
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Quantified Cycling Safety: Towards a Mobile Sensing Platform to

Understand Perceived Safety of Cyclists

Peer-reviewed author version

Matviienko, Andrii; HELLER, Florian & Pfleging, Bastian (2021) Quantified Cycling

Safety: Towards a Mobile Sensing Platform to Understand Perceived Safety of

Cyclists. In: CHI EA '21: Extended Abstracts of the 2021 CHI Conference on Human

Factors in Computing Systems, (Art N° 262)..

DOI: 10.1145/3411763.3451678

Handle: http://hdl.handle.net/1942/33880



Quantified Cycling Safety: Towards a Mobile Sensing Platform to Understand
Perceived Safety of Cyclists

ANDRII MATVIIENKO, Technical University of Darmstadt, Germany

FLORIAN HELLER, Hasselt University — tUL — Flanders Make, Belgium

BASTIAN PFLEGING, Eindhoven University of Technology, Netherlands

Fig. 1. We propose to extend data collection methods about cyclists by including body movements, such as head rotations and
physiological data. With this we aim to collect data about hazardous road situations to prior to accidents (in contrast to post-hoc
police accident reports and cyclists’ self-reports).

Today’s level of cyclists’ road safety is primarily estimated using accident reports and self-reported measures. However, the former
is focused on post-accident situations and the latter covers only subjective input. In our work, we aim to build a full picture of
cyclists’ safety assessment via a two-dimensional taxonomy, which covers data source (internal/external) and type of data source
(objective/subjective). Based on this taxonomy, we present a mobile sensing concept for quantified cycling safety that fills the identified
methodological gap by collecting data about body movements and physiological data. Finally, we outline a list of use cases and future
research directions within the scope of the proposed taxonomy and sensing concept.
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1 INTRODUCTION

Over the past years, the interest in cycling asmeans of transportation for both recreational purposes and daily commuting
to work has increased tremendously [19, 29]. However, according to recent accident reports [6, 11, 20] cyclists represent
a vulnerable road user group at risk, and cycling is often perceived as a dangerous activity, especially in urban areas
without a dedicated cycling infrastructure.

Cycling safety is typically reflected in accident reports submitted by the police [20] or rely on cyclists subjective
responses [2]. Although the latter one provides data without encountering an accident and the former one reports a
dangerous situation post-hoc, both of them rely on subjective measures of the involved parties, such as police staff
and officers, cyclists, and other road users. To complement this, in the last decade in-situ observations have started to
look objectively at cyclist behavior for example through video recordings [30]). In addition, naturalistic cycling studies
started to investigate cycling behavior in the wild using instrumented bicycles, for example, by collecting location/GPS,
brake force, inertial measurement, and video data [7, 13, 16, 35]. In our work, we aim to go beyond these established
methods by exploring quantified cyclist data sources, e.g., physiological data and body movements, to better understand
the perceived safety of cyclists.

The aspect of perceived safety for the cyclist is challenging for many reasons. For one, perceived safety can
substantially differ from what objective numbers reflect. For example, an uncontrolled T-intersection can be considered
less dangerous based on accident reports, but cyclists might spend a significant amount of time making a crossing
decision due to the feeling of danger or uncertainty. The second challenge is the work-intensive evaluation of perceived
safety for cyclists. For instance, camera-based observation can provide a correlation with objective factors such as
distance to overtaking vehicles, or interviews with cyclists can report on their experiences and name problematic
locations [21]. However, these techniques mostly focus on a fairly restricted area and it is tedious to generate a broad
overview.

In this paper, we contribute a two-dimensional taxonomy for assessing cyclists’ safety based on (a) the data source
(internal/external) and (b) its type of assessment (objective/subjective). Based on this taxonomy, we propose a mobile
crowdsourcing approach that aims at identifying dangerous locations before they show up in accidents reports or
prevents people from using the bike. It fills the existing gap in the bottom left quadrant of our taxonomy. The
crowdsourced dataset based on this approach can inform the selection process for in-depth investigation methods (to
improve road segments). In addition, it may serve as input for cooperative assistance systems between vehicles and
bicycles to improve biking safety. We leverage the sensing capabilities of the increasingly dense body-area network
to derive information on perceived safety and user behavior from sensor information that can be collected using
commodity hardware such as smartwatches or earables [18]. We expect this to serve as input in the design of cycling
infrastructure and assistive systems with the overall goal to increase traffic safety and improve well-being on the road.
Finally, we outline a number of use cases applicable for this particular approach and discuss future research directions
within the scope of the proposed taxonomy.

2 BACKGROUND & RELATEDWORK

In this section we outlined three main pillars of related work which we use to build upon: (1) cyclists assistance systems,
(2) perceived safety in urban environments, and (3) mobile crowdsourcing.
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2.1 Cyclists assistance systems

In prior work, researchers designed cyclist assistance systems that primarily focus on the data provided (or can be
possibly) from the external sources such as other road users broadcasting their position and velocity using vehicle-to-X
technology (Car2X, i.e., communication between a car and other vehicles, infrastructure, road users, etc.), or internal
sources, e.g., physiological data from sensors placed on cyclists and bicycles [17, 38].

Data collected from the external sources can be typically used to provide warnings [22], navigation instructions [24],
or traffic behavior recommendations [23]. Communication between other traffic members and infrastructure objects,
e.g., traffic lights, is foreseen to be facilitated via Car2X technology [27] using for instance 5G transmission protocols.
From the perspective of human-computer interaction, this data is typically simulated in controlled experiments in
bicycle simulators. One example, however, also demonstrates possibilities of collecting data about environment and
providing a feedback to cyclists. For example, Schropp et al. [36] demonstrate a helmet with a head-worn camera to
locate and attribute surrounding objects and a bone conduction headphones to represent spatial audio notifications.

To collect data from the internal data sources researchers employed a method of augmentation existing cycling
accessories, e.g., helmets, to collect physiological data. Andres et al. [4] augmented a helmet with an EEG system to
observe cyclists’ neural activity on-the-go and determine when they enter a state of peripheral awareness. Another
example includes an augmentation of a bicycle with RGB-D cameras to recognize cyclists’ head position and hand
gesture to remind child cyclists about safety gestures [25].

This separation between external and internal sources based on the existing methods of data collection assisted us
in defining two dimensions in the proposed taxonomy for assessing cyclists’ safety, which we describe in details in
Section 3. Additionally, in this work, we focus on the human-centered data collection for cyclists and aim to take a step
further and explore correlations between implicit head movements and perceived safety.

2.2 Perceived safety in urban environments

Overall, the concept of (road) traffic safety refers to measures which aim to prevent road users from being killed or
seriously injured in traffic accidents. The term of perceived safety can have different meanings depending on the social
context. In the context of urban environments, Carolin Jansson [15] described perceived safety as “a person’s subjective
feeling” and “an individual’s experience of the risk of becoming a victim of crime and disturbance of public order”.
However, one has to make a clear distinction between crime-related and traffic safety, with the focus of our work
being on the latter aspect. The definition of perception in urban environment provided Ewing and Handy [10] as “the
process of attaining awareness or understanding of sensory information” motivates us to explore sensory information
of individual cyclists and implicit head movements in attempt to quantify perceived safety in urban environments.

2.3 Mobile Crowdsourcing

The approach of traditional crowdsourcing is to break large tasks into small individual pieces that can be distributed to
a large number of human workers to be completed, even without much contextual knowledge [14]. With the prevalence
of smartphones that are equipped with numerous sensors and data connections, mobile crowdsourcing ties the tasks
to be executed to a geospatial location [3], and potentially, even a time or timeframe. Monitoring traffic1 [26] or road
conditions is a popular example of mobile crowdsourcing [9, 34].

1https://www.waze.com/
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Fig. 2. Taxonomy of methods to assess cyclists’ safety: the axis describes a data source (internal/external) and the horizontal one – its
type (objective/subjective).

Additional information on a certain route, e.g., scenic views, might be even more important for cyclists than for car
drivers [32] or bus tours [33]. Route-sharing platforms such as Biketastic [31] extend the route information available
by adding sensor data on speed, roughness, noise levels, or perceived driving experience [28]. To which detail this
additional information can be pushed was explored in Bikenet [8] with a very dense Bike-Area-Network of sensors,
including magnetometers to determine the amount of cars driving around, or air quality sensors. A number of the
sensors the authors had to install on their research bike is now readily available on commercially available bikes.

Similar to the automatic detection of potholes [9], we aim to determine perceived safety through sensor data from
readily available mobile hardware and keep the human in the loop to also assess subjective impressions. For example, a
user might assess the quality of the road as poor, even though the automatic detection based on accelerometer data
might not react yet [34]. While we also work on sensor data alone, measuring physiological responses inherently
integrates the subjective perception of the user.

One problem in mobile crowdsourcing is to achieve an even spatial distribution of completed tasks as it is more likely
for a mobile crowdworker to complete a task in a popular area than somewhere remote [37]. This can be addressed by
increasing the remuneration for tasks that are in places not well covered, or by using a mobile workforce that already
has a good geospatial coverage [1]. More specifically, as mailmen often use a bicycle as means of transportation in
urban areas, the approach of using the workforce of the local mail service presented by Acer et al. [1] can potentially
also be applied here.

3 A TAXONOMY OF METHODS TO ASSESS CYCLIST SAFETY

By comparing prior work on perceived cycling safety, we identified two dimensions along which existing approaches
can be assessed. These complementary dimensions form our taxonomy of methods to assess cyclists’ safety (Figure 2):
(1) data source (internal/external) and (2) type of data source (objective/subjective). The first dimension “Data source” is
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split into internal, e.g., body movements, physiological data, and external data sources, e.g., traffic cameras, car sensing,
GNSS, infrastructure, data sources. The internal part is responsible for collecting data from egocentric perspective of a
cyclist and the external part provides data from the sources unrelated to cyclists’ activities. The second dimension “Type

of data source” covers subjective and objective aspects of the data sources. The subjective part includes sources with
cyclists’, road users or police subjective estimations and the objective relies only on the data from sensors. The proposed
dimensions are based on the idea on the qualitative and quantitative nature of data in general and an ego cyclists’
perspective, which relies on the data from the outside world (external) and to cyclists and their bicycles (internal) (see
Subsection 2.1). We are confident that provided design space help future researchers and engineers, and assist them in
developing technology and choosing the right methodology for assessing cyclists’ safety from different perspectives
(Figure 2). In particular, it can lead to new technological advances of tracking cyclists’ and bicycle’s movements,
augmenting helmets with additional physiological sensors, or raise attention in improving road infrastructure, which
we lack as an external and quantifiable data source. The quadrants of the proposed taxonomy help to extend the list of
methods already presented in the diagram, given that it is growing and expanding field. We showcase the importance
and use of the proposed taxonomy, we present one concept based on body movements and physiological data, which
we outline in details in the following section.

4 CONCEPT: BODY MOVEMENT & PHYSIOLOGICAL DATA COLLECTION

After the smartphone and the smartwatch comes a next generation of wearable sensor, so-called earables: Earbuds
that do not only provide audio output, but also deliver rich sensor input from an inertial measurement unit (IMU) [18].
While IMUs on headphones, so far, were mostly meant custom hardware for audio-augmented reality research, more an
more commercial earbuds can report 6 degrees-of-freedom (DOF) from accelerometer and gyroscope data (Google Pixel
Buds [12]), and some even 9-DOF, including absolute orientation using a magnetometer (Apple AirPods Pro [5]). In the
cycling context, this sensor data allows to measure the amount of relative head rotation as an indicator how much a
cyclist looks around. When using earables with a 9-DOF IMU, one can even measure the absolute difference between
the smartphone in the pocket of the cyclist and the earbuds. This helps in determining in which direction the cyclist
looked, eventually getting an indication where potential elements of interest, e.g., approaching cars or pedestrians,
require additional attention. In combination with geographic location, this can be used to create a heatmap of where
cyclists turn their heads the most. We expect that the number of head rotations correlates with perceived road safety (or
level of difficulty of a traffic situation). In combination with other measurements (e.g., speed / acceleration) we expect
that this information enables urban planners to identify road segments which require remodeling to improve cycling
safety.

4.1 Automated mobile crowdsourcing of subjective impressions

Mobile crowdsourcing is a powerful tool to quickly aggregate data with geospatial references. From a user’s perspective,
the simplest form is a mode of operation that works on sensor data alone and does not require specific attention, such
as inferring traffic conditions from GNSS positions [26] or detecting potholes from accelerometer data [9]. However, as
mentioned before, the user’s perception might differ from an algorithmic interpretation [34]. Including the human in
the loop by asking for subjective assessment to complete a certain task does not need to be complex. For instance, it
might be sufficient to answer questions, such as “Is the sidewalk clean at this intersection?” or “Is the bench next to you
damaged?” [1]. However, this requires active user input which might increase the remuneration needed to achieve an
acceptable task completion rate.
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Fig. 3. Typical situations where cyclists are at risk and where we assume a higher amount of head rotation as an indicator of unsafety.
a) the special left-turn waiting area is still close to the ongoing traffic, meaning waiting cyclists want to stay aware of the traffic. b)
An obstacle such as a halting bus on a shared lane requires the cyclist to merge into traffic on a car lane. c) to reach the dedicated
left-turn bike lane the cyclist has to cross one car lane. d) Entering a road by crossing two car lanes means the cyclist needs to be
aware of traffic in two directions. e) turning left at an intersection is risky because the car drivers might overlook the cyclist.

Our approach is to collect objective sensor data, which automatically measures the cyclists’ physiological responses
caused by their individual interpretation of the driving scene. The increasing density of the body area network formed
by wearable devices and the increasing amount of sensors in these wearables (e.g., pulse oximeter or IMU) enable us to
get more information that can be collected without user-interaction. In the interest of privacy, the interpretation of
these body signals should happen on the user’s device and only be made available in anonymous and aggregated form.
As automatic detection might lead to inconclusive results, a confirmation of results by the user should be considered.

We envision our proposed concept to be particularly useful in situations requiring tedious environmental assessment,
which might lead to difficulties in making crossing decisions. In the following section, we outline a couple of use cases
in details.

5 USE CASES

We derived five use cases that are considered challenging for cyclists in terms of decision making and which might
require measures to improve perceived safety (Figure 3). While situations D and E are considered among the most
dangerous ones for cyclists based on accident reports [6, 11, 20], we also consider situations A-C, which include a
comparable level of difficulty, but are typically missed in statistical reports. We present them in details in the following:

• Use Case A: to simplify a left turn at an intersection with a traffic light, some cities implement small waiting
areas on the side of the bike lane in order to avoid cyclists having to cross a car lane as in Use Case C). Cyclists in
these areas are supposed to cross the streets together with pedestrians. Since they remain closer to the circulating
traffic, we assume cyclists in the waiting areas will turn their head more often to stay aware of the traffic than
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cyclists waiting at the regular halting line just a few meters away. This shows that we also need to take into
account whether the cyclist is stationary or moving when interpreting sensor data.

• Use Case B: in a situation of obstacles on a shared bus & bike lane, e.g., a bus, a cyclist has to overtake it by
entering a car lane. This will require checking approaching traffic from behind prior to the manoeuvre.

• Use Case C: prior to turning left, a cyclist has to change her position within a lane, which requires turning back
to check the traffic behind. After arrival at the leftmost part of the lane, a cyclist has to check for traffic coming
from upfront in presence of traffic lights, or even traffic from left, right, and front in case of an uncontrolled
intersection.

• Use Case D: a cyclist is entering a street by turning left when leaving home. Given the lower priority of a cyclist
off-road compared to vehicles on the road, she has to check both left and right traffic directions before entering
her lane.

• Use Case E: a cyclist is turning left at an uncontrolled intersection. In this situation a cyclist had to check both
the traffic on the right to give way and the upcoming traffic from the front.

The use cases listed above do not cover all possible situations where our proposed concept is expected to support a
detailed analysis, but they showcase scenarios which can provide a better understanding of perceived safety. We plan to
create routes composed of these use cases in future evaluations to support our hypothesis of increased head movements
as an indication of decreased perceived safety.

6 FUTURE RESEARCH DIRECTIONS

Future research should delve into exploration and extension of the proposed taxonomy of methods for assessing
cyclists’ safety, improvements and implementation of the proposed head movement concept, and development of further
technical solution. In the following we outline future research directions based on the work presented in this paper.

6.1 Where do we go with the cyclists’ safety taxonomy?

We believe that our proposed taxonomy helps in building a full picture regarding the data collection focused on cyclists’
safety. Unlike common subjective measures, e.g., accident reports and self-reports, the taxonomy points out to the
necessity of objective data collection and a quantified look at the cyclists’ safety. The quantitative data collection will
help identifying hazardous road situations before accidents occur and therefore, avoid having accidents and injured
cyclists. Similarly to navigation platforms, e.g., Waze and Google Maps, which already showcased the benefits for
improving services through crowdsourced data collected from readily available sensors with low effort, our proposed
crowdsourcing method will help us in getting a bigger picture through naturalistic studies. Admittedly, the primary
value of the provided taxonomy lies in the awareness of researchers, road planners, and authorities towards safe, green,
and sustainable cities.

6.2 Future of the head movement concept

Following the proposed taxonomy and the proposed crowdsourcing approach, we plan to implement the prototype
and run a series of experiments with cyclists to test our concept and confirm our hypothesis related to the correlation
between head movements and perceived road safety. We plan to start with studies in bicycle simulators to ensure
safety conditions and collect preliminary empirical support for the idea that a decrease in perceived safety leads to
increased head movement. With this approach, we extend the technical opportunities of unsupervised data collection
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for naturalistic studies. Moreover, due to our lightweight approach and easy scalability of the setup, we consider data
collection from a series of road situations in field studies, covering different road infrastructures of many cities, weather
conditions, and cycling cultures. Cyclists typically avoid roads with a high perceived risk, meaning that if we think
about the collection of head movement data as a mobile crowdsourcing task, the most dangerous places for bikers will
likely remain blind spots on the map. The risk on a certain road could also be measured by evaluating how large the
compensation needs to be for a cyclist to drive along a certain road.

6.3 Future technical solutions

In this work, we showcased one possible technical solution of collecting internal data about cyclists from an objective
perspective. The proposed taxonomy allows us to spot gaps in the field of cyclist safety research. This holds especially
for collecting data from various physiological sensors, e.g., EEG, heart rate monitors. For example, an increased heart
rate might indicate a decreased perceived safety, and EEG data can provide an indication of peripheral awareness [4],
where decreased peripheral attention might lead to decreased safety. With future development of Car2X technology,
we envision not only receiving safety relevant information from other vehicles and infrastructure, but also sending
the cyclists’ state to other road users as an additional safety indicator. Thus, the additional data collected (e.g., body
movements and physiological data) can serve as input for novel assistance systems. As an example, we can envision an
assistance system which informs the driver of a silent electric car about he presence of cyclist ahead that did not turn
his head and, thus, might not be aware of the approaching electric car.
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