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Abstract Statisticians are frequently confronted with highly complex data
such as clustered data, missing data or censored data. In this manuscript, we
consider hierarchically clustered survival data. This type of data arises when a
sample consists of clusters, and each cluster has several, correlated sub-clusters
containing various, dependent survival times. Two approaches are commonly
used to analysis such data and estimate the association between the survival
times within a cluster and/or sub-cluster. The first approach is by using ran-
dom effects in a frailty model while a second approach is by using copula
models. Hereby we assume that the joint survival function is described by a
copula function evaluated in the marginal survival functions of the different
individuals within a cluster. In this manuscript, we introduce a copula model
based on a nested Archimedean copula function for hierarchical survival data,
where both the clusters and sub-clusters are allowed to be moderate to large
and varying in size. We investigate one-stage, two-stage and three-stage para-
metric estimation procedures for the association parameters in this model.
In a simulation study we check the finite sample properties of these estima-
tors. Furthermore we illustrate the methods on a real life data-set on Chronic
Granulomatous Disease.
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1 Introduction

Multilevel or hierarchical survival data occur frequently in different research
areas. For example, in a mortality study of cancer patients, the patients are
clustered in hospitals that, in turn, are clustered within districts/provinces.
Hereby, patients within the same hospital/district/province are assumed to be
correlated as they share some common practices and care.

In the analysis of clustered multivariate survival times, two approaches are
commonly considered when we want to take the association between the sur-
vival times within a cluster and/or sub-cluster into account. A first approach is
through frailty models (Duchateau and Janssen 2008; Wienke 2011). A frailty
model is a conditional model which assumes that different individuals within
the same cluster are independent, conditionally on a common frailty term. It
is possible to include covariates in this model but the parameters are esti-
mated conditionally on unobserved frailty terms. This frailty term is assumed
to be a realization of a random variable with a given frailty distribution. In
case of multi-level survival data, nested frailty models can be used to induce
multi-level associations (Ma et al. 2003; Rondeau et al. 2006; Sastry 1997).
The nested frailty model accounts for the hierarchical clustering of the data
by including two nested random effects. Nested frailty models are particularly
appropriate when data are clustered at several hierarchical levels naturally or
by design (Rondeau et al. 2006).

A second approach to analyze clustered multivariate survival times is by
using copula functions. Shih and Louis (1995) first introduce copula models
in the analysis of clustered bivariate survival times, in which they specify a
(non-)parametric model for the marginal survival function of each lifetime sep-
arately and provide a parametric copula function to describe the association
between the different lifetimes. Due to the right-censoring of the lifetimes, it
is very hard to obtain for a general copula function a closed form expression
of the likelihood function to estimate the parameters of the model. Two so-
lutions to this problem can be found in the literature. A first solution is to
look only at pairwise associations between the lifetimes within a cluster. Zhao
and Joe (2005) establish in this setting a two-stage estimation procedure for
both the marginal and association parameters. Li and Lin (2006) consider a
second alternative approach by focusing on copula families for which the full
likelihood function could be constructed based on the mathematical properties
of the family. They consider a Gaussian copula function to model the spatial
correlation for spatially correlated survival data. Li et al. (2008) also consider a
Gaussian copula function to model the association for bivariate survival data.
Othus and Li (2010) extended this model for varying cluster sizes and allow for
covariates. Glidden (2000) on the other hand looks within the Archimedean
copula family at the Clayton copula function to develop a two-stage estimator
for the association parameter for multivariate clustered survival data. Pre-
nen et al. (2017) extended this model for unbalanced clustered data and also
consider a general Archimedean copula function with monotonic generators.
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Nested Archimedean copula functions were first introduced by Joe (1997)
for three and four dimensional variables. Later McNeil (2008) extended these
copula functions for general d-dimensional variables. Recently, Hofert and
Pham (2013) developed a tractable formula for the density of nested Archimedean
copula functions in arbitrary dimensions if the number of nesting levels is not
too large. Although they showed a numerically efficient way to evaluate the
log-density, their study didn’t show any simulation results or real life data
application. For failure time data with multiple levels of clustering, Joe (1993)
and Bandeen-Roche and Liang (1996) proposed a family of distributional mod-
els but these models were not applied in real applications. Shih and Lu (2007)
applied this multivariate survival model with a nested Archimedean copula
function to model the associations for child mortality data in a vitamin A
trial in Nepal. Hereby the data were clustered within households in villages.
They introduced and investigated a three-stage semi-parametric estimation
method to analyze this hierarchically clustered survival data.

As far as we know, a one-stage or two-stage estimation method such as
defined in Prenen et al. (2017) have not been used before for a multilevel
multivariate survival copula model. This current study fills up this gap. The
three-stage estimation method of Shih and Lu (2007) was furthermore adapted
to a parametric setting such that we could compare it with our proposed one-
stage and two-stage methods. In this manuscript, we consider hierarchically
clustered survival data which are possibly censored and where both the clus-
ters and sub-clusters are allowed to be large and varying in size. A nested
Archimedean copula function is used to incorporate the associations in two
levels in the model. We also allow covariates in the marginal distributions of
this model.

This paper is structured as follows. In Section 2, we describe a nested
Archimedean copula model for hierarchical survival data by rewriting the like-
lihood function in terms of Laplace transformations. We derive in Section 3,
the log-likelihood function for the Clayton and the Gumbel copula as members
of the tilted outer power family. In Section 4, we present and derive asymptotic
properties of the one-stage, two-stage and three-stage parametric estimation
procedures while in Sections 5 and 6, we report finite sample simulation results
and the results from a real life data-set respectively. We finish this manuscript
with a brief discussion in Section 7.

2 Description of the model

In this section we develop a full copula model for hierarchically clustered sur-
vival data in which the size of each cluster and/or sub-cluster is unequal,
moderate to large. Hereto we suppose that we have L different independent
clusters in the data-set (l = 1, 2, . . . , L). Within each cluster, there are dif-
ferent sub-clusters (j = 1, 2, . . . , Nl), where Nl is the number of sub-clusters
in the lth cluster. In each sub-cluster, we denote the lifetime for the different
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individuals by a positive random variable Tijl, i = 1, 2, . . . , njl where njl is
the number of individuals in the jth sub-cluster of the lth cluster.

We will assume that every event time is subject to random right censoring.
For each individual, we consider an independent random censoring variable
Cijl such that the observed quantities are given by,

Yijl = min(Tijl, Cijl); δijl = I(Tijl ≤ Cijl)
i = 1, 2, . . . , njl; j = 1, 2, . . . , Nl; l = 1, 2, . . . , L

The lifetime is allowed to depend on a set of covariates Zijl. To build up our
copula model for hierarchically clustered survival data, we work in different
steps. First we assume that the joint survival function for the lifetimes within
sub-cluster j of cluster l is given by,

S(t1jl, . . . , tnjl,jl|Z1jl, . . . ,Znjl,jl)

= P (T1jl > t1jl, . . . , Tnjl,jl > tnjl,jl|Z1jl, . . . ,Znjl,jl)

= C1
(
S(t1jl|Z1jl), . . . , S(tnjl,jl|Znjl,jl);ψ1

)
= ψ1

[
ψ−11 {S(t1jl|Z1jl)}+ . . .+ ψ−11 {S(tnjl,jl|Znjl,jl)}

]
where S(tijl|Zijl) = P (Tijl > tijl|Zijl) is the marginal survival model for the
lifetime Tijl, given the covariate values Zijl. C1 is an Archimedean copula with
a generator ψ1, which describes the association among all individuals within
a sub-cluster. Hereby, ψ1 ∈ ψ∞ : [0,∞) → [0, 1] is a continuous, strictly
decreasing and completely monotonic function with ψ1(0) = 1, ψ1(∞) =

limt→∞ ψ1(t) = 0 and (−1)mψ
(m)
1 (t) ≥ 0 for all m ∈ N0, t ∈ (0,∞). The

set of all completely monotone Archimedean generators is denoted by ψ∞.

Next we also assume that the different sub-clusters within a cluster are also
correlated. The joint survival function for two event times from two different
sub-clusters j and j∗ within a cluster l is given by,

S(tijl, ti∗j∗l|Zijl,Zi∗j∗l) = P (Tijl > tijl, Ti∗j∗l > ti∗j∗l|Zijl,Zi∗j∗l)

= C0
(
S(tijl|Zijl), S(ti∗j∗l|Zi∗j∗l);ψ0

)
= ψ0

[
ψ−10 {S(tijl|Zijl)}+ ψ−10 {S(ti∗j∗l|Zi∗j∗l)}

]
where C0 is the Archimedean copula with a generator ψ0 ∈ ψ∞, which de-
scribes the association between sub-clusters within a cluster.

By using partially nested Archimedean copula functions (Joe 1997), we com-
bine both expressions and get that the joint survival functions for all the event
times in the lth cluster as:

S(t11l, . . . , tnNll
,Nl,l|Z11l, . . . ,ZnNll

,Nl,l)

= P (T11l > t11l, . . . , TnNll
,Nl,l > tnNll

,Nl,l|Z11l, . . . ,ZnNll
,Nl,l)
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= C0
({
C1
(
S(t11l|Z11l), . . . , S(tn1l,1l|Zn1l,1l);ψ1

)
,

C1
(
S(t12l|Z12l), . . . , S(tn2l,2l|Zn2l,2l);ψ1

)
, . . . ,

C1
(
S(t1Nll|Z1Nll), . . . , S(tnNll

,Nll|ZnNll
,Nll);ψ1

)}
;ψ0

)
= ψ0

[
ψ−10 ◦ ψ1[ψ−11 {S(t11l|Z11l)}+ . . .+ ψ−11 {S(tn1l,1l|Zn1l,1l)}]

+ ψ−10 ◦ ψ1[ψ−11 {S(t12l|Z12l)}+ . . .+ ψ−11 {S(tn2l,2l|Zn2l,2l)}] + . . .

+ ψ−10 ◦ ψ1[ψ−11 {S(t1Nll|Z1Nll)}+ . . .+ ψ−11 {S(tnNll
,Nll|ZnNll

,Nll)}]
]

= ψ0

 Nl∑
j=1

ψ−10 ◦ ψ1

{ njl∑
i=1

ψ−11 {S(tijl|Zijl)}

}
Here, the Archimedean copula functions C0 and C1 are called respectively
the root copula and the child copula. In order to have a properly defined
hierarchical copula function, we have that ψ−10 ◦ ψ1 = ψ̊01 ∈ ψ∗∞ = {ω :
[0,∞) → [0,∞)|ω(0) = 0, ω(∞) = ∞, (−1)j−1ω(j) ≥ 0; j = 1, 2, . . . ,∞} and
ψ0, ψ1 ∈ ψ∞ are the Laplace transformations of positive random variables
(Joe 1997). Moreover, when the two generators ψ0 and ψ1 are of the same
Archimedean copula families with corresponding parameters θ0 and θ1, they
often fulfill the sufficient nesting condition of θ0 ≤ θ1 (Hofert 2011).

Using that the completely monotonic generator ψ0 is also the Laplace trans-
formation of a positive distribution function F0(x0) with F̄0(0) = 1,

ψ0(t) =

∫ ∞
0

e−tx0dF0(x0); t ≥ 0

we can rewrite the joint survival function for cluster l as,

S(t11l, . . . , tnNll
,Nl,l|Z11l, . . . ,ZnNll

,Nl,l)

= ψ0

 Nl∑
j=1

ψ−10 ◦ ψ1

{ njl∑
i=1

ψ−11 {S(tijl|Zijl)}

}
=

∫ ∞
0

exp

−x0


Nl∑
j=1

ψ−10 ◦ ψ1

( njl∑
i=1

ψ−11 {S(tijl|Zijl)}

)
 dF0(x0)

=

∫ ∞
0

Nl∏
j=1

exp

[
−x0ψ̊01

{ njl∑
i=1

ψ−11 {S(tijl|Zijl)}

}]
dF0(x0)

=

∫ ∞
0

Nl∏
j=1

ψ01

( njl∑
i=1

ψ−11 {S(tijl|Zijl)};x0

)
dF0(x0) (1)
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where ψ01(t;x0) = exp{−x0ψ̊01(t)}, is called the inner generator. It is a proper
generator in t for each x0 > 0 as a composition of the completely monotone
function exp(−x0) with ψ̊01 which has a completely monotone derivative.

Since each lifetime Tijl is subject to right censoring, we need to take this into
account when we construct the likelihood function for this copula model. The
contribution of cluster l to the likelihood function corresponds to the derivative
of the joint survival function (1) over all uncensored individuals in this cluster.
Hence, we get that the contribution of cluster l to the likelihood function is
given by,

Ll = (−1)dl
∂dl

∂{δijl = 1}
S(y11l, . . . , ynNll

,Nl,l|Z11l, . . . ,ZnNll
,Nl,l)

where ∂{δijl = 1} is the set of uncensored individuals in cluster l and dl =∑Nl

j=1

∑njl

i=1 δijl is the total number of uncensored individuals in that cluster.

Using representation (1) of the joint survival function, this derivative is given
by

Ll =

∫ ∞
0

Nl∏
j=1

ψ
(djl)
01

( njl∑
i=1

ψ−11 {S(yijl|Zijl)};x0

)
dF0(x0)

×
Nl∏
j=1

njl∏
i=1

[
(ψ−11 )′{S(yijl|Zijl)}f(yijl|Zijl)

]δijl
= E

 Nl∏
j=1

ψ
(djl)
01

( njl∑
i=1

ψ−11 {S(yijl|Zijl)};X0

)]

×
Nl∏
j=1

njl∏
i=1

[
(ψ−11 )′{S(yijl|Zijl)}f(yijl|Zijl)

]δijl
(2)

where djl =
∑njl

i=1 δijl is the total number of uncensored individuals in the jth

sub-cluster under lth cluster. In this expression, we need to find the different
derivatives of the inner generators ψ01(t;x0). Therefore we use the formula of
Faà di Bruno’s (Craik 2005) which gives the nth derivative of a composition
of functions f and g,

dn

dxn
f{g(x)} = (f ◦ g)(n)(x)

=

n∑
k=1

f (k){g(x)}Bn,k{g′(x), g′′(x), . . . , g(n−k+1)(x)}

where Bn,k{g′(x), . . . , g(n−k+1)(x)} is a Bell polynomial.

In our setting, the inner generator of the nested Archimedean copula in equa-
tion (2) given by, ψ01(t;x0) = exp{−x0ψ̊01(t)} with ψ̊01 = ψ−10 ◦ ψ1, we set
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f(y) = exp(−x0y) and g(t) = ψ̊01(t) such that

f (k){g(t)} = f (k){ψ̊01(t)} = (−x0)k exp{−x0ψ̊01(t)} = ψ01(t;x0)(−x0)k

Hence, we get that for any number of derivatives

ψ
(n)
01 (t;x0) = ψ01(t;x0)

n∑
k=1

Bn,k{ψ̊′01(t), . . . , ψ̊
(n−k+1)
01 (t)}(−x0)k

= ψ01(t;x0)

n∑
k=1

ank(t)(−x0)k

where ank(t) = Bn,k{ψ̊′01(t), . . . , ψ̊
(n−k+1)
01 (t)} are the coefficients of the Bell

polynomial. Hereby we note that the sign {ank(t)} = (−1)n−k.

By using this general formula for the derivatives of the inner generators ψ01(t;x0),
we can rewrite the product appearing as integrand in equation (2) as follows:

Nl∏
j=1

ψ
(djl)
01

( njl∑
i=1

ψ−11 {S(yijl|Zijl)};x0

)

=

Nl∏
j=1

djl∑
k=1

adjl,k

( njl∑
i=1

ψ−11 {S(yijl|Zijl)}

)
(−x0)k

×
Nl∏
j=1

ψ01

( njl∑
i=1

ψ−11 {S(yijl|Zijl)};x0

)

=

dl∑
k=Nul

bNl

dl,k
{tl(ul)}(−x0)k ×

Nl∏
j=1

exp

[
−x0ψ̊01

( njl∑
i=1

ψ−11 {S(yijl|Zijl)}

)]

=

dl∑
k=Nul

bNl

dl,k
{tl(ul)}(−x0)k

× exp

−x0


Nl∑
j=1

ψ−10 ◦ ψ1

( njl∑
i=1

ψ−11 {S(yijl|Zijl)}

)


=

dl∑
k=Nul

bNl

dl,k
{tl(ul)}(−x0)k × exp{−x0tl(ul)}

In this expression, we denote by Nul =
∑Nl

j=1 I(djl ≥ 1), the number of sub-

clusters in the lth cluster which includes at least one uncensored observation.
Furthermore the coefficients

bNl

dl,k
{tl(ul)} =

∑
m∈QNl

dl,k

Nl∏
j=1,djl≥1

adjl,mjl

[ njl∑
i=1

ψ−11 {S(yijl|Zijl)}
]
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are the coefficients in the Cauchy product of the polynomials∑djl
k=1 adjl,k

[∑njl

i=1 ψ
−1
1 {S(yijl|Zijl)}

]
(−x0)k.

Hereby, we introduce the following notation to shorten the expressions:

– dl = (d1l, d2l, . . . , dNll)
T

– tl(ul) = (t1l(u1l), . . . , tNll(uNll))
T with tjl(ujl) =

∑njl

i=1 ψ
−1
1 {S(yijl|Zijl)}

– tl(ul) =
∑Nl

j=1 ψ
−1
0 ◦ ψ1

(∑njl

i=1 ψ
−1
1 {S(yijl|Zijl)}

)
– QNl

dl,k
=
[
m ∈ NNl :

∑Nl

j=1mjl = k,mjl ≤ djl, j ∈ {1, 2, . . . , Nl}
]

Taking the expectation of this expression, we get,

E

 Nl∏
j=1

ψ
(djl)
01

( njl∑
i=1

ψ−11 {S(yijl|Zijl)};X0

)]

=

dl∑
k=Nul

bNl

dl,k
{tl(ul)}E

[
(−X0)k. exp{−x0tl(ul)}

]

=

dl∑
k=Nul

bNl

dl,k
{tl(ul)}ψ(k)

0 {tl(ul)}

Hence, we get that the contribution to the likelihood in equation (2) is given
by

Ll =

{
dl∑

k=Nul

bNl

dl,k
{tl(ul)}ψ(k)

0 {tl(ul)}

}

×
Nl∏
j=1

njl∏
i=1

[
(ψ−11 )′{S(yijl|Zijl)}f(yijl|Zijl)

]δijl
Combining the contributions over all clusters, we obtain the following likeli-
hood function

L =

L∏
l=1

Ll =

L∏
l=1

[{
dl∑

k=Nul

bNl

dl,k
{tl(ul)}ψ(k)

0 {tl(ul)}

}

×
Nl∏
j=1

njl∏
i=1

[
(ψ−11 )′{S(yijl|Zijl)}f(yijl|Zijl)

]δijl
and log-likelihood function

l = logL =

L∑
l=1

log

{
dl∑

k=Nul

(−1)dlbNl

dl,k
{tl(ul)}ψ(k)

0 {tl(ul)}

}

+

L∑
l=1

Nl∑
j=1

njl∑
i=1

δijl

[
log
{
− (ψ−11 )′{S(yijl|Zijl)}f(yijl|Zijl)

}]
(3)
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In the next section, we will show in more details how this log-likelihood func-
tion looks like for a specific nested Archimedean copula function.

3 Tilted outer power families

In this section we look at the nested Archimedean copula function based on
tilted outer power generators given by

ψi(t) = ψ{(cθi + t)1/θi − c}, i = 0, 1 (4)

for a generator ψ ∈ ψ∞ and c ∈ [0,∞). The range of θi depends on specific
families of Archimedean copula, for example, θi ∈ (0,∞) for a nested Clayton
copula and θi ∈ [1,∞) for a nested Gumbel copula (see Nelsen 2006 for details).
By using Faà di Bruno’s formula, we get the kth derivatives of ψ0(t) (Hofert
and Pham 2013),

ψ
(k)
0 (t) =

k∑
j=1

ψ(j){(cθ0 + t)1/θ0 − c}(cθ0 + t)j/θ0−kskj(1/θ0)

where snk(x) =
∑n
l=k s(n, l)S(l, k)xl. Hereby s(n, l) = (−1)n−l|s(n, l)| in

which |s(n, l)| are the unsigned Stirling numbers of the 1st kind. These num-
bers count the number of permutations of n elements with l disjoint cycles.
S(l, k) = 1

k!

∑k
i=0(−1)i

(
k
i

)
(k − i)l are the Stirling numbers of the 2nd kind,

which counts the number of ways of partitioning a set of l elements into k
nonempty sets. The different Stirling numbers satisfy following recurrence re-
lations:

s(n+ 1, k) = s(n, k − 1)− ns(n, k)

S(n+ 1, k) = S(n, k − 1) + kS(n, k)

for all k ∈ N, n ∈ N0, with s(0, 0) = S(0, 0) = 1 and s(n, 0) = s(0, n) =
S(n, 0) = S(0, n) = 0 for all n ∈ N.
For the tilted outer power generators of type (4), the nodes are given by,

ψ̊01(t) = ψ−10 ◦ ψ1 = (cθ1 + t)α1 − cθ0 , where α1 = θ0/θ1

These generators fulfill the sufficient nesting condition if θ0 ≤ θ1 (Hofert and
Pham 2013). Moreover we see that the nth derivative is given by

ψ̊
(n)
01 (t) = α1(α1−1) . . . (α1−n+1)(cθ1 +t)α1−n = (α1)n(cθ1 +t)α1−n, n ∈ N

where (x)n = x(x− 1) . . . (x− n+ 1) is called a falling factorial. We can write
the inner generator as a composition of function,

ψ01(t;x0) = exp{−x0ψ̊01(t)} = exp
[
− x0{(cθ1 + t)α1 − cθ0}

]
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which has nth derivative,

ψ
(n)
01 (t;x0) = ψ01(t;x0)

n∑
k=1

ank(t)(−x0)k

= ψ01(t;x0)

n∑
k=1

(cθ1 + t)α1k−nsnk(α1)(−x0)k (5)

where ank(t) = Bn,k{ψ̊′01(t), . . . , ψ̊
(n−k+1)
01 (t)} = (cθ1 + t)α1k−nsnk(α1)

Furthermore, we get that ψ−11 (t) = {ψ−1(t)+c}θ1−cθ1 and it’s first derivative
is (ψ−11 )′(t) = θ1{ψ−1(t) + c}θ1−1(ψ−1)′(t).

Using these expressions, we obtain the following log-likelihood function for
tilted outer power families:

l = logL =

L∑
l=1

log

{
dl∑

k=Nul

(−1)dlbNl

dl,k
{tl(ul)}

×

 k∑
j=1

ψ(j)
[
{cθ0 + tl(ul)}1/θ0 − c

]
{cθ0 + tl(ul)}j/θ0−kskj(1/θ0)


+

L∑
l=1

Nl∑
j=1

njl∑
i=1

δijl

[
log
{
− θ1[ψ−1{S(yijl|Zijl)}+ c]θ1−1

(ψ−1)′{S(yijl|Zijl)}f(yijl|Zijl)
}]

3.1 Clayton copula

In this subsection, we look at the nested Clayton copula. Hereto we take
ψ(t) = 1/(1 + t) and c = 1 in the tilted outer power generator and get

ψi(t) = ψ{(cθi + t)1/θi − c} =
1

1 + (1 + t)1/θi − 1
= (1 + t)−1/θi

which is a generator of the Clayton copula with θi ∈ (0,∞). Therefore, the
kth derivatives of ψ0(t) is obtained as

ψ
(k)
0 (t) = (−1/θ0)(−1/θ0 − 1) . . . (−1/θ0 − k + 1)(1 + t)−1/θ0−k

= (−1/θ0)k(1 + t)−1/θ0−k

We can find the nth derivatives of inner generators, ψ01(t;x0) = exp{−x0ψ̊01(t)}
from equation (5) (putting c = 1) as

ψ
(n)
01 (t;x0) = ψ01(t;x0)

n∑
k=1

ank(t)(−x0)k

= ψ01(t;x0)

n∑
k=1

(1 + t)α1k−nsnk(α1)(−x0)k
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where, ank(t) = (1+t)α1k−nsnk(α1). The inverse of Clayton generator, ψ−11 (t) =
t−θ1 − 1 which has first derivative, (ψ−11 )′(t) = −θ1t−θ1−1. We obtain the fol-
lowing log-likelihood function for the nested Clayton copula:

l = logL =

L∑
l=1

log

(
dl∑

k=Nul

(−1)dlbNl

dl,k
{tl(ul)}(−1/θ0)k{1 + tl(ul)}−1/θ0−k

)

+

L∑
l=1

Nl∑
j=1

njl∑
i=1

log
[
θ1{S(yijl|Zijl)}−(1+θ1)f(yijl|Zijl)

]δijl
(6)

=

L∑
l=1

log

(
dl∑

k=Nul

(−1)dl−kbNl

dl,k
{tl(ul)}(−1)k(−1/θ0)k{1 + tl(ul)}−1/θ0−k

)

+

L∑
l=1

Nl∑
j=1

njl∑
i=1

δijl

[
log(θ1)− (1 + θ1) log{S(yijl|Zijl)}+ log{f(yijl|Zijl)}

]

3.1.1 Numerical evaluation of the log-likelihood

In the numerical evaluation of the log-likelihood function in equation (6) dur-
ing for example the optimization process of maximum likelihood, we note that
the evaluation of the first term in this log-likelihood expression leads to com-
plicated problems when taking a logarithm of the sum. The second part of the
log-likelihood in equation (6) is comparatively trivial to compute. To compute
the logarithm of the sum we define,

xkl = log
[
(−1)dl−kbNl

dl,k
{tl(ul)}(−1)k(−1/θ0)k{1 + tl(ul)}−1/θ0−k

]
= log

[
(−1)dl−kbNl

dl,k
{tl(ul)}

]
+ log

[
(−1)k(−1/θ0)k

]
− (1/θ0 + k) log

[
{1 + tl(ul)}

]
(7)

Therefore,

log

(
dl∑

k=Nul

(−1)dl−kbNl

dl,k
{tl(ul)}(−1)k(−1/θ0)k{1 + tl(ul)}−1/θ0−k

)

= log

(
dl∑

k=Nul

exp(xkl)

)
= (xl)max + log

(
dl∑

k=Nul

exp{xkl − (xl)max}

)
(8)

where (xl)max = max(xkl);Nul ≤ k ≤ dl. The logarithm of the sum in above
equation can easily be computed because we take the maximum term out
of the sum and the rest of the sum is only a limited contribution where all
summands within the sum are in (0,1].

Next we need to calculate xkl in equation (7). To make sure that all terms
within logarithms are positive, we note that the signs of the terms bNl

dl,k
{tl(ul)}
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is (−1)dl−k (Hofert and Pham 2013). Hence we get that (−1)dl−kbNl

dl,k
{tl(ul)}

> 0 for all k ∈ {Nul, . . . , dl}. Also, (−1)kψ
(k)
0 (t) = (−1)k(−1/θ0)k× {1 +

tl(ul)}−1/θ0−k ≥ 0, as the derivatives, have alternating sign for completely
monotonic generators. Since (−1)k(−1/θ0)k = (−1)k(−1/θ0)(−1/θ0 − 1) . . .
(−1/θ0 − k + 1) = (−1)2k(1/θ0)(1/θ0 + 1) . . . (1/θ0 + k − 1) is positive for
all k ∈ {Nul, . . . , dl}, we get that the other part {1 + tl(ul)}−1/θ0−k is also
positive. The major difficulty in evaluating xkl lies in the calculation of

log
[
(−1)dl−kbNl

dl,k
{tl(ul)}

]
. Recall that,

bNl

dl,k
{tl(ul)} =

∑
m∈QNl

dl,k

Nl∏
j=1,djl≥1

adjl,mjl
(t)

where, adjl,mjl
(t) = (1 + t)α1mjl−djlsdjlmjl

(α1); mjl ≤ djl

t =

njl∑
i=1

ψ−11 {S(yijl|Zijl)};

and sdjl,mjl
(α1) =

djl∑
l=mjl

s(djl, l)S(l,mjl)(α1)l

In this expression, s(djl, l) and S(l,mjl) are the Stirling numbers of first and
second kind respectively. The value of both Stirling numbers depend on the
total number of events/uncensored individuals in the jth sub-cluster under
lth cluster (djl) and are rapidly increasing with increasing numbers of events
in a sub-cluster. As a result, calculating sdjl,mjl

(α1) from Stirling numbers
is troublesome and is not possible for large number of events in any sub-
cluster. Therefore we use an iterative method based on the logarithm of this
term and calculate log{(−1)djl−mjlsdjl,mjl

(α1)} since the sign of sdjl,mjl
(α1) is

(−1)djl−mjl . The details are given in Appendix B. Similar as for the calculation
of sdjl,mjl

(α1), adjl,mjl
(t) and bNl

dl,k
{tl(ul)} are also calculated in terms of

logarithm because these terms become very close to zero for large djl and Nl.
Hereto we use the following formulas:

log
[
(−1)djl−mjladjl,mjl

(t)
]

= (α1mjl − djl) log(1 + t) + log
[
(−1)djl−mjlsdjlmjl

(α1)
]

(9)

log
[
(−1)dl−kbNl

dl,k
{tl(ul)}

]
= log

(−1)dl−k
∑

m∈QNl
dl,k

Nl∏
j=1,djl≥1

adjl,mjl
(t)


= log

 ∑
m∈QNl

dl,k

exp


Nl∑

j=1,djl≥1

log
[
(−1)djl−mjladjl,mjl

(t)
]

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Since bNl

dl,k
{tl(ul)} is the coefficient in the Cauchy product of the polynomi-

als
∑djl
k=1 adjl,k

[∑njl

i=1 ψ
−1
1 {S(yijl|Zijl)}

]
(−x0)k, we use an iterative method

to calculate the logarithm of the coefficients. For the lth cluster, (ignoring
(−1)djl−mjl for all a′s and b′s), we have, based on (9), the vectors of the
logarithm-coefficients for all sub-clusters

log{ad1l,m1l
(t)} =

(
log{ad1l,0(t)}, log{ad1l,1(t)}, . . . , log{ad1l,d1l(t)}

)
log{ad2l,m2l

(t)} =
(

log{ad2l,0(t)}, log{ad2l,1(t)}, . . . , log{ad2l,d2l(t)}
)

. . .

log{adNll
,mNll

(t)} =
(

log{adNll
,0(t)}, log{adNll

,1(t)}, . . . , log{adNll
,dNll

(t)}
)

First we calculate the logarithm of the coefficients from the first two vectors
as follows:

log
[
b2dl,0
{tl(ul)}

]
= log

[
exp

{
log{ad1l,0(t)}+ log{ad2l,0(t)}

}]
= log{ad1l,0(t)}+ log{ad2l,0(t)}

log
[
b2dl,1
{tl(ul)}

]
= log

[
exp

{
log{ad1l,0(t)}+ log{ad2l,1(t)}

}
+ exp

{
log{ad1l,1(t)}+ log{ad2l,0(t)}

}]
= log

[
exp

{
log{ad1l,i(t)}+ log{ad2l,j(t)}

}
max

]
+ log

 1∑
i=0

1∑
j=0

exp
{

log{ad1l,i(t)}+ log{ad2l,j(t)}
}

exp
{

log{ad1l,i(t)}+ log{ad2l,j(t)}
}
max


=
{

log{ad1l,i(t)}+ log{ad2l,j(t)}
}
max

+ log

 1∑
i=0

1∑
j=0

i+j=1

exp
{

log{ad1l,i(t)}+ log{ad2l,j(t)}
}

exp
{

log{ad1l,i(t)}+ log{ad2l,j(t)}
}
max


log
[
b2dl,2
{tl(ul)}

]
=
{

log{ad1l,i(t)}+ log{ad2l,j(t)}
}
max

+ log

 2∑
i=0

2∑
j=0

i+j=2

exp
{

log{ad1l,i(t)}+ log{ad2l,j(t)}
}

exp
{

log{ad1l,i(t)}+ log{ad2l,j(t)}
}
max


. . .
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log
[
b2dl,dl

{tl(ul)}
]

=
{

log{ad1l,i(t)}+ log{ad2l,j(t)}
}
max

+ log

 d1l∑
i=0

d2l∑
j=0

i+j=dl

exp
{

log{ad1l,i(t)}+ log{ad2l,j(t)}
}

exp
{

log{ad1l,i(t)}+ log{ad2l,j(t)}
}
max


In this coefficient, we focus on the biggest term of the Cauchy product such
that the other terms can be easily computed because all summands within
the sum are in (0,1]. The next step is to repeat this procedure between the
resulting vector of the previous step with the vector of the next sub-cluster.
After we have used the vector of the last sub-cluster, we found the values for
the coefficients of the lth cluster.

Finally substituting results from equation (8) in equation (6), we get the
log-likelihood function for the nested Clayton copula:

logL =

L∑
l=1

{
(xl)max + log

(
dl∑

k=Nul

exp{xkl − (xl)max}

)}
(10)

+

L∑
l=1

Nl∑
j=1

njl∑
i=1

δijl

[
log(θ1)− (1 + θ1) log{S(yijl|Zijl)}+ log{f(yijl|Zijl)}

]

3.2 Gumbel copula

In this sub-section, we look at a second nested copula family, the nested Gum-
bel copula. If we take ψ(t) = exp(−t) and c = 0 in the tilted outer power
generator in equation (4), we get,

ψi(t) = ψ{(cθi + t)1/θi − c} = exp(−t1/θi), i = 0, 1

which is a generator of a Gumbel copula with θi ∈ [1,∞). To find the kth

derivative of ψ0(t), Faà di Bruno’s formula was used which gives,

ψ
(k)
0 (t) =

k∑
j=1

ψ0(t)(−1)jskj(1/θ0)tj/θ0−k =
ψ0(t)

tk

k∑
j=1

skj(1/θ0)(−t1/θ0)j

and we can find the nth derivatives of the inner generators, ψ01(t;x0) =

exp{−x0ψ̊01(t)} from equation (5) as

ψ
(n)
01 (t;x0) = ψ01(t;x0)

n∑
k=1

ank(t)(−x0)k = ψ01(t;x0)

n∑
k=1

tα1k−nsnk(α1)(−x0)k

with ank(t) = tα1k−nsnk(α1). The inverse of Gumbel generator, ψ−11 (t) =
(− log t)θ1 , which has first derivative (ψ−11 )′(t) = θ1(− log t)θ1−1(−1/t)
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Hence, from equation (3), after some simplification we obtain the following
log-likelihood function for the nested Gumbel copula:

logL =

L∑
l=1

log

(
dl∑

k=Nul

(−1)dl−kbNl

dl,k
{tl(ul)}

ψ0{tl(ul)}
{tl(ul)}k

k∑
j=1

(−1)j+kskj(1/θ0){tl(ul)}j/θ0
 (11)

+

L∑
l=1

Nl∑
j=1

njl∑
i=1

δijl

[
log
(
θ1{− logS(yijl|Zijl)}θ1−1{1/S(yijl|Zijl)}f(yijl|Zijl)

)]
We compute the logarithm of the sum in the log-likelihood function in equation
(11) similar as for the Clayton copula. To do this, let us consider,

xkl = log

(−1)dl−kbNl

dl,k
{tl(ul)}

ψ0{tl(ul)}
{tl(ul)}k

k∑
j=1

(−1)j+kskj(1/θ0){tl(ul)}j/θ0


= log
[
(−1)dl−kbNl

dl,k
{tl(ul)}

]
+ log

[
ψ0{tl(ul)}

]
− k log

{
tl(ul)

}
+ log

 k∑
j=1

(−1)j+kskj(1/θ0){tl(ul)}j/θ0
 (12)

To compute xkl in equation (12), we note in the last part of the equation
that there is again a logarithm of a sum. We use the same trick as before to
calculate the logarithm. Hereto let us consider,

ykjl = log
[
(−1)j+kskj(1/θ0){tl(ul)}j/θ0

]
such that we get that

log
( k∑
j=1

(−1)j+kskj(1/θ0){tl(ul)}j/θ0
)

= log

 k∑
j=1

exp(ykjl)


= (ykl)max + log

 k∑
j=1

exp{ykjl − (ykl)max}


where, (ykl)max = max(ykjl); 1 ≤ j ≤ k,Nul ≤ k ≤ dl. Therefore, substitut-
ing these values in equation (12) we get,

xkl = log
[
(−1)dl−kbNl

dl,k
{tl(ul)}

]
+ log

[
ψ0{tl(ul)}

]
− k log

{
tl(ul)

}
+(ykl)max + log

 k∑
j=1

exp{ykjl − (ykl)max}


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Furthermore we get that

log

 dl∑
k=Nul

(−1)dl−kbNl

dl,k
{tl(ul)}

ψ0{tl(ul)}
{tl(ul)}k

k∑
j=1

(−1)j+kskj(1/θ0){tl(ul)}j/θ0


= log

(
dl∑

k=Nul

exp(xkl)

)
= (xl)max + log

(
dl∑

k=Nul

exp{xkl − (xl)max}

)

where, (xl)max = max(xkl), Nul ≤ k ≤ dl. Therefore, from equation (11) we
obtain the following log-likelihood function for the nested Gumbel copula,

logL =

L∑
l=1

{
(xl)max + log

(
dl∑

k=Nul

exp{xkl − (xl)max}

)}

+

L∑
l=1

Nl∑
j=1

njl∑
i=1

δijl

[
log(θ1) + (θ1 − 1) log{− logS(yijl|Zijl)}

− log{S(yijl|Zijl)}+ log{f(yijl|Zijl)}
]

(13)

4 Parametric estimation

In this section, we investigate one-stage, two-stage and three-stage paramet-
ric estimation methods to estimate the parameters of our developed model.
Prenen et al. (2017) used one- and two-stage parametric estimation methods
to estimate the parameters of the Archimedean copula model for clustered
survival data. We extend both of their methods for hierarchically clustered
survival data, where both the clusters and subclusters are large and of varying
sizes.

4.1 One-stage parametric estimation

Let β be the parameter vector for the margins, containing distribution-specific
parameters for the baseline survival and covariate effects; and let θ be the pa-
rameter vector for the association parameters based on the nested Archimedean
copula. We use the log-likelihood function derived in equation (10) for Clayton
copula and in equation (13) for Gumbel copula model. We find the maximum
likelihood estimates (β̂, θ̂), by solving the following two set of equations:

Uβ(β, θ) =
∂ logL(β, θ)

∂β
= 0

Uθ(β, θ) =
∂ logL(β, θ)

∂θ
= 0

simultaneously.
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Theorem 1. Let (β̂, θ̂) be the solution of Uβ(β, θ) = 0 and Uθ(β, θ) = 0
simultaneously and let (β, θ) be the true parameters vector. From maximum
likelihood theory (Cox and Hinkley 1974), we know that, under regularity
conditions (details in supplementary materials),

√
L(β̂−β, θ̂−θ) converges to

a multivariate normal distribution with mean vector 0 and variance-covariance
matrix I−1, where the Fisher information matrix I is partitioned into blocks:

I =

[
Iββ Iβθ
Iθβ Iθθ

]
where LIββ is the variance-covariance matrix of Uβ, LIβθ is the covariance
matrix between Uβ and Uθ and LIθθ is the variance-covariance matrix of Uθ.

In practical applications, standard errors of parameter estimates can be re-
trieved from the diagonal elements of the inverse of the Hessian matrix H,
where,

H(β̂, θ̂) =

[
∂2 logL(β̂,θ̂)

∂ηi∂ηj

]
i,j=1,...,p+2

with η = (β, θ)

4.2 Two-stage parametric estimation

In this sub-section, we investigate a two-stage parametric estimation. At the
first stage, we estimate the marginal parameters of the parametric model and
covariate effects assuming a working assumption of independence. In the sec-
ond stage, we estimate both the association parameters θ0 and θ1 by plugging
the estimates for the margins into the log-likelihood functions (10) and (13).
Two-stage parametric estimation has been used mainly for multivariate mod-
els if the numerical optimization for maximum likelihood estimation is too
time consuming or infeasible. Let β be estimated by β̄ at the first stage when
assuming that all subjects are independent. That is, β̄ is the solution of the
estimating equations

U∗
β(β) =

L∑
l=1

Nl∑
j=1

njl∑
i=1

δijl
∂ log{f(yijl|Zijl)}

∂β
+ (1− δijl)

∂ log{S(yijl|Zijl)}
∂β

=

L∑
l=1

U∗l,β(β) = 0

Under regularity conditions stated in the supplementary material,
√
L(β̄ −

β) converges to a multivariate normal distribution with mean vector 0 and
variance-covariance matrix (I∗)−1V(I∗)−1, where V is the variance-covariance
matrix of the score functions U∗

β and I∗ is the Fisher information of U∗
β .

The use of the robust sandwich estimator is required since (I∗)−1 is not a
consistent estimator of the asymptotic variance-covariance matrix because of
the correlation between the survival times.
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After the margins are estimated at first stage, we estimate the association
parameters θ by solving the estimating equations

Uθ(β̄, θ) =
∂ log{L(β̄, θ)}

∂θ
= 0

Theorem 2. Let θ̄ be the solution of Uθ(β̄, θ) = 0 and let θ0 be the true
value of the association parameters. Then under regularity conditions (details
in supplementary materials),

√
L(θ̄ − θ0) converges to a multivariate normal

distribution with mean vector 0 and variance-covariance matrix

Var-Cov(θ̄) = (Iθθ)
−1 + (Iθθ)

−1Iθβ(I∗)−1V(I∗)−1Iβθ(Iθθ)
−1

The proof of theorem 2 is provided in Appendix A. To estimate this quantity,
we make use of (I∗)−1V(I∗)−1, which is the robust variance-covariance matrix

that is obtained in the first stage, (Iθθ)
−1

is obtained from the hessian matrix
at second stage and Iθβ is obtained from the Hessian matrix of the one-stage
procedure, which can be estimated numerically by performing one iteration
of the one-stage optimization in which we evaluate the Hessian matrix in the
two-stage parameter results.

4.3 Three-stage parametric estimation

Based on the estimation method of Shih and Lu (2007), we introduce and
investigate in this subsection a three-stage parametric estimation method to
analyze the hierarchically clustered survival data.

In the first stage of the estimation procedure, we estimate the marginal
parameters under the assumption of independence, similar to the first stage
of the two-stage estimation method explained in the previous subsection.

At the second stage, we estimate the association within the sub-clusters
at the lowest level of the hierarchy. Hereby we assume that the lifetimes in
different sub-clusters are independent of each other such that the clustering
reduces to only one level. This allows us to use the model by Prenen et al. 2017.
After the margins are estimated at the first stage, we estimate the association
parameter θ1 by solving the following estimating equation

Uθ1(β̄, θ1) =
∂ log{L(β̄, θ1)}

∂θ1
= 0

The following result is found in Prenen et al. 2017.

Theorem 3. Let θ̄1 denote the solution of Uθ1(β̄, θ1) = 0 and let θ10 be the
true value of the association parameter. Under regularity conditions,

√
L(θ̄1−

θ10) converges to a normal distribution with mean 0 and variance

σ2
1 = Var(θ̄1) =

1

Iθθ
+

Iθβ(I∗)−1V(I∗)−1Iβθ
I2θθ
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At stage 3, we randomly sample one observation from each subcluster in
each cluster, with replacement. The resampled data set of size

∑L
l=1Nl con-

tains information about θ0 but no information about θ1. The estimate of θ0
from the resampled data set can be done in a way similar to the second stage
estimation. This estimation process is repeated for a large number of times
Q, and the within-subcluster resampling estimator, θ̄0 is the average of the Q
resampled-based estimates,

θ̄0 = Q−1
Q∑
q=1

θ̂
(q)
0

where θ̂
(q)
0 denotes the estimate from the qth resampled data set. Originally

Hoffman et al. (2001) proposed this clever within cluster resampling method
for analyzing clustered data. The asymptotic theory of θ̄0 is stated below.

Theorem 4. Let θ̄0 denote the estimate of the true value of the association
parameter θ00. Under the regularity conditions, the estimator θ̄0 is consistent
and
√
L(θ̄0 − θ00) converges weakly to a zero-mean normal distribution with

variance σ2
0 , which can be consistently estimated by,

σ̂2
0 = L

{
Q−1

Q∑
q=1

σ̂
2(q)
0 − (Q− 1)Q−1S2

θ0

}
where σ̂

2(q)
0 is the estimated variance from the qth analysis and S2

θ0
= (Q −

1)−1
∑Q
q=1{θ̂

(q)
0 − θ̄0}2 is the variance among the Q resampled-based estimates

θ̂
(q)
0 ’s (Hoffman et al. 2001).

5 Simulation study

In this section, we study the finite sample performance of the different proposed
estimation procedures for the nested Archimedean copula model by using sim-
ulated data. Hereto we generate 500 data sets with 50, 200 or 500 clusters of
size varying between 1 and 10 and sub-clusters of size varying between 1 and
15. The survival times are simulated from a nested Clayton copula with θ0
(θ1) = 0.6 (1.5), 1.2 (2.5), 2.0 (6.0) or from a nested Gumbel copula with θ0
(θ1) =1.3 (1.8), 1.6 (2.3), 2.0 (4.0) such that θ0 < θ1 for both copula func-
tions. We assume that the marginal survival functions are Weibull distributed
S(t) = exp{λtρexp(β′Z)} in which ρ =1.5, λ=0.0045 and Z is a dichotomous
covariate with effect β = 0.3. The values of the association parameters (θ0
and θ1) for both copula models are chosen such that the corresponding values
of Kendall’s τ are comparable. The data are generated by using the sam-
pling algorithm of Hofert and Mächler (2011). We assume that the censoring
distribution is also Weibull distributed, with parameters (λc = 0.0066 and
ρc = 0.92) and (λc = 0.0120 and ρc = 0.82) to get 25% and 50% censoring
respectively. For the three-stage estimation method we take Q = 500.
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The simulation results for 0%, 25% and 50% censoring are shown in Ta-
ble 1, 2 and 3 respectively. For both copulas, simulation results are listed in
increasing order of association. For the Clayton copula, higher values of θ cor-
respond to a higher degree of association via τ = θ/(θ + 2) and for Gumbel
copula, higher values of θ also correspond to a higher degree of association
via τ = 1− 1/θ. For each degree of association, we report the mean estimated

values of θ̂ in the first row. Mean standard errors together with the coverage of
95% confidence interval are reported in the second row for each combination
of association parameters.

As the number of independent clusters increases from L = 50 to L = 200,
standard errors are halved for one-stage estimation procedure since they are
proportional to 1/

√
L. For the Clayton copula, the biases of the estimates are

larger for two- and three-stage estimation methods compare to one-stage para-
metric estimation. For the nested Gumbel copula, this biases are not noticeably
different among the estimation methods. Furthermore we noted that the bi-
ases of the estimates are not noticeably affected by an increasing percentage
of censoring for both the copulas. The standard errors are smaller for one-
stage estimation method compared to both two- and three-stage estimation
method for both copula functions. For the one-stage estimation method, the
standard errors become a little larger when more censoring is present and they
are increasing similarly for both copulas. For both the two- and three-stage
estimation methods, the standard errors become more larger with increasing
censoring for the nested Gumbel copula compared to the nested Clayton cop-
ula. For both copula functions, the coverages are smaller for both the two- and
three-stage estimation methods compared to one-stage estimation method, es-
pecially for a small number of clusters. The transition from L = 50 to L = 200
and L = 500 leads to a reduction of the biases and we have approximately
unbiased estimates of θ0 and θ1 for larger cluster size. The coverage of a 95%
confidence interval increases with the increasing number of clusters and almost
all coverages are greater than 95% for L = 500. However, when the number
of clusters is small, the two- and three-stage parametric procedures are not
recommended. The one-stage parametric procedure yields the best results in
every setting.
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6 Modelling time to Chronic Granulomatous Disease (CGD)

In this section we illustrate our hierarchically clustered Archimedean copula
models on a real life data example. Hereto we consider the Chronic Granu-
lomatous Disease data set (CGD) as described by Fleming and Harrington
(1991). Chronic Granulomatous Disease (CGD) is a group of inherited rare
disorders of the immune function characterized by recurrent pyogenic infec-
tions which usually present themselves early in life and may lead to death
in childhood. There is evidence that gamma interferon is able to reduce the
rate of infections requiring hospitalization. A double-blinded clinical trial was
conducted in which patients were randomized to either placebo or gamma in-
terferon. In total, 128 eligible patients with CGD were accrued in 13 hospitals
by the International CGD Cooperative Study Group who were followed for
about one year between 1988 and 1989. The number of patients per hospital
ranged from 4 to 26. Each patient may experience more than one infection.
The infection times (times-to-event) are the times between recurrent CGD
infections on each patient. There is a minimum of one and a maximum of
eight (recurrent) infection times per patient, with a total of 203 records. All
recurrent events are clustered within a patient (sub-cluster), which in turn
are clustered within a hospital. One covariate, treatment is considered in this
study. The objective of this study is to estimate the correlation between time
to CGD infection within patient and within hospital. Another objective is to
estimate treatment (gamma interferon) effect on CGD infection times. The
dataset includes 13 clusters (hospitals) and 128 sub-clusters (patients). cluster
size varies between 4 and 26 and sub-cluster size varies between 1 and 8. The
censoring percentage is 62.6%.

Table 4 Estimated results for the different parametric estimation method

Copula
model

One-stage Two-stage Three-stage

θ̂0 θ̂1 β̂ θ̂0 θ̂1 β̂ θ̂0 θ̂1 β̂

Clayton
0.006 1.319 -0.829 0.057 0.771 -1.030 0.540 0.733 -1.030

(0.107) (0.597) (0.285) (0.141) (0.410) (0.140) (0.317) (0.440) (0.140)

Gumbel
1.008 1.142 -0.930 1.025 1.129 -1.030 1.262 1.105 -1.030

(0.031) (0.088) (0.297) (0.097) (0.114) (0.140) (0.118) (0.081) (0.140)

We assume a Weibull distribution for the times to CGD infection,

S(t) = exp{−λexp(β′Z)tρ}

and model the association structure by a nested Clayton copula and a nested
Gumbel copula. The estimates for the association parameters and the treat-
ment effect by using all three estimation methods is shown in Table 4.

The treatment effects are similar for all three estimation methods and for
both copula models. The estimated association within patients θ̂1 is significant
in all estimation procedures. The estimated value is significantly larger in the
one-stage method than in the other methods. However, the association within
hospital is significant for three-stage method and insignificant for other two
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methods. As the cluster size is small we prefer one-stage estimation procedure
over other two procedures based on simulation studies. The hazard ratio in the
Weibull-Clayton model is 0.44 (95% confidence interval: [0.25,0.76]) and is 0.39
(95% confidence interval: [0.22,0.71]) for the Weibull-Gumbel model by using
the one-stage parametric method. The estimated association within patient is
much higher compare to between patients for both copula models, which is ex-
pected. The estimated Kendall’s correlation within patient, τ̂1 = 0.397(0.108)
is larger for the nested Clayton copula compared to the nested Gumbel copula,
τ̂1 = 0.124(0.067). The Kendall’s correlation within hospital is not significant
for both copula models by using one-stage parametric estimation method.

7 Discussion

Most of the existing works for hierarchically clustered survival data use a
nested random effects model to induce multi-level association. Although Shih
and Lu (2007) considered a nested Archimedean copula model, they used a
three-stage estimation methods to estimate the model parameters because
finding and evaluating the full likelihood function and it’s derivatives is com-
plex and difficult for multilevel survival data. In this article, we solved this
problem by using the work of Hofert and Pham (2013). For hierarchical sur-
vival data, where the data are clustered in two levels, we developed a general
likelihood function to estimate the model parameters for any class of nested
Archimedean copulas allowing for any varying (sub-)cluster size and taking
censoring into account. Furthermore, we derived this log-likelihood function
for two specific families of nested Archimedean copulas, namely, Clayton and
Gumbel copulas. We investigated a one-stage, two-stage and three-stage para-
metric estimation procedure to estimate the model parameters. In the finite
sample simulation study we saw that all three estimation methods give approx-
imately unbiased parameter estimates for large numbers of clusters and the
coverage of the 95% confidence intervals seems also very good. For small num-
bers of clusters, the two-stage and three-stage methods are not recommended
since they lead to larger bias and less coverage. The one-stage procedure per-
forms better in every settings.

In this article, we used a two-levels of hierarchy but it is possible to extend it
for three or more levels of hierarchy. We assumed the same correlation structure
for each level but one can assume different correlation structure in future
research. The models were developed for (mixtures of) the Clayton copula
and (mixtures of) the Gumbel copula, but can be generalized to mixtures of
any Archimedean families for which the nesting conditions are met.
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Appendix A: Proof of theorem 2

Let β0 denote the true parameter vector for the margins. Expanding the score
function U∗

β in a Taylor series around β0 and evaluating it at β = β̄, we get
under regularity conditions (stated in the supplementary material) of maxi-
mum likelihood theory

U∗
β(β̄) = 0 = U∗

β(β0) +
∂U∗

β

∂β

∣∣∣∣∣
β=β0

(β̄ − β0) + op(
√
L).

The op-notation stands for convergence in probability, i.e., YL = op(
√
L) is

defined as limL→∞ P (|YL/
√
L| ≥ ε) = 0 for every positive ε. Similarly,

Uθ(β̄, θ̄) = 0 = Uθ(β0, θ0) +
∂Uθ
∂β

∣∣∣∣∣
(β,θ)=(β0,θ0)

(β̄ − β0)

+
∂Uθ
∂θ

∣∣∣∣∣
(β,θ)=(β0,θ0)

(θ̄ − θ0) + op(
√
L).

By the law of large numbers, as L→∞,

− 1

L

∂U∗
β

∂β

∣∣∣∣∣
β=β0

=
1

L

L∑
l=1

[
− ∂

∂β
U∗
l,β(β0)

]
→ I∗

− 1

L

∂Uθ
∂β

∣∣∣∣∣
(β,θ)=(β0,θ0)

=
1

L

L∑
l=1

[
− ∂

∂β
Ul,θ(β0, θ0)

]
→ Iθβ

− 1

L

∂Uθ
∂θ

∣∣∣∣∣
(β,θ)=(β0,θ0)

=
1

L

L∑
l=1

[
− ∂

∂θ
Ul,θ(β0, θ0)

]
→ Iθθ

Hence

1√
L

(
U∗
β(β0)

Uθ(β0, θ0)

)
→
√
L

(
I∗ 0
Iθβ Iθθ

)(
β̄ − β0

θ̄ − θ0

)

By the central limit theorem, 1√
L

(
U∗
β(β0)

Uθ(β0, θ0)

)
converges to multivariate

normal with mean

(
0
0

)
and variance-covariance matrix

(
V 0
0 Iθθ

)
with V =

Var
(
U∗

1,β(β0)
)

= E
[
U∗

1,β(β0)(U∗
1,β(β0))′

]
.
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Thus,
√
L

(
β̄ − β0

θ̄ − θ0

)
converges to multivariate normal with mean vector zero

and variance-covariance matrix(
I∗ 0
Iθβ Iθθ

)−1(
V 0
0 Iθθ

)(
I∗ 0
Iθβ Iθθ

)−1T
=

(
(I∗)−1 0

−Iθβ(I∗)−1(Iθθ)
−1 (Iθθ)

−1

)(
V 0
0 Iθθ

)(
(I∗)−1

T −(Iθθ)
−1T (I∗)−1

T

ITθβ
0 (Iθθ)

−1T

)

=

(
(I∗)−1V(I∗)−1

T −(Iθθ)
−1T (I∗)−1V(I∗)−1

T

Iβθ
−Iθβ(I∗)−1V(I∗)−1

T

(Iθθ)
−1 V ∗

)

with V ∗ = (Iθθ)
−1 + (Iθθ)

−1T Iθβ(I∗)−1V(I∗)−1
T

Iβθ(Iθθ)
−1

The lower right element of this matrix is the asymptotic variance of
√
L(θ̄ −

θ0),which is given by

Var-Cov(θ̄) = V ∗ = (Iθθ)
−1 + (Iθθ)

−1Iθβ(I∗)−1V(I∗)−1Iβθ(Iθθ)
−1

[Since (Iθθ)
−1T = (Iθθ)

−1 and (I∗)−1
T

= (I∗)−1]

Appendix B: Compute snk(α1) for Clayton copula

The nth and (n+1)th derivatives of the inner generator for the nested Clayton
copula function are as follows,

ψ
(n)
01 (t;x0) = ψ01(t;x0)

n∑
k=1

(1 + t)α1k−nsnk(α1)(−x0)k (14)

ψ
(n+1)
01 (t;x0) = ψ01(t;x0)

n+1∑
k=1

(1 + t)α1k−(n+1)sn+1,k(α1)(−x0)k (15)

We also get the (n + 1)th derivative of the inner generator by differentiating
equation (14), which gives,

ψ
(n+1)
01 (t;x0) = ψ

(1)
01 (t;x0)

n∑
k=1

(1 + t)α1k−nsnk(α1)(−x0)k

+ ψ01(t;x0)

n∑
k=1

(α1k − n)(1 + t)α1k−n−1snk(α1)(−x0)k

= ψ01(t;x0)α1(1 + t)α1−1(−x0)

n∑
k=1

(1 + t)α1k−nsnk(α1)(−x0)k

+ ψ01(t;x0)

n∑
k=1

(α1k − n)(1 + t)α1k−(n+1)snk(α1)(−x0)k
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= ψ01(t;x0)

n∑
k=1

(1 + t)α1(k+1)−(n+1)α1snk(α1)(−x0)(k+1)

+ ψ01(t;x0)

n∑
k=1

(α1k − n)(1 + t)α1k−(n+1)snk(α1)(−x0)k

= ψ01(t;x0)

n+1∑
k∗=2

(1 + t)α1k
∗−(n+1)α1sn,k∗−1(α1)(−x0)k

∗

+ ψ01(t;x0)

n∑
k=1

(α1k − n)(1 + t)α1k−(n+1)snk(α1)(−x0)k (16)

Now, by comparing equations (15) and (16), we get,

sn+1,1(α1) = (α1 − n)sn,1(α1) for k = 1

sn+1,n+1(α1) = α1sn,n(α1) for k = n+ 1

sn+1,k(α1) = (α1k − n)sn,k(α1) + α1sn,k−1(α1) for k = 2, 3, . . . , n

Using that for n = 0, s0,0(α1) = 1 we get that

s1,1(α1) = α1s0,0(α1) = α1

⇒ s2,2(α1) = α1s1,1(α1) = α2
1

⇒ . . .⇒ sn,n(α1) = α1sn−1,n−1(α1) = αn1

Therefore, log
{

(−1)n−nsn,n(α1)
}

= (−1)n−nn log(α1) = n log(α1) for all

n ∈ N. Furthermore we get that

s2,1(α1) = (α1 − 1)s1,1(α1) = α1(α1 − 1) = (α1)2

⇒ s3,1(α1) = (α1 − 2)s2,1(α1) = (α1)3

. . .

⇒ sn,1(α1) = (α1)n = α1(α1 − 1)(α1 − 2) . . . (α1 − n+ 1)

Hence, we get that log
{

(−1)n−1sn,1(α1)
}

= log
{

(−1)n−1(α1)n

}
in which

(−1)n−1(α1)n > 0 and log
{

(−1)n+1−ksn+1,k(α1)
}

= log
{

(−1)n+1−k(α1k −

n)sn,k(α1) + (−1)n+1−kα1sn,k−1(α1)
}

for all n ∈ N
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