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Abstract

A finite element based framework that formulates an adaptive multireso-
lution multiscale technique is presented, with the goal of both accurately and
efficiently simulating large masonry structures. In order to find a compromise
between accuracy and computational efficiency a scale embedding multiscale
model where both macro- and microscale elements come into play is pro-
posed, combining the advantages both have to offer. This theory is tested
and compared with an equivalent microscale model to demonstrate that its
accuracy rivals a microscale approach, while at the same time having a higher
computational efficiency. The developed multiscale model is compared to its
underlying microscale model in a couple of selected example structures, rang-
ing from small to large scale unreinforced masonry walls with openings. An
application in the form of soil subsidence is explored, showing a potential for
extended applications of this type of modeling.

Keywords: Masonry, Finite Element, Multiscale

∗Corresponding author: cedric.driesen@uhasselt.be
1bram.vandoren@uhasselt.be

Preprint submitted to Elsevier January 25, 2021



1. Introduction

The complexity of masonry lies in its constituents: brick units and mortar
joints, which are organized on a relatively small scale. These materials form
a complex arrangement which proves itself difficult to model due to the large
amount of units that make up even a small scale construction. The second
major difficulty with masonry, which is actually quasi-brittle, is the complex
global structural response due to its arrangement. Both these issues can cause
significant computational problems. So, the existence of many different units
and joints means that to accurately model even a medium scale structure will
take up a considerable amount of runtime.

The basic main modeling techniques used in masonry [1, 2, 3, 4] are
the detailed microscale method, the simplified microscale method, and the
macroscale method, all often implemented using a variation of the Finite
Element Method (FEM). These three methods are shown in Figure 2 for a
simple 2D masonry system. In many comparisons these modeling methods
are successfully applied with good comparison to experimental results [5].

In the detailed microscale approach it is possible to take into account
the Poisson’s ratio and Young modulus of the mortar joint, which cannot
be done explicitly in the simplified microscale method. The properties of
the brick units are, however, taken into account in both methods. The in-
terface separating brick and mortar in the detailed microscale or expanded
brick elements in the simplified microscale approach represent a plane which
can undergo damage, leading to cracking and failure. It is the combination
of these simpler linear elastic elements and the non-linear interfaces which
leads to a potentially accurate computational representation of masonry. On
the other hand there is the macroscale model. In this approach one models
the entire masonry material into one element type, chosen to be either linear
or non-linear depending on the application. Capturing the behavior of the
detailed masonry geometry into these larger elements is called homogeniza-
tion. There has been a lot of research into the analytical or computational
homogenization of masonry [6, 7, 8], especially for masonry with a periodic
geometry [9, 10, 11]. In a periodic construction one can choose the Repre-
sentative Volume Element (RVE), which is the detailed geometry captured
in the macroscale element, in such a way that the RVE for each macroscale
element is the same, simplifying the homogenization process. Analytical or
semi-analytical methods were developed for in-plane and out-of-plane load-
ing, and these methods have been successfully applied in finding the elastic

1



response of masonry structures with periodic geometries [12]. On the other
hand, computational models determining the elastic behavior have also been
developed [13]. For non-elastic responses, one must implement the non-linear
effects of damage into the macroscale constitutive laws, which can be done
in many ways, using damage or plasticity relations [14, 15, 16].

In most use cases, assuming choosing regular brick and mortar types,
nonlinear effects (in this case damage propagation) is more likely to occur
in the mortar joints than in the brick itself [1]. Even when damage occurs
in the brick it is mainly localized between two vertical mortar joints. The
most likely locations where damage would occur can be seen in Figure 1.
The damage localization led to the development of the simplified microscale
methods, which sometimes include other less likely cracking paths.

The simplest way to homogenize the microscopic behavior is to neglect
any non-linear effects and assume a perfectly elastic response [13]. Because
this work assumes that all the non-linear behavior will be captured in the
microscale model, the focus is on these simpler homogenization techniques.
The older methods use experimental data and compile the behavior into one
model [17], which is hard to generalize. As an extension, one can try to find
analytical expressions which match these datasets [9, 18] as a way to inter-
polate between experiments. This is not always very accurate when straying
from experimental results. For periodic masonry, however, an analytical ex-
pression for the effective elastic stiffness of the unit cell was formulated by
Wang et al. using a one step approach [12]. This analytical method works for
most simple RVE types, and can be used to calibrate new numerical models.
As a more general solution one can use a previously calibrated computational
model to calculate the elastic response of the RVE [19, 20]. The main ad-
vantages are a very broad and fast applicability, but when the model is not
accurately calibrated there is a risk of inaccuracy. The main advantage of a
computational approach, as well as an analytical approach, is that one only
needs to determine in advance the mechanical properties of the separate ele-
ments. This means that it is only necessary to know the material properties
of the type of brick and mortar used, as well as the geometry of the system,
to formulate a complete model.

The model discussed in this contribution involves using newer scale em-
bedding multiscale techniques [21, 22], a multi-resolution solution [23] where
the geometry is divided into parts which are modeled using macroscale tech-
niques and other parts which use microscale techniques, as seen in Figure 3.
In this figure the blue microscale geometry is modeled simultaneously with
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Figure 1: The most probable crack locations in masonry.

(a) Detailed microscale (b) Simplified microscale (c) Macroscale

Figure 2: Traditional masonry models.

the green macroscale mesh. Depending on the technique used, these parts
can be explicitly connected through an extended stiffness matrix and solved
simultaneously, or they can be implicitly connected via Lagrange multipliers
using domain decomposition techniques leading to multiple smaller stiffness
matrices [24, 25, 26, 27]. Both types have their advantages and disadvantages
and are useful for different types of modeling.

Most of the work on multiscale modeling has been focused towards scale
transition models, in which one uses information from the microscale model to
calibrate the macroscale model, a way of achieving homogenization. On the
other hand, the concurrent approach can calculate these macroscale parame-
ters during the simulation when needed, leading to a more coupled approach
between the micro- and macroscale. The macroscale homogenization in this
work is formulated via a concurrent type scale transition model.

Previous studies on this subject were performed by Greco et al. [28, 29]
using a model written in COMSOL. These followed earlier work by Heyens
et al. [22]. The main novelty in the current work is the focus on improving
the computational efficiency on top of achieving a high accuracy, as well as
giving a simple real world example showing the broader applicability of the
model.

The modeling strategy developed in this work considers two dimensional
in-plane unreinforced masonry, consisting in general of a repeating micro-
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Figure 3: An example of the scale embedding multiscale approach, combining a blue
microscale and green macroscale method.

structure, where any force or displacement is applied quasi-statically. Due
to a relatively small thickness of the masonry wall, and the negligence of
out-of-plane behavior, this work assumes plane stress conditions.

In this contribution, Section 2 will outline the modeling framework neces-
sary for modeling masonry structures using non-linear simplified microscale
and linear elastic macroscale methods. This is achieved through the descrip-
tion of the used damage model and the necessary homogenization methods.
Further, the domain activation method itself will be outlined and the ac-
companying computational flowchart is given. In Section 3, three sample
systems are described that will be compared using the domain activation
method from Section 2 and its underlying microscale method. The focus
will be on comparing the necessary accuracy of the methods, as well as their
computational efficiencies. There will also be a discussion on the choice of
the RVE. The results of this research are then shown, also including results
of the influence of the RVE on accuracy and efficiency. Then, in Section 4
one can find the discussion of a simple application: large scale soil subsidence
under a blind wall. Finally, Section 5 outlines the conclusions of this work.

2. Modeling framework

In this section the necessary modeling framework is discussed. In short,
the model is composed of two stages, the initial macroscale and resulting mi-
croscale mesh, connected through an adaptive domain activation procedure.
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The macroscale model is chosen to be linear elastic and analytically homog-
enized while all the non-linear effects are simulated in the microscale mesh.
Activation, the replacement of a macroscale element with its underlying mi-
croscale geometry, happens based on a critical strain surface that is calculated
as the surface where damage first occurs in the RVE. The microscale model
is based on previous work by Vandoren et al. [30].

2.1. Damage model
When using non-linear interfaces to represent the weak connections be-

tween solid elements, such as in the simplified macro-modeling, one must
specify a law which connects the structural response to the introduction of
damage in these interfaces. Here we use an isotropic damage model in which
the stiffness of the interface is scaled with a factor 1− ω [31],

t = (1− ω)D∆u, (1)

in which t are the tractions and ∆u the relative displacements along the
interface, and ω ∈ [0, 1] is called the damage factor. Here ω = 0 means the
interface element is undamaged with full stiffness, while ω = 1 means full
damage and zero remaining stiffness.

The damage scaling is chosen to follow an exponential softening law:

ω =

0 if dmax < dmin

1− dmin

dmax
eα(1−dmax/dmin) if dmax ≥ dmin

, (2)

with dmin = σt/Kn being the threshold interface jump before damage initial-
ization, dmax the maximum value attained by the equivalent displacement
jump deq, and finally α representing the brittleness of the mortar via

α =

(
Gc

σtdmin
− 1

2

)−1

. (3)

In this formula Gc represents the mode I fracture energy of the mortar, and
σt its uniaxial tensile strength. Kn is the normal stiffness of the mortar joint.

The Drucker-Prager model [32] defines the equivalent displacement jump
as

deq =


AI +BJ if J ≥ A− C

D −B
I

CI +DJ if J <
A− C

D −B
I
, (4)
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leading to a softening response in tension with a compressive cap. The vari-
ables A, B, C, and D, are defined as

A =
σc − σt

2σc
, (5)

B =

√
3

2

σc + σt

σc
, (6)

C =
(σb − σc)σt

σbσc
, (7)

D =

√
3(2σb − σc)σt

σbσc
, (8)

where σc is the uniaxial compressive and σb the biaxial compressive strength.
Finally, the jump invariants are given by

I = (1 + νm)us, (9)

J =
1

1 + νm

√
1

3
u2

n(ν
4
m + ν3

m + νm + 1) +
1

4
u2

s , (10)

with un and us being, respectively, the normal and tangential displacement
jumps, and νm the Poisson’s ratio of the mortar joint.Due to the nature of
this Drucker-Prager model with the compressive cap, masonry crushing is
implicitly modeled in the stress-strain diagram. [1]

The choice to use a damage model is made due to several reasons. The first
and most obvious one is because of the relative simplicity over more compli-
cated models such as plasticity based approaches, meaning a more straight-
forward and predictable response under the considered different loading con-
ditions. Also this simplicity generally makes for a more computationally ef-
ficient and robust implementation (e.g. no iterations are needed at integra-
tion point level, which is the case in multi-surface plasticity-based materials
model). Secondly, for the cases discussed in this work, namely shear and set-
tlement conditions, such damage models can be considered to be sufficiently
accurate. A limitation is that in the case of other more involved loading con-
ditions, such as for example a cyclic loading, one will need to consider other
more advanced material models to gain an accurate representation. [30].

2.2. Domain activation method
2.2.1. Micro-macro connection

Crucial to any finite element model is the way connections between el-
ements are handled. Traditional connections like micro-micro and macro-
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macro are trivial, with both edges containing only matching nodes. On the
other hand, connecting a macroscale element to its neighboring microscale el-
ements is less simple. This is due to the non-matching nodes: the macroscale
element will usually have a smaller amount of nodes, and for a four-node
macroscale element only the two edge nodes can be directly attached.

One way to solve this is to connect the two domains using a Lagrange mul-
tiplier approach [33, 27, 34]. This is necessary when one wants to use domain
decomposition methods for tackling the multiscale problem, but could also
be applied outside of domain decomposition. This increases computational
performance when combined with domain decomposition. The reason it has
a high efficiency is because domain decomposition splits the normally very
large stiffness matrix into multiple smaller ones, one for each domain, allow-
ing multi-core solvers to be easily implemented. A second possible solution
is to use a direct connection method, whereby one applies a hard connection
between the outer two corresponding nodes of the microscale and the mul-
tiscale regions and leaves the inner nodes of the microscale model unbound,
as seen in Figure 4 where only the white nodes are connected. In this case,
instead of creating new smaller stiffness matrices connected via Lagrange
multipliers, the main stiffness matrix is simply expanded to include the new
degrees of freedom. The main advantages are its accuracy (due to added
robustness and a possibly tighter connection) and a high stability, but per-
formance might lower in comparison due to the added equations that need
to be solved. This method can be used in most cases because a macroscale
element will be refined before being subjected to a high deformation, af-
ter which the full micro-micro connection is made. Due to its stability and
straightforwardness the direct connection method is used in this work.

This method, similar to other methods where only a main stiffness matrix
is considered, can also be seen as a remeshing method. In this case the local
low resolution mesh at the macroscale will get replaced by a more complex
higher resolution mesh of the underlying microscale elements. The lack of a
connection between the inner microscale nodes and the adjacent macroscale
element indicates an incompatibility between these elements nodes, which
means there can be a local disconnection between elements. This is not ex-
pected to be a problem since if the adjacent microscale element is strained to
reach such a disconnected state, the macroscale region will be under similar
strain and is expected to be refined anyway, solving the local disconnection.
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Figure 4: The connections between a microscale (left) and a macroscale (right) region.

2.2.2. Refinement criteria
A crucial part of using a scale embedding multiscale model comes from

the right choice of refinement criteria [27, 23]. Refining the mesh too early
means most of the performance gain is lost, but refining too late leads to
the use of simple macroscale elements when damage effects should have been
included. One possibility, which is used in the present research, is the use
of a strain surface, where one defines the maximum strains a macro-element
should reach before inducing refinement. Finally, these results will be inter-
polated between different loading conditions, leading to a strain surface upon
which one expects relevant damage to occur in the macro-element. Once
such an element reaches this threshold it is refined into its accompanying
microscale geometry.

There are a few possibilities to calculate this strain surface, and the classi-
cal method involves the use of experimental [35, 36, 37] studies. The problem
is, again, that these methods are not easily extended towards different geome-
tries or radically different material properties. Thus, an alternative is the use
of a computational method where one applies a multitude of different loading
conditions on the chosen microscale RVE and records for each case the strain
present in the model at a chosen damage criterion. This damage criterion
can be chosen to be as flexible or restrictive as necessary, and represents the
aforementioned balance between performance and accuracy.

In this case one chooses the criterion to be the appearance of any non-
linearity in the microscale RVE, which in practice means that the damage
value ω is nonzero for any interface element in the RVE.

Finally, one can calculate the strain surface for the chosen RVE, by vary-
ing two angles θ1 and θ2, defined in a way such that the normal and shear
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strains acting upon the element are given by

ϵx = β sin(θ2) cos(θ1), (11)
ϵy = β sin(θ2) sin(θ1), (12)
ϵxy = β cos(θ2), (13)

as shown in Figure 5, where the blue represents a fixed boundary condition
and green the applied displacement .

Figure 5: The strains as applied to the RVE.

In these equations the value β is the strain factor, and for every combina-
tion of θ1 and θ2 a factor βc(θ1, θ2) is determined as the value of β for which
damage starts to occur in the elements. Due to symmetry the range of the
angles is θ1 ∈ [0, 2π] and θ2 ∈ [0, π/2]. One determines the critical strain
surface by finding a value of βc for every combination of θ1 and θ2, which in
practice is done by iterating over both variables and interpolating the results
to approximate a continuous solution.

To find the location of a macroscale element compared to the critical
strain surface one measures the three macrostrains mentioned above and
from these calculate the two angles via the derived formulas

θ1 = tan−1

(
ϵx
ϵy

)
, (14)

θ2 = tan−1

(
sin(θ1)

ϵxy
ϵy

)
. (15)

From these calculated angles the corresponding critical strain factor βc can
be compared to the measured one, and if β > βc the element is scheduled
for refinement. For example, choosing θ2 = π/2 and varying θ1 from 0 to
2π one gets a system in which no shear force is applied, only normal forces,
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Figure 6: Critical strain surface for θ2 = π/2.

following formulas (11)-(13). For this specific range of angles the horizontal
and vertical critical strains ϵx and ϵy are shown in Figure 6 in function of the
angle θ1. The results show that during compression in both the horizontal
and vertical dimensions the critical strain is the largest, while when at least
one of the sides is in tension the critical strain is a lot lower, with masonry
being stronger in compression than in tension.

Performance balancing of the framework is possible by changing two pa-
rameters before determining the strain surface: a scaling factor cs which en-
larges or shrinks the effective calculated strain surface βeff as βeff = csβc, or
by choosing a non-zero allowed damage in the RVE. These two parameters
are computational parameters, not material ones, and only exist to balance
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performance. In this work the influence of the parameter cs is studied to
obtain more insight into the accuracy/efficiency balancing.

An alternative strategy is the use of non-adaptive elements where the
location of damage initialization is determined in advance[38]. An advantage
is that if these locations are well known the inherent danger of the use of
adaptive elements is minimized. In this case using adaptive elements means
that, if missing an important refinement somewhere in the model evolution,
there exists a possibility of the final case being inaccurate. An important is-
sue is finding these nonlinear locations without performing a full microscale
simulation, meaning that the more traditional methods are rendered useless.
Instead one can use for example a NURBS-based procedure[39] wherein a
very fast genetic algorithm is used to predict these zones of failure, and then
use a non-adaptive multiscale model to model the system.

2.3. Homogenization techniques
For large structures it becomes helpful to remove the inherent element

size limit imposed on micro- and mesoscale methods by incorporating macro-
scopic elements. These macroscopic elements can encompass an unlimited
amount of the underlying material, a big contrast to the smaller scale al-
ternatives. The use of these elements, however, means that one needs to
find a way to condense the complex behavior of the underlying RVE into
one continuum element. This is done through homogenization, combining
constituent material parameters and geometry into an encompassing consti-
tutive law that tries to mimic the RVE’s accurate reactions to external forces
or displacements [21, 40, 41].

An example of a recent analytical method by Wang et al. [12] is given
here, with the results summarized in brief. This method is used when calcu-
lating the RVE elastic stiffness in the rest of this work. First, one defines KB

and KM to be the elastic stiffness matrices of the brick and mortar included
in the RVE. fB is the volume fraction of brick inside the RVE, with a and b
the horizontal and vertical dimensions of the brick, and L and H the hori-
zontal and vertical dimensions of the RVE. To calculate the elastic stiffness
we need to define the Eshelby tensor as the summation of an infinite Fourier
series

SΩ
ijmn =

∑
ξ∈Λ

fBg0(ξ)g0(−ξ)gijmn(ξ), (16)
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with Λ the set on which the summation is made on:

Λ =
{
ξ = ξ1e1 + ξ2e2 | ξ1 =

n1π

L
, ξ2 =

n2π

H
;n1, n2 = 0,±1,±2...;n2

1 + n2
2 ̸= 0

}
.

(17)

g0(ξ) is the function of bond geometry, which for a running bond is defined
as

g0(ξ) =
1

2ab

1

ξ1ξ2
[sin(ξ1b) sin(ξ2a)

+ (sin(ξ1L)− sin(ξ1(L− b))] · [sin(ξ2H)− sin(ξ2(H − a))].

(18)

Finally, if one assumes an isotropic brick and mortar behavior, gijmn(ξ) is
defined as

gijmn(ξ) =
1

2ξ2
[ξj(δinξm + δimξn) + ξi(δjnξm + δjmξn)]

− 1

1− ν

ξiξjξmξn

ξ4
+

ν

1− ν

ξiξj

ξ2
δmn.

(19)

To obtain the effective elastic stiffness of the RVE Kh one uses the expression

Kh = KM : [1 − fB(AB − SB)
−1], (20)

with
AB = (KM −KB)

−1 : KM (21)

and SB the relevant Eschelby tensor.

12



3. Numerical examples

In this section three numerical examples are presented, a medium-sized
and two large-sized walls with opening, for which the numerical results of the
presented scale embedded multiscale model will be compared to a reference
microscale model. The model will be tested on these three differently sized
walls to check a consistent accuracy across multiple systems, but also to
study the influence of wall size on the efficiency of the multiscale over the
microscale method.

3.1. Geometric and material parameters
We use three different setups to test the developed multiscale model, all

2D masonry walls with an opening near the center. The first is a smaller
sized wall, shown in Figure 7. The second wall is a larger version of this
wall, shown in Figure 8. Finally the last example is even larger vertically
and is shown in Figure 9. The geometrical properties of all these walls are
shown in Table 1. All of these walls will be fixed on the bottom and top,
with a horizontal displacement to the right applied to the top bricks. In the
figures the fixed boundary conditions are represented in blue, and the applied
displacements in green. It starts from an undamaged rest state, from which
displacement increments will be applied until failure of the wall occurs.

Table 1: Geometric properties of the walls.

Wall 1 Wall 2 Wall 3
Width (m) 1.10 2.64 3.96
Height (m) 1.26 1.68 3.36
Depth (m) 0.1 0.1 0.1
Brick width (m) 0.22 0.22 0.22
Brick height (m) 0.07 0.07 0.07
Mortar thickness (m) 0.01 0.01 0.01
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Figure 7: The first wall setup.

Figure 8: The second wall setup.
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Figure 9: The third wall setup.
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The material properties are given in Table 2, chosen to be representative
of a commonly used brick and mortar combination [42].

Table 2: Physical properties.

Material Brick Mortar
Young modulus (GPa) 16 8
Poisson’s ratio 0.15 0.15
GfI (N/m) 1000 18
σt (kN/m2) 1000 250
σc (kN/m2) 100,000 11,000
σb (kN/m2) 120,000 12,500

3.2. Choice of the RVE
To accommodate the multiscale modeling, the system geometries need to

be able to be split up into macroscale elements, mimicking the behavior of the
underlying RVE. The choice of which RVE to use is important: choosing a
small RVE makes the initial model slightly slower, due to the larger number
of macroscale elements, but in the end leads to a possibly more efficient
model, depending on the occurring nonlinear effects. This is shown in Figure
10 where in the first step, when no damage has occurred yet and the system
is still fully linear, the amount of elements for a small RVE is larger than for a
large RVE. However, when damage starts to occur and the system undergoes
damage, the ratio between microscale and macroscale area swings in favor
of the smaller RVE model. To conclude, when nonlinearities are present, a
smaller RVE is generally the better choice.

The RVE given in Figure 11 is the smallest macroscopic building block
possible, which is called the Unit Cell (UC). It consists of two half bricks,
and one complete brick. This choice of RVE is used throughout this research.
In addition, the initial number of elements in the macroscale as well as the
number of elements in the microscale geometry, which is also the maximum
number of elements in the multiscale method, is shown in Table 3.
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Figure 10: Influence of the RVE size on refinement.

Figure 11: The chosen RVE.
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Table 3: The number of elements.

Wall 1 Wall 2 Wall 3
Macroscale 47 132 420
Microscale 1,128 3,168 10,080
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3.3. Results
To check the validity of the proposed multiscale model, the computa-

tional results will be compared to their corresponding microscale model.
Properly comparing the microscale model and the corresponding multiscale
model means that one needs to define some comparison criteria. Firstly,
accuracy needs to be tested. This can be done by looking at both the force-
displacement curve, especially the critical force and displacement, and the
crack evolution. If the multiscale model is indeed accurate, one can compare
efficiencies by looking at the model run times.

At first, both the microscale and multiscale model will be in their un-
deformed and undamaged states, which is shown in Figures 7, 8, and 9.
Following this, small displacement control increments are applied and solved
iteratively using a Newton-Raphson method. In the multiscale model, dur-
ing every incremental step the remaining macroscale elements are checked,
and if they exceed the calculated strain surface in Figure 6 they are marked.
At the end of every incremental step the marked elements are removed and
replaced by their underlying RVE. This is repeated until failure is reached or
the simulation is halted. This is shown in the the flowchart in Figure 12.

3.3.1. Accuracy
The most important quantities to compare when checking the accuracy

between both models are the critical force and critical displacement of the
system, as well as the overall progression of the force-displacement curve.
A second criterion is looking at the formation and propagation of the crack
pattern itself.

First we compare the results of the microscale model to the reference
multiscale model, the force-displacement curves are shown in Figure 13 for
the first wall, in Figure 14 for the second wall, and finally in Figure 15 for
the final wall. The crack pattern development (as well as that of the scale
refinement pattern) is shown in respectively Figures 16 and 17 for wall 1,
Figures 18 and 19 for wall 2, and Figures 20 and 21 for wall 3. In these
figures, the range of damage in the mortar interfaces is visually represented
from the value zero, no damage, in white to one, no remaining stiffness,
in black. One can see that, as the applied displacement increases, more
macroscale elements get refined into their underlying microscale elements
and the evolution of damage occurs.

Looking at these results one can conclude that both the force-displacement
and the crack propagation up to the peak load is very comparable in both
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Figure 12: Computational flowchart used in the developed multiscale model.
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Figure 13: Force-displacement curve of wall 1.
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Figure 14: Force-displacement curve of wall 2.
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Figure 15: Force-displacement curve of wall 3.

(a) Microscale (b) Multiscale cs = 1

Figure 16: Crack pattern of wall 1 at d = 0.2 mm.
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(a) Microscale (b) Multiscale cs = 1

Figure 17: Crack pattern of wall 1 at d = 0.4 mm.

(a) Microscale (b) Multiscale cs = 1

Figure 18: Crack pattern of wall 2 at d = 0.1 mm.

(a) Microscale (b) Multiscale cs = 1

Figure 19: Crack pattern of wall 2 at d = 0.2 mm.
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(a) Microscale (b) Multiscale cs = 1

Figure 20: Crack pattern of wall 3 at d = 0.175 mm.

(a) Microscale (b) Multiscale cs = 1

Figure 21: Crack pattern of wall 3 at d = 0.35 mm.
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models, and thus sufficient accuracy of the reference multiscale model with
respect to the microscale model is shown.
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3.3.2. Efficiency
The main novelty of the proposed method is the increase in computa-

tional efficiency, which will be discussed here. For this, the efficiencies of the
microscale and multiscale models have be compared. For this purpose the
total runtimes of wall 1 for both models are given in Figure 22, with detailed
results given in Table 4. It should be noted that all the simulations were
done using Matlab R2018a under Windows 8.1 on an Intel I5 dual core
CPU at a clock speed of 2.60 GHz. It can be seen that the runtime of the
multiscale model is ≈ 64% that of the microscale model for the simulation
to reach the critical displacement, the displacement at the maximal force.
This increase is notable, though not groundbreaking. Looking at smaller
applied displacements a larger difference is seen, with the multiscale model
reaching half the critical displacement at only ≈ 41% runtime than that of
the microscale model.

Table 4: Wall 1 efficiency comparison.

Displacement (% of failure) Runtime Microscale (s) Runtime Multiscale (s) Relative cost (%)
25 337 121 36
50 597 244 41
100 1,108 706 64

In Figure 23 the runtimes of wall 2 are compared, with more detailed
results in Table 5. One can see that the difference between both models
are greater for this large wall than for the previous smaller one. At the
critical displacement, the runtime of the multiscale model is only ≈ 35 %,
with a runtime of 5,240 s for the multiscale and 14,910 s for the microscale
model. Also in this example, as with the smaller scale wall, it’s clear that
the largest efficiency gains are at the lower displacement side. At half the
critical displacement, the multiscale method has a runtime of only ≈ 25% of
the microscale method.

Table 5: Wall 2 efficiency comparison.

Displacement (% of failure) Runtime Microscale (s) Runtime Multiscale (s) Relative cost (%)
25 4,300 687 16
50 7,920 2,030 25
100 14,910 5,240 35

Finally for the largest wall a comparison for the runtimes is shown in
Figure 24, and with the detailed results in Table 6. Here again the perfor-
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mance increase has improved in comparison to the smaller walls, with at the
critical displacement the runtime of the multiscale model being only 17%
that of the microscale model. Thus it can be noted that the trend seems to
indicate a bigger performance increase in larger-scale walls. The reason for
this preference for larger structures can be seen by comparing Figure 16 to
21, where the largest shown displacements for all walls are close to the point
of failure. In the first wall most of the macroscale elements have been refined
even at a smaller displacement due to a larger relative damage spreading.
On the other hand, in the larger second and third walls the damage remains
relatively localized to the corners of the opening and the wall itself. From
this it can be seen that this embedded multiscale method is more suited for
larger systems with more localized nonlinearities, at least in terms of gained
computational efficiency. Also, the reason a higher relative efficiency gain oc-
curs closer to the start of the simulation, is because the more nonlinearities
occur the more macroscale elements get refined, increasing the total number
of elements.

Table 6: Wall 3 efficiency comparison.

Displacement (% of failure) Runtime Microscale (s) Runtime Multiscale (s) Relative cost (%)
25 8,750 83 0.1
50 17,590 610 3.6
100 38,940 6,640 17
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Figure 22: Runtimes of wall 1.
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Figure 23: Runtimes of wall 2.
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Figure 24: Runtimes of wall 3.
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3.3.3. Influence of cs

In Section 2.2 the scaling parameter cs was introduced, a factor by which
the critical strain surface is enlarged. Choosing cs larger than unity denotes
a larger critical strain surface and thus a postponed refinement. This means
that there is loss of accuracy due to damage already being able to occur
in unrefined linear elastic macroscale elements, but also an increase in the
computational efficiency. On the other hand, a value cs smaller than unity
forces earlier refinement, thus leading to possibly increased accuracy but a
lower computational efficiency. Here a few different values are shown and
discussed for the second wall, with cs ranging from unity (the previously
used reference model) up until the accuracy loss is deemed unacceptable,
which occurs at around cs = 1.6. In Figure 25 the force-displacement curves
of the wall are shown for multiple values of cs and compared to the microscale
curve. In Figure 26 the total runtimes are compared as well. One can see
that for the force-displacement diagram the results ranging from cs = 1 until
cs = 1.4 are still very accurate. When cs ≥ 1.6, however, the results seem to
diverge. For the runtime comparison one finds that, as predicted, a higher
value of cs indicates a lower total runtime.

The reason for the deviation of the force-displacement curves at high cs

values can be seen in the crack propagation behavior. This is shown in Figure
29, where a comparison is made between the wall at a displacement of 0.2
mm for the multiscale models at cs = 1.4 and cs = 1.5. It is seen that in
these cases the cracking pattern is different in both models, caused by late
macroscale refinement in the top left and bottom right corners due to the
high scaling parameter, which has influenced the force-displacement curves
and making the high cs model more inaccurate.

For wall 3 it is interesting to look at the difference between the models
at cs = 0.75 and 1.25, seeing their close agreement in the force-displacement
curves but their large separation in computational efficiency. The state of
the walls at the critical displacement d = 0.35 mm is shown in Figure 30.
In this comparison it can be seen that the model using the lower value of
cs = 0.75 decides to refine a larger portion of the initial macroscale mesh,
leading to a more accurate damage distribution. However, in the cs = 1.25
model the main crack path remains the same despite a lower resolution in
the other parts of the model, leading to an almost equally accurate but way
more efficient simulation.

To conclude the discussion on the influence of the scaling parameter cs,
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Figure 25: Force-displacement curves of wall 2 at different values cs.
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Figure 26: Runtimes of wall 2 at different values cs.
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Figure 27: Force-displacement curves of wall 3 at different values cs.
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Figure 28: Runtimes of wall 3 at different values cs.

(a) cs = 1.4 (b) cs = 1.5

Figure 29: Multiscale crack pattern of wall 2 at d = 0.2 mm.
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(a) cs = 0.75 (b) cs = 1.25

Figure 30: Multiscale crack pattern of wall 3 at d = 0.35 mm.

in Figures 25 and 26 for the second and Figures 27 and 28 for the third wall,
one can see that there is indeed a trade off between computational accuracy
and efficiency. Here a higher value for cs results in a more efficient but less
accurate result. More so, it is difficult to define a good balance when choos-
ing a value greater than unity, because this will be different depending on
the purpose of the research and the system involved. If one only needs to
find the ultimate force the wall can withstand, even the factor cs = 1.4 gives
a good idea for the second wall, while reaching an efficiency that is about
130% higher than the cs = 1 model. However, when one requires certainty
about obtaining an accurately matching force-displacement curve, one needs
to choose a factor cs ≤ 1, otherwise a sizeable deviation could occur, as seen
for cs ≥ 1.5. Also, the higher one chooses the value of cs, the more likely it
becomes that the resulting crack path deviates from the reference microscale
methods results, leading to an inaccurate force-displacement diagram. It
appears that this behaves in a chaotic way, where even very slight differ-
ences in the initiation of nonlinearities leads to wildly different results in the
force-displacement curve and crack pattern advancement, meaning that it is
advised that the factor cs is chosen to be close to or lower than unity.
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4. Case study: modeling differential settlement behavior

In this section the proposed multiscale model will be shown in the context
of an application, namely the settlement behavior of a masonry wall under-
going gravity and soil erosion [43]. Differential settlement happens when the
support under a construction does not settle evenly, causing uneven displace-
ments and often incurring damage in the structure. Studying the mechanisms
and influences of the settlement behavior allows us to obtain a better under-
standing of the failure of several buildings induced by soil settlement, and
would allow a means of predicting the behavior of a new construction under
settlement behavior. Only recently, more and more research is focusing on
how to model damage in masonry under settlement behavior [44, 45, 46].

The example chosen is a long blind wall, shown in Figure 31, undergoing
subsidence. This wall consists of 30 by 10 bricks, and starts on a completely
flat terrain. The only force acting on the wall is gravity, with the vertical
movement bound by the underlying soil function w(x). The same material
parameters are used as in Table 2. From the initial point on, there will be
a quasi-static lowering of the underlying soil depth driven by the quasi-time
variable τ following the function

w(x) =


0 if x < xmin

wend(τ)

[
cos

(
π

x− xmin

xmax − xmin

)
/2− 0.5

]
if xmin ≤ x ≤ xmax

−wend(τ) if x > xmax

(22)
where x ∈ [0, 1] is the relative horizontal position along the bottom of the
wall and the function wend(τ) = ωsτ with ωs the step size.

The settling process is shown in Figure 32 at multiple values of wend using
the reference microscale model. In this figure the location where elements are
supported by the ground are shown in green. From now on unless specified
otherwise the values xmin = 0.3 and xmax = 0.7 are chosen. One can see a
good agreement on the location and evolution of the damaged areas, with
the crack path being very similar as well. In Figure 33 the runtimes of
the microscale and multiscale model are compared, showing a significant
advantage for the multiscale model in this case as well. This shows the ap-
plicability of the proposed model to other, more complex, types of examples
than just a shear wall.
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Figure 31: Blind wall setup
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(a) Microscale at wend = 0 mm

(b) Multiscale at wend = 0 mm

(c) Microscale at wend = 1.25 mm

(d) Multiscale at wend = 1.25 mm

(e) Microscale at wend = 2.50 mm

(f) Multiscale at wend = 2.50 mm

Figure 32: Micro- and multiscale settlement at different values wend.
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Figure 33: Runtimes of the end settlement models.
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5. Conclusions

In this paper, a novel numerical method for modeling large scale masonry
structures is presented, and assessed in terms of efficiency and accuracy.
It comprises an application of a concurrent multiscale domain activation
strategy where one adaptively mixes the use of elastic macroscale elements
with nonlinear microscale segments. The main novelty of the method is that
this leads to large gains in the necessary computational efficiency, reveal-
ing and calculating detailed geometries only when and where required, while
keeping the accuracy comparable. Using four example models, a small and
two large masonry walls with openings near the center and a case of soil
settlement, both the necessary accuracy and efficiency gain of the method
are demonstrated. The method is more clearly optimized for large models,
like the final two example walls, in which the damage region is minimized
compared to the total structure volume. This causes a majority of the wall
to remain described by elastic macroscale elements, leading to a larger gain
in computational efficiency due to a smaller number of effective degrees of
freedom to be taken into account in the simulation. Also at smaller applied
displacements the damage is more and more limited, which in itself leads to a
higher relative efficiency. In the worst case scenario, meaning the immediate
refinement of all macroscale elements due to for example immediate large
scale damage initialization, the described multiscale method obtains the same
efficiency as a classic microscale method in terms of efficiency.

One also has to find a difficult balance between accuracy and efficiency.
By scaling the critical strain surface using the scaling parameter cs one can
optimize this balance. It is seen that for lower values the accuracy of the
crack locations goes up, and choosing a value larger than unity is only recom-
mended for systems known by the researcher. In general, for all the example
systems, the default value cs = 1 strikes a good balance between necessary
correctness and a low simulation time.

Finally, the results show that masonry modeling is very open to the use
of scale embedded multiscale methods. This is mostly due to the localization
of nonlinear effects and the small-scale geometric repetition in all relevant
dimensions. This makes it both easy to define the RVE itself and divide the
model, and keeps the microscale to macroscale ratio low which makes for
efficient modeling.
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