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Abstract

Quantile regression is an important tool in data analysis. Linear regression,
or more generally, parametric quantile regression imposes often too restric-
tive assumptions. Nonparametric regression avoids making distributional as-
sumptions, but might have the disadvantage of not exploiting distributional
modeling elements that might be brought in. A semiparametric approach
towards estimating conditional quantile curves is proposed. It is based on a
recently studied large family of asymmetric densities of which the location
parameter is a quantile (and not a mean). Passing to conditional densi-
ties and exploiting local likelihood techniques in a multiparameter functional
setting then leads to a semiparametric estimation procedure. For the local
maximum likelihood estimators the asymptotic distributional properties are
established, and it is discussed how to assess finite sample bias and variance.
Due to the appealing semiparametric framework, one can discuss in detail
the bandwidth selection issue, and provide several practical bandwidth se-
lectors. The practical use of the semiparametric method is illustrated in the
analysis of maximum winds speeds of hurricanes in the North Atlantic region,
and of bone density data. A simulation study includes a comparison with
nonparametric local linear quantile regression as well as an investigation of
robustness against miss-specifying the parametric model part.
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1. Introduction

Classical regression focuses on estimation of the conditional mean func-
tion EpY |Xq of a response Y given a set of d covariates X � pX1, ..., XdqT .
A vast literature dealing with estimation of EpY |Xq via parametric, semi-
parametric or nonparametric approaches is available. In the context of non-
parametric mean regression, [1] developed local polynomial estimators in an
extended generalized linear models framework, using quasi-likelihood meth-
ods under standard regularity conditions. Background information on local
polynomial modeling and detailed discussions on a variety of applications
can be found in [2]. Maximum likelihood estimation is among the key tools
in statistics, and it provides a unified method for constructing approximate
confidence intervals for parameters. It requires the specification of a particu-
lar conditional density function for the response variable given the covariate
vector, but the distributional assumption, when justified, allows to draw sta-
tistically more accurate conclusions. [3] established a general framework to
use the maximum likelihood technique and extending its scope towards non-
parametric estimation. Their technique of localizing a likelihood and employ-
ing local polynomial fitting, together with the outlined statistical inference
steps is widely applicable.

Conditional mean estimation focuses only on the average effect of the
response Y given X, and is not a very appropriate measure of central position
in case of a skewed conditional response distribution. A conditional mean is
just one characteristic of the conditional distribution, whereas the conditional
quantile function fully characterizes it. Quantile curves are an important tool
in, for example, environmental studies where upper quantiles of pollution
levels are critical from a public health perspective.

The conditional quantile of order β (with 0   β   1) of Y given X � x
is denoted and defined as QβpY | X � xq � infyty : FY |Xpy | xq ¥ βu,
with FY |Xp� | xq the cumulative distribution function of Y given X � x.
See [4] and [5] for a comprehensive overview of the area of quantile re-
gression. Throughout the paper we use the shorthand notation qβpxq for
QβpY | X � xq. The conditional quantile of Y given X � x coincides
with the minimizer of EY |XtρβpY � aq | X � xu with respect to a, where
ρβpuq � upβ � Ipu   0qq is the so-called check function. Henceforth qβpxq is
such that EX,Y rρβ pY � qβpXqqs is minimal.
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For estimating a conditional quantile qβpxq one can rely on parametric,
semiparametric or nonparametric approaches. In linear quantile regression
qβpxq is modelled as a linear function, i.e. qβpxq � θTrx, with rx � p1,xT qT
the pd � 1q-dimensional column vector, and with θ the column vector (of
dimension d� 1) of unknown regression coefficients (including an intercept).
Parametric quantile regression estimation is performed by considering the
empirical version of EX,Y rρβ pY � qβpXqqs, and estimated parameters are
those for which this empirical quantity is minimized. See also Section 2.
Linear or, more generally, parametric quantile regression can be insufficient,
in case no appropriate form for the conditional quantiles can be put for-
ward. Consider data on maximum wind speeds in hurricanes occurring in
the North Atlantic region during the period 1971 and 2017. Figure 1(a) de-
picts the data together with some estimated linear regression curves. From
this figure it appears as if the maximum wind speed (in knots per hour) of
the strongest hurricanes in the North Atlantic region have increased over
the whole period. Figure 1(b) (produced using the proposed semiparametric
quantile estimation method) reveals however that also decreases are notice-
able, even for several quantile curves, during that period. As discussed in
Section 8 the semiparametric estimation method led to considerably smaller
prediction errors than when using a nonparametric estimation method (see
Figure 9). This example simply illustrates the specific merits of the semi-
parametric approach that is presented in this paper.

Nonparametric approaches towards quantile regression include the one of
[6], who developed a local linear quantile estimation method, similar as for
mean regression. Following-up on this, [7] further contributed to bandwidth
selection for local linear quantile regression. They also introduce the local lin-
ear double-kernel smoothing method, in which estimation of the conditional
cumulative distribution function, is followed by estimation of the conditional
quantile function via an inversion technique. Such an inversion procedure
involves the choice of two smoothing parameters. An extensive discussion on
the two approaches can be found in [7].

A particular point of attention when estimating conditional quantile curves
is that of the non-crossing property. By definition, for 0   β1 ¤ β2   1, the
conditional quantile curves satisfy qβ1pxq ¤ qβ2pxq, for all x in the domain
of the random vector X. Estimated conditional quantile curves should also
(among others for interpretability reasons) satisfy this property. But, the
local linear quantile estimation or the local linear double-kernel smoothing
estimator do not necessarily satisfy this property unless extra precautions
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Figure 1: Maximum wind speeds of hurricanes in the North Atlantic region during the
period 1971–2017. (a) Estimated linear quantile curves; (b) Estimated semiparametric
quantile curves.

are taken (see [7]).
In this paper we contribute with an appealing semiparametric method

to estimate conditional quantile curves. As a starting point we rely on a
very broad family of asymmetric densities, recently studied in [8]. Within
this large family of densities, with index-parameter α (0   α   1), the
location parameter (say µ) coincides with the αth quantile of the distribu-
tion. It therefore is called the quantile-based family of asymmetric densities
(QBA densities). This family provides a very advantageous framework, since
many probabilistic properties, and a detailed study of estimators and their
behaviour (with explicit expressions for asymptotic variance-covariance ma-
trices) were established in [8]. Moreover, the family is of a location-scale
type. A density in the family is symmetric if and only if α � 0.5. Based
on this family we consider a class of asymmetric conditional densities that
involves an unknown location function µpxq and an unknown scale function
φpxq. For a given member of the family of conditional densities (constitut-
ing the parametric component), one can produce a localized version of the
log-likelihood, locally modelling both the unknown location and scale func-
tion (the nonparametric components) via polynomials (of possibly different
degree). This results into a local polynomial likelihood type of problem, but
under nonstandard working conditions (i.e. non-differentiability), due to the
quantile-based setting. Only in case α � 0.5 we are back to standard working
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conditions. The advantages of this particular semiparametric approach are:


 due to the QBA-based framework, the estimated quantile curves inher-
ently satisfy the non-crossing property;


 due to the key ingredients of the framework, a detailed study of the
estimation methods, including asymptotic distributional results, theo-
retical optimal bandwidths and data-driven bandwidth selectors, finite-
sample assessments of bias and variance of the estimators, as well as
construction of confidence intervals and bands can be provided in the
generic setting (for all members of the large QBA family);


 when the asymmetric conditional density is well-specified the method
largely outperforms the nonparametric local polynomial quantile esti-
mation method;


 the nonparametric local polynomial quantile estimation context links
up to a special case of the considered estimation method; and as a
side product we also contribute to the area of nonparametric quantile
regression.

In the present paper we restrict to a univariate covariate setting (i.e. d �
1) although extension to a multivariate setting is methodologically rather
straightforward, as is briefly discussed in Section 3.3.

The paper is further organized as follows. After a very brief recall of
parametric and nonparametric approaches to conditional quantile estima-
tion in Section 2, we present our semiparametric local likelihood estimation
type approach in Section 3. Section 4 contains the asymptotic results of the
semiparametric local likelihood estimator. The important issue of bandwidth
choice is discussed in Section 5. Section 6 is devoted to the adaptation of the
method to account for some additional unknown parameter (function). The
finite-sample performance of the semiparametric procedure is investigated
via a simulation study in Section 7. Real data applications in Section 8 il-
lustrate the use of the proposed semiparametric estimation method. Proofs
of all theoretical results are provided in the Supplementary Material. This
material also contains new asymptotic results for nonparametric local poly-
nomial quantile regression and optimal bandwidth choice for it. These results
fill some gap in the literature. The Supplementary material further presents
some additional results from the simulation study. The discussed semipara-
metric estimation method is implemented in the R package QBAsyDist [9].
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2. Parametric and nonparametric conditional quantile estimation

Let pX1, Y1q, . . . , pXn, Ynq be an i.i.d. sample from pX, Y q. In parametric
settings one assumes that the βth conditional quantile of Y given X � x
(for arbitrary 0   β   1) takes on a parametric form, for example, qβpxq �
θβ,0 � θβ,1x in linear quantile regression or qβpxq � θβ,0 � θβ,1x� � � � � θβ,px

p

in pth order polynomial quantile regression (p P IN). Since qβpxq minimizes
EX,Y rρβ pY � qβpXqqs, the parameter θβ � pθβ,0, ..., θβ,pqT in a parametric
polynomial setting can be estimated by minimizing

ņ

i�1

ρβpYi � θβ,0 � � � � � θβ,pX
p
i q, (1)

with the check function ρβpuq � upβ � Ipu   0qq as in Section 1.
In a nonparametric setting, the functional form of qβpxq is completely

unknown. Similar as in nonparametric mean regression, the βth quantile
function qβpxq can be estimated using local modelling, and a locally kernel-
weighted check loss function. In this case no distributional assumption is
made on the conditional distribution of Y given X. See e.g. [6] and [7]. The
idea of a local polynomial fit is to approximate the unknown βth quantile
function qβpx0q, for x0 given, by a pth order polynomial, i.e. for z in a
neighbourhood of x0

qβpzq � qβpx0q � q1βpx0qpz � x0q � � � � � 1

p!
q
ppq
β px0qpz � x0qp

� θβ,0 � θβ,1pz � x0q � � � � � θβ,ppz � x0qp, (2)

where q
pvq
β px0q denotes the vth derivative of the function qβ evaluated in the

point x0, and with θβ,v � q
pvq
β px0q{v!, for v � 0, 1, . . . , p. For all observations

Xi close to x0, we can apply the Taylor approximation for qβpXiq and obtain
from (2) that

qβpXiq � θβ,0 � θβ,1pXi � x0q � � � � � θβ,ppXi � x0qp � XT
i,pθβ,

where Xi,p � p1, Xi � x0, . . . , pXi � x0qpqT and θβ � pθβ,0, . . . , θβ,pqT . Since
the Taylor expansion in (2) is only valid in a neighbourhood of x0, the loss
function in (1) needs to be localized as to contain only contributions from
observations Xi that are close to x0. This is done by a weighting factor
KhpXi � x0q, where Khp�q � Kp�{hq{h is a rescaling of Kp�q, a compactly
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supported symmetric probability density, and h ¡ 0 a bandwidth parameter
determining the size of the neighbourhood. The unknown parameter θβ is
estimated by

pθβpx0q � arg min
θβPRpp�1q

ņ

i�1

ρβpYi �XT
i,pθβqKhpXi � x0q. (3)

The local polynomial estimator pqβ,vpx0q for q
pvq
β px0q, v � 0, 1, . . . , p is then

given by pqβ,vpx0q � v! pθβ,vpx0q. Local linear estimation of the conditional
quantile qβpx0q corresponds to taking p � 1 in the above.

3. Semiparametric conditional quantile estimation

In this section we present the framework for the semiparametric esti-
mation approach. We first review the quantile-based family of asymmetric
densities which is a basic element.

3.1. Quantile-based family of asymmetric densities

Consider f a symmetric around 0 density. We assume f to be unimodal.
We call f the reference symmetric density. Denote by F and F�1 the cumu-
lative distribution function and the quantile function associated with f . The
QBA family, indexed by a parameter α, α P p0, 1q, with parameters µ P IR,
and φ P IR�, is then defined by

rfαpy;µ, φq � 2αp1� αq
φ

"
f
�p1� αqpµ�y

φ
q� if y ¤ µ

f
�
αpy�µ

φ
q� if y ¡ µ.

(4)

Herein the index-parameter α controls the allocation of mass to the left and
the right of the mode µ. The density rfαpy;µ, φq in (4) is symmetric if and only
if α � 0.5. The density is left-skewed (respectively right-skewed) if α ¡ 0.5
(respectively α   0.5). The QBA family constitutes a very broad family of
asymmetric densities, including (new) asymmetric normal, Student-t, logistic
and Laplace densities (see [8]). The important properties of (4) are:

piq µ is the αth quantile of Y , i.e.
³µ
�8

rfαpy;µ, φqdy � α and³8
µ
rfαpy;µ, φqdy � 1� α.
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piiq Mean and variance (if they exist) are given by:

EpY q � µ� φp1� 2αqµ1

αp1� αq (5)

VarpY q � φ2

α2p1� αq2 rp1� 2αq2pµ2 � µ2
1q � αp1� αqµ2s, (6)

where µr � 2
³8
0
srfpsqds is a moment-type quantity of the reference

density f .

piiiq Cumulative distribution function:

rFαpy;µ, φq �
"

2αF
�p1� αqpy�µ

φ
q� if y   µ

2α � 1� 2p1� αqF�αpy�µ
φ
q� if y ¥ µ.

pivq The quantile function: for any β (with 0   β   1), rF�1
α pβq � µ � φ �

Cαpβq, where Cαpβq � 1
1�αF

�1
�
β
2α

�
Ipβ   αq� 1

α
F�1

�
1�β�2α
2p1�αq

	
Ipβ ¥ αq.

Note that the quantity Cαpβq depends on β, the index-parameter α and the
quantile function of the reference symmetric density f . For example, for f
a symmetric Laplace density: Cαpβq � 1

1�α ln
�
β
α

�� 1
α

ln
�
1�β
1�α

�
. In general, it

holds that for β � α, Cαpαq � 0 and consequently rF�1
α pαq � µ. Obviously,

Cαpβq is an increasing function of β.

Given an i.i.d. sample Y1, . . . , Yn from Y � rfαp�;µ, φq, [8] discussed max-
imum likelihood estimation of the parameter vector pµ, φq, and established
that the Fisher information matrix for the maximum likelihood estimator of
pµ, φq equals

rIpµ, φq � �
2αp1�αqγ1

φ2
0

0 1
φ2
p2γ3 � 1q

�
,

where γ` �
³
s`�1fpsqds, for ` � 1, 2, 3 (γ` is assumed to be finite). For

example, for f the symmetric Laplace density, we have γ1 � γ2 � 1

2
and

γ3 � 1. For detailed results, see Proposition 3.2 in [8].
Since φ P IR� it is important to obtain an estimator that takes on only

non-negative values. This is of particular importance when passing to the
regression setting in which φ is a function of x. In order to automatically
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obtain non-negative estimators for φ (or φpxq in the regression setting) it is
advantageous to reparametrize the above QBA family as follows. Using the
one-to-one transformation pθ1, θ2q � pµ, lntφuq and denoting the resulting
asymmetric density by fαp�; θ1, θ2q we get

fαpy; θ1, θ2q � rfαpy; θ1, exptθ2uq � 2αp1� αq
exptθ2u

#
f
�p1� αqp θ1�y

exptθ2uq
�

if y ¤ θ1

f
�
αp y�θ1

exptθ2uq
�

if y ¡ θ1.

(7)
The quantile function of a random variable Y with density fαp�; θ1, θ2q is then

F�1
α pβq � θ1 � exppθ2q � Cαpβq.

The Fisher information matrix is calculated from the second order partial
derivatives of the log-density. Denoting v1 � u1 and v2 � exptu2u, and
applying the chain rule we get, for r, s P t1, 2u,

B
Bur ln fαpy;u1, u2q � B

Bvr ln rfαpy; v1, v2q BvrBur (8)

B2
BurBus ln fαpy;u1, u2q � B2

BvrBvs ln rfαpy; v1, v2q BvrBur
Bvs
Bus .

Since Bv1
Bu1 � 1 and

Bv2
Bu2 � v2,

the Fisher information matrix for the maximum likelihood estimators for
pθ1, θ2q in (7) is

Ipθ1, θ2q �
�

2αp1�αqγ1
expt2θ2u 0

0 p2γ3 � 1q

�
. (9)

3.2. Semiparametric local polynomial maximum likelihood conditional quan-
tile estimation

We now turn to the regression setting involving one covariate. For the con-
ditional density of Y given X � x we consider the density fY |Xp�; θ1pxq, θ2pxqq
in (7) and allow θ1 and θ2 to depend on x, for given index-parameter α. This
leads to the conditional density

fY |X,αpy; θ1pxq, θ2pxq|xq � 2αp1� αq
exppθ2pxqq

#
f
�p1� αqp θ1pxq�y

exppθ2pxqqq
�

if y ¤ θ1pxq
f
�
αp y�θ1pxq

exppθ2pxqqq
�

if y ¡ θ1pxq,
(10)
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for which the βth quantile function is

qβpxq � F�1
Y |X,αpβ|xq � θ1pxq � exp tθ2pxqu � Cαpβq.

Let pX1, Y1q, . . . , pXn, Ynq be an i.i.d. sample from pX, Y q with conditional
density (10), where θ1pxq and θ2pxq are unknown real-valued functions. Given

estimates pθ1pxq and pθ2pxq for θ1pxq and θ2pxq, an estimator for the conditional
quantile function is

pqβpxq � pθ1pxq � exp
!pθ2pxq) � Cαpβq. (11)

We estimate θ1pxq and θ2pxq, starting from the localized conditional log-
likelihood.

If θ1p�q and θ2p�q are known, the conditional log-likelihood is

ņ

i�1

ln fY |X,αpYi; θ1pXiq, θ2pXiq | X � Xiq

Since θ1p�q and θ2p�q are unknown, we use a local polynomial fitting tech-
nique. For given x0, we approximate θrpzq (for r P t1, 2u) with z in the
neighbourhood of x0, using a Taylor expansion of order pr (pr P IN):

θrpzq � θrpx0q � θ1rpx0qpz � x0q � � � � � θ
pprq
r px0q
pr!

pz � x0qpr �
pŗ

j�0

θrjpz � x0qj,

with θrv � θ
pvq
r px0q
v!

; v � 0, 1, . . . , pr. For the conditional log-likelihood this
means that only data points pXi, Yiq for which Xi is close to x0 contribute
to the localized version of it. Denoting `pθ1pXiq, θ2pXiq;Yiq �
ln fY |X,αpYi, θ1pXiq, θ2pXiq | Xiq, and using θrpXiq �

°pr
j�0 θrjpXi � x0qj �

XT
i,prθr, where Xi,pr � p1, pXi�x0q, � � � , pXi�x0qprqT and θr � pθr0, � � � , θrprqT ,

we get to the local kernel-weighted conditional log-likelihood

Lnpθ1,θ2;h, x0q �
ņ

i�1

`pXT
i,p1
θ1,X

T
i,p2
θ2;YiqKhpXi � x0q, (12)

This local kernel-weighted conditional log-likelihood needs to be maxi-
mized with respect to pθ1,θ2q, leading to the vector of estimators

ppθ1px0q, pθ2px0qq � �
ppθ10px0q, ..., pθ1p1px0qqT , ppθ20px0q, ..., pθ2p2px0qqT	 defined as

ppθ1px0q, pθ2px0qq � arg max
θ1,θ2

Lnpθ1,θ2;h, x0q (13)

10



The estimator pθpvqr px0q for θ
pvq
r px0q, v � 0, 1, . . . , pr, is given by pθpvqr px0q �

v! pθrvpx0q. The whole function θrp�q (for r P t1, 2u) is estimated by considering
a grid of x0-values and solving maximization problem (13) for each point in
the grid.

Illustrative example: the conditional asymmetric Laplace density. Taking as
a symmetric reference density, the standard Laplace density, i.e. fpsq �
0.5e�|s|, the contribution from a data point pXi, Yiq to the local conditional
likelihood is

`pXT
i,p1
θ1,X

T
i,p2
θ2;Yiq

� ln pαp1� αqq �XT
i,p2
θ2

� 1

exprXT
i,p2
θ2s

�p1� αqpXT
i,p1
θ1 � YiqIpYi �XT

i,p1
θ1 ¤ 0q

�αpYi �XT
i,p1
θ1qIpYi �XT

i,p1
θ1 ¡ 0q�

� ln pαp1� αqq �XT
i,p2
θ2 � 1

exprXT
i,p2
θ2s

ραpYi �XT
i,p1
θ1q,

since ρβpuq � upβ � Ipu   0qq � u rp1� βqIpu ¤ 0q � βIpu ¡ 0qs.
A special situation occurs when we take p2 � 0, and hence approximate

θ2pzq locally by a constant, and θ2 � θ20. The solution to the maximization
problem (13) is then$''''''&''''''%

pθ1px0q � arg min
θ1PIRpp1�1q

n°
i�1

ραpYi �XT
i,p1
θ1qKhpXi � x0q,

pθ2px0q � ln

����
n°
i�1

ραpYi �XT
i,p1

pθ1px0qqKhpXi � x0q
n°
i�1

KhpXi � x0q

���� . (14)

If we are in a setting of a constant scale function, i.e. θ2pxq � θ2, for all x,

then an overall estimator for θ2 is pθ2 � ngrid°
j�1

pθ2pxjq{ngrid; where ngrid is the

total number of grid points for which the optimization problem is carried
out.

Using the estimators pθ1px0q and pθ2px0q, and substituting these estimators
into (11), with the appropriate constant Cαpβq � 1

1�α ln
�
β
α

� � 1
α

ln
�
1�β
1�α

�
for

the case of a symmetric Laplace reference density, we obtain the estimated
βth quantile function. See further Section S1.
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Remark 3.1. An important remark is that the minimization problem lead-
ing to the estimator pθ1px0q in (14) coincides with the minimization problem
in (3) provided β � α in the latter problem (or α � β in the former). In
other words, when the scaling function is constant and known, the considered
semiparametric estimator for the βth quantile θ1px0q coincides with the fully
nonparametric αth order quantile estimator. This of course does not mean
that the asymptotic properties of both estimators cöıncide, since the model
assumptions are different, and come into play when investigating asymptotic
behaviour.

Remark 3.2. In the procedures described above, we take α fixed. Estima-
tion of α or αpxq is however discussed in Section 6, and in data applications
α (and αpxq) is estimated.

3.3. Extension to the multivariate covariate setting

The methodology presented in Section 3.2 is rather straightforward to
generalize to a multivariate setting. Consider a vector of covariates X �
pX1, . . . , XdqT . The task is to estimate the d-variate location and scale func-
tions θ1pxq and θ2pxq (with x � px1, � � � , xdqT ), based on an i.i.d. sample
pX1, Y1q, . . . , pXn, Ynq from pX, Y q. Relying on the idea of local modelling,
we can approximate the unknown d-variate functions locally using Taylor
expansion for d-variate functions.

For simplicity of presentation, we only briefly discuss the extension of
the methodology considering local linear fitting (i.e. p1 � p2 � 1) in this
multidimensional covariate setting. For a given value x0 � px01, . . . , x0dqT ,
the function θrpzq can, for z � pz1, . . . , zdqT in a neighbourhood of x0, be
approximated by

θrpzq � θrpx0q �
ḑ

j�1

Bθrpxq
Bxj

���
x�x0

pzj � x0jq � θr0 �
ḑ

j�1

θrjpzj � x0jq r P t1, 2u,

using a Taylor expansion up to order one for a d-variate function, and de-

noting θr0 � θrpx0q and θrj � Bθrpxq
Bxj

���
x�x0

; for j � 1, . . . , d. Applying this

approximation to a datum Xi � pXi1, . . . , XidqT that is close to x0 leads to
the approximation

θrpXiq � θr0 �
ḑ

j�1

θrjpXij � x0jq � XT
i;dθr,
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where we denoted Xi;d � p1, Xi1 � x01, . . . , Xid � x0dqT and
θr � pθr0, θr1, . . . , θrdqT . Since this approximation is only valid for Xi in a
neighbourhood of x0, this is accounted for by considering appropriate multi-
variate weights.

Let Kd : IRd Ñ IR be a d-variate non-negative kernel function satisfying³
Kdpuqdu � 1 and

³
uKdpuqdu � 0. Furthermore, Kd is assumed to have

compact support and
³
uiujKdpuqdu � δijµ2pKdq, with µ2pKdq ¡ 0. The

matrix of second componentwise moments of Kd is thus µ2pKdqId, where Id
is the identity matrix of dimension d � d. A rescaled version is Kd,Hpuq �
|H|�1{2KdpH�1{2uq, where H is a positive definite matrix of bandwidths with
determinant |H|.

The multivariate version of equation (12) for p1 � p2 � 1 is:

Lnpθ1,θ2; H,x0qq �
ņ

i�1

`pXT
i;dθ1,X

T
i;dθ2;YiqKd,HpXi � x0q,

which needs to be maximized with respect to the model parameters pθ1,θ2q,
leading to ppθ1px0q, pθ2px0qq satisfying

ppθ1px0qq, pθ2px0qqq � arg max
θ1,θ2

ņ

i�1

`pXT
i;dθ1,X

T
i;dθ2;YiqKHpXi � x0q,

and estimates of the d-variate function θrp�q and its d first-order partial
derivatives

pθrpx0q � pθr0 and
{Bθrpxq
Bxj

���
x�x0

� pθrj j � 1, . . . , d; pr P t1, 2uq.

For practical use of the above method one needs to be aware of the prob-
lem of curse of dimensionality. For a given number of data points, local
neighbourhoods in higher dimensions are obviously ‘emptier’. Consequently,
using local modelling techniques in high dimensions requires a large amount
of data, to guarantee a sufficient amount of local data to warrant sufficient
accuracy in the estimation task. For moderate to small data sets one likely
needs to bring in some additional structure, such as an additive model struc-
ture on the unknown location and shape functions, i.e. modelling θrpx0q as a
sum of d unknown univariate functions: θrpx0q � θr1px01q�. . .�θrdpx0dq, with
now θr1p�q, . . . , θrdp�q d unidimensional functions to be estimated. Investigat-
ing statistical inference with such an additive structure will be investigated
in future research.
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4. Asymptotic results

Before stating the results, recall that the quantile estimator in (11) is
obtained from estimation of θ1pxq and θ2pxq. The proposed local polynomial
estimation procedure, not only allows to estimate qβpxq but also its deriva-
tives (up to some order), based on these of θ1pxq and θ2pxq. We present the
asymptotic theory in its full generality, including derivative estimation. The
main results are


 the asymptotic normality results for the estimators of θ1pxq and θ2pxq
(and their derivatives) in Theorem 4.2;


 the asymptotic normality result for the estimator of qβpxq in Theorem
4.3.

A key step in achieving these is provided by Theorem 4.1.
We now come to investigate these asymptotic properties of the local poly-

nomial maximum likelihood estimator ppθ1px0q, pθ2px0qq in (13). The proposed
semiparametric method is likelihood-based, relying on the conditional den-
sity fY |X,αpy; θ1pxq, θ2pxq|xq in (10). Consequently assumptions related to the
key quantities in this conditional density (the symmetric reference density f
and the unknown location and scale functions), as well as assumptions on
the density of X (i.e. the design density) are necessary.

4.1. Notations and assumptions

As in all likelihood-based methods, we need notations for the partial
derivatives of first and second order of the log-likelihood function involved.
We denote, for r, s, t P t1, 2u,

ψrpy; v1pxq, v2pxqq � B
Bur ln fY |X,αpy;u1, u2 | xq

���
pu1,u2q�pv1pxq,v2pxqq

ψrspy; v1pxq, v2pxqq � B2
BurBus ln fY |X,αpy;u1, u2 | xq

���
pu1,u2q�pv1pxq,v2pxqq

ψrstpy; v1pxq, v2pxqq � B3
BurBusBut ln fY |X,αpy;u1, u2 | xq

���
pu1,u2q�pv1pxq,v2pxqq

,

if these partial derivatives exist. Note that the conditional density
fY |X,αpy; θ1pxq, θ2pxq|xq in (10) is continuous everywhere, but it is not differ-
entiable in y � θ1pxq, leading to non-differentiability of the log-likelihood at
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points Yi � θ1pXiq. This non-differentiability of the local log-likelihood func-
tion requires to rely on theoretical results for maximum likelihood estimation
under nonstandard conditions. This goes back to the seminal work of [10].
In [8] asymptotic normality results of maximum likelihood estimators in the
unconditional case of density (4) was established, involving a stochastic dif-
ferentiability condition. The basic insight of such a stochastic differentiability
condition is that smoothness with a non-differentiable objective function can
be replaced by smoothness of the limit (or approximation) of the objective
function. Such limiting objective functions are often expectations that are
smoother and ‘more’ differentiable than their sample counterpart [e.g., 11].

In establishing our asymptotic results, we have been inspired by [1] in
their study of local polynomial kernel regression in a random design setting
of generalized linear models, and by [12] who deal with multiparameter like-
lihood models, but under a fixed design setting. Of essence here is to keep
in mind three key issues when establishing the asymptotic behaviour of the
local maximum likelihood estimators ppθ1px0q, pθ2px0qq: (i) we are dealing with
maximum likelihood estimation under non-standard conditions; (ii) the prob-
lem involves multiple parameter functions; (iii) we allow for random design
(i.e. the Xi observations are random, with design density fX).

For establishing the asymptotic behaviour of the local maximum likeli-
hood estimators under non-standard conditions, we need the expected value
of the score functions (related to the two parameters). Consider, for r, s P
t1, 2u,

λrpv1pxq, v2pxqq � EY |XrψrpY ; v1pXq, v2pXqq | X � xs
λrspv1pxq, v2pxqq � B

Busλrpu1, u2q
���
pu1,u2q�pv1pxq,v2pxqq

. (15)

Under appropriate assumptions, [8] showed (see their Proposition 3.1) that
the (unconditional) expected value of the (unconditional) score function un-
der density (4) is zero. Keeping in mind (8) it then follows immediately that,
for r P t1, 2u,
λrpθ1pxq, θ2pxqq � EY |X rψrpY ; θ1pXq, θ2pXqq | X � xs � 0 for all x. (16)

From (9), and under appropriate assumptions (see below), we get to the
Fisher information matrix

Ipθ1pxq, θ2pxqq �
�

2αp1�αqγ1
rexppθ2pxqs2 0

0 p2γ3 � 1q

�
, (17)
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where, Irspθ1pxq, θ2pxqq � EY |XrψrpY ; θ1pXq, θ2pXqqψspY ; θ1pXq, θ2pXqq | X �
xs � EY |Xr�ψrspY ; θ1pXq, θ2pXqq | X � xs for all x, and r, s P t1, 2u,.
Remark 4.1. Note that from (17) it is clear that the function Irspu1, u2q,
is differentiable with respect to both arguments u1 and u2 (for finite scale
parameter θ2pxq), and moreover that the partial derivative with respect to
u1 equals zero.

We now state the assumptions that are needed for the above outlined
derivation and establishing the asymptotic behaviour of the local maximum
likelihood estimators.

Assumptions.

(A1) The densities fY |X,αpy; θ1pxq, θ2pxq|xq have a common support for all

x. There exists an open subset Θ̊ of the parameter space Θ containing
the true parameters pθ01pxq, θ02pxqq for all x.

(A2) The reference density fp�q satisfies
³8
0

�� ln fpsq��fpsqds   8.

(A3) The reference symmetric density fpsq is differentiable almost every-

where and satisfies γ` �
³8
0
s`�1 � pf 1psqq2

fpsq ds   8 for ` � 1, 2, 3.

(A4) The reference symmetric density fpsq satisfies lim
sÑ8

sfpsq � 0 or³8
0
sf 1psqds � �1

2
.

(A5) The function θrp�q has a ppr�1qth (respectively ppr�2qnd) continuous
derivative for pr odd (respectively pr even).

(A6) ψrspy; θ1, θ2q   0 for θr P IR and y in the range of the response variable
(with r, s P t1, 2u).

(A7) The functions f 1Xpx0q, θppr�2q
r px0q, ψrpy; θ1px0q, θ2px0qq,

ψrspy; θ1px0q, θ2px0qq, ψrstpy; θ1px0q, θ2px0qq and d
dx0

Irrpθ1px0q, θ2px0qq are
continuous in x0 (with r, s, t P t1, 2u).

(A8) The kernel function Kp�q is a symmetric probability density on r�1, 1s.
(A9) For each point xB on the boundary of supppfXq (the support of fX),

there exist an interval C containing xB having nonnull interior such that
infxPC fXpxq ¡ 0.
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(A10) The bandwidth sequence h � hn satisfies: hn Ñ 0 and nh3n Ñ 8.

Assumptions (A1)—(A4) concern conditions needed on the reference sym-
metric density f , whereas Assumptions (A5)—(A10) are needed for the
local likelihood approach. Assumptions (A2)—(A4) are, for example, sat-
isfied for f a standard normal, Student’s -t, logistic and Laplace densities.
See [8], including its Supplement, for details on this.

Remark 4.2. It is well-known that the asymptotic properties of local poly-
nomial estimators for mean regression differ for points in the interior or at
the boundary of the support of the domain of X (denoted by supppfXq). See
[2]. With K supported on r�1, 1s, the support of Khp� � x0q is Ex0,h � tu :
|u�x0| ¤ hu. We call x0 an interior point of supppfXp�qq if Ex0,h � supppfXq.
Otherwise x0 is called a boundary point. If supppfXq � rb1, b2s then x0 is a
boundary point if and only if x0 � b1�τh or x0 � b2�τh for some 0 ¤ τ   1.
Denoting Dx0;h � tu : x0 � hu P supppfXqu X r�1, 1s, we have that x0 is an
interior point if and only if Dx0;h � r�1, 1s. Both cases, these of interior
points and of boundary points, are covered in the sequel by considering the
measurable sets A � Dx0;h � R. Notably, if x0 is an boundary point and
hence of the form x0 � xB � ch where xB is a point on the boundary of
supppfXq and c P r�1, 1s, then A is replaced by Dx0,h � r�1, 1s. For x0 an
interior point in supppfXq, A � r�1, 1s.

For writing down the theoretical results we need some further notations.
To ease the reading, we use notations that stay close to these of [12] and
[1]. The jth moment of the kernel function, restricted to the domain A,
is denoted by νjpAq �

³
A u

jKpuqdu. Let Nprpspx0;Aq, Tprpspx0;Aq and
Qprpspx0;Aq (r, s P t1, 2u) be matrices of dimension ppr � 1q � pps � 1q of
which the pk�1, l�1qth entry equals νk�lpAq,

³
A u

k�lK2puqdu and νk�l�1pAq
pk � 0, ..., pr; l � 0, ..., psq. Let Mv,pspu;Aq be the same as Nprpspx0;Aq, but
with the pv � 1qst column replaced by p1, u, ..., upsqT . For |Nprpspx0;Aq| � 0
define

Kv,pspu;Aq � v!t|Mv,pspu;Aq|{|Npspspx0;Aq|uKpuq.

For notational simplification, we suppress in what follows the A nota-
tion, and simply write νj,Nprpspx0q,Mv,pspuq and Kv,pspuq. We also suppress
the region of integration A, and write short-handed

³
K2
v,pspuqdu instead of³

AK
2
v,pspu;Aqdu.
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The kernel Kv,pspuq is an equivalent kernel as defined by [13]. For sev-
eral kernels K satisfying Assumption (A9), the expressions for Kv,pspuq for
different value of v and ps are tabulated in [2] (pp. 66). The concept of
equivalent kernel is useful for giving concise expressions for the asymptotic
distribution of pθrvpx0q � pθrvpx0; pr, hq; (r P t1, 2u) for x0. As mentioned in
[1] p�1qvKv,pspuq is an order pv, tq kernel, where t � ps � 1 if ps � v is odd,
and t � ps � 2 if ps � v is even. Further, for r P t1, 2u, denote

Hpr � diagp1, h, . . . , hprq
Σx0 � fXpx0qIpθ1px0q, θ2px0qq bN px0q (18)

Γx0 � fXpx0qIpθ1px0q, θ2px0qq b T px0q (19)

Λx0 �Dpx0q bQpx0q (20)

N px0q �
�
Np1p1px0q Np1p2px0q
Np2p1px0q Np2p2px0q



T px0q �

�
Tp1p1px0q Tp1p2px0q
Tp2p1px0q Tp2p2px0q



Qpx0q �

�
Qp1p1px0q Qp1p2px0q
Qp2p1px0q Qp2p2px0q



Dpx0q �

�
d
dx0

 
fXpx0qI11pθ1px0q, θ2px0qq

(
0

0 d
dx0

 
fXpx0qI22pθ1px0q, θ2px0qq

( 

where b denotes a generalized Kronecker product. For a pr � sq matrix
C � pcijq and a partitioned matrix D with submatrices Dij pi � 1, ..., r; j �
1, ..., sq, the generalized Kronecker product CbD is defined as a partitioned
matrix with submatrices pcijDijq, i � 1, ..., r; j � 1, ..., s. If all submatrices
Dij are identical (say to D), then the generalized Kronecker product sim-
plifies to the ordinary Kronecker product of the matrices C and D. This
happens when in (18), (19) and (20) we take p1 � p2.

4.2. Asymptotic results for local polynomial maximum likelihood conditional
quantile estimators

A key step in deriving the asymptotic normality result for the local poly-
nomial maximum likelihood estimator pθpx0q � ppθ1px0q, pθ2px0qqT is studying
first the asymptotic behaviour of the quantityW npx0q � pW n

1 px0qT ,W n
2 px0qT qT ,

where W n
r px0q, for r P t1, 2u, is a column vector of dimension pr � 1, with

pk � 1qst component

W n
rkpx0q �

1?
nh2k�1

ņ

i�1

ψrpYi; θ1pXi, x0q, θ2pXi, x0qqKtpXi�x0q{hupXi�x0qk

(21)
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with θrpXi, x0q �
pŗ

j�0

θrjpx0qpXi � x0qj; r P t1, 2u. (22)

Let Ip1�p2�2 denote an identity matrix of order pp1 � p2 � 2q � pp1 � p2 � 2q
and let 0p1�p2�2 be a pp1 � p2 � 2q-dimensional column null vector, but yet
in terms of W npx0q. Theorem 4.1 states the asymptotic normality result for
the semiparametric local polynomial maximum likelihood estimators.

Theorem 4.1. Assume (A1)—(A10) hold. Then, for nÑ 8,

pΣ�1
x0

Γx0Σ
�1
x0
q�1{2

!?
nh

�
Hp1

�pθ1px0q � θ1px0q�,Hp2

�pθ2px0q � θ2px0q�	T
� pΣ�1

x0
� hΣ�1

x0
Λx0Σ

�1
x0
qErW npx0qs

)
DÝÑ Np1�p2�2p0p1�p2�2, Ip1�p2�2q.

where W npx0q is defined in (21) and x0 an interior point of supppfXq.
From Theorem 4.1 is becomes transparent that one needs to study first the

quantities ErW npx0qs, Σ�1
x0
ErW n

r px0qs and Σ�1
x0

Λx0Σ
�1
x0
ErW n

r px0qs. Asymp-
totic expressions for these quantities are established in Lemmas S2.1 and
S2.2 in Section S2.1 of the Supplementary Material.

From Theorem 4.1, one can derive the asymptotic normality of the maxi-
mum likelihood estimator of the vth derivative θ

pvq
r px0q of θrpx0q. This result

is stated in Theorem 4.2.

Theorem 4.2. Assume (A1)—(A10) hold. For x0 given, we have

(i). if pr � v is odd (v � 0, ..., pr and r P t1, 2u), then for nÑ 8,

?
nh2v�1

�
I�1
rr pθ1px0q, θ2px0qq

fXpx0q
»
K2
v,prpuqdu


�1{2

�
�pθpvqr px0q � θpvqr px0q � hpr�v�1 θ

ppr�1q
r px0q
ppr � 1q!

"»
upr�1Kv,prpuqdu

*
p1�Ophqq

�
DÝÑ N p0, 1q;
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(ii). if pr � v even (v � 0, 1, ..., pr and r P t1, 2u), then for nÑ 8,

?
nh2v�1

�
I�1
rr pθ1px0q, θ2px0qq

fXpx0q
»
K2
v,prpuqdu


�1{2 �pθpvqr px0; pr, hq � θpvqr px0q

�
�
θ
ppr�2q
r px0q
ppr � 2q!

»
upr�2Kv,prpuqdu�

θ
ppr�1q
r px0q
ppr � 1q!

d
dx0

 
fXpx0qIrrpθ1px0q, θ2px0qq

(
fXpx0qIrrpθ1px0q, θ2px0qq

�
"»

upr�2Kv,prpuqdu� v

»
upr�1Kv�1,prpuqdu

*�
hpr�v�2p1�Ophqq



DÝÑ N p0, 1q.

The estimated βth quantile in x0 can be obtained from (11). When β � α,

Cαpαq � 0 and pqαpx0q � pθ1px0q. Therefore the asymptotic distribution ofpqαpx0q, is that of pθ1px0q, given in Theorem 4.2. In general, for any β P p0, 1q,
the asymptotic distribution of pqβpx0q is given in Theorem 4.3.

Theorem 4.3. Assume (A1)—(A10) hold. For x0 given, we have

?
nh

!pqβpx0q � qβpx0q �
�
ABiasrpθ1px0qs � Cαpβq � eθ2px0qABiasrpθ2px0qs�)

DÝÑ N
�
0, σ2

q px0q
�
,

for nÑ 8, where for r P t1, 2u
(i). if pr (for r P t1, 2u) is odd, then

ABiasrpθrpx0qs � hpr�1 θ
ppr�1q
r px0q
ppr � 1q!

"»
upr�1K0,prpuqdu

*
p1�Ophqq,

(ii). if pr (for r P t1, 2u) is even, then

ABiasrpθrpx0qs
�

�
θ
ppr�2q
r px0q
ppr � 2q!

»
upr�2K0,prpuqdu�

θ
ppr�1q
r px0q
ppr � 1q!

d
dx0

 
fXpx0qIrrpθ1px0q, θ2px0qq

(
fXpx0qIrrpθ1px0q, θ2px0qq

�
"»

upr�2K0,prpuqdu
*�

hpr�2p1�Ophqq,
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σ2
q px0q �

I�1
11 pθ1px0q, θ2px0qq

fXpx0q
»
K2

0,p1
puqdu

� C2
αpβqe2θ2px0q

I�1
22 pθ1px0q, θ2px0qq

fXpx0q
»
K2

0,p2
puqdu.

5. Bandwidth selection

The semiparametric procedure in Section 3.2 involves the choice of a
bandwidth parameter. Similarly, the nonparametric approach, briefly re-
viewed in Section 2, needs a bandwidth choice (see Section S1.2). Thanks
to the asymptotic theory established in Section 4 for both estimation ap-
proaches, we are able to study this bandwidth selection issue. In this section
we propose practical bandwidth selectors. The finite-sample performance of
the proposed semiparametric procedure, including that of the data-driven
bandwidth selectors of this section, is investigated in a simulation study in
Section S3.1 of the Supplementary Material.

A standard way to obtain theoretical optimal local (respectively global)
bandwidths is by looking at an asymptotic expression for the Mean Squared
Error (respectively the Mean Integrated Squared Error) of an estimator pθp�q
for a target quantity θp�q, defined as respectively MSE

�pθpx0q� � E
�pθpx0q �

θpx0q
�2

and E
 ³ �pθpxq � θpxq�2wpxqdx(, with wp�q a given weight function.

Since the Mean Squared Error of an estimator can be decomposed into the
squared bias and the variance, an asymptotic expression for the former is
obtained by squaring an asymptotic expression of the bias and adding an
asymptotic expression for the variance. An asymptotic expression for the
Mean Integrated Squared Error is obtained by considering weighted inte-
grated versions of the latter asymptotic expression.

Since there are two unknown functions θ1p�q and θ2p�q the local (re-
spectively global) performance of the estimation method is measured via

MSE
�pθ1px0q� � MSE

�pθ2px0q� (respectively the weighted integral version of
this).

5.1. Theoretical optimal bandwidths

Using the asymptotic expressions for bias and variance provided in The-
orem 4.2, restricting to p1 � p2 � p, we get to the following asymptotic
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expression of the MSE, denoted by AMSE, for estimation of the vth deriva-
tive of the two functions of interest, evaluated in an interior point x0,

AMSEtpθpvq1 px0q, pθpvq2 px0qu
� 1

nh2v�1fXpx0q
�
I�1
11 pθ1px0q, θ2px0qq � I�1

22 pθ1px0q, θ2px0qq
� »

K2
v,ppuqdu

�h2pp�v�1q
"»

up�1Kv,ppuqdu
*2 2̧

r�1

#
θ
pp�1q
r px0q
pp� 1q!

+2

Working with weighted integrated squared bias and variance and mini-
mization of the expression with respect to h leads to an asymptotic optimal
global bandwidth given by

hAMISE
α,opt � Cv,ppKq

����
³ 2°
r�1

I�1
rr pθ1pxq, θ2pxqqwpxq{fXpxqdx³ 2°
r�1

!
θ
pp�1q
r pxq

)2

wpxqdx

����
1

2p�3

n�
1

2p�3 , (23)

where the elements for the Fisher information are in (17), and where

Cv,ppKq �
�
tpp� 1q!u2p2v � 1q ³K2

v,ppuqdu
2pp� 1� vq  ³ up�1Kv,ppuqdu

(2
� 1

2p�3

.

The constants Cv,ppKq are easily calculated, and for some kernels K are listed
in Table 3.2 in [2] (p. 67).

When the θ2p�q is known, and hence the criterion for choosing an opti-

mal bandwidth is reduced to MSE
�pθ1px0q�, the asymptotic local and global

bandwidths are

hAMSE
α,opt px0q � Cv,ppKq

��� exp p2θ2px0qq
2αp1� αqγ1fXpx0q

!
θ
pp�1q
1 px0q

)2

���
1

2p�3

n�
1

2p�3 , (24)

and hAMISE
α,opt � Cv,ppKq

��� ³
exp p2θ2pxqqwpxq{fXpxqdx

2αp1� αqγ1
³ !
θ
pp�1q
1 pxq

)2

wpxqdx

���
1

2p�3

n�
1

2p�3 .

(25)
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The asymptotically optimal bandwidths depends on unknown quantities
such as the design density fXp�q, the function θ2p�q and the derivative function

θ
pp�1q
r p�q; pr P t1, 2uq. We therefore next discuss practical bandwidth selection

procedures.

5.2. Data-driven bandwidth selection

5.2.1. Rule of thumb bandwidth selector

The optimal bandwidth (23) depends on the unknown functions fXp�q,
θ2p�q and θ

pp�1q
r p�q; pr P t1, 2uq. In mean regression, [14] proposed a rule of

thumb for bandwidth selection. We adopt a similar procedure here. We start
by estimating parametrically θrpxq by fitting globally a polynomial of order

p � 3. The resulting parametric fit is denoted as qθrpxq � qθr0 � qθr1x � � � � �qθrpp�3qxp�3. Taking wpxq � fXpxqw0pxq for some specific function w0 in (23),

and substituting the parametric pilot estimates qθ1 and qθ2 into (23), we obtain
the following expression
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2qθ2pxq	w0pxqdx is approxi-

mated by qθ2 the average of qθ2pxjq over the number of grid points, multiplied
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³
w0pxqdx. All together this leads to the following rule of thumb (ROT)

bandwidth selector
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with qθpp�1q
r pXiq � pp� 1q!qθrpp�1q � pp� 2q!qθrpp�2qXi � pp� 3q!qθrpp�3qX2

i {2.
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5.2.2. Cross-validation bandwidth selector

An alternative approach is to rely on cross-validation. A cross-validated
bandwidth is obtained via

phCV
α � arg max

h¡0

ņ

i�1

ln fY |X,α
�
Yi; pθr�is1 pXiq, pθr�is2 pXiq|Xi

	
where pθr�is1 pXiq and pθr�is2 pXiq are the estimators for, respectively θ1pXiq and
θ2pXiq based on the sample without the ith observation pXi, Yiq.

5.2.3. Quantile-Mean bandwidth selector

Here we restrict to the case that θ2pxq is known for all x. Another way
of obtaining a bandwidth selector is by linking the approximated asymptot-
ically optimal bandwidth for quantile curve and mean curve estimation (i.e.
estimation of EpY | X � xq).

For local polynomial estimation of the conditional mean EpY | Xq the
local and global theoretical optimal bandwidths are given by (see [2] [pp.
67-68])

hmeanpx0q � Cv,ppKq
�

σ2
�px0q

tmpp�1qpx0qu2fXpx0q
� 1

2p�3

n�
1

2p�3 (26)

hmean � Cv,ppKq
�³
σ2
�pxqwpxq{fXpxqdx³tmpp�1qpxqu2wpxqdx

� 1
2p�3

n�
1

2p�3 ,

where σ2
�px0q is the conditional variance of Y given X � x0. From (24) and

(26), we obtain that

hAMSE
α,opt px0q
hmeanpx0q �

�
1

2αp1� αqγ1

� 1
2p�3

�
�
mpp�1qpx0q
θ
pp�1q
1 px0q

� 2
2p�3 �

exp p2px0qq
σ2�px0q

� 1
2p�3

.

(27)

For the conditional density as in (10) we know that

σ2
�px0q � VarpY |X � x0q � exp p2θ2px0qq

α2p1� αq2 rp1� 2αq2pµ2 � µ2
1q � αp1� αqµ2s,
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where µr � 2
³8
0
srfpsqds (r P t1, 2u). Therefore, we set,

exp p2θ2px0qq
σ2�px0q

� α2p1� αq2
p1� 2αq2pµ2 � µ2

1q � αp1� αqµ2

. (28)

We then make the rough approximation that the pp� 1qth derivative of the

mean and of the quantile curves are equal, i.e. mpp�1qpx0q � θ
pp�1q
1 px0q. From

(27) and (28) we find
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This then leads to the optimal local and global bandwidths

hQM
α,optpx0q � hmeanpx0q

�
αp1� αq

2γ1tp1� 2αq2pµ2 � µ2
1q � αp1� αqµ2u

� 1
2p�3

(29)

hQM
α,opt � hmean

�
αp1� αq

2γ1tp1� 2αq2pµ2 � µ2
1q � αp1� αqµ2u

� 1
2p�3

, (30)

in which we replace hmeanpx0q or hmean by a good data-driven (local or global)
bandwidth selector for mean regression estimation. We refer to the resulting
selector as a Quantile-Mean (QM) bandwidth selector.

In (29) and (30) we can use any available good performing data-driven
bandwidth selectors for mean regression. For example, we can use the Plug-
in bandwidth selector or the Cross Validation bandwidth selector that are
available in the R package locpol.

6. Estimation of the index parameter/function

In the previous sections the index-parameter α was considered to be
known and fixed. However, the proposed methodology in Section 3.2 re-
mains valid when (i) α is constant but unknown; and (ii) α changes with
the covariate value, i.e. αpxq. In these cases we need to estimate α or αpxq.
Obviously, when we know that α is constant, we should exploit this in the
estimation procedure. We discuss these estimation tasks in respectively Sec-
tions 6.1 and 6.2.
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6.1. Estimation of α constant but unknown

A first estimator for the index parameter α is

pαp1q � 1

ngrid

ngrid¸
j�1

pαpxjq, (31)

where, for a fixed point xj in the grid tx1, . . . , xngrid
u, the estimator pαpxjq is

obtained by maximizing the local kernel-weighted conditional log-likelihood

Lnpα,θ1,θ2;h, xjq �
ņ

i�1

`pα, pXpjq
i,p1
qTθ1, pXpjq

i,p2
qTθ2;YiqKhpXi � xjq, (32)

with respect to pα,θ1,θ2q. Herein X
pjq
i,p � p1, Xi � xj, . . . , pXi � xjqpqT . We

refer to this estimation method as Method 1, and the estimator in (31) aspαp1q.
A second natural estimator for α is as follows. Based on data pY1, X1q, . . . ,

pYn, Xnq obtain a nonparametric estimator for the mean regression function
mpxq � EpY | X � xq, for example by using a local linear fit. Using the
nonparametric estimator pm for the mean function, we form the residuals
Yi � pmpXiq. Since the effect of the covariate is reduced by subtracting the
estimated mean function, we can pretend to be in an unconditional (non-
regression) setting and estimate the index-parameter via maximum likelihood
estimation (as in [8]) We denote the resulting estimator by pαp2q, and refer to
this estimation method as Method 2.

An alternative to the second method is to consider a nonparametric es-
timator of the median of Y given X � x, denoted by q0.5pxq. Denoting this
nonparametric estimator by pqNP

0.5 pxq, we obtain the residuals Yi�pqNP
0.5 pXiq and

based on these pseudo observations, we estimate α using maximum likelihood
estimation (in an unconditional setting). We denote this estimator by pαp3q,
and refer to the estimation method as Method 3.

In Section 7.3 we investigate the finite-sample performance of these three
estimation methods. It is important to first make some remarks about the
methods. A first important observation is that Methods 2 and 3 in fact do
not exploit the parametric setting of model (10), whereas this is done with
Method 1. We therefore expect Method 1 to be more efficient. Methods 2 and
3 involve a bandwidth parameter for the nonparametric mean and median
estimation part. For these bandwidths one can use data-driven bandwidths
that are available in the literature and in software. For Method 1 we would
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need a bandwidth in the local kernel-weighted conditional log-likelihood.
Here no data-driven bandwidth selection method is available yet. Also the
maximization problem in (32) involves now optimization over pp1 � p2 � 3q
parameters, which is one parameter more than in case α is known. Hence we
expect a higher computational cost for Method 1.

6.2. Estimation of the unknown function αpxq
When nothing is know about how the level of asymmetry of a distribu-

tion is affected by the covariate, it is advised to start by estimating αpxq
nonparametrically. Since αpxq P p0, 1q a one-to-one transformation is needed
before a local approximation of the function can be considered. A natu-
ral transformation is θ3pxq � lnpαpxq{p1 � αpxqqq, which takes values in R.
Extending the framework of Section 3.2 is then achieved by using a Taylor
approximation for θ3px0q, and adapting the local log-likelihood function in
(12) to the local kernel-weighted conditional log-likelihood

Lnpθ1,θ2,θ3;h, x0q �
ņ

i�1

`pXT
i,p1
θ1,X

T
i,p2
θ2,X

T
i,p3
θ3;YiqKhpXi � x0q, (33)

where Xi,pr � p1, pXi � x0q, � � � , pXi � x0qprqT , θr � pθr0, � � � , θrprqT with

θrv � θ
pvq
r px0q
v!

; v � 0, 1, . . . , pr; pr � 1, 2, 3q.
Maximizing (33) with respect to pθ1,θ2,θ2q gives the vector of estimators

ppθ1px0q, pθ2px0q, pθ3px0qq � �
ppθ10px0q, . . . , pθ1p1px0qqT , ppθ20px0q, ..., pθ2p2px0qqT ,

ppθ30px0q, . . . , pθ3p3px0qqT	. For a given point x0, we have

pαpx0q � exprpθ3px0qs
1� exprpθ3px0qs ,

and the estimated βth quantile curve at a point x0 is

pqβpx0q � pθ1pxq � exp
!pθ2pxq) � Cpαpx0qpβq, (34)

as opposed to (11).
As can be seen from Section 7.3 the methodology performs very well also

in this setting of an unknown function αpxq.
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7. Simulation study

In this simulation study we investigate several aspects of the finite-sample
performance of the proposed semiparametric methodology, including

(i) the quality of the data-driven bandwidth selectors in Section 5.2;

(ii) performance under miss-specification of the asymmetric model;

(iii) effect of estimation of the index-parameter α;

(iv) performance of the semiparametric estimator pqβpxq in (11), including a
comparison with nonparametric local linear quantile estimator.

Items (ii) and (iv) are discussed in Section 7.2, whereas Section 7.3 deals with
item (iii). Results regarding item (i) and some further simulation results can
be found in Section S3 of the Supplementary Material. See also Section 7.4.

7.1. Simulation models, details of implementation and performance criteria

We consider a regression model

Y � θ1pXq � 0.1ε, (35)

where ε has an asymmetric density fX,α belonging to the family (7) which is
of a standard type, i.e. with θ1 � θ2 � 0. Note that in simulation model (35)
Y given X � x has density of the form (10) with θ2pxq � lnp0.1q � �2.3026,
is a known constant. Hence in this simulation study we focus only on the
estimation of θ1p�q. The design density is: X � Up�2, 2q. For the error ε we
consider two cases: (a) an asymmetric normal distribution (AND) and (b)
asymmetric Laplace distribution (ALaD). For the unknown function θ1pxq,
we considered two examples: θ1pxq � x � 2e�16x2 and θ1pxq � sinpx2q �
x � 2e�16x2 . In the first example the function θ1pxq is a linear function
with a superimposed bump, whereas in the second example the linear part
is replaced by a more variable sinus function. For brevity we mainly report
on results for the second example. Results for the first example lead to
similar conclusions. In all sections, with exception of Section 7.3, the index-
parameter α is fixed (known) and equals α � 0.25.

In the estimation procedures we use the Gaussian kernelKpuq � 1?
2π
e�

1
2
u2 ,

take p1 � 1 in the local fitting part, and w the indicator function on r�2, 2s.
The number of grid points on the interval r�2, 2s for which we obtain pθ1pxq is
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101. We draw 100 samples of size n � 100 from each simulation model. For
each sample we obtain the estimate of θ1p�q, using the semiparametric pro-
cedure, by considering a conditional density (10), with f a standard normal
density, as well as f a standard symmetric Laplace density. Note that when
the model is considered with ε distributed according to an AND (respectively
ALad) density, and we use in the estimation method a conditional density
with f a symmetric Laplace density (respectively a normal density), this al-
lows us to investigate the impact of miss-specifying the parametric model in
the semiparametric estimation procedure.

To assess the quality of the estimation, for each method, we calculate the
squared error for each grid point (in tx1, . . . , xngrid

u, with ngrid � 101) and
sum all squared errors:

AISE �
ngrid¸
j�1

�pθ1pxjq � θ1pxjq
	2

, (36)

of which the average (across samples) is a finite-sample approximation of the
theoretical mean integrated squared error.

The semiparametric method of Section 3 is implemented in the R package
QBAsyDist [9].

7.2. Performance of the estimators, including under model miss-specification

For α known we use the data driven-bandwidth of Section 5.2.3. For each
simulated sample, hmean is substituted by the Plug-in bandwidth selector for
mean regression estimation (using the R package locpol). This results into

estimated (data-driven) optimal bandwidths phQM
α,ALaD and phQM

α,AND.
In Figures 2(a) and 2(b) we present the estimates for the βth quantile

curves (means over all simulations), for β � p0.10, 0.90q. Figure 2(a) (re-
spectively Figure 2(b)) refers to the case that the error distribution is AND
(respectively ALaD). It is seen that all estimated conditional quantile curves
under AND and ALaD (estimation) models are parallel, which was expected
due to the constant θ2. On the contrary, the nonparametrically estimated
conditional quantile curves are not parallel (and might even cross each other).

The mean and standard error of the AISE-values are presented in Table 1.
In each column the smallest mean AISE-value is indicted in bold. As can be
seen, all AISE averages are smallest for the semiparametric method, provided
the chosen estimation reference model is the correct one. Note however that
even if the estimation model is wrongly specified, the semiparametric method
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Figure 2: Example 2. True β � p0.10, 0.90qth quantile functions of (a) AND with
α � 0.25; (b) ALaD with α � 0.25, and its estimates using semiparametric ALaD and
AND conditional densities and nonparametric approach.

Table 1: Example 2: Mean (standard error) of AISE-values across simulations for
β � p0.10, 0.25, 0.50, 0.75, 0.90q. Abbreviations: AND using f is a standard normal den-
sity; ALaD: using f is a symmetric Laplace density; Nonp.: fully nonparametric quantile
estimation.

Asymmetric Normal Error (AND)

β 0.10 0.25 0.50 0.75 0.90

AND 1.7476 (0.7043) 1.7476 (0.7043) 1.7476 (0.7043) 1.7476 (0.7043) 1.7476 (0.7043)
ALaD 1.9681 (0.7152) 1.9986 (0.7425) 1.9672 (0.7152) 2.4944 (0.9375) 7.1149 (1.7256)
Nonp. 2.5077 (0.9470) 1.9542 (0.7544) 2.2638 (0.7403) 3.4024 (1.0607) 5.3157 (1.4564)

Asymmetric Laplace Error (ALaD)

AND 2.7357 (1.4162) 2.7134 (1.4061) 2.7368 (1.4164) 2.9210 (1.4249) 6.7044 (1.9965)
ALaD 2.6904 (1.4055) 2.6904 (1.4055) 2.6904 (1.4055) 2.6904 (1.4055) 2.6904 (1.4055)
Nonp. 3.9767 (2.0488) 2.6904 (1.4055) 3.6076 (1.8066) 8.4810 (4.1164) 17.4914 (6.8411)

often still outperforms the nonparametric method. This shows thus a certain
robustness against model miss-specification. Figures 3(a) and 3(b) depict
boxplots of the AISE values, from which it is clearly seen that the fully
nonparametric estimation procedure has larger mean AISE-values and high
variability compared to the semiparametric methods (even under model miss-
specification).
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Figure 3: Example 2. Boxplot of AISE-values for estimated (a) 10% conditional quantile
functions, for each; (b) 90% conditional quantile functions, for each.

7.3. Estimation of the index-parameter α

7.3.1. Simulation results for the case α is constant and unknown

We now include estimation of α in our simulations, applying the methods
exposed in Section 6.1. For simplicity, we here consider a fixed bandwidth
parameter h. We considered three values for h which are close to the theoret-
ical optimal values of h and the average values of the data-driven bandwidths
obtained in Section 7.2. See also Table S.1 in the Supplementary Material.

We consider regression model (35) with ε an Asymmetric Normal dis-
tribution (AND) with α � 0.25. Our simulation results are based on the
same 100 samples of size n � 100 as in Section 7.2. We consider two
values for β, namely β � t0.25, 0.90u, and three fixed bandwidth values
h � t0.075, 0.090, 0.095u. The simulation results for h � 0.090 are presented
in Table 2, and these for other bandwidth values can be found in Table S.2
in Section S3.3.1 of the Supplementary Material. Tables 2 and S.2 list the
mean and standard error of the AISE-values for estimation of θ1p�q, when
relying on one of the three methods for estimating α (indicated in column
1). Again, we consider the log-likelihood based on the true AND model, as
well as that based on the miss-specified ALaD model. From Tables 2 and S.2
it can be seen that using Method 1 for estimation of α leads to the smallest
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mean AISE-values for estimation of θ1p�q. When comparing the results, for
Example 2, provided in Tables 2 and 1, it can be seen that the estimation of
α has only a small effect on the AISE-values.

Table 2: Example 2 with Asymmetric Normal Error: Mean (standard error) of AISE-
values based on 100 simulations, for β � p0.25, 0.90q. Using three different methods to
estimate α : pαpjq (Method j), j � 1, 2, 3.

Bandwidth h � 0.090
Example 1 Example 2

Method β 0.25 0.9 0.25 0.9

1
AND 1.9541 (0.7455) 2.9321 (1.7002) 1.6790 (0.7071) 1.8029 (0.7589)
ALaD 2.8595 (1.4388) 3.1442 (2.0296) 2.8586 (1.4712) 4.2914 (1.5169)

2
AND 2.3858 (1.0460) 5.1145 (4.2681) 2.0427 (0.7601) 3.3649 (1.6695)
ALaD 3.0394 (1.8936) 7.2960 (5.0737) 3.5570 (1.8193) 9.5770 (2.8737)

3
AND 1.9256 (0.7659) 3.0923 (3.5634) 1.9368 (0.7349) 2.9227 (0.9309)
ALaD 2.8890 (1.6768) 5.3327 (2.5925) 2.9120 (1.4572) 5.8714 (2.0696)

Figure 4 presents boxplots of the AISE-values for estimation of θ1p�q, in
the left panel for Example 1, and in the right panel for Example 2. The
boxplots confirm the conclusions from Tables 2 and S.2. For both examples,
it is clearly seen that the smallest variation is found when using Method 1.
The variations of AISE-values for estimation of θ1p�q, are reasonably close
when using either Method 1 or Method 3 (to estimate α).

For looking in more detail into the quality of estimation of the index-
parameter α, we present in Figure 5 boxplots of the ASE-values for estimation
of α: ASEppαpjqq � ppαpjq � αq2 for Methods 1—3. It is seen that when using
Method 1 for estimating α the resulting mean and variation of the ASE-
values are smallest among the three methods (Methods 1—3). This was to
be expected since only Method 1 exploits the parametric structure of model
(10). The highest variation is observed when using Method 2 to estimate the
index-parameter α. These conclusions hold for both simulation examples.

In Section S3.3.2 in the Supplementary Material we provide in Table S.3
the average computing time for estimation of θ1p�q when using the different
methods for estimating α. As can be observed the computational cost is up
to about a factor 4 higher than when using Methods 2 or 3. This is not
surprising since the optimization problem involved has to be done for one
parameter more, and the optimization problem needs to be solved for a grid
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Figure 4: Examples 1 and 2 with Asymmetric Normal Error and α � 0.25: Boxplots of
AISE values for estimation of θ1p�q, for β � 0.25, using bandwidth h � 0.090 and three
different methods to estimate α: pαpjq (Method j), j � 1, 2, 3. Results for (a) Example 1;
and (b) Example 2.

of xj-values.

7.3.2. Simulation results for the case of an unknown function αpxq
We next investigate the finite-sample performance of the method de-

scribed in Section 6.2. Therefore, we consider an extension of Example 2
with the constant θ2 and α in Example 2 replaced by

θ2pxq � 1� 0.5x� 1.5x2 and αpxq � e1�3x

1� e1�3x
. (37)

We use a cross-validated bandwidth phCV for estimating θ1pxq, θ2pxq and αpxq,
and subsequently the quantile function qβpxq.

We simulated 100 samples for the simulation model in this extended Ex-
ample 2, and this for sample sizes n � 100, and n � 200. We report on
the quality of estimation of θ1p�q, θ2p�q, αp�q and qβp�q using an AISE-type
criterion (36) adapted to each of these target functions. Table 3 presents
mean and standard errors of the AISE-values for estimation of µp�q � θ1p�q,
φp�q � exptθ2p�qu and αp�q. Table 3 summarizes the AISE-values for estima-
tion of the quantile function qβp�q, for five values of β. Table 3 also allows, to
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Figure 5: Examples 1 and 2 with Asymmetric Normal Error and α � 0.25: Estimates of
α based on 100 simulations for fixed bandwidth h � 0.090, using three different methods:
pαpjq (Method j), j � 1, 2, 3. Results for (a) Example 1; and (b) Example 2.

a certain extent, the see the effect when having to estimate three unknown
functions (θ1pxq, θ2pxq and θ3pxq), instead of one function (θ1pxq). The func-
tion θ1pxq � µpxq is the same as in Example 2. Note that the AISE-values for
estimation of θ1pxq are only slightly higher than in Table 1. Since estimation
of the quantile function (see (34)) relies on estimation of θ1pxq, θ2pxq and
θ3pxq, the estimation errors are also higher in Table 4. Tables 3 and 4 also
show the effect of the sample size on the finite-sample performance.

7.4. Further simulation results

In Section S3 in the Supplementary Material we investigate the quality
of the data-driven bandwidth selector discussed in Section 5.2.3. The main
finding is: although the data-driven Quantile-Mean based bandwidth selector
is only a rough bandwidth selector, and tends to be larger than the theoretical
optimal bandwidth, it overall produces good quality (quantile) estimators.
Herein the quality of an estimator is measured according to a criterion that
approximates the mean integrated squared error. See (36). In Section S3
we also present estimated quantiles curves together with confidence bands.
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Table 3: Extended Example 2 ((37)): Mean (standard error) of AISE-values for estimation
of µp�q, φp�q and αp�q. Abbreviations: AND using f is a standard normal density and ALaD:
using f is a symmetric Laplace density. Results are for sample sizes n � 100 and n � 200.

Asymmetric Normal Distribution (AND)

n pµp�q pφp�q pαp�q
AND 100 1.9591 (1.8421) 1.1251 (0.4732) 0.0452 (0.0412)

200 1.6231 (1.2421) 1.0125 (0.3455) 0.0345 (0.0381)
ALaD 100 2.0140 (2.0214) 1.5498 (0.5155) 0.0421 (0.0515)

200 1.7583 (1.1523) 1.3242 (0.4215) 0.0312 (0.0318)

Asymmetric Laplace Distribution (ALD)

AND 100 2.1256 (1.9957) 1.2520 (0.5153) 0.0561 (0.0414)
200 1.8453 (1.1245) 1.0245 (0.3215) 0.0351 (0.0341)

ALaD 100 1.8759 (1.4683) 1.1995 (0.4210) 0.0486 (0.0401)
200 1.4125 (1.0065) 1.0152 (0.3154) 0.0394 (0.0315)

Table 4: Extended Example 2 ((37)): Mean (standard error) of AISE-values for estimation
of qβp�q across simulations for β � p0.10, 0.25, 0.50, 0.75, 0.90q. Abbreviations: AND using
f is a standard normal density; ALaD: using f is a symmetric Laplace density; Nonp.:
fully nonparametric quantile estimation. Results on the first row are for n � 100, on the
second row for n � 200.

Asymmetric Normal Error (AND)

β 0.10 0.25 0.50 0.75 0.90

AND 10.7369 (4.7021) 7.7369 (3.6793) 7.6561 (2.2415) 11.1543 (4.1552) 14.4535 (5.5340)
6.8428 (3.0531) 4.5431 (2.7421) 3.1786 (1.7421) 5.2656 (2.1046) 7.1542(3.1765)

ALaD 11.5835 (5.0700) 8.1835 (3.9421) 8.5835 (2.5520) 14.4824 (4.7051) 19.2412 (7.0421)
6.9420 (3.4432) 4.6421 (2.9814) 3.4312 (1.9931) 6.4881 (2.1635) 12.4586 (4.4610)

Nonp 15.2276 (8.8447) 9.4331 (4.2960) 9.9925 (3.1445) 17.4612 (6.1834) 20.4921 (13.3412)
9.5923 (4.2185) 5.1415 (3.2561) 5.1521 (2.9431) 10.1592 (3.9813) 15.1488 (7.1541)

Asymmetric Laplace Error (ALD)

AND 12.2601 (5.8241) 7.3701 (4.3942) 8.1862 (2.5869) 12.4815 (5.1565) 17.7625 (9.1543)
7.4881 (3.8431) 2.8431 (2.1542) 3.1540 (1.6121) 7.1543 (3.1550) 11.1582 (5.1560)

ALaD 11.2172 (5.7481) 8.0291 (4.0281) 6.1876 (2.1492) 10.4982 (4.1875) 14.1434 (7.1574)
7.0164 (3.7462) 2.0598 (2.0482) 2.3614 (1.5421) 5.1698 (2.1065) 8.1681 (4.0450)

Nonp 16.4260 (8.4361) 10.0060 (5.4441) 8.1983 (3.1986) 14.8541 (7.1422) 24.1544 (10.1572)
10.1421 (4.4550) 3.5421 (2.7921) 4.0158 (1.9923) 8.1889 (4.3211) 14.1581 (6.1572)
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8. Real data application: Maximum wind speed in hurricanes

We illustrate the use of the proposed semiparametric estimation method
on two real data examples.

8.1. Maximum wind speed in hurricanes

The National Hurricane Center (NHC) conducts a post-storm analysis
of each tropical cyclone in its area of responsibility to determine the offi-
cial assessment of the cyclone’s history. These analyses lead to the North
Atlantic hurricane database (or hurdat). We consider this database of
size n � 764 with response variable (Y ) the maximum wind speed of a
tropical hurricane and covariate (X) the year of its occurrence between
1971 to 2017. The winds were measured in knots (where one knot is equal
to 1.15 miles per hour). The data are available for download at https:

//www.nhc.noaa.gov/data/hurdat/ and via the R-package HURDAT. Part of
this dataset (the period 1981–2006) have been analyzed in the literature,
e.g. in [15, 16]. [17] fitted a linear quantile regression model and reported
that the strongest tropical cyclones in the North Atlantic basin have gotten
stronger over the last couple of decades. [15] used simultaneous linear quan-
tile regression estimation in a context of semiparametric Bayesian analysis
and reported that not only the upper tail of the intensity distribution but
also the entire range of the intensity distribution has gotten stronger during
the period 1981–2006. [16] used B-spline basis functions in nonparametric
simultaneous quantile regression analysis and found an increasing pattern of
the higher quantile curves during the periods 1987–1994 and 2002–2005 while
a decreasing pattern was found prominent during 1994–2002.

We analyze the available data for the period 1971–2017 using the semi-
parametric method exposed in Section 3.2. A scatter plot of the data together
with a local linear estimate pm (using a Gaussian kernel) of the mean function
EpY | X � xq is in Figure 6 (a). A density estimate based on the residuals
Yi� pmpXiq is presented in Figure 6 (b). From this plot, it is clearly seen that
the residual data are right skewed.

For real data, and without any prior knowledge, one does not know
whether it is reasonable to assume α to not depend on the covariate x. We
therefore start our analysis by estimating αpxq as described in Section 6.2.
The results here are for f a Laplace density. The resulting estimated pαpxq is
depicted in Figure 7, as a scatterplot of pαpXiq and a smooth curve of these.
Some summary statistics describing the variability of pαp�q over all values of
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Figure 6: Hurricane data. (a) Scatter plot of the data and estimated mean function pm
using local linear fitting; (b) Kernel density estimate based on the residuals Yi � pmpXiq.

Xi are provided in the first row of Table 5. From this it appears that it is
reasonable to assume α to be a constant. We thus, in further analysis, work
under this assumption.
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Figure 7: Hurricane data. Estimated pαpxq (smooth curve) together with the estimate pαp1q

assuming α is a constant.

In Section 6.1 we discussed three methods to estimate α. In the second
column of Table 6 we present the estimated values for α for each of the
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Table 5: Hurricane data and Bone density data. Summary statistics for estimated pαpxq.

Min First Second Mean Third Max
quartile quartile quartile

Hurricane 0.0979 0.1171 0.1238 0.1338 0.1306 0.1459
Bone Density 0.2848 0.3287 0.3425 0.3556 0.3572 0.4291

three methods. All these values confirm what was already suspected from
Figure 6 (b) (similar figure for Method 3, not presented here): there is a
clear asymmetry present in the residual observations. Following the findings
of Section 6.1 we use pα � 0.1240 in the next steps of our analysis.

Table 6: Hurricane data. The estimated pα, the selected distribution and the data-driven
bandwidth values.

Method pα Selected Density P -value AIC-value phROT
α

phCV
α

1 0.1240 Asymm. Laplace 0.8895 7017.427 1.9507 2.0425
2 0.1650 Asymm. Laplace 0.9990 7130.5480 2.1811 2.1130
3 0.1453 Asymm. Laplace 0.9941 7110.4810 1.7203 1.8670

With the estimated α at hand, we seek for finding an appropriate (un-
conditional) asymmetric density to fit to the data. As candidate densities we
consider asymmetric Laplace, normal, Student’s-t and logistic densities ((7)
with these listed choices for f). For each candidate density we test its appro-
priateness via the Kolmogorov Smirnov goodness-of-fit test (the P -value for
the selected density is given in column 4 of Table 6). In the third column of
Table 6 we list the selected density model, when using the specified method
for estimating α. For all methods the same density was selected (among the
four candidate asymmetric densities). For each method we provide for the
selected density the AIC-value of the corresponding likelihood in column 5
of Table 6.

Note that for the selected conditional density, which is an Asymmetric
Laplace density, there is a clear interpretation of the parameter functions
involved. See [8]. Indeed, with α a constant, µpxq is the mode of the condi-
tional density, and the mean and the variance of the conditional density of
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Y given X � x, are

EpY |xq � µpxq � φpxq r1� 2αs
α p1� αq and VarpY |xq � φ2pxq r1� 2α � 2α2s

α2 p1� αq2 .

(38)
Furthermore we know that the mode µpxq equals the conditional αth quantile
of Y . Using the estimators for α, µp�q and φp�q we thus obtain subsequently
estimates for this conditional mean and variance.

For estimating θ1p�q and θ2p�q we take p1 � p2 � 1. For Methods 2 and 3,

we present the values for phROT
α and phCV

α in columns 6 and 7 of Table 6. For
Method 1, we used as bandwidths just the averages of the bandwidths for
Methods 2 and 3. Using these bandwidths for Method 1 (to estimate α) we
obtain the estimates for θ1px0q and θ2px0q via (13). An estimate for the βth
quantile curve pqβpx0q is then obtained from (11).

Recall that Method 1 resulted in pα � 0.1240. The β � ppα, 0.5, 0.90, 0.95qth
estimated conditional quantile curves pqβp�q, using the bandwidth phROT

α , are
depicted in Figure 1(b). Recall that for β � 0.5 we actually get the estimated
median curve.

Further, we depict in Figure 8(a) the estimated conditional variance func-
tion which is under the selected model, just a rescaling of the estimated
ppφpxqq2, as can been seen from (38). Two estimates of the conditional vari-
ance are shown in Figure 8(a), using the Rule of Thumb bandwidth and
the cross-validation bandwidth selectors of Section 5.2. The two estimates
are almost indistinguishable, and indicate the non-constant and non-linear
pattern of the variance function (and the scale function) over the years. Of
interest is also to note the peak in estimated variance of the maximum wind
speed of hurricanes in the second half of the nineties. This could be linked
with a so-called super El Niňo event, which began in the spring months of
1997.

Figure 8(b) presents the estimated 90%th quantile curve, together with
an estimated 95% Bonferroni-type confidence band. Since for obvious rea-
sons the interest mainly goes to hurricanes with very high maximum speeds,
it is most interesting to look at a high quantile, such as the 90%th quan-
tile. For constructing confidence bands we rely on the asymptotic normality
result established in Theorem 4.3. This however also requires to estimate
(asymptotic) bias and variance. There is an overall increasing trend in all
presented quantile curves. However, the signs and intensities of the changes
in maximum wind speed are not constant in the considered time period.
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Figure 8: Hurricane data. (a) Estimated conditional variance of the maximum wind

speed, as a function of years. (b) Estimated β% conditional quantile curve (using phROT
α ),

for β � 0.90, together with 95% Bonferroni-type confidence band.

Figure 1(b) shows an increasing pattern of the higher quantile curves during
the periods 1971–1997, 2001–2005 and 2012–2017 while a decreasing pattern
is prominent during 1997–2001 and 2005–2012. These nonlinear patterns
should be further investigated, possibly coupled with other meteorological or
environmental phenomena.

For comparison purpose, we also estimate the quantile functions non-
parametrically. See Section S1. The performances of the semiparametric
method (using the three methods for estimating α) and nonparametric es-
timators of the quantile curve are evaluated via prediction errors calculated
through a cross-validation method. We split the full sample into a train-
ing set (used for estimation) with approximately 80% of the observations
(i.e. ne � 611), and 20% (i.e. npred � n � ne � 153) is allocated to a test
set for validation/evaluation. The observations are chosen randomly with-
out replacement. Based on these splitted subsamples, we compute the pre-

dicted error defined as 1
npred

npred°
i�1

ρβ pYi � pqβpXiqq for all three semiparametric

methods (abbreviated as SP(Method j) in the plots), and the nonparametric
quantile estimator. We repeat this R � 99 times and present the boxplots
of the obtained prediction error values for all methods in Figure 9. It is
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Figure 9: Hurricane data. The prediction error of the 90%th quantile curve obtained by
using semiparametric (SP) and nonparametric (NP) approach.

clearly seen that the predictive performance for the semiparametric method
is better than that of the nonparametric method, no matter which method
for estimation of α was used.

8.2. Real data application: Bone density

We consider a dataset concerning the actual measurements of bone den-
sity (BMD) of n � 485 adolescents. These data were originally reported in
[18], and are for example available via https://web.stanford.edu/~hastie/
ElemStatLearn/datasets/bone.data, and were analysed in e.g. [19]. [20]
used a quadratic programming method for estimating quantiles in a nonpara-
metric quantile regression context.

Measuring the bone mass in children can help to understand the pre-
disposition to suffer from osteoporosis in more advanced age. Osteoporosis
involves the loss and a consequent weakening of the bone tissue and affects
mostly women. Medical research proved that high peak bone density in early
age reduces osteoporosis risk at later age. It is therefore of interest to inves-
tigate how the peak bone mass varies in children and young adults, and in
particular when it achieves its maximal value. The response variable is the
change in spinal bone mineral density value and the covariate the age of the
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Figure 10: Bone Density data. Estimated pαpxq (smooth curve) together with the estimate
pαp1q assuming α is a constant.

We analyse the data using the semiparametric method of Section 3.2, in
a similar fashion as for the Hurricane data. The estimate pαpxq is depicted in
Figure 10. Summary statistics about the values of this estimate are in the
second row of Table 5. Also in this example, it seems reasonable to assume
a constant α in further analysis. The results from the three methods for
estimating α, as discussed in Section 6.1, are presented in Table 7. In our
discussion further we focus on the semiparametric method using Method 1
to estimate α.

Figure 11(a) shows a scatter plot together with estimated quantile curves.
Note the smaller variability in the data for higher ages. The residual data
Yi � pmpXiq (not shown here) are slightly positively skewed, which indicates
that the conditional error distribution is right skewed. This was also reported
in [20].

Table 7: Bone density data. The estimated pα, the selected distribution and the data-driven
bandwidth values.

Method pα Selected Density P -value AIC-value phROT
α

phCV
α

1 0.3513 Asymm. Laplace 0.9935 �1772.198 0.6224 0.890
2 0.4101 Asymm. Laplace 0.9990 �1772.198 0.6170 0.873
3 0.3724 Asymm. Laplace 0.9939 �1728.697 0.6277 0.894
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Figure 11: Bone density data. (a) Semiparametrically estimated βth quantile curves,

using an ALaD density. (b) Estimated β% conditional quantile curve (using phROT
α ), for

β � pα � 0.3513, together with 95% Bonferroni-type confidence band.

An appropriate asymmetric density for the residual data was found to be
also an asymmetric Laplace density (with an associated P -value of 0.9935 for
the Kolmogorov-Smirnow goodness-of-fit test, and an AIC-value of�1772.198,
smallest amongst all considered asymmetric density models). Fitting an
asymmetric Laplace density to the data, led to the maximum likelihood es-
timator pαp1q � 0.3513. See also Table 7.

Using (10) with f the symmetric Laplace density and α � 0.3513, we
obtain the estimated location and scale function (with p1 � p2 � 1) from
(13). For the Rule-of-Thumb bandwidth selector we here use the weight func-

tion w0pxq � Ir9.4,25.55spxq, leading to phROT
α � 0.6224. The cross-validation

bandwidth selector for these data is phCV
α � 0.890. The estimated conditional

quantile curves for orders β � ppα, 0.50, 0.90, 0.95q, using phROT
α , are presented

in the Figure 11(a). Note that the estimated quantile curves also clearly
represent the reduced variability for higher ages. The estimated β quantile
curve, with β � 0.3513, together with 95% Bonferroni-type confidence band
is depicted in Figure 11(b). Recall that this quantile is nothing but the con-
ditional mode of the density. Note that looking at the mode, the peak of
relative change in bone density is appearing around the age of 12–13.
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Figure 12: Bone density data. (a) Estimated conditional variance of the maximum wind
speed, as a function of years. Right panel: Estimated conditional variance of the change in
spinal bone mineral density. (b) The prediction error of the 90%th quantile curve obtained
by using ALaD likelihood and nonparametric approach.

We estimated the function θ2p�q, using either the Rule-of-Thumb band-
width selector or the cross-validation bandwidth selector. Based on this
estimate and the estimated value for α, we obtain the estimated conditional
variance via (38). Figure 12 (a) presents the estimated conditional variance
of change in spinal bone mineral density value, in function of its evolution
with age. Figure 12(a) reveals the importance of the evolution in the early
teenage years.

The cross-validated prediction error for estimation of the 0.90 quantile
curve, for both the studied semiparametric method and the nonparametric
method, are presented in Figure 12(b). Also here the conclusion is that
the prediction error for the semiparametric method SP (using the various
methods for estimating α), which better exploits the particular asymmetry
(even if small) present in the data, has a lower estimated prediction error.

9. Further discussion

In this paper we study a semiparametric method to estimate regression
quantiles. The key advantage of the method is that it originates from a
family of asymmetric distributions. Hence asymmetry present in data can
be exploited in this way. Local likelihood techniques are at the core of the
method, which therefore involves a bandwidth parameter. As in all local
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modeling frameworks, the choice of the bandwidth needs to be studied, and
underpinned by theoretical considerations. A starting point hereby is the
study of asymptotic bias and variance, and obtaining optimal bandwidth
parameters by balancing the squared bias and variance of estimators. In
the paper several approaches to a practical bandwidth selector are explored.
One approach is based on a rule of thumb kind of method; and another
approach exploits the link between optimal bandwidths for mean and quantile
estimation. The theoretical derivations in Section 5 eventually focuses on
estimation of µpxq, and thus is somewhat limited. It would be of interest
to investigate bandwidth selectors in general, considering in full estimation
of µpq, φpxq and αpxq. Nevertheless, all three practical bandwidth selectors
represented in Section 5 perform, according to our extensive experiences,
quite well.

The semiparametric framework involves the choice of the parametric com-
ponent f (the symmetric reference density). In the real data applications, a
set of candidates for f are considered, and via goodness-of-fit testing and an
AIC-criterion one of these candidate densities is selected as the final paramet-
ric component. It would be of interest to study in detail the model selection
issue that appears here.

The parameter α in the considered framework reflects the amount of
asymmetry present in the data. The semiparametric estimation method can
also deal with the cases that (i) α is constant and unknown, and (ii) αpxq is an
unknown function. This is exposed in Section 6. The asymptotic properties
of the semiparametric estimators are proven so far only for the case that α
is a known constant. Establishing asymptotic theory for the more general
settings would be very interesting (and tedious) and is part of future research.
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SUPPLEMENTARY MATERIAL

to “Semiparametric quantile regression using family of quantile-based
asymmetric densities”

by
Irène Gijbels, Rezaul Karim and Anneleen Verhasselt

This supplement contains the following additional parts:


 Section S1: nonparametric local polynomial conditional quantile estimation;


 Section S2: proofs of Theorem 4.1, Lemmas S2.1 and S2.2 and of Theorems 4.2 and 4.3


 Section S3: additional results regarding the simulation study;


 Section S4: real data application - bone density data.

S1. Nonparametric conditional quantile estimators

S1.1. Asymptotic results for nonparametric conditional quantile estimators

As mentioned in Remark 3.1 the local polynomial maximum likelihood estimator pθ1px0q
obtained in (14) under an asymmetric Laplace likelihood and the fully nonparametric estimatorpθβpx0q obtained in (3) are identical only for α � β due to using an exactly same loss function
ρβp�q when the scaling function θ2 is constant and known. Following the same lines of proofs
as for Theorem 4.1 we can thus derive the asymptotic distribution of the fully nonparametric
local pth polynomial estimator pθβpx0q, and hence subsequently that for the vth derivative of
the βth conditional quantile function qβp�q.

It suffices to consider in our framework the log-likelihood function `puq � �upβ � Ipu ¤ 0qq
with ψ1puq � Ipu ¤ 0q � β. Assumption (A5) needs to be replaced by

(A51) The function qβp�q has a pp�1qth (respectively pp�2qnd) continuous derivative for p odd
(respectively p even).

The mathematical derivation for proving the asymptotic normality result for the fully non-
parametric conditional quantile estimator is similar to the proof of Theorem 4.1 but now the
log-likelihood function only involves the unknown parameter θβ. A main difference in this
setting is in the calculation of (15), for which now

λ1pθ1pxqq � EY |XrIpY ¤ ρβpXqq � β | X � xs � 0

λ11pθ1pxqq � B
BuEY |Xrβ � IpY ¤ uq | X � xs

���
u�qβpxq

� �fY |Xpqβpxq | xq.
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This then leads to the following expressions for the crucial matrices

Σx0 � �
fY |X pqβpx0q|x0q fXpx0q

�
Npppx0q

Γx0 � pβp1 � βqfXpx0qqTpppx0q
Λx0 � d

dx0

�
fY |X pqβpx0q|x0q fXpx0q

�
Qpppx0q,

where fY |Xp� | xq is the (unknown) conditional density of the response Y given X � x, which is
assumed to be continuous and for which we assume fY |X pqβpx0q|x0q ¡ 0. Theorem S1.1 states
the asymptotic normal distribution result for the fully nonparametric local polynomial quantile
estimator.

Theorem S1.1. Assume (A51) and (A6)–(A10) hold. For given x0 we have:

(i) If p� v odd pv � 0, . . . , pq, then for nÑ 8,

?
nh2v�1

�
βp1 � βq�

fY |X pqβpx0q|x0q
�2
fXpx0q

»
K2
v,ppuqdu

��1{2

�
�pqβ,vpx0q � q

pvq
β px0q � hp�v�1

q
pp�1q
β px0q
pp� 1q!

"»
up�1Kv,ppuqdu

*
t1 �OP phqu

�
DÝÑ N p0, 1q;

(ii) If p� v even pv � 0, . . . , pq, then for nÑ 8,

?
nh2v�1

�
βp1 � βq�

fY |X pqβpx0q|x0q
�2
fXpx0q

»
Kv,ppuq2du

��1{2

�
�pqβ,vpx0q � q

pvq
β px0q �

�
q
pp�2q
β px0q
pp� 2q!

»
up�2Kv,ppuqdu

�q
pp�1q
β px0q
pp� 1q!

d
dx0

�
fY |X

�
qβpx0q|x0

�
fXpx0q

	
fY |X pqβpx0q|x0q fXpx0q

"»
up�2Kv,ppuqdu

�v
»
up�1Kv�1,ppuqdu

*

hp�v�2t1 �OP phqu

�
DÝÑ N p0, 1q.

Note that this result extends the result of [1] who established asymptotic results for the
nonparametric local linear βth conditional quantile estimator. Their results are obtained as a
special case of Theorem S1.1 by taking p � 1.

Remark S1.1. An advantage of our semiparametric approach (even when taking the Laplace
density), is that it exploits the asymmetry, which is not done in the existing nonparametric
approach(es).
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S1.2. Bandwidth selection in nonparametric local polynomial conditional quantile estimation

Recall that here we only have one target function, namely θ1p�q � qβp�q.
S1.2.1. Theoretical optimal bandwidths

Here we use Theorem S1.1. From this theorem we have asymptotic expressions for bias and
variance of the estimator, from which optimal theoretical local and global bandwidths

hAMSE
β,opt px0q � Cv,ppKq

�
βp1 � βq�

fY |X pqβpx0q|x0q
�2 tqpp�1q

β px0qu2fXpx0q

� 1
2p�3

n�
1

2p�3 (S.1)

hAMISE
β,opt � Cv,ppKq

�
βp1 � βq ³rfY |Xpqβpxq|xqs�2wpxq{fXpxqdx³tqpp�1q

β pxqu2wpxqdx

� 1
2p�3

n�
1

2p�3 ,

are obtained.
These asymptotically optimal bandwidths depend on unknown quantities: the design den-

sity fXp�q, the conditional density fY |Xp�|xq and the derivative of the quantile function q
pp�1q
β p�q.

We next discuss practical bandwidth selectors for the nonparametric local polynomial quantile
estimator pqβpxq.
S1.2.2. Data-driven bandwidth selection

Following a similar reasoning as for the Quantile-Mean type of bandwidth selector in Section
5.2 we discuss a data-driven bandwidth selection procedure for nonparametric local polynomial
conditional quantile estimation. Such a procedure extends that of [2] for local linear quantile
regression to local polynomial quantile regression estimation, and is a nice side-product of the
asymptotic results provided in Theorem S1.1.

Using (S.1) and (26), for a local bandwidth selector, we find

hAMSE
β,opt px0q
hmeanpx0q �

�
βp1 � βq

σ2
�px0q

�
fY |X pqβpx0q|x0q

�2
� 1

2p�3

�
�
mpp�1qpx0q
q
pp�1q
β px0q

� 2
2p�3

.

As [2] proposed for local linear quantile estimation, we assume that q
pp�1q
β px0q and mpp�1qpx0q

are approximately equal. Therefore, we can write the expression of hAMSE
β,opt px0q via data-driven

bandwidth selector given by

hQM
β,optpx0q � hmeanpx0q

�
βp1 � βq

σ2
�px0q

�
fY |X pqβpx0q|x0q

�2
� 1

2p�3

, (S.2)

in which hmeanpx0q is to be replaced with a good data-driven bandwidth selector for mean
regression. For the special case that the conditional density if fY |Xp�|xq is a member of the
quantile-based family of asymmetric densities, i.e., fY |Xp�|xq � fY |X,αp�|xq, this further reduces
to

hQM
β,optpx0q � hmeanpx0q

�
βp1 � βq

4f 2p0q tp1 � 2αq2pµ2 � µ2
1q � αp1 � αqµ2u

� 1
2p�3

,

3



for the local bandwidth and

hQM
β,opt � hmean

�
βp1 � βq

4f 2p0q tp1 � 2αq2pµ2 � µ2
1q � αp1 � αqµ2u

� 1
2p�3

, (S.3)

for the global bandwidth.
In case of a general location-scale family of conditional densities fY |Xp�|xq, we can write

σ�px0qfY |X pqβpx0q|x0q � fSpF�1
S pβqq, where fS and FS are respectively the cumulative distri-

bution and the density function of S � Y�mpXq
σ�px0q

. Thus (from equation (S.2)) we obtain

hQM
β,optpx0q � hmeanpx0q

�
βp1 � βq�

fSpF�1
S pβqq�2

� 1
2p�3

and hQM
β,opt � hmean

�
βp1 � βq�

fSpF�1
S pβqq�2

� 1
2p�3

.

Taking fS � φ and FS � Φ, respectively the standard normal density and distribution function,
this leads to

hQM
β,opt � hmean

�
βp1 � βq

rφpΦ�1pβqqs2
� 1

2p�3

.

When p � 1 this corresponds to the data-driven bandwidth selector proposed by [2] for local
linear quantile regression.

S2. Proofs of all theoretical results

S2.1. Necessary lemmas

A crucial quantity appearing in Theorem 4.1 is ErW npx0qs. Lemma S2.1 provides an asymp-
totic expression for ErW npx0qs.
Lemma S2.1. Under the assumptions of Theorem 4.1, the following holds for W npx0q

(i). for 0 ¤ k ¤ pr (with r P t1, 2u), an asymptotic mean expression for the kth component
of the mean vector ErW n

r px0qs is

pErW n
r px0qsqk �

?
nhfXpx0qIrrpθ1px0q, θ2px0qq

�
hpr�1νpr�k

θ
ppr�1q
r px0q
ppr � 1q!

� hpr�2νpr�k�1ξrrpx0q
�
� op?nhminpp1,p2q�5{2q

where ξrrpx0q � θ
ppr�2q
r px0q
ppr � 2q! � θ

ppr�1q
r px0q
ppr � 1q!

d
dx0

tfXpx0qIrrpθ1px0q, θ2px0qqu
fXpx0qIrrpθ1px0q, θ2px0qq .
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(ii). the variance-covariance matrix converges to

CovrW npx0qs Ñ Γx0 as nÑ 8,
where Γx0 is defined as in (19).

(iii). the asymptotic distribution:

?
n pW npx0q � ErW npx0qsq DÝÑ Np1�p2�2p0p1�p2�2,Γx0q, as nÑ 8.

Lemma S2.2 provides an asymptotic expression for Σ�1
x0
ErW n

r px0qs and
Σ�1
x0

Λx0Σ
�1
x0
ErW n

r px0qs, which are appearing in the asymptotic distributional result in Theorem
4.1.

Lemma S2.2. Under the assumptions of Theorem 4.1, for v � 0, 1, ..., pr and r P t1, 2u, we
have �

Σ�1
x0
ErW n

r px0qs
�
v�1

� pnh2pr�3q1{2 1

v!

θ
ppr�1q
r px0q
ppr � 1q!

»
upr�1Kv,prpuqdu

�pnh2pr�5q1{2 1

v!

� »
upr�2Kv,prpuqdu

#
θ
ppr�2q
r px0q
ppr � 2q!

�
»
upr�2Kv,prpuqdu

θ
ppr�1q
r px0q
ppr � 1q!

d
dx0

tfXpx0qIrrpθ1px0q, θ2px0qqu
fXpx0qIrrpθ1px0q, θ2px0qq

+�
�oppnh2minpp1,p2q�5q1{2q,�

Σ�1
x0

Λx0Σ
�1
x0
ErW n

r px0qs
	
v�1

� pnh2pr�3q1{2 θ
ppr�1q
r px0q
ppr � 1q!

d
dx0

 
fXpx0qIrrpθ1px0q, θ2px0qq

(
fXpx0qIrrpθ1px0q, θ2px0qq

� 1

v!

�
v

»
upr�1Kv�1,prpuqdu�

1

pr!

»
upr�1Kpr,prpuqdu»

upr�1Kv,prpuqdu
�

� pnh2pr�5q1{2
d
dx0

 
fXpx0qIrrpθ1px0q, θ2px0qq

(
fXpx0qIrrpθ1px0q, θ2px0qq ξrrpx0q

� 1

v!

�
v

»
upr�2Kv�1,prpuqdu

� 1

pr!

»
upr�2Kpr,prpuqdu

»
upr�2Kv,prpuqdu

�
� oppnh2pr�5q1{2q.

The proofs of both lemmas can be found in Section S2.2.
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S2.2. Proof of Theorem 4.1

The proof is along the same lines as the proof of the main theorem in [3]. We use the
following notation:

rθr � ?
nh

�����
pθr0 � θr0

hppθr1 � θr1q
...

hprppθrpr � θrprq

����
, Zri �

�����
1

Xi�x0
h
...�

Xi�x0
h

�pr
����
 and Zr �

�����
1

X�x0
h
...�

X�x0
h

�pr
����
 for r P t1, 2u.

(S.4)

Then
pr°
j�0

pθrjpXi � x0qj � θrpXi, x0q � anrθTr Zri, where θrpXi, x0q is defined in (22) and an �

pnhq�1{2. As pθ � ppθT1 , pθT2 qT maximizes (13), we have that
prθ � pprθT1 , prθT2 qT maximizes

°n
i�1 `pθ1pXi, x0q�

anrθT1Z1i, θ2pXi, x0q � anrθT2Z2i;YiqKtpXi � x0q{hu as a function of rθ � prθT1 , rθT2 qT . We study

the asymptotic behaviour of
prθ by using the quadratic approximation lemma described in [4]

(p. 210) applied to the maximization of the normalized function

Lnprθ;h, x0q �
ņ

i�1

�
`pθ1pXi, x0q � anrθT1Z1i, θ2pXi, x0q � anrθT2Z2i;Yiq

�`pθ1pXi, x0q, θ2pXi, x0q;Yiq
�
KtpXi � x0q{hu.

Note that
prθ maximizes Lnprθ;h, x0q with respect to rθ. We can easily prove (as in the proof of

Theorem 3.3 in [5]) that under Assumption (A2) the Hessian matrix of Lnprθ;h, x0q is negative

definite, indicating that Lnprθ;h, x0q is concave in rθ. Note that Lnprθ;h, x0q is differentiable on
a event with probability 1 (as the derivative of the density with respect to θ1px0q does not exist
when Yi � θ1px0q, an event with probablity 0).

Using a Taylor approximation of Lnprθ;h, x0q around pθ1pXi, x0q, θ2pXi, x0qq, we find

Lnprθ;h, x0q � an

ņ

i�1

2̧

r�1

ψrpYi; θ1pXi, x0q, θ2pXi, x0qqrθTr ZriKtpXi � x0q{hu

�a
2
n

2

ņ

i�1

2̧

r�1

2̧

s�1

ψrspYi; θ1pXi, x0q, θ2pXi, x0qqrθTr Zri
rθTs ZsiKtpXi � x0q{hu

�a
3
n

6

ņ

i�1

2̧

r�1

2̧

s�1

2̧

t�1

ψrstpYi; θ1, θ2qrθTr Zri
rθTs Zsi

rθTt ZtiKtpXi � x0q{hu, (S.5)

where }pθ1pXi, x0q, θ2pXi, x0qq � pθ1, θ2q}   an}prθT1Z1i, rθT1Z1iq} and }.} the Euclidean norm.
Denote An

rs � a2n
°n
i�1 ψrspYi; θ1pXi, x0q, θ2pXi, x0qqZriZ

T
siKtpXi � x0q{hu, then the second

term in (S.5) is 1
2

°2
r�1

°2
s�1

rθTr An
rs
rθs. Further pAn

rsqkl � EpAn
rsqkl � OP pVarppAn

rsqklq1{2q (for

k � 1, . . . , pr and l � 1, . . . , psq and EAn
rs � 1

h
EpψrspY ; θ1pX, x0q, θ2pX, x0qqZrZ

T
s KtpX �

x0q{hq. In a similar way as in the proof of Lemma S2.1, using a Taylor approximation of
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ψrspy; θ1px, x0q, θ2px, x0qq around pθ1px0q, θ2px0qq and fXpxq around x0, we find that

pEpAn
rsqqkl � �fXpx0qIrspθ1px0q, θ2px0qqνk�l�2 � h

d

dx0
tfXpx0qIrspθ1px0q, θ2px0qquνk�l�1

�ophq.

In a similar way, we find that VarppAn
rsqklq � Op 1

nh
q. Therefore, using Irspθ1px0q, θ2px0qq � 0 for

r � s and Assumptions (A7) and(A10), Lnprθ;h, x0q �W npx0qT rθ� 1
2
rθT pΣx0�hΛx0qrθ�oP phq.

Further, we have that L1
nprθ;h, x0q � W npx0q � pΣx0 � hΛx0qrθ � oP phq and L2

nprθ;h, x0q �
�pΣx0 � hΛx0q � oP phq, where the derivatives are w.r.t. rθ, and L1

n is the gradient vector and

L2

n the Hessian matrix. By the quadratic approximation lemma, we have that
prθ � pΣ�1

x0
�

hΣ�1
x0

Λx0Σ
�1
x0
qW npx0q � oP phq.

The asymptotic normality result of
prθ follows from the asymptotic normality of W npx0q, in

Lemma S2.1: for nÑ 8

pΣ�1
x0

Γx0Σ
�1
x0
q�1{2

!?
nh

�
Hp1

�pθ1px0q � θ1px0q�,Hp2

�pθ2px0q � θ2px0q�	T
� pΣ�1

x0
� hΣ�1

x0
Λx0Σ

�1
x0
qErW npx0qs

)
DÝÑ Np1�p2�2p0p1�p2�2, Ip1�p2�2q.

S2.3. Proof of Lemma S2.1

The proof of this lemma is inspired by the proof of Lemma 2 in [3].
(i). From the definition ofW npx0q with componentsW n

rkpx0q given in (21), we writeW npx0q
as a sum of independent random vectors:

W npx0q � 1?
nh

ņ

i�1

�
Y �

1i

Y �
2i



,

where Y �
ri � ψrpYi; θ1pXi, x0q, θ2pXi, x0qqKtpXi�x0q{huZri for r P t1, 2u, and Zri is as in (S.4).

Therefore we have that the kth component of EY �
ri equals

ErpY �
ri qks �

» »
ψrpy; θ1px, x0q, θ2px, x0qqKtpx� x0q{hu

�x� x0
h

	k�1

fX,Y px, yqdx dy

�
»
Ktpx� x0q{hu

�x� x0
h

	k�1

fXpxq
"»

ψrpy; θ1px, x0q, θ2px, x0qqfY |Xpy|xqdy
*
dx

�
»
Ktpx� x0q{hu

�x� x0
h

	k�1

fXpxqλrpθ1px, x0q, θ2px, x0qqdx

� h

»
Kpzqzk�1fXpx0 � hzqλrpθ1px0 � hz, x0q, θ2px0 � hz, x0qqdz.

We use a first order Taylor approximation for λrpθ1px0 � hz, x0q, θ2px0 � hz, x0qq around
pθ1px0, x0q, θ2px0, x0qq � pθ1px0q, θ2px0qq, a (constant) Taylor approximation of
λrspθ1px0�hz, x0q, θ2px0�hz, x0qq (for s P t1, 2uq, a Taylor approximation of θrpxq � θrpx, x0q�

7



θ
ppr�1q
r px0q
ppr�1q!

px� x0qpr�1 � θ
ppr�2q
r px0q
ppr�2q!

px� x0qpr�2 � ophpr�2q, (16) and Assumption (A7):

λrpθ1px0 � hz, x0q, θ2px0 � hz, x0qq � �
2̧

s�1

λrspθ1px0 � hz, x0q, θ2px0 � hz, x0qq

�
�
θ
ppr�1q
r px0q
ppr � 1q! phzq

pr�1 � θ
ppr�2q
r px0q
ppr � 2q! phzq

pr�2

�
�ophminpp1,p2q�2q.

Therefore

ErpY �
ri qks � �

2̧

s�1

»
Kpzqzk�1fXpx0 � hzqλrspθ1px0 � hz, x0q, θ2px0 � hz, x0qq

�
�
θ
ppr�1q
r px0q
ppr � 1q! h

pr�2zpr�1 � θ
ppr�2q
r px0q
ppr � 2q! h

pr�3zpr�2

�
dz � ophminpp1,p2q�3q.

Finally using a first order Taylor expansion for fXpx0 � hzqλrspθ1px0 � hz, x0q, θ2px0 � hz, x0qq
around x0, the fact that Irspθ1px0q, θ2px0qq � �λrspθ1px0, x0q, θ2px0, x0qq, and Assumptions
(A7)–(A9) we find that

ErpY �
ri qks �

2̧

s�1

�
hpr�2 θ

ppr�1q
r px0q
ppr � 1q! fXpx0qIrspθ1px0q, θ2px0qqνpr�k

�hpr�3fXpx0qIrspθ1px0q, θ2px0qqξrspx0qνpr�k�1

	
� ophminpp1,p2q�3q,

and since Irspθ1px0q, θ2px0qq � 0 for r � s

ErpW n
r qks �

?
nhfXpx0qIrrpθ1px0q, θ2px0qq

�
hpr�1 θ

ppr�1q
r px0q
ppr � 1q! νpr�k

�hpr�2ξrrpx0qνpr�k�1

	
� op?nhminpp1,p2q�5{2q.

(ii). The covariance between the kth component of W n
r px0q and the lth component of

W n
s px0q (for k � 1, . . . , pr and l � 1, . . . , ps) can be calculated in a similar way, using

ErpW n
r qks � Op?nhpr�3{2q, a (constant order) Taylor approximation of
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fXpxqψrpθ1px, x0q, θ2px, x0qqψspθ1px, x0q, θ2px, x0qq and Assumptions (A7)–(A9):

CovrW n
rkpx0qW n

slpx0qs
� ErW n

rkpx0qW n
slpx0qs � ErW n

rkpx0qsErW n
slpx0qs

� 1

nh
E

�
ņ

i�1

pY �
ri qk

ņ

j�1

pY �
sjql

�
� 1

nh
E

�
ņ

i�1

pY �
ri qk

�
E

�
ņ

j�1

pY �
sjql

�

� 1

nh
E

�
ņ

i�1

pY �
ri qkpY �

si ql
�
�Oph2minpp1,p2q�3q

� 1

h
E ppY �

ri qkpY �
si qlq �Oph2minpp1,p2q�3q

� 1

h

» »
ψrpθ1px, x0q, θ2px, x0qq ψspθ1px, x0q, θ2px, x0qqK2tpx� x0q{hu

�
�x� x0

h

	k�l�2

fX,Y px, yqdx dy �Oph2minpp1,p2q�3q

� 1

h

» »
ψrpθ1px, x0q, θ2px, x0qqψspθ1px, x0q, θ2px, x0qq

�K2tpx� x0q{hu
�x� x0

h

	k�l�2

fXpxqfY |Xpy|xqdy dx�Oph2minpp1,p2q�3q

� fXpx0qIrspθ1px0q, θ2px0qq
»
K2pzqzk�l�2dz �Ophq

� pΓx0qkl �Ophq.
Therefore Γ

�1{2
x0 CovrW npx0qs Ñ Ip1�p2�2, as nÑ 8.

(iii). In a similar way as in the proof of Lemma 1 in [3], by using a Cramer-Wold device
and by checking Lyapunov’s condition, we find that for nÑ 8,

Γ�1{2
x0

?
n pW npx0q � ErW npx0qsq DÝÑ Np1�p2�2p0p1�p2�2, Ip1�p2�2q.

S2.4. Proof of Lemma S2.2

The proof of this lemma is inspired by the proof of Lemma 2 in [3].
From the Fisher information matrix in (17): I12pθ1px0q, θ2px0qq � I21pθ1px0q, θ2px0qq � 0

implies rI�1pθ1px0q, θ2px0qqsrr � I�1
rr pθ1px0q, θ2px0qq for r P t1, 2u. Therefore, Σx0 , Λx0 and Γx0

are block diagonal matrices. Since, the inverse of a block diagonal matrix is again a block
diagonal matrix, we obtain,

Σ�1
x0

�
� pΣ�1

x0
q11 0

0 pΣ�1
x0
q22



with pΣ�1

x0
qrr � I�1

rr pθ1px0q, θ2px0qq
fXpx0q N�1

prprpx0q,

Σ�1
x0

Λx0Σ
�1
x0

�
� pΣ�1

x0
Λx0Σ

�1
x0
q11 0

0 pΣ�1
x0

Λx0Σ
�1
x0
q22



with pΣ�1

x0
Λx0Σ

�1
x0
qrr �

d
dx0

 
fXpx0qIrrpθ1px0q, θ2px0qq

(
f 2
Xpx0qI2

rrpθ1px0q, θ2px0qq
N�1

prprpx0qQprprpx0qN�1
prprpx0q.
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We now want to find an asymptotic expression for the (v� 1qth pv � 0, 1, ..., prq component
of Σ�1

x0
ErW n

r px0qs and Σ�1
x0

Λx0Σ
�1
x0
ErW n

r px0qs. It is noted that pQprprpx0qqk,l � pNprprpx0qqk,l�1

pk � 1, .., pr; l � 0, 1, ...q. In the proof of Lemma 2 of [3], it has been shown that�
N�1

prprpx0qQprprpx0qN�1
prprpx0q

�
pv�1q,j

� �
N�1

prprpx0q
�
v,j
�
#
pr�1̧

k�1

�
N�1

prprpx0q
�
pv�1q,k

νpr�k

+�
N�1

prprpx0q
�
ppr�1q,j

for v � 1, ..., pr and that

�
N�1

prprpx0qQprprpx0qN�1
prprpx0q

�
1,j

�
#
pr�1̧

k�1

�
N�1

prprpx0q
�
1,k
νpr�k

+�
N�1

prprpx0q
�
ppr�1q,j

.

Lemma 3 of [3] further states that, for l � 0, 1, ...,»
upr�l�1Kv,prpuqdu � v!

pr�1̧

j�1

tN�1
prprpx0quv�1,jνpr�j�l. (S.6)

Using (S.6), we find that, for v � 0, ..., pr,

pr�1̧

j�1

�
N�1

prprpx0qQprprpx0qN�1
prprpx0q

�
pv�1q,j

νpr�j

� 1

pv � 1q!
»
upr�1Kv�1,prpuqdu�

1

v!pr!

»
upr�1Kpr,prpuqdu

»
upr�1Kv,prpuqdu.

By using Lemma S2.1, we can easily find an asymptotic expression of the (v� 1qth component
of Σ�1

x0
ErW n

r px0qs (for v � 0, 1, ..., pr; r P t1, 2uq, which is

�
Σ�1
x0
ErW n

r px0qs
�
v�1

� I�1
rr pθ1px0q, θ2px0qq

fXpx0q
pr�1̧

k�1

�
N�1

pr,prpx0q
�
pv�1q,k

pErW n
r px0qsqk

�
?
nh

pr�1̧

k�1

�
N�1

pr,prpx0q
�
pv�1q,k

�
hpr�1νpr�k

θ
ppr�1q
r px0q
ppr � 1q! � hpr�2νpr�k�1ξrrpx0q

�
� oppnh2minpp1,p2q�5q1{2q

�
?
nh

�
hpr�1 θ

ppr�1q
r px0q
ppr � 1q!

1

v!

»
upr�1Kv,prpuqdu� hpr�2 1

v!

»
upr�2Kv,prpuqdu

#
θ
ppr�2q
r px0q
ppr � 2q!

� θ
ppr�1q
r px0q
ppr � 1q!

d
dx0

tfXpx0qIrrpθ1px0q, θ2px0qqu
fXpx0qIrrpθ1px0q, θ2px0qq

+�
� oppnh2minpp1,p2q�5q1{2

10



� pnh2pr�3q1{2 1

v!

θ
ppr�1q
r px0q
ppr � 1q!

»
upr�1Kv,prpuqdu� pnh2pr�5q1{2 1

v!

� »
upr�2Kv,prpuqdu

#
θ
ppr�2q
r px0q
ppr � 2q!

�
»
upr�2Kv,prpuqdu

θ
ppr�1q
r px0q
ppr � 1q!

d
dx0

tfXpx0qIrrpθ1px0q, θ2px0qqu
fXpx0qIrrpθ1px0q, θ2px0qq

+�
� oppnh2minpp1,p2q�5q1{2.

Similarly, the asymptotic expression of the (v � 1qth component of Σ�1
x0

Λx0Σ
�1
x0
ErW n

r px0qs
(for v � 0, 1, ..., pr; r P t1, 2uq can be written as�
Σ�1
x0

Λx0Σ
�1
x0
ErW n

r px0qs
	
v�1

�
d
dx0

 
fXpx0qIrrpθ1px0q, θ2px0qq

(
f 2
Xpx0qI2

rrpθ1px0q, θ2px0qq
pr�1̧

k�1

�
N�1

prprpx0qQprprpx0qN�1
prprpx0q

�
pv�1q,k

pErW n
r px0qsqk

�
?
nh

d
dx0

 
fXpx0qIrrpθ1px0q, θ2px0qq

(
fXpx0qIrrpθ1px0q, θ2px0qq

pr�1̧

k�1

�
N�1

prprpx0qQprprpx0qN�1
prprpx0q

�
pv�1q,k

�
�
hpr�1νpr�k

θ
ppr�1q
r px0q
ppr � 1q! � hpr�2νpr�k�1ξrrpx0q

�
� oppnh2pr�5q1{2q

� pnh2pr�3q1{2 θ
ppr�1q
r px0q
ppr � 1q!

d
dx0

 
fXpx0qIrrpθ1px0q, θ2px0qq

(
fXpx0qIrrpθ1px0q, θ2px0qq

� 1

v!

�
v

»
upr�1Kv�1,prpuqdu�

1

pr!

»
upr�1Kpr,prpuqdu

»
upr�1Kv,prpuqdu

�
� pnh2pr�5q1{2

d
dx0

 
fXpx0qIrrpθ1px0q, θ2px0qq

(
fXpx0qIrrpθ1px0q, θ2px0qq ξrrpx0q

� 1

v!

�
v

»
upr�2Kv�1,prpuqdu�

1

pr!

»
upr�2Kpr,prpuqdu

»
upr�2Kv,prpuqdu

�
� oppnh2pr�5q1{2q.

S2.5. Proof of Theorem 4.2

S2.5.1. Preliminaries

Before proving the asymptotic results more specifically for each pθrvpx0q, we discuss the
asymptotic bias in the foregoing general results. From Theorem 4.1, Lemmas S2.1 and S2.2 we
have that the (v � 1qth component of the asymptotic bias pv � 0, 1, ..., prq is�

ABias
!?

nh
�
Hpr

�pθrpx0q � θrpx0q�	)	
v�1

� pnh2pr�3q1{2 1

v!
a1,v � pnh2pr�5q1{2 1

v!
a2,v � oppnh2pr�5q1{2q,
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where a1,v � θ
ppr�1q
r px0q
ppr � 1q!

»
upr�1Kv,prpuqdu

a2,v � θ
ppr�2q
r px0q
ppr � 2q!

»
upr�2Kv,prpuqdu

�θ
ppr�1q
r px0q
ppr � 1q!

d
dx0

 
fXpx0qIrrpθ1px0q, θ2px0qq

(
fXpx0qIrrpθ1px0q, θ2px0qq

�
"»

upr�2Kv,prpuqdu �v
»
upr�1Kv�1,prpuqdu

� 1

pr!

»
upr�1Kpr,prpuqdu

»
upr�1Kv,prpuqdu

*
.

S2.5.2. Proof of 4.2

Theorem 4.2 follows from Theorem 4.1, as the marginal distributions of the components ofprθ. The asymptotic covariance of
prθr (for r P t1, 2u) can be written as

ACovpprθrq � 1

fXpx0qI
�1
rr pθ1px0q, θ2px0qqN�1

prprpx0qTprprpx0qN�1
prprpx0q.

The asymptotic variance of the ML estimator pθpvqr px0q � v!pθrvpx0q (for v � 0, 1, ..., pr; r P
t1, 2u) is pv!q2AVarppθrvpx0qq. Note that AVarppθrvpx0qq is the pv � 1, v � 1q entry of the matrix

n�1h�p2v�1qACovpprθrq. The pv � 1, v � 1q entry of ACovpprθrq is�
ACovpprθrq�

v�1,v�1

� 1

fXpx0qI
�1
rr pθ1px0q, θ2px0qq

pr�1̧

k�1

pr�1̧

l�1

cv�1,kcv�1,l

|Nprprpx0q|2
tTprprpx0quk,l

� 1

fXpx0qI
�1
rr pθ1px0q, θ2px0qq

1

pv!q2
»
K2
v,prpuqdu,

where ci,j is the cofactor of tNprprpx0qui,j. Hence

AVarppθpvqr px0qq � pv!q2AVarppθrvpx0qq � I�1
rr pθ1px0q, θ2px0qq
nhp2v�1qfXpx0q

»
K2
v,prpuqdu.

The asymptotic bias of
prθrvpx0q is given in (S.7). Note that for pr ¥ v, and pr� v even, we have

from Lemma 4 in [3] that
³
upr�1Kv,prpuqdu � 0. In that case, a1,v � 0 and

a2,v � θ
ppr�2q
r px0q
ppr � 2q!

»
upr�2Kv,prpuqdu�

θ
ppr�1q
r px0q
ppr � 1q!

d
dx0

 
fXpx0qIrrpθ1px0q, θ2px0qq

(
fXpx0qIrrpθ1px0q, θ2px0qq

�
"»

upr�2Kv,prpuqdu �v
»
upr�1Kv�1,prpuqdu

*
.

Hence, the expressions of asymptotic bias and asymptotic variance of pθpvqr px0; pr, hq follow.
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S2.6. Proof of Theorem 4.3

Theorem 4.1 gives the asymptotic joint multivariate normal distribution of ppθ1px0q, pθ2px0qq.
By applying the multivariate delta method to gppθ1px0q, pθ2px0qq � pqβpx0q with gpu, vq � u �
Cαpβq � ev and ∇gpu, vq � p1, Cαpβq � evq, we find that, as nÑ 8,b

nhσ2
q

!
g
�pθ1px0q, pθ2px0q	� g

�
Erpθ1px0qs,Erpθ2px0qs	) DÝÑ N p0, 1q,

where σ2
q � ∇gpErpθ1px0qs,Erpθ2px0qqA∇gpErpθ1px0qs,Erpθ2px0qsqT and the asymptotic covariance

matrix

A �
�� AVarrpθ1px0qs ACov

�pθ1px0q, pθ2px0q	
ACov

�pθ1px0q, pθ2px0q	 AVarrpθ2px0qs
�
�

�
AVarrpθ1px0qs 0

0 AVarrpθ2px0qs
�
.

Note that Erpθrpx0qs � θrpx0q � Biasrpθrpx0qs for r P t1, 2u. From Theorem 4.2, we have that

the asymptotic bias of pθrpx0q is

ABiasrpθrpx0qs �
$'''&'''%

hpr�1 θ
ppr�1q
r px0q
ppr�1q!

 ³
upr�1K0,prpuqdu

( p1 �Ophqq if pr is odd�
θ
ppr�2q
r px0q
ppr�2q!

³
upr�2K0,prpuqdu� θ

ppr�1q
r px0q
ppr�1q!

d
dx0

 
fXpx0qIrrpθ1px0q,θ2px0qq

(
fXpx0qIrrpθ1px0q,θ2px0qq

�  ³
upr�2K0,prpuqdu

( �
hpr�2p1 �Ophqq if pr is even,

and the asymptotic variance of pθrpx0q is

AVarrpθrpx0qs � I�1
rr pθ1px0q, θ2px0qq

hfXpx0q
»
K2

0,prpuqdu.

Therefore, we have by Assumption (A10)

g
�
Erpθ1px0qs,Erpθ2px0qs	
� Erpθ1px0qs � Cαpβq � eErpθ2px0qs
� θ1px0q � Biasrpθ1px0qs � Cαpβq � eθ2px0q�Biasrpθ2px0qs

� θ1px0q � Biasrpθ1px0qs � Cαpβq � eθ2px0q
$'&'%1 �

8̧

k�1

�
Biasrpθ2px0qs	k

k!

,/./-
� qβpx0q � ABiasrpθ1px0qs � Cαpβq � eθ2px0qABiasrpθ2px0qs
�oP pABiasrpθ1px0qs � ABiasrpθ2px0qsq,
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∇gpErpθ1px0qs,Erpθ2px0qqA∇gpErpθ1px0qs,Erpθ2px0qsqT
� p1, Cαpβq � eErpθ2px0qsq

�
AVarrpθ1px0qs 0

0 AVarrpθ2px0qs
��

1

Cαpβq � eErpθ2px0qs



� AVarrpθ1px0qs � pCαpβqq2 � AVarrpθ2px0qs � e2Erpθ2px0qs
� AVarrpθ1px0qs � pCαpβqq2 � AVarrpθ2px0qs � e2θ2px0qe2Biasrpθ2px0qs

� AVarrpθ1px0qs � pCαpβqq2 � AVarrpθ2px0qse2θ2px0q � op1q

� I�1
11 pθ1px0q, θ2px0qq

hfXpx0q
»
K2

0,p1
puqdu� pCαpβqq2e2θ2px0q I�1

22 pθ1px0q, θ2px0qq
hfXpx0q

»
K2

0,p2
puqdu� op1q.

S3. Simulation study: additional results

S3.1. Performance of data-driven bandwidth selectors in Section 5.2

Note that for a symmetric Laplace as well as for a symmetric normal density the quantity
γ1 is 0.5. Consequently the expression for the theoretical optimal global bandwidth (25) is the
same in both cases. From (30) the expressions for the Quantile-Mean based bandwidth selector
for the AlaD and AND log-likelihood estimator of θ1 are

hQM
α,ALaD � hmean

�
αp1 � αq

tp1 � 2αq2 � 2αp1 � αqu
� 1

2p1�3

for ALaD, (S.7)

and hQM
α,AND � hmean

�
αp1 � αqπ

tp1 � 2αq2pπ � 2q � αp1 � αqπu
� 1

2p1�3

for AND. (S.8)

It is important to mention that the bandwidth selector for the nonparametric approach, hQM
β,NP

in (S.3), and hQM
α,ALaD are identical for β � α due to Remark 3.1. Recall also that in case

β � α the point estimates of the semiparametric conditional quantile function under the ALaD
(estimation) model and the nonparameric quantile estimator are equal.

Table S.1: True global bandwidth and its average estimated values via data-driven bandwidth selectors.

Error distribution θ1pxq hQM
0.25,opt

phQM
0.25, AND

phQM
0.25, ALaD

phQM
0.25, NP

AND x� 2e�16x2 0.0758 0.0923 0.0901 0.1010

sinpx2q � x� 2e�16x2 0.0753 0.0933 0.0912 0.1021

ALaD x� 2e�16x2 0.0758 0.1013 0.0990 0.0990

sinpx2q � x� 2e�16x2 0.0753 0.1023 0.0999 0.0999

For each simulation example, the values of theoretical optimal bandwidths (S.7) and (S.8)
are listed, together with the average of the estimated bandwidths over the 100 simulations, in
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Figure S.1: Example 2. Kernel density estimates of logpphQM
0.25{h

QM
0.25,optq obtained by data-driven selector under

the true (a) AND; (b) ALaD likelihood.

Table S.1. It is clearly seen that the estimated bandwidths phQM
0.25, ALaD and phQM

0.25, NP are equal
under the true asymmetric Laplace error distribution for α � β, which is as expected. In case of
a true asymmetric normal error distribution, phQM

0.25, NP is larger than phQM
0.25, AND and phQM

0.25, ALaD in
each example, although the values are close. In Figures S.1(a) and (b) kernel density estimates of

logpphQM
0.25{hQM

0.25,optq obtained by using the three methods (two semiparametric estimation models,

and nonparametric approach) for the simulation model with θ1pxq � sinpx2q�x�2e�16x2 , under
asymmetric normal and asymmetric Laplace error distributions are presented. The rough data-
driven bandwidths tend to be often larger than the optimal bandwidth, but seem to lead to
good quality estimators.

S3.2. Further simulation results on Example 2

The estimated 25% quantile curve (mean of 100 estimated curves based on 100 simulated
samples) with its Bonferroni-type 95% confidence bands are presented in Figure S.2 (a) for
AND likelihood and in Figure S.2(b) for ALaD likelihood. Note that the confidence band
of the estimated curves is narrower compared to others when indeed working with the AND
(simulation) model.

S3.3. Effect of estimating α: additional results

S3.3.1. Simulation results for other bandwidth values

Table S.2 complements Table 2 and presents results for bandwidths h � 0.075 and h � 0.095.
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Figure S.2: Example 2. 95% Bonferroni-type confidence bands, using semiparametric ALaD and AND condi-
tional densities and nonpametric approach together with estimated 25% conditional quantile functions under
(a) a AND model (true); (b) a ALaD model (true).

Table S.2: Examples 1 and 2 with Asymmetric Normal Error: Mean (standard error) of AISE values based on
100 simulations for β � p0.25, 0.90q. Using three different methods to estimate α : pαpjq (Method j), j � 1, 2, 3.

Bandwidth h � 0.075

Example 1 Example 2
Method β 0.25 0.9 0.25 0.9

1
AND 1.8982(0.7553) 2.6641(0.6830) 1.7065(0.7310) 1.7862 (0.8501)
ALaD 3.6166(1.8479) 5.7934(2.6830) 3.6535(1.8623) 6.2259(2.8831)

2
AND 2.3445(1.0657) 3.4019(0.9339) 2.1485(0.7719) 3.4019(1.7426)
ALaD 3.5563(1.8817) 10.0399(2.8981) 4.2930(2.1692) 10.0399(6.1337)

3
AND 2.0001(0.7864) 3.1516(0.7959) 2.0075(0.7586) 2.9696(0.9339)
ALaD 3.4065(1.7938) 5.7690(2.7700) 3.6297(1.8144) 6.4370(2.8981)

Bandwidth h � 0.095
Example 1 Example 2

Method β 0.25 0.9 0.25 0.9

1
AND 2.0165(0.7479) 2.9542(2.6578) 1.7434(0.7164) 2.0529(0.9416)
ALaD 2.7566(1.4088) 5.0948(3.4930) 2.7721(1.4216) 5.1631(2.6049)

2
AND 2.4597(1.0521) 7.8926(4.0313) 2.0371(0.7597) 3.3829(1.6499)
ALaD 2.9606(1.7902) 6.0273(5.8069) 3.4222(1.7765) 9.5293(5.8021)

3
AND 1.9322(0.7631) 3.1009(3.5245) 1.9452(0.7307) 2.9364(0.9318)
ALaD 2.8046(1.6488) 5.7454(4.9430) 2.8625(1.4908) 5.8082(2.8680)
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S3.3.2. Effect of estimating α: computational costs

We recorded the computation time for the semiparametric method, when using the different
methods for estimating α. The average computation time (in seconds) of the resulting three
semiparametric methods are presented in Table S.3. It is observed that the average computation
times when using Methods 2 and 3 are very close. When using Method 1 for estimating α,
calculations take a factor of about 4 to 5 times longer than for the two other methods.

Table S.3: Average computation time (in seconds) when using three different methods to estimate α : pαpjq

(Method j), j � 1, 2, 3 for the sample sizes n � 100.

Bandwidth h � 0.075 Example 1 Example 2

Method β 0.25 0.9 0.25 0.9

1
AND 1.2236 1.0777 1.2584 2.03.54
ALaD 2.3603 2.3182 2.3578 2.5937

2
AND 0.2586 0.2580 0.2722 0.2792
ALaD 0.4670 0.4747 0.4871 0.4969

3
AND 0.4253 0.4857 0.9554 0.9965
ALaD 0.4825 0.5455 0.4208 0.4720

Bandwidth h � 0.090 Example 1 Example 2

Method β 0.25 0.90 0.25 0.90

1
AND 1.1091 1.3036 1.1884 1.2661
ALaD 2.4913 2.6766 2.7797 2.6444

2
AND 0.2672 0.2831 0.2498 0.2729
ALaD 0.4607 0.5258 0.4716 0.5415

3
AND 0.2745 0.2915 0.2646 0.3060
ALaD 0.4228 0.5215 0.4175 0.5502

Bandwidth h � 0.055 Example 1 Example 2

Method β 0.25 0.9 0.25 0.9

1
AND 1.2256 1.1914 1.1658 1.9713
ALaD 2.3838 4.4875 2.2769 2.1900

2
AND 0.2708 0.2663 0.2617 0.2597
ALaD 0.4787 0.5516 0.4604 0.4607

3
AND 0.3416 0.3451 0.3716 0.4616
ALaD 0.4489 0.4555 0.3226 0.3941
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