly leading to a different ordering of treatments based on 

their response probabilities. Therefore, in the general setting of more than one experimental 

treatment and one control treatment, power and the type-I-error probability may increase or 

decrease, depending on the resulting ordering of efficacious and inefficacious treatments within each 

stratum (Appendix F of the Supplementary Materials). In the setting of two treatments, the altered 

response probabilities lead to a decrease in power for the efficacious treatment and to inflation of the 

type-I-error probability for the inefficacious treatment, as compared to the perfect biomarker-assay 

case. Higher misclassification rates will affect response probabilities to a greater extent and cause 

larger effects on power and the type-I-error probability. 

This implies that the effects observed for an imperfect assay in Scenarios 3 and 4 should be interpreted 

as a result of a combination of these two opposing effects, i.e., increased prevalence of positive-assay 

patients and change in the actual response probabilities. For both scenarios with 𝜃 = 0.5, the power 

is drastically reduced from about 0.9 to at most 0.65 for trials accruing Nmax=100 patients. On the other 

hand, the type-I-error probability doubles to 0.2 for the inefficacious treatments. To further investigate 

the effect of using an imperfect biomarker-assay, additional simulations under Scenario 4 were set up 
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(see Appendix G of the Supplementary Materials). These additional simulations confirm that for 𝜃 =

0.5 and response probabilities of Scenario 4, interchanging the values of 𝑆𝑒𝐴 and 𝑆𝑝𝐴 produces results 

that are symmetric to those shown in Figure 3 and Table 3. 

Furthermore, one can show that the operating characteristics of a trial using an imperfect assay 

coincide with those of a trial with a perfect assay run in a population characterised by true response 

probabilities and disease prevalence equal to the probabilities implied by the imperfect assay. 

Therefore, any advantages6,7,8 and issues9,10,11 applying to adaptive randomization, as compared to 

fixed- ratio randomization, are also relevant in case of an imperfect assay. For example, consider the 

case of the qualitative treatment effect interaction scenario (4) with true biomarker-positive 

prevalence of 0.5. Table 4 shows the results of a trial with a fixed one-to-one randomization with 

stopping for futility as described earlier. In this particular setting, both adaptive (Table 3) and fixed 

(Table 4) randomization are comparably affected by a decrease in power, indicated in bold, as well as 

an increase of the type-I-error probability. This is understandable because, irrespectively of the 

considered randomization paradigm, the use of an imperfect assay changes the assay-defined 

response probabilities, as indicated in Table 2. Moreover, for each assay setting, the power and type-

I-error probability are very similar for the fixed-ratio and outcome-adaptive randomization (see Table 

H.1 in Appendix H of the Supplementary Materials). 

[Place Table 4 about here] 

In terms of the patient-specific characteristics, using an imperfect biomarker-assay substantially 

reduces, as compared to the perfect-assay case, the proportion of patients receiving the efficacious 

treatment and the proportion of patients having a positive response if there is an interaction between 

treatment and stratum, as in Scenario 3 and 4. 

The assumption of immediate outcome assessment, used in the stimulation study, is a strong one. 

However, this assumption is not required to consider implementation of an OAR design. The impact of 

considering an imperfect biomarker-assay would not affect the difference between immediate or 
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lagged updating of the randomization ratios conditional on the affected response ratios and 

prevalence introduced by the imperfect assay. This point is illustrated in Appendix I of the 

Supplementary Materials regarding an imperfect assay simulation of the real real-life example from 

Barry et al.8 

In conclusion, we have shown that the use of an imperfect assay affects the operational characteristics 

of the Bayesian biomarker-driven OAR design. Even in the simple settings considered in this 

manuscript, the effect may be substantial. The magnitude of the effect depends on the sensitivity and 

specificity of the assay, as well as on the distribution of the biomarker in the patient population. 

Therefore, the impact has to be evaluated on a case-by-case basis. Thus, with an imperfect 

biomarker-assay, the decision to apply a biomarker-based OAR design may require careful reflection. 

Acknowledging, during the design simulations, that the considered assay may be imperfect, could 

potentially help in preventing organization of an underpowered trial. In particular, based on previous 

research or knowledge of the assay, one could try to consider a set of meaningful sensitivity and 

specificity combinations. If the impact on power would turn out to be minimal, one could still proceed 

with the design, though with caution. In case a large impact would be implied, one could consider 

powering the trial according to a worst-case scenario for the accuracy of the assay. 
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Tables 

Table 1: Assumed true response probabilities (𝑃𝑏𝑡) in the considered simulation scenarios. Bold 
entries are efficacious biomarker-treatment combinations. 

  Biomarker-negative stratum (0) Biomarker-positive stratum (1) 

  Control 
(𝑷𝟎𝟎) 

Experimental 
(𝑷𝟎𝟏) 

Control 
(𝑷𝟏𝟎) 

Experimental 
(𝑷𝟏𝟏) 

Scenario 1 No treatment effect (Null) 0.25 0.25 0.25 0.25 

Scenario 2 Consistent treatment effect 0.25 0.50 0.25 0.50 

Scenario 3 Quantitative interaction 0.25 0.25 0.25 0.50 

Scenario 4 Qualitative interaction 0.50 0.25 0.25 0.50 

 

Table 2: Biomarker-positive assay prevalence and ‘actual’ response probabilities for the perfect and 
imperfect biomarker assays. Bold entries are efficacious biomarker-treatment combinations. 

    
Assay-negative 

stratum (0) 
Assay-positive 

stratum (1) 

Scenario 
Population 
prevalence 
𝑷(𝑩 = 𝟏) 

Assay 
Assay 

Prevalence 
𝑷(𝑺 = 𝟏) 

Ctrl 
(𝑷𝟎𝟎) 

Exp 
(𝑷𝟎𝟏) 

Ctrl 
(𝑷𝟏𝟎) 

Exp 
(𝑷𝟏𝟏) 

        

(1) Null 0.5 Perfect 0.5 0.25 0.25 0.25 0.25 
  Imperfect 0.55 0.25 0.25 0.25 0.25 

 0.2 Perfect 0.2 0.25 0.25 0.25 0.25 
  Imperfect 0.40 0.25 0.25 0.25 0.25 
        

(2) Consistent 0.5 Perfect 0.5 0.25 0.50 0.25 0.50 
  Imperfect 0.55 0.25 0.50 0.25 0.50 

 0.2 Perfect 0.2 0.25 0.50 0.25 0.50 
  Imperfect 0.40 0.25 0.50 0.25 0.50 
        

(3) Quantitative 
Interaction 

0.5 Perfect 0.5 0.25 0.25 0.25 0.50 
 Imperfect 0.55 0.25 0.31 0.25 0.43 

 0.2 Perfect 0.2 0.25 0.25 0.25 0.50 
  Imperfect 0.40 0.25 0.27 0.25 0.35 
        

(4) Qualitative 
Interaction 

0.5 Perfect 0.5 0.50 0.25 0.25 0.50 
 Imperfect 0.55 0.44 0.31 0.32 0.43 

 0.2 Perfect 0.2 0.50 0.25 0.25 0.50 
  Imperfect 0.40 0.48 0.27 0.40 0.35 
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Table 3: Probability of obtaining a statistically significant efficacy test result for 𝑁𝑚𝑎𝑥 = 100. 
Probabilities in normal font can be interpreted as the type-I-error probability, entries in bold as 

power. 

   
Assay-negative 

stratum (0) 
Assay-positive 

stratum (1) 

Scenario 
Population 
prevalence 
𝑷(𝑩 = 𝟏) 

Assay 
Ctrl 

(𝑷𝟎𝟎) 
Exp 

(𝑷𝟎𝟏) 
Ctrl 

(𝑷𝟏𝟎) 
Exp 

(𝑷𝟏𝟏) 

       
(1) Null 0.5 Perfect 0.02 0.02 0.02 0.02 
  Imperfect 0.02 0.02 0.02 0.01 
       
(2) Consistent 0.5 Perfect 0.07 0.92 0.08 0.92 
  Imperfect 0.08 0.92 0.08 0.92 
       
(3) Quantitative 

Interaction 
0.5 Perfect 0.05 0.08 0.06 0.86 

  Imperfect 0.05 0.20 0.06 0.65 
       
(4) Qualitative Interaction 0.5 Perfect 0.89 0.08 0.08 0.89 
  Imperfect 0.73 0.22 0.24 0.68 
 0.2 Perfect 0.87 0.08 0.09 0.71 
  Imperfect 0.87 0.11 0.56 0.34 

 

Table 4: Probability of obtaining a statistically significant efficacy test result for 𝑁𝑚𝑎𝑥 = 100 for a 
Bayesian fixed (one-to-one) randomization trial. Entries in normal font can be interpreted as the 

type-I-error probability, entries in bold as power. 

   
Assay-negative 

stratum (0) 
Assay-positive 

stratum (1) 

Scenario 
Population 
prevalence 
𝑷(𝑩 = 𝟏) 

Assay 
Ctrl 

(𝑷𝟎𝟎) 
Exp 

(𝑷𝟎𝟏) 
Ctrl 

(𝑷𝟏𝟎) 
Exp 

(𝑷𝟏𝟏) 

       
(4) Qualitative Interaction 0.5 Perfect 0.86 0.10 0.09 0.87 
  Imperfect 0.73 0.24 0.27 0.69 
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Figure Captions 

 

Figure 1. Average number of accrued patients (a-b) and average proportion of trials concluding efficacy by the accrued total 
sample size (c-d) for each stratum-treatment combination by the accrued total sample size over 1000 trials in Scenario 3 

with 𝜃 = 0.5. Results for the biomarker-negative (𝑆 = 0) stratum patients receiving the control (𝑇 = 0) and experimental 
(𝑇 = 1) treatment are indicated by the solid and dashed line, respectively. Results for the biomarker-positive (𝑆 = 1) 

patients receiving the control and experimental treatments are denoted by the dotted and dotted-dashed line, respectively. 
Green color marks the efficacious stratum-treatment combinations, red marks the inefficacious combinations. 
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Figure 2. Average number of accrued patients (a-b) and average proportion of trials concluding efficacy by the accrued total 
sample size (c-d) for each stratum-treatment combination by the accrued total sample size over 1000 trials in Scenario 4 

with 𝜃 = 0.5. Results for the biomarker-negative (𝑆 = 0) stratum patients receiving the control (𝑇 = 0) and experimental 
(𝑇 = 1) treatment are indicated by the solid and dashed line, respectively. Results for the biomarker-positive (𝑆 = 1) 

patients receiving the control and experimental treatments are denoted by the dotted and dotted-dashed line, respectively. 
Green color marks the efficacious stratum-treatment combinations, red marks the inefficacious combinations. 
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Figure 3. Average number of accrued patients (a-b) and average proportion of trials concluding efficacy by the accrued total 
sample size (c-d) for each stratum-treatment combination by the accrued total sample size over 1000 trials in Scenario 4 

with 𝜃 = 0.2. Results for the biomarker-negative (𝑆 = 0) stratum patients receiving the control (𝑇 = 0) and experimental 
(𝑇 = 1) treatment are indicated by the solid and dashed line, respectively. Results for the biomarker-positive (𝑆 = 1) 

patients receiving the control and experimental treatments are denoted by the dotted and dotted-dashed line, respectively. 
Green color marks the efficacious stratum-treatment combinations, red marks the inefficacious combinations. 

 

 


