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Abstract Statisticians are frequently confronted with highly complex data
such as clustered data, missing data or censored data. In this manuscript, we
consider hierarchically clustered survival data. This type of data arises when a
sample consists of clusters, and each cluster has several, correlated sub-clusters
containing various, dependent survival times. Two approaches are commonly
used to analysis such data and estimate the association between the survival
times within a cluster and/or sub-cluster. The first approach is by using ran-
dom effects in a frailty model while a second approach is by using copula
models. Hereby we assume that the joint survival function is described by a
copula function evaluated in the marginal survival functions of the different
individuals within a cluster. In this manuscript, we introduce a copula model
based on a nested Archimedean copula function for hierarchical survival data,
where both the clusters and sub-clusters are allowed to be moderate to large
and varying in size. We investigate one-stage, two-stage and three-stage para-
metric estimation procedures for the association parameters in this model.
In a simulation study we check the finite sample properties of these estima-
tors. Furthermore we illustrate the methods on a real life data-set on Chronic
Granulomatous Disease.
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1 Introduction

Multilevel or hierarchical survival data occur frequently in different research
areas. For example, in a mortality study of cancer patients, the patients are
clustered in hospitals that, in turn, are clustered within districts/provinces.
Hereby, patients within the same hospital/district /province are assumed to be
correlated as they share some common practices and care.

In the analysis of clustered multivariate survival times, two approaches are
commonly considered when we want to take the association between the sur-
vival times within a cluster and/or sub-cluster into account. A first approach is
through frailty models (Duchateau and Janssen 2008; Wienke 2011). A frailty
model is a conditional model which assumes that different individuals within
the same cluster are independent, conditionally on a common frailty term. It
is possible to include covariates in this model but the parameters are esti-
mated conditionally on unobserved frailty terms. This frailty term is assumed
to be a realization of a random variable with a given frailty distribution. In
case of multi-level survival data, nested frailty models can be used to induce
multi-level associations (Ma et al. 2003; Rondeau et al. 2006; Sastry 1997).
The nested frailty model accounts for the hierarchical clustering of the data
by including two nested random effects. Nested frailty models are particularly
appropriate when data are clustered at several hierarchical levels naturally or
by design (Rondeau et al. 2006).

A second approach to analyze clustered multivariate survival times is by
using copula functions. Shih and Louis (1995) first introduce copula models
in the analysis of clustered bivariate survival times, in which they specify a
(non-)parametric model for the marginal survival function of each lifetime sep-
arately and provide a parametric copula function to describe the association
between the different lifetimes. Due to the right-censoring of the lifetimes, it
is very hard to obtain for a general copula function a closed form expression
of the likelihood function to estimate the parameters of the model. Two so-
lutions to this problem can be found in the literature. A first solution is to
look only at pairwise associations between the lifetimes within a cluster. Zhao
and Joe (2005) establish in this setting a two-stage estimation procedure for
both the marginal and association parameters. Li and Lin (2006) consider a
second alternative approach by focusing on copula families for which the full
likelihood function could be constructed based on the mathematical properties
of the family. They consider a Gaussian copula function to model the spatial
correlation for spatially correlated survival data. Li et al. (2008) also consider a
Gaussian copula function to model the association for bivariate survival data.
Othus and Li (2010) extended this model for varying cluster sizes and allow for
covariates. Glidden (2000) on the other hand looks within the Archimedean
copula family at the Clayton copula function to develop a two-stage estimator
for the association parameter for multivariate clustered survival data. Pre-
nen et al. (2017) extended this model for unbalanced clustered data and also
consider a general Archimedean copula function with monotonic generators.
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Nested Archimedean copula functions were first introduced by Joe (1997)
for three and four dimensional variables. Later McNeil (2008) extended these
copula functions for general d-dimensional variables. Recently, Hofert and
Pham (2013) developed a tractable formula for the density of nested Archimedean
copula functions in arbitrary dimensions if the number of nesting levels is not
too large. Although they showed a numerically efficient way to evaluate the
log-density, their study didn’t show any simulation results or real life data
application. For failure time data with multiple levels of clustering, Joe (1993)
and Bandeen-Roche and Liang (1996) proposed a family of distributional mod-
els but these models were not applied in real applications. Shih and Lu (2007)
applied this multivariate survival model with a nested Archimedean copula
function to model the associations for child mortality data in a vitamin A
trial in Nepal. Hereby the data were clustered within households in villages.
They introduced and investigated a three-stage semi-parametric estimation
method to analyze this hierarchically clustered survival data.

As far as we know, a one-stage or two-stage estimation method such as
defined in Prenen et al. (2017) have not been used before for a multilevel
multivariate survival copula model. This current study fills up this gap. The
three-stage estimation method of Shih and Lu (2007) was furthermore adapted
to a parametric setting such that we could compare it with our proposed one-
stage and two-stage methods. In this manuscript, we consider hierarchically
clustered survival data which are possibly censored and where both the clus-
ters and sub-clusters are allowed to be large and varying in size. A nested
Archimedean copula function is used to incorporate the associations in two
levels in the model. We also allow covariates in the marginal distributions of
this model.

This paper is structured as follows. In Section 2, we describe a nested
Archimedean copula model for hierarchical survival data by rewriting the like-
lihood function in terms of Laplace transformations. We derive in Section 3,
the log-likelihood function for the Clayton and the Gumbel copula as members
of the tilted outer power family. In Section 4, we present and derive asymptotic
properties of the one-stage, two-stage and three-stage parametric estimation
procedures while in Sections 5 and 6, we report finite sample simulation results
and the results from a real life data-set respectively. We finish this manuscript
with a brief discussion in Section 7.

2 Description of the model

In this section we develop a full copula model for hierarchically clustered sur-
vival data in which the size of each cluster and/or sub-cluster is unequal,
moderate to large. Hereto we suppose that we have L different independent
clusters in the data-set (I = 1,2,...,L). Within each cluster, there are dif-
ferent sub-clusters (j = 1,2,...,N;), where N; is the number of sub-clusters
in the I*" cluster. In each sub-cluster, we denote the lifetime for the different
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individuals by a positive random variable Tj;;, ¢ = 1,2,...,n; where nj is
the number of individuals in the j** sub-cluster of the I*" cluster.

We will assume that every event time is subject to random right censoring.
For each individual, we consider an independent random censoring variable
Cyj such that the observed quantities are given by,

Yiji = min(Tij1, Ciji); s = 1(Tiji < Cijp)
i=1,2,...,n5; j=1,2,...,N; 1=1,2,...,L

The lifetime is allowed to depend on a set of covariates Z;j;;. To build up our
copula model for hierarchically clustered survival data, we work in different
steps. First we assume that the joint survival function for the lifetimes within
sub-cluster j of cluster [ is given by,

S(tiji, s tog gilZagis - - Ly, 1)
= P(lel > tljl, - ,Tnﬂ,]‘l > t,%jl\zljl, R Znﬂ,jl)

=C <S(t1jl|zljl)7 oy S(tny 1y, 1) ¢1)
= [0 (Sl Zag)} + o 07 (S (bt By )

where S(ti;1|Zij1) = P(Tiji > tiji|Z;j) is the marginal survival model for the
lifetime Tj;;, given the covariate values Z;;;. C1 is an Archimedean copula with
a generator v, which describes the association among all individuals within
a sub-cluster. Hereby, 1 € ¥ : [0,00) — [0,1] is a continuous, strictly
decreasing and completely monotonic function with ¢;(0) = 1,¢;(c0) =
lmy—oe 11 () = 0 and (—1)™{"™(t) > 0 for all m € No,t € (0,00). The
set of all completely monotone Archimedean generators is denoted by ..

Next we also assume that the different sub-clusters within a cluster are also
correlated. The joint survival function for two event times from two different
sub-clusters j and j* within a cluster [ is given by,

S(tijl, ti*j*l

Ziji, Livjo1) = P(Tiji > tiji, Tiwjer > tinjoi| Liji, L= 1)
=y (S(tijl|zijl)aS(ti*j*l|zi*j*l)§'¢)0)
= o [¢51{5(tijz|zijz)} + 1y {8 (tim 51

Zi*j*l)}]
where Cy is the Archimedean copula with a generator 1y € 1), which de-
scribes the association between sub-clusters within a cluster.

By using partially nested Archimedean copula functions (Joe 1997), we com-
bine both expressions and get that the joint survival functions for all the event
times in the [*" cluster as:

St - sty Nttt - -+ Zng Ny 1)
= P(Tiu > tius -+ Doy Nijt > o, Nl

Z11l7 ceey ZnNLL,Nl,l)
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=Co ({Cl (S(t11ulZa1r)s - - -, Sty 10l Zngy10); 901 ) s
C1(S(ti2i|Za2r), - - - S(tngy 20| Ly 20)901) 5 - - -
Cl (S(thll|Z1Nll)a sy S(tanl,Nl”Zanl,Nll);wl)};’lr/)0>

= 1o {1/)61 o1 [ {S(t1ulZa1)} + - - - + U1 H{S (tny 11 Zinyy 1) }]
+ g o[y S (12| Zaz) } + - A+ VT S (21 By 20) ] + - -
+ 4y o[y H{S (il Zava)} 4+ 1/)1_1{S(tanl,Nzl\ZnNZL,Nll)}]}

N; nj1
=0 [ > W5 ot {Z wll{S(tiMZijl)}}
j=1 i=1

Here, the Archimedean copula functions Cy and C; are called respectively
the root copula and the child copula. In order to have a properly defined
hierarchical copula function, we have that 1/)61 oty = Yo € Yi = {w:
[0,00) — [0,00)|w(0) = 0,w(c0) = o0, (=1)7"twl) > 0;5 = 1,2,...,00} and
Yo, € Yo are the Laplace transformations of positive random variables
(Joe 1997). Moreover, when the two generators ¢y and 1; are of the same
Archimedean copula families with corresponding parameters 6y and 6y, they
often fulfill the sufficient nesting condition of 6y < 6; (Hofert 2011).

Using that the completely monotonic generator ¢ is also the Laplace trans-
formation of a positive distribution function Fy(zo) with Fo(0) = 1,

dolt) = / T e mdRy(x0); ¢ 0

we can rewrite the joint survival function for cluster [ as,

S(tllla ... atanl,Nl,l Z11l7 ceey Zanl,Nl,l)

N; T4
=10 | Y ¥y ot {Z ¢11{5(tiﬂ|zz‘jl)}}
=1 i=1

0 N;
=/0 exp [—mo{ Y ¥yt ot (Zwll{s(tijlziﬂ)}> dFy(zo)
j=1 i=1

oo Mi it
= /0 [Texp l—wo@m {Z w;l{s(tiﬂzijl)}}
vt i=1

Jj=

dFy(o)

;1

oo Mi
= /(; HwOI <Z ¢;1{S(tijl|Zm)};xo> dFo(xo) (1)
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where 901 (t; xo) = exp{—xmzm(t)}, is called the inner generator. It is a proper
generator in ¢ for each zg > 0 as a composition of the completely monotone
function exp(—xp) with g1 which has a completely monotone derivative.

Since each lifetime Tj;; is subject to right censoring, we need to take this into
account when we construct the likelihood function for this copula model. The
contribution of cluster [ to the likelihood function corresponds to the derivative
of the joint survival function (1) over all uncensored individuals in this cluster.
Hence, we get that the contribution of cluster [ to the likelihood function is
given by,

o
_ d
L= (-1) lms(ylllw-'ayanl,Nl,l|lelw~~aZnN”,Nl,l)

where 0{d;; = 1} is the set of uncensored individuals in cluster ! and d; =
Z;V:ll S 8i41 is the total number of uncensored individuals in that cluster.
Using representation (1) of the joint survival function, this derivative is given
by

/ Hlﬁ(d”) (ilﬁfl{s(yijﬂzijl)};ﬂﬂo) dFy(xo)

l nji1

x H H wl {S yljl‘zlﬂ)}f(yml|zzjl)]

Jj=1li=1

H ) <; & S (il Zijo) ) XO)]

Ny nji

X H H d)l {S yﬁjl‘zljl)}f(yzjﬂzz]l)] (2)

j=1li=1

where d;; = ;7" ;1 is the total number of uncensored individuals in the j*
sub-cluster under [** cluster. In this expression, we need to find the different
derivatives of the inner generators o1 (¢; xo). Therefore we use the formula of
Faa di Bruno’s (Craik 2005) which gives the n'" derivative of a composition
of functions f and g,

2 @)} = (fog)™ (@)

dm”

fo Ho(@)}Buwld (@), 9" (@), ... 9" "D (@)}

where B, x{g'(x),...,9"" **1(2)} is a Bell polynomial.

In our setting, the inner generator of the nested Archimedean copula in equa-
tion (2) given by, o1 (t;x0) = exp{—xoto1(t)} with g1 = 1/10_1 o 11, we set
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f(y) = exp(—zoy) and g(t) = o1 (t) such that
FELgt)} = FE o1 (1)} = (—0)* exp{—zothor ()} = ou (t; 0)(—0)"

Hence, we get that for any number of derivatives

5t 00) = vor (b00) D B s{by (8), . 5V ()} (—a0)*

k=1
= o1(t; 2o) Zank(t)(*
k=1

where an(t) = B {tb, (1), ..., Oé?7k+1)(t)} are the coefficients of the Bell
polynomial. Hereby we note that the sign {a,x(t)} = (—1)"7*

By using this general formula for the derivatives of the inner generators ¥ (¢; o),
we can rewrite the product appearing as integrand in equation (2) as follows:

N nj1
H iy (Z ¢11{5(yijl|zijl)};xo>

i=1

N; dji nji
= H Zadil k (Z (r {S y1]l|ZZJl)}> (—.’Eo)
j=1k=1
X me (ijwl {S(Wiji|Zij) }; v )
& nji
= Z bgl’,k{tl(ul)} —x0)* x HeXP l—l'olbm (Z% {s( yzylzwl)}>]

k=N, Jj=1 i=1

d;

= > b {ti(a) (=)

k=N

N; nj1
xexp |~z q ¥ty ot (Z ¢11{S(yijl|zijz)}>
=1

=1
d

= Y by {ti(w)}(—z0)* x exp{—zoti(w)}
k=N
In this expression, we denote by N,; = Zj\ll I(d;j; > 1), the number of sub-
clusters in the ¥ cluster which includes at least one uncensored observation.

Furthermore the coefficients
nji

balp{ti(m)} = > H Adji,m [Z o1 S (g IZm)}}

mEQNl j= 1cljl>1 =1
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are the coefficients in the Cauchy product of the polynomials
dj j
STy | S0 07 S (il Zas) ) (—wo)
Hereby, we introduce the following notation to shorten the expressions:
- dlz(dllad2l7"')dN1l)T "
- ti(w) = (tlllv(ull)a -t (ung))” with ti(u) = 2220 ¥y 1{S(ywl|zml)}
— ti(w) = Zj l1 7/)(;1 oy (Zz]ll 1 I{S(ywl‘zml)})

7Q k:{meNNl‘Z;Vllmﬂfk mjl<djl7]€{12 Nl}

Taking the expectation of this expression, we get,

H vy (Z Ui S (it Za) Y Xo)]

i=1

Z by {ti(w }E[( o)F. exp{—wot; (w)}
k=N,
d;

Z le kit ()} {ta ()}

k=Nuy;

Hence, we get that the contribution to the likelihood in equation (2) is given
by

L= { S0y (e bl >{tz<ul>}}

k=N
N; nji

x H H [ wl {S ytjl‘zljl)}f(yuﬂzz]l)

j=1li=1

8i1

Combining the contributions over all clusters, we obtain the following likeli-
hood function

L= HL; = H H i: by {ti( ()} ){tl(ul)}}
=1

=1 k=Nuy
N; mji

<TTTI|¢ [ U ){S( yl]l|zljl)}f(y1jl‘zzjl)}

j=1li=1

Sis1

and log-likelihood function

L d;
I =logL = log { > (- >dlb§:k{txuz)}wé’“){tl(uz)}}
=1 k=N
L N; mji

DI IPIL LT {log { - <w;1>’{5(yz-ﬂ\Zim}f(yimzijz)}} (3)

1=1 j=1 i=1
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In the next section, we will show in more details how this log-likelihood func-
tion looks like for a specific nested Archimedean copula function.

3 Tilted outer power families

In this section we look at the nested Archimedean copula function based on
tilted outer power generators given by

Vi(t) = p{(P + )% — ¢}, i=0,1 (4)

for a generator ¥ € 1 and ¢ € [0,00). The range of #; depends on specific
families of Archimedean copula, for example, 8; € (0,00) for a nested Clayton
copula and 6; € [1,00) for a nested Gumbel copula (see Nelsen 2006 for details).
By using Faa di Bruno’s formula, we get the k' derivatives of 1) (t) (Hofert
and Pham 2013),

k
57(8) = DO 1)/ — e} 4 1)y (1/60)

j=1
where s,p(z) = Yo, s(n,1)S(l,k)z'. Hereby s(n,l) = (—=1)""!|s(n,l)| in
which |s(n,l)| are the unsigned Stirling numbers of the 1% kind. These num-
bers count the number of permutations of n elements with [ disjoint cycles.
S(lk) = % Zfzo(—l)i(lf) (k — i)l are the Stirling numbers of the 27¢ kind,
which counts the number of ways of partitioning a set of [ elements into k
nonempty sets. The different Stirling numbers satisfy following recurrence re-
lations:

s(n+1,k) =s(n,k—1) —ns(n, k)
S(n+1,k) =S(n,k—1)+ kS(n, k)
for all k¥ € N;n € Ny, with s(0,0) = S(0,0) = 1 and s(n,0) = s(0,n) =

S(n,0) = S(0,n) =0 for all n € N.
For the tilted outer power generators of type (4), the nodes are given by,

1])01(1?) = qul ot = (091 +t)* — %, where a; = 00/64

These generators fulfill the sufficient nesting condition if 6y < 6; (Hofert and
Pham 2013). Moreover we see that the n‘" derivative is given by

O((ff)(t) =ai(a1—1)... (a1 —n+ 1) +)7" = (a1)p (P + )7, neN

where (z), = z(r —1)...(x —n+1) is called a falling factorial. We can write
the inner generator as a composition of function,

ou (20) = exp{—zotor (1)} = exp | = wo{(c” +1)™* — *}]
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which has n** derivative,

an g (t)(—x0)"

M=

(()T)(t; x0) = o1 (t; z0)

ol
Il
—

(€ + ) s () (— o) ()

NIE

= o1 (t; o)

£l
Il
-

where ani(t) = Bo i {th (8), .., 08 F )} = (¢ + ) s (ar)
Furthermore, we get that v () = {tp=2(t) + ¢} — ¢ and it’s first derivative
is (1) (1) = 01 {w™ 1 (1) + c} M W ().
Using these expressions, we obtain the following log-likelihood function for
tilted outer power families:

L d;
I=logL = Zlog{ D (=D {t(w)}

=1 k=N
k ] ]
x| DI+ ta(u) )% — e[ {e® 4t (w) % s(1/60)
j=1
L N; mji
35> b f1og { — 0 (Sl Zig)} + "
=1 j=1i=1

(W™ (S (it Zas) Hf (i Zuso) }

3.1 Clayton copula

In this subsection, we look at the nested Clayton copula. Hereto we take
P(t) =1/(1+¢) and ¢ =1 in the tilted outer power generator and get

) 0, L N1/0; o _ 1
¢z(t) - ’Lﬁ{(c +t) C} - 14+ (1 +t)1/9i -1

which is a generator of the Clayton copula with §; € (0,00). Therefore, the
kth derivatives of 1 (t) is obtained as

() = (—1/00)(—=1/00 — 1) ... (=1/8p — k + 1) (1 + )1/ %~k
= (—=1/00)(1 + )"/ %k

= (1+1t)~ 1/

We can find the n'” derivatives of inner generators, ¥o1 (£; 20) = exp{—zotho1 ()}
from equation (5) (putting ¢ = 1) as

g (t)(—x0)"

NE

¢(()711) (t;20) = Yo1(t; z0)

S
Il
—

=Yo1(t; o) Y (1 +8) s, (1) (—m0)F

M=

E
Il
-
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where, ani(t) = (14t)** "5, (7). The inverse of Clayton generator, ¢y ' (t) =
t=% — 1 which has first derivative, ()7 ")(t) = —6;t~% 1. We obtain the fol-
lowing log-likelihood function for the nested Clayton copula:

L d
I=logL =3 log ( D (Dm0 {ti ()} (=1/60)k{1 + tl(ul)}1/90k>

=1 k=N
L diji
+> D D log [91{5(%]‘1 1Zsj0)} =0 f(yig1 Zogn) (6)
=1 j=11i=1
L ’ d;
- Zlog ( Z Fl)dlikbgl,k{tl(ul)}(*l)k(*l/%)k{l thl(uz)}l/e“k)
=1 k=N
L Ny nj
222 b [logwl) — (1+61) log{S(yiji|Ziz1) } + IOg{f(yijl|Zijl)}}
1=1 j=1 i=1

3.1.1 Numerical evaluation of the log-likelihood

In the numerical evaluation of the log-likelihood function in equation (6) dur-
ing for example the optimization process of maximum likelihood, we note that
the evaluation of the first term in this log-likelihood expression leads to com-
plicated problems when taking a logarithm of the sum. The second part of the
log-likelihood in equation (6) is comparatively trivial to compute. To compute
the logarithm of the sum we define,

T = log [(—1)dl_kbévf,k{tz(ul)}(—l)k(—l/Go)k{l + tl(uz)}_l/go_k}
= log | (~1)" 03" bu(w)}] +log | (=1)*(~1/60)]
~ (160 + K)log [{1 + ti(w)} 1)

Therefore,

di
log ( Z (=) FbY (b () H(=1)F (—1/60) k{1 +tl(ul)}1/90’€>

k=N

d; di
:log< > exp(xm) = (:cl>max+1og< > explan — (xl)max}> 8)

k=Ny; k=Nu

where (2)max = max(xg;); Ny < k < d;. The logarithm of the sum in above
equation can easily be computed because we take the maximum term out
of the sum and the rest of the sum is only a limited contribution where all
summands within the sum are in (0,1].

Next we need to calculate xj; in equation (7). To make sure that all terms
within logarithms are positive, we note that the signs of the terms bgl Lelti(w)}
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is (—1)%~* (Hofert and Pham 2013). Hence we get that (—1)%—*pY", {t,(w;)}

1y
> 0 for all k € {Ny,...,d}. Also, (=1)*y{(t) = (=1)F(=1/60)sx {1 +
ti(u;)} =%~k > 0, as the derivatives, have alternating sign for completely
monotonic generators. Since (—1)¥(—1/0p)r = (—1)¥(=1/00)(—=1/6y — 1)...
(=1/6p — k + 1) = (—=1)2%(1/60)(1/6¢ + 1)...(1/6¢ + k — 1) is positive for
all k € {Nu,...,d;}, we get that the other part {1 4 t;(u;)} /%~ is also
positive. The major difficulty in evaluating xx; lies in the calculation of

log (fl)dl*kbévlﬂk{tl(ul)}] Recall that,

N,
bfivll,k{tl(ul)} = Z H a’djhmjl(t)

N, j— .
meQd;,k j=1,dj;>1

where, adjla"ljl(t) = (1 =+ t)almﬂidﬂ‘sdjzmjz(alx mj; < djl

njl
t="Y b S Wil Zi) };
i=1
djl
and  54,,m,,(01) = Z s(dj1, 1)S(1,m1) (o)
l:mjl

In this expression, s(d;;,!) and S(I,mj;) are the Stirling numbers of first and
second kind respectively. The value of both Stirling numbers depend on the
total number of events/uncensored individuals in the j** sub-cluster under
Ith cluster (d;i1) and are rapidly increasing with increasing numbers of events
in a sub-cluster. As a result, calculating sq;,,m,, (a1) from Stirling numbers
is troublesome and is not possible for large number of events in any sub-
cluster. Therefore we use an iterative method based on the logarithm of this
term and calculate log{(—1)%" ™54, ., (1)} since the sign of s4,, m;, (1) is
(—1)%1=mit | The details are given in Appendix B. Similar as for the calculation
of 54,.m, (1), ad; m; (t) and bﬁfl{k{tl(ul)} are also calculated in terms of
logarithm because these terms become very close to zero for large dj;; and N;.
Hereto we use the following formulas:

log |:(_1)djl*7Tleadjl,mjl (t)]

= (armje — dyr) log(1 +1) +log [ (=1)%~sq,m,, (a1)|  (9)

N,
log [(_1)dl_kbfi\’ll,k{tl(ul)}:| = log (_1)dl_k Z H adjz,mjz(t)

mle;ILl,k jZl,djlzl

N;
= log Z exp Z log [(—1)dﬂ_mﬂadﬂ,mﬂ(t)}
meQh!, j=1,dj>1
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Since bgfl 'piti(w)} is the coefficient in the Cauchy product of the polynomi-
als Zgj:ll Ad,y ke [Z:le fl{S(yijl|Zijl)}} (—x0)¥, we use an iterative method

to calculate the logarithm of the coefficients. For the I*" cluster, (ignoring
(=1)%1=mit for all a's and b's), we have, based on (9), the vectors of the
logarithm-coefficients for all sub-clusters

IOg{adu,mu (t) = (log{adu,o(t)}? log{adu,l(t)}ﬂ s 7log{a’d1hd11 (t)})
t

}
b= (1og{aao(t)},10g{aa 1 (D)}, - 10g{au a2 (1)})

IOg{adzz ,may ( )

IOg{a’lel’lez (t)} = (IOg{alel’O(t)L IOg{alel,l(t)}7 s 710g{alez,lez (t)})

First we calculate the logarithm of the coefficients from the first two vectors
as follows:

log [0, o{tu()}] = log [exp { log{aa,,o(t)} + log{auo(t)} }]
= log{aa, o(t)} +10g{au,.0(t)}
log 13, {t1(w)}] = 10g [ exp { log{aa,,0(t)} + log{au,1(t)}
+exp { log{aa, 1(1)} +10g{aas,0(1)} }]
= log | exp { log{as, (1)} +log{aa, s (0} } |
e ZZ exp { log{aa,.:(1)} +oglas, ;(6)} }

=030 exp { log{aa,a ()} + loglaan 5 (O} ]

= { log{aa,, i(t)} + log{aa,;(t)} }max

L&y exp { log{ag, ()} + log{ad,; ()} }

+ log Z Z
=050 exp { log{aay (1)} + log{a (1)} |
| itj=1 max_

log [bal,z{tz(w)}] - {log{adu,i(t)} +log{ady,; (t)}}max

2 2. exp {log{aa, (1)} +log{a, 4 (1)} }

+ log Z Z
=050 exp { log{aay,.a (1)} + log{aa, (1)} |
| itj=2 max_
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log |85, {tu(w)}] = { 10g{as, (1)} + log{aa, 4(1)} |

max

du, dot exp { log{an, (1)} +log{aa (1)} }

+ log Z Z
=0 70 exp { 1og{ay0(0)} + log{aa 5 (1)} |
i+j=d;

max

In this coefficient, we focus on the biggest term of the Cauchy product such
that the other terms can be easily computed because all summands within
the sum are in (0,1]. The next step is to repeat this procedure between the
resulting vector of the previous step with the vector of the next sub-cluster.
After we have used the vector of the last sub-cluster, we found the values for
the coefficients of the I*" cluster.

Finally substituting results from equation (8) in equation (6), we get the
log-likelihood function for the nested Clayton copula:

L d;
log L = Z {(xl)max + log ( Z exp{zkl - ($l)max}> } (10)
=1

k=N
L N; nji

+ Z Z Z diji [108;(91) — (1 +61) log{S(iji|Zij1)} + 10g{f(3/ijl|zijl)}}
=1 j=1i=1

3.2 Gumbel copula

In this sub-section, we look at a second nested copula family, the nested Gum-
bel copula. If we take ¥(t) = exp(—t) and ¢ = 0 in the tilted outer power
generator in equation (4), we get,

vilt) = 9{(” + )% — e} = exp(~t!/%), i=0,1

which is a generator of a Gumbel copula with ; € [1,00). To find the k'"
derivative of 1g(t), Faa di Bruno’s formula was used which gives,

(k) i . ) Wo(t) k ‘
0 (1) =D to(t)(=1) s (1/00)t/%~F = =52 Ty (1/60) (—t1/ %)
=1 =

and we can find the n'* derivatives of the inner generators, o1 (t;z0) =
exp{—xo%o1(t)} from equation (5) as

n

Y (t:20) = o1 (t20) Y @i () (—20)* = wor(t20) D 4 s () ()"

k=1 k=1

with ani(t) = t** "s,.(a1). The inverse of Gumbel generator, 1 *(t) =
(—logt)?, which has first derivative (7 1)(t) = 61 (—logt)®r 1 (—1/t)
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Hence, from equation (3), after some simplification we obtain the following
log-likelihood function for the nested Gumbel copula:

log L = Zlog(Z DR fo () LA

W {ti(w)}*
k
Z 1) s5(1/60){t (w) /% (11)
L N; mji .
+3 3D b [log (91{— log S(yijt|Ziji)}* {1/ S (it Zijo) Y (i \Zijl))]
=1 j=1 i=1

We compute the logarithm of the sum in the log-likelihood function in equation
(11) similar as for the Clayton copula. To do this, let us consider,

2 = log ( 1)dl ksz {tl( 7wa{tl w }Z J+k8k] 1/90){751(111)}3/90

k
{t ul 1

= log [(—1)d’_kbgl7k{tz(uz)}] + log {7/)0{151(111)}] — klog {tz(ul)}

k
+log | Y (=1)7 sk, (1/60){ts (uy) /% (12)

Jj=1

To compute zy; in equation (12), we note in the last part of the equation
that there is again a logarithm of a sum. We use the same trick as before to
calculate the logarithm. Hereto let us consider,

i = log [ (=1)F s, (1/60){ta(w) /|

such that we get that

k k
tog (D2 (=11 sy (1 /00 {taan) /) = Tog | S explyes)
k
= (Yrt)max + log Zexp{ykjl — (Yit)max}

where, (Ygi)max = max(yg;); 1< j <k, Ny <k <d;. Therefore, substitut-
ing these values in equation (12) we get,

2 = log [(=1)" "0} {ti(w)}| + log [wo{ti(w)}| — klog {ti(w)}

k

+(ykl)max + log Z exp{ykjl - (ykl)max}
7j=1
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Furthermore we get that

d

k
oz | 3 (1) 405 ey SO Sy ) a7
k=N 7j=1
d d
= lOg ( Z exp(mkl)> = (xl)max + log < Z eXp{mkl - (xl)max}>
k=N, k=N,

where, (2;)max = max(xg;), Ny <k < d;. Therefore, from equation (11) we
obtain the following log-likelihood function for the nested Gumbel copula,

IOgL Z { xl max T IOg < Zl exp{xkl - (xl)max}> }

k=Nuy;
L N; mji
303D [ 1og(61) + (61 — 1) log{— log Syl Zisn)}
=1 j=1i=1

— 10g{ S (yist| Zis)} + logd f(yin|Zizn)} ] (13)

4 Parametric estimation

In this section, we investigate one-stage, two-stage and three-stage paramet-
ric estimation methods to estimate the parameters of our developed model.
Prenen et al. (2017) used one- and two-stage parametric estimation methods
to estimate the parameters of the Archimedean copula model for clustered
survival data. We extend both of their methods for hierarchically clustered
survival data, where both the clusters and subclusters are large and of varying
sizes.

4.1 One-stage parametric estimation

Let 3 be the parameter vector for the margins, containing distribution-specific
parameters for the baseline survival and covariate effects; and let @ be the pa-
rameter vector for the association parameters based on the nested Archimedean
copula. We use the log-likelihood function derived in equation (10) for Clayton
copula and in equation (13) for Gumbel copula model. We find the maximum
likelihood estimates (ﬁ, é), by solving the following two set of equations:

Ua(8,0) - ZELE0
Ue(ﬁaa) = alo%éﬁ’m =0

simultaneously.
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Theorem 1. Let (B,é) be the solution of Ug(8,0) = 0 and Uy(83,0) =0
simultaneously and let (3, 6) be the true parameters vector. From maximum
likelihood theory (Cox and Hinkley 1974), we know that, under regularity
conditions (details in supplementary materials), \FL(B —B,0— 0) converges to
a multivariate normal distribution with mean vector 0 and variance-covariance
matrix I, where the Fisher information matrix I is partitioned into blocks:

I [Iﬁﬁ Iﬁa}
Iy T

where LlIgg is the variance-covariance matrix of Ug, Llgg is the covariance
matrix between Ug and Uyg and Llgg is the variance-covariance matrix of Up.

In practical applications, standard errors of parameter estimates can be re-
trieved from the diagonal elements of the inverse of the Hessian matrix H,
where,
A A 8% log L(,0
H(3,6) = l% T

on;On; with n= (/67 0)

] ij =1, pH2

4.2 Two-stage parametric estimation

In this sub-section, we investigate a two-stage parametric estimation. At the
first stage, we estimate the marginal parameters of the parametric model and
covariate effects assuming a working assumption of independence. In the sec-
ond stage, we estimate both the association parameters 6y and 6; by plugging
the estimates for the margins into the log-likelihood functions (10) and (13).
Two-stage parametric estimation has been used mainly for multivariate mod-
els if the numerical optimization for maximum likelihood estimation is too
time consuming or infeasible. Let B be estimated by 3 at the first stage when
assuming that all subjects are independent. That is, 3 is the solution of the
estimating equations

L Ny nj

Us(8) = > du alog{f%’glz”’)} + (L= bi) alog{sgfgﬂzijz)}
=1 j=1 i=1

L
= Z Uf:ﬁ(ﬁ) =0
=1

Under regularity conditions stated in the supplementary material, \E(E -
() converges to a multivariate normal distribution with mean vector 0 and
variance-covariance matrix (I*) “1V(I*) =1, where V is the variance-covariance
matrix of the score functions Uj and I* is the Fisher information of Ug.
The use of the robust sandwich estimator is required since (I*)~! is not a
consistent estimator of the asymptotic variance-covariance matrix because of
the correlation between the survival times.



18 Mirza Nazmul Hasan, Roel Braekers

After the margins are estimated at first stage, we estimate the association
parameters 0 by solving the estimating equations

= dlog{L(3,6
Up(3,0) = LB _

Theorem 2. Let 0 be the solution of Ug(3,0) = 0 and let 8¢ be the true
value of the association parameters. Then under regularity conditions (details
in supplementary materials), \E(G — 60p) converges to a multivariate normal
distribution with mean vector 0 and variance-covariance matrix

Var—Cov(é) = (199)71 + (199)71195(I*)71V(I*)71159<199)71

The proof of theorem 2 is provided in Appendix A. To estimate this quantity,
we make use of (I*) "Y'V (I*)~!, which is the robust variance-covariance matrix
that is obtained in the first stage, (Ipg) " is obtained from the hessian matrix
at second stage and Iyg is obtained from the Hessian matrix of the one-stage
procedure, which can be estimated numerically by performing one iteration
of the one-stage optimization in which we evaluate the Hessian matrix in the
two-stage parameter results.

4.3 Three-stage parametric estimation

Based on the estimation method of Shih and Lu (2007), we introduce and
investigate in this subsection a three-stage parametric estimation method to
analyze the hierarchically clustered survival data.

In the first stage of the estimation procedure, we estimate the marginal
parameters under the assumption of independence, similar to the first stage
of the two-stage estimation method explained in the previous subsection.

At the second stage, we estimate the association within the sub-clusters
at the lowest level of the hierarchy. Hereby we assume that the lifetimes in
different sub-clusters are independent of each other such that the clustering
reduces to only one level. This allows us to use the model by Prenen et al. 2017.
After the margins are estimated at the first stage, we estimate the association
parameter #; by solving the following estimating equation

Us, (B.6:) = %9(?»91)} :0

The following result is found in Prenen et al. 2017.

Theorem 3. Let 6; denote the solution of Uy, (3,6;) = 0 and let 619 be the
true value of the association parameter. Under regularity conditions, v/L(#; —
010) converges to a normal distribution with mean 0 and variance

1 L) V)
00 Iz

o? = Var(f;) =
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At stage 3, we randomly sample one observation from each subcluster in
each cluster, with replacement. The resampled data set of size ZzL:1 N; con-
tains information about 8y but no information about #;. The estimate of 6,
from the resampled data set can be done in a way similar to the second stage
estimation. This estimation process is repeated for a large number of times
@, and the within-subcluster resampling estimator, 6, is the average of the Q
resampled-based estimates,

Q
90 — Q*l Z 0(()‘1)
q=1

where é(()q) denotes the estimate from the gth resampled data set. Originally
Hoffman et al. (2001) proposed this clever within cluster resampling method
for analyzing clustered data. The asymptotic theory of 6 is stated below.

Theorem 4. Let 6 denote the estimate of the true value of the association
parameter . Under the regularity conditions, the estimator 6y is consistent
and \/f(éo — 6po) converges weakly to a zero-mean normal distribution with
variance o2, which can be consistently estimated by,

Q
ot = L{Q7 Y - (Q-1Q 'S}, |
q=1

2(q)

where G, is the estimated variance from the gth analysis and Sgo =(Q —

-t Zqul{é(()q) —00}? is the variance among the Q) resampled-based estimates
6\""s (Hoffman et al. 2001).

5 Simulation study

In this section, we study the finite sample performance of the different proposed
estimation procedures for the nested Archimedean copula model by using sim-
ulated data. Hereto we generate 500 data sets with 50, 200 or 500 clusters of
size varying between 1 and 10 and sub-clusters of size varying between 1 and
15. The survival times are simulated from a nested Clayton copula with 6
(01) = 0.6 (1.5), 1.2 (2.5), 2.0 (6.0) or from a nested Gumbel copula with 6y
(01) =1.3 (1.8), 1.6 (2.3), 2.0 (4.0) such that 6y < 6, for both copula func-
tions. We assume that the marginal survival functions are Weibull distributed
S(t) = exp{AtPexp(f'Z)} in which p =1.5, A=0.0045 and Z is a dichotomous
covariate with effect 8 = 0.3. The values of the association parameters (6
and 6) for both copula models are chosen such that the corresponding values
of Kendall’s 7 are comparable. The data are generated by using the sam-
pling algorithm of Hofert and Méchler (2011). We assume that the censoring
distribution is also Weibull distributed, with parameters (A, = 0.0066 and
