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Abstract

Quantile regression is an important tool in data analysis. Linear regression,
or more generally, parametric quantile regression imposes often too restric-
tive assumptions. Nonparametric regression avoids making distributional as-
sumptions, but might have the disadvantage of not exploiting distributional
modeling elements that might be brought in. A semiparametric approach
towards estimating conditional quantile curves is proposed. It is based on a
recently studied large family of asymmetric densities of which the location
parameter is a quantile (and not a mean). Passing to conditional densi-
ties and exploiting local likelihood techniques in a multiparameter functional
setting then leads to a semiparametric estimation procedure. For the local
maximum likelihood estimators the asymptotic distributional properties are
established, and it is discussed how to assess finite sample bias and variance.
Due to the appealing semiparametric framework, one can discuss in detail
the bandwidth selection issue, and provide several practical bandwidth se-
lectors. The practical use of the semiparametric method is illustrated in the
analysis of maximum winds speeds of hurricanes in the North Atlantic region,
and of bone density data. A simulation study includes a comparison with
nonparametric local linear quantile regression as well as an investigation of
robustness against miss-specifying the parametric model part.
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1. Introduction

(Classical regression focuses on estimation of the conditional mean func-
tion E(Y|X) of a response Y given a set of d covariates X = (X1, ..., Xy)T.
A vast literature dealing with estimation of E(Y|X) via parametric, semi-
parametric or nonparametric approaches is available. In the context of non-
parametric mean regression, [1] developed local polynomial estimators in an
extended generalized linear models framework, using quasi-likelihood meth-
ods under standard regularity conditions. Background information on local
polynomial modeling and detailed discussions on a variety of applications
can be found in [2]. Maximum likelihood estimation is among the key tools
in statistics, and it provides a unified method for constructing approximate
confidence intervals for parameters. It requires the specification of a particu-
lar conditional density function for the response variable given the covariate
vector, but the distributional assumption, when justified, allows to draw sta-
tistically more accurate conclusions. [3] established a general framework to
use the maximum likelihood technique and extending its scope towards non-
parametric estimation. Their technique of localizing a likelihood and employ-
ing local polynomial fitting, together with the outlined statistical inference
steps is widely applicable.

Conditional mean estimation focuses only on the average effect of the
response Y given X, and is not a very appropriate measure of central position
in case of a skewed conditional response distribution. A conditional mean is
just one characteristic of the conditional distribution, whereas the conditional
quantile function fully characterizes it. Quantile curves are an important tool
in, for example, environmental studies where upper quantiles of pollution
levels are critical from a public health perspective.

The conditional quantile of order 5 (with 0 < 8 < 1) of ¥ given X = x
is denoted and defined as Q3(Y | X = x) = inf, {y : Fyx(y | x) = B},
with Fyx(- | x) the cumulative distribution function of Y given X = x.
See [4] and [5] for a comprehensive overview of the area of quantile re-
gression. Throughout the paper we use the shorthand notation gg(x) for
Qp(Y | X = x). The conditional quantile of Y given X = x coincides
with the minimizer of Eyx{pg(Y — a) | X = x} with respect to a, where
ps(u) = u(f —I(u < 0)) is the so-called check function. Henceforth gg(x) is
such that Ex y [ps (Y — ¢3(X))] is minimal.



For estimating a conditional quantile gs(x) one can rely on parametric,
semiparametric or nonparametric approaches. In linear quantile regression
qp(x) is modelled as a linear function, i.e. gz(x) = 07X, with X = (1,x7)7
the (d + 1)-dimensional column vector, and with € the column vector (of
dimension d + 1) of unknown regression coefficients (including an intercept).
Parametric quantile regression estimation is performed by considering the
empirical version of Exy [ps (Y — ¢3(X))], and estimated parameters are
those for which this empirical quantity is minimized. See also Section [2]
Linear or, more generally, parametric quantile regression can be insufficient,
in case no appropriate form for the conditional quantiles can be put for-
ward. Consider data on maximum wind speeds in hurricanes occurring in
the North Atlantic region during the period 1971 and 2017. Figure [I(a) de-
picts the data together with some estimated linear regression curves. From
this figure it appears as if the maximum wind speed (in knots per hour) of
the strongest hurricanes in the North Atlantic region have increased over
the whole period. Figure (b) (produced using the proposed semiparametric
quantile estimation method) reveals however that also decreases are notice-
able, even for several quantile curves, during that period. As discussed in
Section [§] the semiparametric estimation method led to considerably smaller
prediction errors than when using a nonparametric estimation method (see
Figure @ This example simply illustrates the specific merits of the semi-
parametric approach that is presented in this paper.

Nonparametric approaches towards quantile regression include the one of
[6], who developed a local linear quantile estimation method, similar as for
mean regression. Following-up on this, [7] further contributed to bandwidth
selection for local linear quantile regression. They also introduce the local lin-
ear double-kernel smoothing method, in which estimation of the conditional
cumulative distribution function, is followed by estimation of the conditional
quantile function via an inversion technique. Such an inversion procedure
involves the choice of two smoothing parameters. An extensive discussion on
the two approaches can be found in [7].

A particular point of attention when estimating conditional quantile curves
is that of the non-crossing property. By definition, for 0 < 8; < 8y < 1, the
conditional quantile curves satisfy gz, (x) < g¢p,(x), for all x in the domain
of the random vector X. Estimated conditional quantile curves should also
(among others for interpretability reasons) satisfy this property. But, the
local linear quantile estimation or the local linear double-kernel smoothing
estimator do not necessarily satisfy this property unless extra precautions
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Figure 1: Maximum wind speeds of hurricanes in the North Atlantic region during the
period 1971-2017. (a) Estimated linear quantile curves; (b) Estimated semiparametric
quantile curves.

are taken (see [7]).

In this paper we contribute with an appealing semiparametric method
to estimate conditional quantile curves. As a starting point we rely on a
very broad family of asymmetric densities, recently studied in [§]. Within
this large family of densities, with index-parameter a (0 < a < 1), the
location parameter (say p) coincides with the ath quantile of the distribu-
tion. It therefore is called the quantile-based family of asymmetric densities
(QBA densities). This family provides a very advantageous framework, since
many probabilistic properties, and a detailed study of estimators and their
behaviour (with explicit expressions for asymptotic variance-covariance ma-
trices) were established in [8]. Moreover, the family is of a location-scale
type. A density in the family is symmetric if and only if a = 0.5. Based
on this family we consider a class of asymmetric conditional densities that
involves an unknown location function p(x) and an unknown scale function
¢(x). For a given member of the family of conditional densities (constitut-
ing the parametric component), one can produce a localized version of the
log-likelihood, locally modelling both the unknown location and scale func-
tion (the nonparametric components) via polynomials (of possibly different
degree). This results into a local polynomial likelihood type of problem, but
under nonstandard working conditions (i.e. non-differentiability), due to the
quantile-based setting. Only in case a = 0.5 we are back to standard working
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conditions. The advantages of this particular semiparametric approach are:

e due to the QBA-based framework, the estimated quantile curves inher-
ently satisfy the non-crossing property;

o due to the key ingredients of the framework, a detailed study of the
estimation methods, including asymptotic distributional results, theo-
retical optimal bandwidths and data-driven bandwidth selectors, finite-
sample assessments of bias and variance of the estimators, as well as
construction of confidence intervals and bands can be provided in the
generic setting (for all members of the large QBA family);

e when the asymmetric conditional density is well-specified the method
largely outperforms the nonparametric local polynomial quantile esti-
mation method;

e the nonparametric local polynomial quantile estimation context links
up to a special case of the considered estimation method; and as a
side product we also contribute to the area of nonparametric quantile
regression.

In the present paper we restrict to a univariate covariate setting (i.e. d =
1) although extension to a multivariate setting is methodologically rather
straightforward, as is briefly discussed in Section [3.3]

The paper is further organized as follows. After a very brief recall of
parametric and nonparametric approaches to conditional quantile estima-
tion in Section [2, we present our semiparametric local likelihood estimation
type approach in Section [3] Section [4] contains the asymptotic results of the
semiparametric local likelihood estimator. The important issue of bandwidth
choice is discussed in Section [f] Section[6]is devoted to the adaptation of the
method to account for some additional unknown parameter (function). The
finite-sample performance of the semiparametric procedure is investigated
via a simulation study in Section [7] Real data applications in Section [§]il-
lustrate the use of the proposed semiparametric estimation method. Proofs
of all theoretical results are provided in the Supplementary Material. This
material also contains new asymptotic results for nonparametric local poly-
nomial quantile regression and optimal bandwidth choice for it. These results
fill some gap in the literature. The Supplementary material further presents
some additional results from the simulation study. The discussed semipara-
metric estimation method is implemented in the R package QBAsyDist [9].



2. Parametric and nonparametric conditional quantile estimation

Let (X1,Y1),...,(X,,Y,) be an i.i.d. sample from (X,Y). In parametric
settings one assumes that the fth conditional quantile of Y given X = z
(for arbitrary 0 < 8 < 1) takes on a parametric form, for example, ¢z(z) =
5.0 + 6512 in linear quantile regression or qs(z) = 0z + g1 + - - - + O 2"
in pth order polynomial quantile regression (p € IN). Since ¢z(zr) minimizes
Exy [ps (Y — qs(X))], the parameter 85 = (30, ...,05,)" in a parametric
polynomial setting can be estimated by minimizing

n

D ps(Yi— 050 — -+ — 05, X7), (1)

i=1

with the check function pg(u) = u(8 — I(u < 0)) as in Section [1]

In a nonparametric setting, the functional form of gs(z) is completely
unknown. Similar as in nonparametric mean regression, the Sth quantile
function gg(x) can be estimated using local modelling, and a locally kernel-
weighted check loss function. In this case no distributional assumption is
made on the conditional distribution of Y given X. See e.g. [6] and [7]. The
idea of a local polynomial fit is to approximate the unknown Sth quantile
function gg(xo), for zo given, by a pth order polynomial, i.e. for z in a
neighbourhood of x

&

45(20) + (o) (= — z0) + -+ + gqg” (0) (= — o)

= 9570 + 9571(2 — ZE()) + -+ 0,371)(2 — $0)p, (2)

q5(2)

where qg)) (x¢) denotes the vth derivative of the function gg evaluated in the

point zy, and with 03, = q(”) (x0)/v!, for v =0,1,...,p. For all observations

X; close to x, we can apply the Taylor approximation for ¢z(X;) and obtain
from that

qB(Xi) % 95,0 + 95,1 (Xl — I‘Q) + -+ eﬂ,p(Xi - xO)p = Xg:p057

where X;, = (1, X; — zo, ..., (X; — 20)P)" and 05 = (050,...,05,)". Since
the Taylor expansion in is only valid in a neighbourhood of z(, the loss
function in (|1) needs to be localized as to contain only contributions from
observations X; that are close to xy. This is done by a weighting factor

Ky (X; — xp), where Kj,(-) = K(-/h)/h is a rescaling of K(-), a compactly
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supported symmetric probability density, and A > 0 a bandwidth parameter
determining the size of the neighbourhood. The unknown parameter 8z is
estimated by

~

05(xp) = arg min ZP,B(Yz‘ — szeﬁ)Kh(Xi — Zp). (3)
i=1

BﬁeR(PH)

The local polynomial estimator gg,,(zo) for qé”) (0), v = 0,1,...,p is then

given by g, (zo) = v! @571,(350). Local linear estimation of the conditional
quantile gz(zo) corresponds to taking p = 1 in the above.

3. Semiparametric conditional quantile estimation

In this section we present the framework for the semiparametric esti-
mation approach. We first review the quantile-based family of asymmetric
densities which is a basic element.

3.1. Quantile-based family of asymmetric densities

Consider f a symmetric around 0 density. We assume f to be unimodal.
We call f the reference symmetric density. Denote by F' and F~! the cumu-
lative distribution function and the quantile function associated with f. The
QBA family, indexed by a parameter a, a € (0,1), with parameters u € IR,
and ¢ € IR, is then defined by

v 20(1—a) [ (L= a)(55Y)) if y<p
Jolgss§) = =5 { Fla(®5) ¢ it y>p

Herein the index-parameter a controls the allocation of mass to the left and
the right of the mode p. The density f,(y; i, ¢) in (4)) is symmetric if and only
if @« = 0.5. The density is left-skewed (respectively right-skewed) if a@ > 0.5
(respectively o < 0.5). The QBA family constitutes a very broad family of
asymmetric densities, including (new) asymmetric normal, Student-t, logistic
and Laplace densities (see [§]). The important properties of are:

(1) p is the ath quantile of Y, i.e. Sfoo fa(y; i, ®)dy = a and
§, falyspd)dy =1—a.



(i7) Mean and variance (if they exist) are given by:

B(Y) = g+ ST )
Var(Y) = ﬁ[(l—zam—uf)+a<1—a>u2], (6)

where p, = 2 Sgo s"f(s)ds is a moment-type quantity of the reference
density f.

(#41) Cumulative distribution function:

~ 20F ((1 — a)(2) it y<p
Fa(y;/Jﬁ ¢) = { 200 — 1 + 2(1 —(bO{)F(a(y_;H)) if Y= U

(iv) The quantile function: for any 8 (with 0 < 8 < 1), F74(3) = u+ ¢ -
Ca(B), where Co(B) = 2 FH(L)I(B < )+ 1P (1;(5_—5)‘*)11(5 > a).

Note that the quantity C, (/) depends on 3, the index-parameter o and the
quantile function of the reference symmetric density f. For example, for f
a symmetric Laplace density: C,(5) = ﬁ ln(g) — éln(%) In general, it
holds that for 8 = a, Ca(e) = 0 and consequently F='(a) = p. Obviously,
Co(p) is an increasing function of 5.

Given an i.i.d. sample Y;,...,Y, from Y ~ fa(, i, @), [8] discussed max-
imum likelihood estimation of the parameter vector (u, ¢), and established
that the Fisher information matrix for the maximum likelihood estimator of

(1, ¢) equals

20(l—a)y1 0

A — @

where v, = {s*71f(s)ds, for £ = 1,2,3 (v, is assumed to be finite). For

example, for f the symmetric Laplace density, we have v; = v = 3 and

v3 = 1. For detailed results, see Proposition 3.2 in [§].

Since ¢ € IR, it is important to obtain an estimator that takes on only
non-negative values. This is of particular importance when passing to the
regression setting in which ¢ is a function of x. In order to automatically
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obtain non-negative estimators for ¢ (or ¢(x) in the regression setting) it is
advantageous to reparametrize the above QBA family as follows. Using the
one-to-one transformation (0,62) = (u,In{¢}) and denoting the resulting
asymmetric density by f.(+; 61, 602) we get

201 —a) | f((1- O‘)(ez;{ié?é})) if y <6,
exp{fs} f(oa(egp_{%;})) if y > 6.
(7)

The quantile function of a random variable Y with density f,(+; 61, 602) is then
EN(B) = 01 + exp(s) - Co(B).

The Fisher information matrix is calculated from the second order partial
derivatives of the log-density. Denoting v; = u; and vy = exp{us}, and
applying the chain rule we get, for r, s € {1, 2},

Faly; 01,02) = fuly; 01, expifs}) =

~ v,
S oy 1, 02) = 0 a0, 00) 5

0? 0? ~ OV, OV,
Ou, Ol I fa(ys us, uz) = 0V, 0V I fa(y; v1, va) ou, Oug

(8)

Since 5 5
U1 V2
6u1 an &‘Ug 2,

the Fisher information matrix for the maximum likelihood estimators for

(91,02) in is

2a(l—a)y1 0 ]
9)

T(0 ’9 — exp{202}
(0. 02) [ 0 (2p-1)

3.2. Semiparametric local polynomial mazimum likelihood conditional quan-
tile estimation
We now turn to the regression setting involving one covariate. For the con-
ditional density of Y given X = x we consider the density fyx(-;01(x), 02(x))
in @ and allow 6, and 65 to depend on x, for given index-parameter o. This
leads to the conditional density

20(1—a) ﬂﬂ—&ﬂ%@éﬂ)ﬁy 01(x)
exp(f2(x)) | flo(L b1(2 ) if y > 0:1(z),

oxp(02(w

fY|X,a(y; 01(), Oo()|x) =

—~

10)



for which the Sth quantile function is

q5(t) = Fyx o (Blz) = 01(2) + exp {fa(2)} - Ca(B).

Let (X1,Y1),...,(X,,Y,) beaniid. sample from (X,Y’) with conditional
density , where 0 (x) and 6,(z) are unknown real-valued functions. Given
estimates 6, (z) and 6() for 61 (x) and 65(x), an estimator for the conditional
quantile function is

B(@) = 01(@) + exp {Da(2) } - Ca(8). (11)

We estimate 6;(z) and 0(z), starting from the localized conditional log-
likelihood.
If 6:(-) and 05() are known, the conditional log-likelihood is

D fyixa (Vi 01(X0), 05(X)) | X = X;)

i=1
Since #1(-) and 6,(-) are unknown, we use a local polynomial fitting tech-
nique. For given xz, we approximate 6,.(z) (for r € {1,2}) with z in the
neighbourhood of xg, using a Taylor expansion of order p, (p, € IN):

: " (o)
0,(2) ~ 0, (o) + 0, (x0)(2 — w0) + - -+ + ——— (2 — @0)" Z 0,5(z — x0)’
Dy
with 6,, = (mo) ;o = 0,1,...,p.. For the conditional log-likelihood this

means that only data points (X;,Y;) for which X; is close to xy contribute
to the localized version of it. Denoting £(6;(X;), 02(X;);Y;) =

lIl fY|X,a(Y;701(Xi)792(Xi) | Xz)7 and USiIlg QT(Xz) [~ 5;0 QT(X 0) =
X7, 0., where X;, = (1, (X;—z0), -+, (X;—z0)" )" and 0, = (6,0, ,6:p,)7,
we get to the local kernel-weighted conditional log-likelihood

ﬁn(el,ez;h,ﬂio):Zg( Zplel, 1p202, ) (Xi_xo)a (12>

This local kernel-weighted conditional log-likelihood needs to be maxi-
mized with respect to (61, 05), leading to the vector of estimators

(6. (o), Ba(0)) = ((510(%), s Oy, (20)7, (B (0), ..., Oy, (:EO))T) defined as

(51(:60), ég(xo)) = argmax L, (61, 02; h, zo) (13)

01,02
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The estimator 6% (zo) for 65 (zq), v = 0,1,...,py, is given by O (zg) =
v!0,,(x0). The whole function 6,.(-) (for r € {1, 2}) is estimated by considering

a grid of xp-values and solving maximization problem for each point in
the grid.

lllustrative example: the conditional asymmetric Laplace density. Taking as
a symmetric reference density, the standard Laplace density, i.e. f(s) =
0.5¢~1l, the contribution from a data point (X;,Y:) to the local conditional
likelihood is

g(Xz:pl 017 XT 927 K)

,P2
= In(a(l—a) - X7,,6,
1
[l —a)(XT 6, —Y)I(Y; — X' 6, <0
eXp[X;-I:p202] [( O[)( 1,P1 1 ) ( 2,P1 1 )

+a(Y; — X7, 60)1(Y; — X7, 61 > 0)]

i,p1 i,p1
1

= In(a(l-a) - X! 0 — ————p.(Yi - X] 6)),
n(a(l —a)) i 02 exp[ X7 02]0 ( i 01)

1,02
since pg(u) = u(f —L(u < 0)) = u[(1 - 5)I(u < 0) + SL{u > 0)].
A special situation occurs when we take p, = 0, and hence approximate
05(z) locally by a constant, and @5 = 3. The solution to the maximization
problem is then

-

01(z9) =arg min > p. (Vi — xr 01) K (X; — z9),

0.:eR(P1+1) [ tP1

! Y pa(Yi — X7, 0 (20)) Kn(X; — o) (14)
92(.730) =1In =1 .

> Kn(Xi — o)
=1

\

If we are in a setting of a constant scale function, i.e. () = 6, for all x,
A Mgrid .
then an overall estimator for 6, is 6y = >} 05(2;)/Ngria; Where ngq is the
j=1

total number of grid points for which the optimization problem is carried
out. R R

Using the estimators 64 (xy) and 03(x,), and substituting these estimators
into , with the appropriate constant Co(8) = 1 ln(g) — éln(%) for
the case of a symmetric Laplace reference density, we obtain the estimated
fth quantile function. See further Section [S1}
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Remark 3.1. An important remark is that the minimization problem lead-
ing to the estimator 6 (x,) in coincides with the minimization problem
in provided 8 = « in the latter problem (or a = § in the former). In
other words, when the scaling function is constant and known, the considered
semiparametric estimator for the Sth quantile 8 (x) coincides with the fully
nonparametric ath order quantile estimator. This of course does not mean
that the asymptotic properties of both estimators coincide, since the model
assumptions are different, and come into play when investigating asymptotic
behaviour.

Remark 3.2. In the procedures described above, we take « fixed. Estima-
tion of av or a(z) is however discussed in Section |§|, and in data applications
a (and «a(z)) is estimated.

3.3. Extension to the multivariate covariate setting

The methodology presented in Section [3.2] is rather straightforward to
generalize to a multivariate setting. Consider a vector of covariates X =
(X1,...,X4)T. The task is to estimate the d-variate location and scale func-
tions 0;(x) and fy(x) (with x = (z1,---,24)7), based on an i.i.d. sample
(X1, Y1),...,(X,,Y,) from (X,Y). Relying on the idea of local modelling,
we can approximate the unknown d-variate functions locally using Taylor
expansion for d-variate functions.

For simplicity of presentation, we only briefly discuss the extension of
the methodology considering local linear fitting (i.e. p; = py = 1) in this
multidimensional covariate setting. For a given value xg = (Zo1, ..., Zoq)’,
the function 6,(z) can, for z = (z1,...,24)7 in a neighbourhood of x, be
approximated by

d
(2 — o) = bro + ) 005(25 —j) 7€ {1,2},

j=1

X=X(

using a Taylor expansion up to order one for a d-variate function, and de-

noting 6,0 = 60,(xo) and 6,; = a%f‘) ; for j = 1,...,d. Applying this
7 Ix=xq
approximation to a datum X; = (Xji,..., X;q)? that is close to xq leads to

the approximation

d
00(Xi) ~ bro + Y 0n5(Xi; — m0;) = X[,0,,

j=1

12



where we denoted X;.4 = (1, X;1 — o1, - - ., Xig — Toq)” and
0, = (0,0,0r1,...,0,4)". Since this approximation is only valid for X; in a
neighbourhood of xg, this is accounted for by considering appropriate multi-
variate weights.

Let K; : IR? — IR be a d-variate non-negative kernel function satisfying
{ Kq(u)du = 1 and {uK,(u)du = 0. Furthermore, K, is assumed to have
compact support and §wu;u;Kg(u)du = 6;505(Ky), with po(Ky) > 0. The
matrix of second componentwise moments of Ky is thus po(Ky)14, where I,
is the identity matrix of dimension d x d. A rescaled version is K m(u) =
|H| 2K 4(H ?u), where H is a positive definite matrix of bandwidths with
determinant |H].

The multivariate version of equation for py = py =1is:

L,(61,05; H,x0)) = ZE(X;{dOh X;{d92; Vi) Kau(Xi — Xo),

i—1
which needs to be maximized with respect to the model parameters (61, 05),
leading to (6;(x0), 02(x0)) satisfying

n

~ ~

(61(%0)), 02(x0))) = arg max (X401, X405 Vi) Ku (X, — x0),
P2 =1

and estimates of the d-variate function 6,.(-) and its d first-order partial
derivatives

ér (x0) = §r0 and 00 (x)

=0, j=1,...,d  (re{1,2})

X=X

&xj

For practical use of the above method one needs to be aware of the prob-
lem of curse of dimensionality. For a given number of data points, local
neighbourhoods in higher dimensions are obviously ‘emptier’. Consequently,
using local modelling techniques in high dimensions requires a large amount
of data, to guarantee a sufficient amount of local data to warrant sufficient
accuracy in the estimation task. For moderate to small data sets one likely
needs to bring in some additional structure, such as an additive model struc-
ture on the unknown location and shape functions, i.e. modelling 6,(x() as a
sum of d unknown univariate functions: 6, (zo) = 0,1(xo1)+. . . +6,4(x04), with
now 6,1(+), ..., 0.4(-) d unidimensional functions to be estimated. Investigat-
ing statistical inference with such an additive structure will be investigated
in future research.
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4. Asymptotic results

Before stating the results, recall that the quantile estimator in (11)) is
obtained from estimation of 0 (x) and (). The proposed local polynomial
estimation procedure, not only allows to estimate gsz(z) but also its deriva-
tives (up to some order), based on these of 0;(z) and 65(x). We present the
asymptotic theory in its full generality, including derivative estimation. The
main results are

. the asymptotic normality results for the estimators of 6, (x) and 0y(x)
(and their derivatives) in Theorem

. the asymptotic normality result for the estimator of gg(x) in Theorem
4. ol

A key step in achieving these is provided by Theorem [4.1]

We now come to investigate these asymptotic properties of the local poly-
nomial maximum likelihood estimator (6;(z), 02(z9)) in (13). The proposed
semiparametric method is likelihood-based, relying on the conditional den-
sity fyx.a(y; 01(), 02(z)|z) in (10). Consequently assumptions related to the
key quantities in this conditional density (the symmetric reference density f
and the unknown location and scale functions), as well as assumptions on
the density of X (i.e. the design density) are necessary.

4.1. Notations and assumptions

As in all likelihood-based methods, we need notations for the partial
derivatives of first and second order of the log-likelihood function involved.
We denote, for r,s,t € {1,2},

0

Y v (), va(x)) = In Jysur,ug | x
Ul n(o) va(e) = 5 e |0
52

rs\Y; ) = 1 a\y; U1,

Yl 0n@), i) = 5 g el [ O] e
3

rst (Y3 01(x), v9(2)) = —————1n dysur,ug | x ,

Vst (y; v1(2), v2(2)) T frix.a(y;ur, us | )(u1,u2)=(vl(x)7vz(x))

if these partial derivatives exist. Note that the conditional density
Iyix.a(y; 01 (), 02(x)|z) in is continuous everywhere, but it is not differ-
entiable in y = 6;(x), leading to non-differentiability of the log-likelihood at
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points Y; = 0;(X;). This non-differentiability of the local log-likelihood func-
tion requires to rely on theoretical results for maximum likelihood estimation
under nonstandard conditions. This goes back to the seminal work of [10].
In [8] asymptotic normality results of maximum likelihood estimators in the
unconditional case of density was established, involving a stochastic dif-
ferentiability condition. The basic insight of such a stochastic differentiability
condition is that smoothness with a non-differentiable objective function can
be replaced by smoothness of the limit (or approximation) of the objective
function. Such limiting objective functions are often expectations that are
smoother and ‘more’ differentiable than their sample counterpart [e.g., [11].

In establishing our asymptotic results, we have been inspired by [I] in
their study of local polynomial kernel regression in a random design setting
of generalized linear models, and by [12] who deal with multiparameter like-
lihood models, but under a fixed design setting. Of essence here is to keep
in mind three key issues when establishing the asymptotic behaviour of the
local maximum likelihood estimators (0 (xg), O2(xg)): (i) we are dealing with
maximum likelihood estimation under non-standard conditions; (ii) the prob-
lem involves multiple parameter functions; (iii) we allow for random design
(i.e. the X; observations are random, with design density fx).

For establishing the asymptotic behaviour of the local maximum likeli-
hood estimators under non-standard conditions, we need the expected value
of the score functions (related to the two parameters). Consider, for r, s €

{1,2},
Ar(vi(2), 02()) = By x[r (V5 01(X), 02(X)) | X = 7]

Ars(v1(2), va () = (15)

>\'r (Uh UQ)

u,

Under appropriate assumptions, [8] showed (see their Proposition 3.1) that
the (unconditional) expected value of the (unconditional) score function un-
der density is zero. Keeping in mind it then follows immediately that,
for r € {1, 2},

A (01(),02(2)) = Eyx [¢(Y;01(X),02(X)) | X =2] =0 forall z. (16)

(w1 uz)=(v1 (2),v2(2))

From (@, and under appropriate assumptions (see below), we get to the
Fisher information matrix
20(1—a)y1 0

1(91 (l‘), QQ(I)) = [exp(02(x)]?

0 - | .
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Where, Irs(Hl(x),Hg(x)) = Ey|X[¢T(Y,91(X),QQ(X))%(Y, Ql(X),QQ(X)) | X =
r] = By x[—¢ps(Y;61(X),02(X)) | X = «] for all z, and r, s € {1,2},.

Remark 4.1. Note that from ([17) it is clear that the function Z.s(us,us),
is differentiable with respect to both arguments w; and uy (for finite scale
parameter 0(z)), and moreover that the partial derivative with respect to
uy equals zero.

We now state the assumptions that are needed for the above outlined
derivation and establishing the asymptotic behaviour of the local maximum
likelihood estimators.

Assumptions.

(A1) The densities fy|x,a(y;61(x),02(x)|r) have a common support for all

x. There exists an open subset © of the parameter space ® containing
the true parameters (69(z),09(x)) for all z.

(A2) The reference density f(-) satisfies {; | In f(s)|f(s)ds < oo.

(A3) The reference symmetric density f(s) is differentiable almost every-
where and satisfies v, = {77 s* ! - %ds <o forl=1,2,3.
(A4) The reference symmetric density f(s) satisfies lim sf(s) =0 or
S$§—0
§0sf!(s)ds = —3.

(A5) The function 6,(-) has a (p, + 1)th (respectively (p, +2)nd) continuous
derivative for p, odd (respectively p, even).

(A6) ¥,5(y;01,02) <0 for 6, € IR and y in the range of the response variable
(with r, s € {1,2}).

(A7) The functions f4 (z0), 6% (o), ¥, (y; 61 (x0), 02 (x0)),

Urs(y; 01(0), 02(w0)), Yrst (45 01 (20), O2(0)) and FZ=T,.,(6: (o), 2 (o)) are
continuous in xy (with r,s,t € {1,2}).

(A8) The kernel function K (-) is a symmetric probability density on [—1, 1].

(A9) For each point x; on the boundary of supp(fx) (the support of fy),
there exist an interval C containing x; having nonnull interior such that

inf,ec fx(z) > 0.
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(A10) The bandwidth sequence h = h,, satisfies: h,, — 0 and nh3? — oo.

Assumptions (A1)—(A4) concern conditions needed on the reference sym-
metric density f, whereas Assumptions (A5)—(A10) are needed for the
local likelihood approach. Assumptions (A2)—(A4) are, for example, sat-
isfied for f a standard normal, Student’s -¢, logistic and Laplace densities.
See [§], including its Supplement, for details on this.

Remark 4.2. It is well-known that the asymptotic properties of local poly-
nomial estimators for mean regression differ for points in the interior or at
the boundary of the support of the domain of X (denoted by supp(fx)). See
[2]. With K supported on [—1, 1], the support of Kj(- — o) is Ezgp = {u -
|u— x| < h}. We call zy an interior point of supp(fx(+)) if ;.1 < supp(fx).
Otherwise z; is called a boundary point. If supp(fx) = [b1, b2] then z; is a
boundary point if and only if xq = by +7h or xy = by —7h for some 0 < 7 < 1.
Denoting D,,.n = {u : o — hu € supp(fx)} n [—1,1], we have that z is an
interior point if and only if D,,, = [—1,1]. Both cases, these of interior
points and of boundary points, are covered in the sequel by considering the
measurable sets A = D,,., < R. Notably, if 2 is an boundary point and
hence of the form xy = x5 + ch where x; is a point on the boundary of
supp(fx) and ¢ € [—1,1], then A is replaced by D,,» < [—1,1]. For z( an
interior point in supp(fx), A = [-1,1].

For writing down the theoretical results we need some further notations.
To ease the reading, we use notations that stay close to these of [12] and
[1]. The jth moment of the kernel function, restricted to the domain A,
is denoted by v;(A) = |, W K(u)du. Let N, (v0;.A), Tp,p,(0;.A) and
Q. p. (z0; A) (1,5 € {1,2}) be matrices of dimension (p, + 1) x (ps + 1) of
which the (k+1,1+1)th entry equals v (A), § , v K?(u)du and vg,11(A)
(k=0,...p;0=0,...,ps). Let M, , (u;A) be the same as N,_,_(zo;.A), but
with the (v + 1)st column replaced by (1,u, ..., uP*)T. For |N,,,.(xo; A)| # 0
define

Kop, (u; A) = o[ My p, (u; A)|/ | Npp, (203 A) [} K ().

For notational simplification, we suppress in what follows the A nota-
tion, and simply write v;, N, ,,. (20), M, . (u) and K, , (u). We also suppress
the region of integration .4, and write short-handed SKg,ps (u)du instead of
S A KD, (us A)du.
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The kernel K, ,,(u) is an equivalent kernel as defined by [I3]. For sev-
eral kernels K satisfying Assumption (A9), the expressions for K, (u) for
different value of v and ps are tabulated in [2] (pp. 66). The concept of
equivalent kernel is useful for giving concise expressions for the asymptotic
distribution of 0,,(z¢) = 0.,(x0; pr, h); (r € {1,2}) for z5. As mentioned in
[ (-1)"K,p,(u) is an order (v,t) kernel, where ¢t = ps + 1 if p; — v is odd,
and t = ps + 2 if p; — v is even. Further, for r € {1,2}, denote

H, = diag(l,h,...,h")

Yoo = fX(l’o)I(el(xo) 2(20)) ® N (20) (18)
Ly = fx(20)Z(61(20), 02(20)) ® T'(20) (19)
Az, = D() ® Q (7o) (20)
— Np1p1 (:CO) Np1p2 (l’o) T0) = Tplpl (l’o) Tp1p2 (:CO)
N(xO) B ( Np2p1 (wo) szpz(xo) > T( O) ( szm (x(]) szpz(xo) )
_ Qplpl (l’o) Qp1p2 ($0)
Q(IO) B ( QP2P1 (xo) Qp2p2 (1:0) )
(A x(w0)Tia (01 (o), 02(20)) } 0
D(xg) B ( 0 dzo {fX Lo I22(91(350) 92(950))} >

where ® denotes a generalized Kronecker product. For a (r x s) matrix
C = (¢ij) and a partitioned matrix D with submatrices D;; (i = 1,...,r;j =
1,..., 8), the generalized Kronecker product C® D is defined as a partltloned
matrlx with submatrices (¢;;D;j),i = 1,...,7;5 = 1,...,s. If all submatrices
D;; are identical (say to D), then the generahzed Kronecker product sim-
plifies to the ordinary Kronecker product of the matrices C' and D. This

happens when in , and we take p; = po

4.2. Asymptotic results for local polynomial maximum likelihood conditional
quantile estimators
A key step in deriving the asymptotic normality result for the local poly-
nomial maximum likelihood estimator @(xq) = (0;(x¢), 02(10))T is studying
first the asymptotic behaviour of the quantity W™ (xy) = (W (z0)T, Wi (x)")T,
where W™(xg), for r € {1,2}, is a column vector of dimension p, + 1, with
(k + 1)st component
S (Vi 01 (i, 20), 2 (Xiy 20)) K (X —20) R} (X o)

Wii(wo) = ==
/nh2k+1 ~ o
21
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with 0,(X;, zo) = Z% 20)(X; —x0)’; el 2} (22)

Let I, p,+2 denote an 1dent1ty matrix of order (p; + p2 +2) x (p1 + p2 + 2)
and let 0y, 4p,+2 be a (p1 + po + 2)-dimensional column null vector, but yet
in terms of W"(x(). Theorem [4.1] states the asymptotic normality result for
the semiparametric local polynomial maximum likelihood estimators.

Theorem 4.1. Assume (A1)—(A10) hold. Then, for n — oo,

(S50, 5572 Vi (L, (81 (20) — 01(20). Hy (Ba() — 0s(x0)) )

— (B0 = W A B, DE[W (o) |

D
- '/\/;71 +p2+2 (Opl +p2+2> Ip1+p2+2)'

where W" () is defined in and zg an interior point of supp(fx).

From Theorem[4.1]is becomes transparent that one needs to study first the
quantities E[W™(z¢)], X, E[W(x0)] and X, A, X, E[W](x0)]. Asymp-
totic expressions for these quantities are established in Lemmas and

2 in Section [S2.1] of the Supplementary Material.

From Theorem [4.1] one can derive the asymptotlc normality of the maxi-
mum likelihood estimator of the vth derivative 6" ( 0) of 0,.(zg). This result
is stated in Theorem .2

Theorem 4.2. Assume (A1)—(A10) hold. For z, given, we have

(). if p, —visodd (v =0,..,p, and r € {1,2}), then for n — oo,

ot (Lo (1(0), 0 (o) JKz W)du i
fx (o) o

) [57?”)@0)—95”)( o) —

9(pr+1)(x0)
(pr + 1)!

{ J uPrHKU,pT(u)du} (1+0(h))
L, N(0,1);
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(ii). if p, —v even (v =0,1,...,p, and r € {1,2}), then for n — oo,

T-1(0: (), O( BN
Vnh2ot ( e f ) (0 oz pr 1) = 0 ()

fx (o)
B lﬁﬁprﬁ) (o) 0P (x0) d;;lo{fx(mo)zrr(el (o), O2(x0)) }

A | e S )

X {J WK, (u)du — v J WK, 1, (u)du}] RPr=UF2(1 + O(h)))
2, N(0,1).
The estimated Sth quantile in g can be obtained from . When § = a,
Ca(@) = 0 and go(zo) = 61(20). Therefore the asymptotic distribution of

Ju(x0), is that of o, (x0), given in Theorem . In general, for any S € (0, 1),
the asymptotic distribution of gs(zo) is given in Theorem [4.3]

Theorem 4.3. Assume (A1)—(A10) hold. For z, given, we have

vk {ds(w0) — as(wo) — | ABias [0 (w0)] + Ca(B) - ) ABias[da (o)) |}
25 N (0, 02(20)) 4
for n — oo, where for r € {1,2}
(i). if p, (for r € {1,2}) is odd, then
H(PTJFI)(

ABias|f, (z9)] = hp’"Hszllﬁ) {Jupﬁl}{o’pr(u)du} (1+ O(h)),

(ii). if p, (for r € {1,2}) is even, then

ABias[f, ()]

0 @) [ 07 () g 4 fx (@0) Lo (01 (0). B2 (o)) }
- [ (pr +2)! Ju Koy, (u)du+ (pr + DV fx(20)Zrr (01(0), O2(70))

« { J upr”f(o,pr(u)du}] B2 (1 4 O(h)),
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o2(0) = Ty (01 (o), 92 (o) JK27P1

fX $0

7 (91 ZL‘O 92 J]O
+ C’g{ 202(zo) 22 JKQ
(5) fX IO 0,p2

5. Bandwidth selection

The semiparametric procedure in Section involves the choice of a
bandwidth parameter. Similarly, the nonparametric approach, briefly re-
viewed in Section [ needs a bandwidth choice (see Section [S1.2). Thanks
to the asymptotic theory established in Section [ for both estimation ap-
proaches, we are able to study this bandwidth selection issue. In this section
we propose practical bandwidth selectors. The finite-sample performance of
the proposed semiparametric procedure, including that of the data-driven
bandwidth selectors of this section, is investigated in a simulation study in
Section of the Supplementary Material.

A standard way to obtain theoretical optimal local (respectively global)
bandwidths is by looking at an asymptotic expression for the Mean Squared
Error (respectively the Mean Integrated Squared Error) of an estimator 6(-)
for a target quantity 6(-), defined as respectively MSE(g(xO)) = E(a(xo) —
9(330))2 and E{ { (GA(Q:) = 9(x))2w(a:)dx}, with w(-) a given weight function.
Since the Mean Squared Error of an estimator can be decomposed into the
squared bias and the variance, an asymptotic expression for the former is
obtained by squaring an asymptotic expression of the bias and adding an
asymptotic expression for the variance. An asymptotic expression for the
Mean Integrated Squared Error is obtained by considering weighted inte-
grated versions of the latter asymptotic expression.

Since there are two unknown functions 6;(-) and 65(-) the local (re-
spectively global) performance of the estimation method is measured via
MSE(§1 (z0)) + MSE(@Q(SL’())) (respectively the weighted integral version of
this).

5.1. Theoretical optimal bandwidths

Using the asymptotic expressions for bias and variance provided in The-
orem restricting to p; = py = p, we get to the following asymptotic
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expression of the MSE, denoted by AMSE, for estimation of the vth deriva-
tive of the two functions of interest, evaluated in an interior point z,

AMSE{BS (o), 05 (o)}

1 . B )
- m [111 (01(x0), 02(x0)) + Loy (01(z0), Qg(xo))] JKu,p(u)dU

» ) ) 2 2 9(p+1)($0) 2
—v+ + r
+hP {Jul’ K%p(u)du} TZ; TSN

Working with weighted integrated squared bias and variance and mini-
mization of the expression with respect to h leads to an asymptotic optimal
global bandwidth given by

3 75 (01 (0), oo w(a) (e |
RAMSE — €, (K) | — n"ws, (23)

a,opt SZ{ p+1) )}Qw(x)dx

where the elements for the Fisher information are in (17)), and where

{(p+ D220+ 1) { K2 (u)du ]2;*3
2(p+1—v) {SUPHKW) du} '

o |

The constants C, ,(K') are easily calculated, and for some kernels K are listed
in Table 3.2 in [2] (p. 67).

When the 60(-) is known, and hence the criterion for choosing an opti-
mal bandwidth is reduced to MSE (51 (xo)), the asymptotic local and global
bandwidths are

_1
2p+3

exp (205(xo)) !
2a(1 — a)y fx(xo) {9§p+1)(x0)}

hAMSE (1) = €, (K) n" s, (24)

a,0pt

and  HAMISE _ 0 (K) §exp (265(2)) W(l’)/fxgx)dx .
2a(1 — o) § {0?’“)(91;)} w(z)dx
(25)
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The asymptotically optimal bandwidths depends on unknown quantities
such as the design density fx(-), the function 65(-) and the derivative function
oF H)(-); (r € {1,2}). We therefore next discuss practical bandwidth selection
procedures.

5.2. Data-driven bandwidth selection
5.2.1. Rule of thumb bandwidth selector

The optimal bandwidth depends on the unknown functions fx(-),
05(+) and 97(?“)(-); (r € {1,2}). In mean regression, [I4] proposed a rule of
thumb for bandwidth selection. We adopt a similar procedure here. We start
by estimating parametrically 6,(z) by fitting globally a polynomial of order
p + 3. The resulting parametric fit is denoted as GVT (x) = 57“0 + énlx +---+
5T(p+3)xp+3. Taking w(z) = fx(x)wy(z) for some specific function wy in (23)),
and substituting the parametric pilot estimates 51 and 52 into (23)), we obtain
the following expression

oK) [ — a
§3 T @)] woo) ()
) {exp (252(36)100(36)6136) . §wo(z)dx o I

2@(1 — Oé)’}/l 2'}/3 —1

< 2
The quantity { {0,(}7“)(:6)} wo(z) fx (x)dz can be estimated by
n - 2 ~
nty {0§p+1)(Xi)} wo(X;). The term {exp (282(x)) wo(x)dz is approxi-
i=1

mated by 0y the average of 0 (x;) over the number of grid points, multiplied
with §wo(x)dz. All together this leads to the following rule of thumb (ROT)
bandwidth selector

1
2p+3
e (2h) Juo(x)dz
20(1 —a)y 293 —1

hBOT = Cv,p(K)
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5.2.2. Cross-validation bandwidth selector

An alternative approach is to rely on cross-validation. A cross-validated
bandwidth is obtained via

}ALSV = alrg maXZln fY|X,a (Yi§ 5[1_i] (Xi), gg—z‘] (Xz)|Xz)
h>0 P

where gL (X;) and gL (X;) are the estimators for, respectively 6;(X;) and
6>(X;) based on the sample without the ith observation (X;,Y;).

5.2.3. Quantile-Mean bandwidth selector

Here we restrict to the case that 0y(z) is known for all . Another way
of obtaining a bandwidth selector is by linking the approximated asymptot-
ically optimal bandwidth for quantile curve and mean curve estimation (i.e.
estimation of E(Y | X = x)).

For local polynomial estimation of the conditional mean E(Y | X) the
local and global theoretical optimal bandwidths are given by (see [2] [pp.
67-68])

a3 (20)

{m(p+1)(gg0)}2fx($o)] no

hanean(20) = Cop(K) [ (26)

_ Jo
imean = Cop(K) lg{m (x }Qw(x)dx

where 02(zg) is the conditional variance of Y given X = z4. From and
(26)), we obtain that

hg\%ﬁE(xo):[ ! ] m*) ) W[exp@(xo))]?pﬂs
hmean<x0) 20{(1 - 05)71 0§p+1) (Io) O-z (ZL‘Q)

(27)
For the conditional density as in (10) we know that

exp (205(x0))

o2(z0) = Var(Y|X = z) = (1~ ) [(1 = 20)* (2 — p3) + (1 — @) pia],
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where 11, = 2 s" f(s)ds (r € {1,2}). Therefore, we set,

exp (205(w0)) a?(1 — a)?
o2 (r) (1= 20)(nz — pd) + a(l = )pio’ (28)

We then make the rough approximation that the (p + 1)th derivative of the

mean and of the quantile curves are equal, i.e. m®*+1(z) = 9§p+1)(x0). From

(27) and we find

PANSE (30) [ 1 ] l 0?(1 - a)? ]
2a(1 — a)n (1 —20) (o — p3) + (1l — a)pe

hmean (IO)

:[ a(l —a) ]21’1-*3
2 {(1 = 20)2(p2 — 1) + (1 — @) pio} '

This then leads to the optimal local and global bandwidths

a(l — a) 43
291 {(L = 20) (2 — ) + (1 = a)#z}] (29)

1
hQM t hmean [ a(l — a) ] o
wop 2{(1 — 2a)%(p2 — pf) + a(l — a)ua} ’

in which we replace hpean(o) O Amean by a good data-driven (local or global)
bandwidth selector for mean regression estimation. We refer to the resulting
selector as a Quantile-Mean (QM) bandwidth selector.

In and we can use any available good performing data-driven
bandwidth selectors for mean regression. For example, we can use the Plug-
in bandwidth selector or the Cross Validation bandwidth selector that are
available in the R package locpol.

hg,l(\)/[pt(x()) = hmean(xO) [

(30)

6. Estimation of the index parameter/function

In the previous sections the index-parameter o was considered to be
known and fixed. However, the proposed methodology in Section re-
mains valid when (i) a is constant but unknown; and (ii) a changes with
the covariate value, i.e. a(x). In these cases we need to estimate a or a(x).
Obviously, when we know that « is constant, we should exploit this in the
estimation procedure. We discuss these estimation tasks in respectively Sec-

tions [6.1] and [6.2]
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6.1. Estimation of a constant but unknown
A first estimator for the index parameter « is

1 Ngrid
aw - a(zy), (1)
Ngrid j=1
where, for a fixed point z; in the grid {z1,..., 2y}, the estimator a(x;) is

obtained by maximizing the local kernel-weighted conditional log-likelihood

n

Lo(a, 6,000, x;) Z (X7, (X9 )70y Y (X — a;),  (32)

with respect to (a, 61, 60). Herein X(J) (1, X; —xj, ..., (Xi — ;)P ) We
refer to this estimation method as Method 1, and the estimator in as
ath).

A second natural estimator for « is as follows. Based on data (Y7, X3), ...,
(Y., X,) obtain a nonparametric estimator for the mean regression function
m(z) = E(Y | X = z), for example by using a local linear fit. Using the
nonparametric estimator m for the mean function, we form the residuals
Y; — m(X;). Since the effect of the covariate is reduced by subtracting the
estimated mean function, we can pretend to be in an unconditional (non-
regression) setting and estimate the index-parameter via maximum likelihood
estimation (as in [8]) We denote the resulting estimator by @(?, and refer to
this estimation method as Method 2.

An alternative to the second method is to consider a nonparametric es-
timator of the median of Y given X = z, denoted by ¢o5(x). Denoting this
nonparametric estimator by ¢\t (z), we obtain the residuals ¥; — gt (X;) and
based on these pseudo observations, we estimate « using maximum likelihood
estimation (in an unconditional setting). We denote this estimator by a®,
and refer to the estimation method as Method 3.

In Section we investigate the finite-sample performance of these three
estimation methods. It is important to first make some remarks about the
methods. A first important observation is that Methods 2 and 3 in fact do
not exploit the parametric setting of model , whereas this is done with
Method 1. We therefore expect Method 1 to be more efficient. Methods 2 and
3 involve a bandwidth parameter for the nonparametric mean and median
estimation part. For these bandwidths one can use data-driven bandwidths
that are available in the literature and in software. For Method 1 we would
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need a bandwidth in the local kernel-weighted conditional log-likelihood.
Here no data-driven bandwidth selection method is available yet. Also the
maximization problem in involves now optimization over (p; + ps + 3)
parameters, which is one parameter more than in case « is known. Hence we
expect a higher computational cost for Method 1.

6.2. Estimation of the unknown function a(x)

When nothing is know about how the level of asymmetry of a distribu-
tion is affected by the covariate, it is advised to start by estimating a(x)
nonparametrically. Since a(z) € (0,1) a one-to-one transformation is needed
before a local approximation of the function can be considered. A natu-
ral transformation is #3(x) = In(a(z)/(1 — a(x))), which takes values in R.
Extending the framework of Section [3.2] is then achieved by using a Taylor
approximation for 05(zg), and adapting the local log-likelihood function in
to the local kernel-weighted conditional log-likelihood

92,X-T 93;Yi)Kh(Xi—33o)> (33)

%,P1 1,02 ,P3

L,(01,05,05; 1, 20) = > U(X], 01, X]
=1

where X, = (1,(X; — o), , (Xi — 20)P)T, 6, = (0,0, ,0,,,)" with
(v)
0, = L0, 0,1,...,p(r=1,2,3).

v!

Maximizing with respect to (61, 05, 65) gives the vector of estimators
(61(x0), 02(x0), 03(20)) = ((910(1’0)7 oo O1py (20)) 7 (B20(20) -, Oy (w0)) "

(Bs0(x0), - . ., O3y, (xo))T). For a given point xg, we have

exp|0s(z0)]

aw) = 77 oxp[s(z0)]

and the estimated Sth quantile curve at a point xq is
03(w0) = Bi(2) + exp {Bs(2) } - Cagan (8), (34)
as opposed to ((11)).

As can be seen from Section [7.3|the methodology performs very well also
in this setting of an unknown function a(x).
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7. Simulation study

In this simulation study we investigate several aspects of the finite-sample
performance of the proposed semiparametric methodology, including

(i) the quality of the data-driven bandwidth selectors in Section ;

)
(ii) performance under miss-specification of the asymmetric model;
(ili) effect of estimation of the index-parameter «;

)

(iv) performance of the semiparametric estimator gz(z) in (11)), including a
comparison with nonparametric local linear quantile estimator.

Items (ii) and (iv) are discussed in Section[7.2] whereas Section[7.3]deals with
item (iii). Results regarding item (i) and some further simulation results can
be found in Section [S3] of the Supplementary Material. See also Section [7.4]

7.1. Simulation models, details of implementation and performance criteria

We consider a regression model
Y =6,(X)+0.1¢, (35)

where € has an asymmetric density fx . belonging to the family which is
of a standard type, i.e. with ; = 65 = 0. Note that in simulation model
Y given X = x has density of the form (10)) with 6;(x) = In(0.1) = —2.3026,
is a known constant. Hence in this simulation study we focus only on the
estimation of 6, (-). The design density is: X ~ U(—2,2). For the error ¢ we
consider two cases: (a) an asymmetric normal distribution (AND) and (b)
asymmetric Laplace distribution (ALaD). For the unknown function 6;(x),
we considered two examples: 6;(z) = z + 2¢7 1% and 6;(z) = sin(z?) +
z 4 2¢71%°  In the first example the function 6;(z) is a linear function
with a superimposed bump, whereas in the second example the linear part
is replaced by a more variable sinus function. For brevity we mainly report
on results for the second example. Results for the first example lead to
similar conclusions. In all sections, with exception of Section the index-

parameter « is fixed (known) and equals o = 0.25.

1 2

1
e 2%

—2,2].
The number of grid points on the interval [—2, 2] for which we obtain 6, (z) is

In the estimation procedures we use the Gaussian kernel K (u) =

I

5

—

take p; = 1 in the local fitting part, and w the indicator function on

)
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101. We draw 100 samples of size n = 100 from each simulation model. For
each sample we obtain the estimate of 0;(-), using the semiparametric pro-
cedure, by considering a conditional density 7 with f a standard normal
density, as well as f a standard symmetric Laplace density. Note that when
the model is considered with ¢ distributed according to an AND (respectively
ALad) density, and we use in the estimation method a conditional density
with f a symmetric Laplace density (respectively a normal density), this al-
lows us to investigate the impact of miss-specifying the parametric model in
the semiparametric estimation procedure.

To assess the quality of the estimation, for each method, we calculate the
squared error for each grid point (in {zy,..., 7, }, with ngiq = 101) and
sum all squared errors:

Ngrid

AISE = ) (u(ay) - el(xj))2, (36)

of which the average (across samples) is a finite-sample approximation of the
theoretical mean integrated squared error.

The semiparametric method of Section [3|is implemented in the R package
QBAsyDist [9].

7.2. Performance of the estimators, including under model miss-specification

For o known we use the data driven-bandwidth of Section [£5.2.3l For each
simulated sample, hyean is substituted by the Plug-in bandwidth selector for
mean regression estimation (using the R package locpol). This results into
estimated (data-driven) optimal bandwidths ?LS}X[LELD and ?LSXND.

In Figures [2(a) and 2b) we present the estimates for the Sth quantile
curves (means over all simulations), for 8 = (0.10,0.90). Figure 2(a) (re-
spectively Figure 2(b)) refers to the case that the error distribution is AND
(respectively ALaD). It is seen that all estimated conditional quantile curves
under AND and ALaD (estimation) models are parallel, which was expected
due to the constant #,. On the contrary, the nonparametrically estimated
conditional quantile curves are not parallel (and might even cross each other).

The mean and standard error of the AISE-values are presented in Table[T]
In each column the smallest mean AISE-value is indicted in bold. As can be
seen, all AISE averages are smallest for the semiparametric method, provided
the chosen estimation reference model is the correct one. Note however that
even if the estimation model is wrongly specified, the semiparametric method
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—— true Bth quantile curve of AND

—— estimated Bth quantile curve by NP
7/ —— estimated Bth quantile curve by ALaD
¥ —— estimated Pth quantile curve by AND
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—— estimated Bth quantile curve by NP
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Figure 2: Example 2. True f = (0.10,0.90)th quantile functions of (a) AND with
a = 0.25; (b) ALaD with a = 0.25, and its estimates using semiparametric ALaD and
AND conditional densities and nonparametric approach.

Table 1: Example 2: Mean (standard error) of AISE-values across simulations for
B8 = (0.10,0.25,0.50,0.75,0.90). Abbreviations: AND using f is a standard normal den-
sity; ALaD: using f is a symmetric Laplace density; Nonp.: fully nonparametric quantile
estimation.

Asymmetric Normal Error (AND)

B8 0.10 0.25 0.50 0.75 0.90
AND  1.7476 (0.7043)  1.7476 (0.7043) 1.7476 (0.7043) 1.7476 (0.7043)  1.7476 (0.7043)
ALaD 1.9681 (0.7152) 1.9986 (0.7425) 1.9672 (0.7152) 2.4944 (0.9375) 7.1149 (1.7256)
Nonp.  2.5077 (0.9470)  1.9542 (0.7544)  2.2638 (0.7403)  3.4024 (1.0607)  5.3157 (1.4564)

Asymmetric Laplace Error (ALaD)
AND 27357 (1.4162)  2.7134 (1.4061)  2.7368 (1.4164)  2.9210 (1.4249)  6.7044 (1.9965)
ALaD  2.6904 (1.4055) 2.6904 (1.4055) 2.6904 (1.4055) 2.6904 (1.4055) 2.6904 (1.4055)
Nonp.  3.9767 (2.0488)  2.6904 (1.4055)  3.6076 (1.8066)  8.4810 (4.1164) 17.4914 (6.8411)

often still outperforms the nonparametric method. This shows thus a certain
robustness against model miss-specification. Figures [§(a) and [3(b) depict
boxplots of the AISE values, from which it is clearly seen that the fully
nonparametric estimation procedure has larger mean AISE-values and high
variability compared to the semiparametric methods (even under model miss-
specification).
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Figure 3: Example 2. Boxplot of AISE-values for estimated (a) 10% conditional quantile
functions, for each; (b) 90% conditional quantile functions, for each.

7.3. Estimation of the index-parameter o

7.3.1. Simulation results for the case « is constant and unknown

We now include estimation of o in our simulations, applying the methods
exposed in Section [6.1} For simplicity, we here consider a fixed bandwidth
parameter h. We considered three values for h which are close to the theoret-
ical optimal values of h and the average values of the data-driven bandwidths
obtained in Section [7.2] See also Table [S.1]in the Supplementary Material.

We consider regression model with € an Asymmetric Normal dis-
tribution (AND) with a = 0.25. Our simulation results are based on the
same 100 samples of size n = 100 as in Section [7.2] We consider two
values for 3, namely 5 = {0.25,0.90}, and three fixed bandwidth values
h ={0.075,0.090,0.095}. The simulation results for h = 0.090 are presented
in Table [2| and these for other bandwidth values can be found in Table
in Section of the Supplementary Material. Tables [2| and list the
mean and standard error of the AISE-values for estimation of #,(-), when
relying on one of the three methods for estimating « (indicated in column
1). Again, we consider the log-likelihood based on the true AND model, as
well as that based on the miss-specified ALaD model. From Tables [2] and
it can be seen that using Method 1 for estimation of « leads to the smallest
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mean AISE-values for estimation of #;(-). When comparing the results, for
Example 2, provided in Tables 2] and [T} it can be seen that the estimation of
a has only a small effect on the AISE-values.

Table 2: Example 2 with Asymmetric Normal Error: Mean (standard error) of AISE-
values based on 100 simulations, for 8 = (0.25,0.90). Using three different methods to
estimate a : @9 (Method j), j = 1,2, 3.

Bandwidth h = 0.090

Example 1 Example 2

Method S 0.25 0.9 0.25 0.9
AND  1.9541 (0.7455) 2.9321 (1.7002) 1.6790 (0.7071) 1.8029 (0.7589)

1 ALaD 2.8595 (1.4388) 3.1442 (2.0296) 2.8586 (1.4712) 4.2914 (1.5169)
AND  2.3858 (1.0460) 5.1145 (4.2681) 2.0427 (0.7601) 3.3649 (1.6695)

2 ALaD 3.0394 (1.8936) 7.2960 (5.0737) 3.5570 (1.8193) 9.5770 (2.8737)

3 AND  1.9256 (0.7659) 3.0923 (3.5634) 1.9368 (0.7349) 2.9227 (0.9309)
ALaD 2.8890 (1.6768) 5.3327 (2.5925) 2.9120 (1.4572) 5.8714 (2.0696)

Figure {4 presents boxplots of the AISE-values for estimation of #;(-), in
the left panel for Example 1, and in the right panel for Example 2. The
boxplots confirm the conclusions from Tables 2] and [S.2] For both examples,
it is clearly seen that the smallest variation is found when using Method 1.
The variations of AISE-values for estimation of ;(-), are reasonably close
when using either Method 1 or Method 3 (to estimate «).

For looking in more detail into the quality of estimation of the index-
parameter «, we present in Figure[§|boxplots of the ASE-values for estimation
of a: ASE(aV)) = (&) — a)? for Methods 1-—3. It is seen that when using
Method 1 for estimating « the resulting mean and variation of the ASE-
values are smallest among the three methods (Methods 1—3). This was to
be expected since only Method 1 exploits the parametric structure of model
. The highest variation is observed when using Method 2 to estimate the
index-parameter o.. These conclusions hold for both simulation examples.

In Section in the Supplementary Material we provide in Table
the average computing time for estimation of ;(-) when using the different
methods for estimating a. As can be observed the computational cost is up
to about a factor 4 higher than when using Methods 2 or 3. This is not
surprising since the optimization problem involved has to be done for one
parameter more, and the optimization problem needs to be solved for a grid

32



T T T T T T
Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

(a) (b)

Figure 4: Examples 1 and 2 with Asymmetric Normal Error and o = 0.25: Boxplots of
AISE values for estimation of 6, (-), for = 0.25, using bandwidth A = 0.090 and three
different methods to estimate a: @) (Method j), j = 1,2, 3. Results for (a) Example 1;
and (b) Example 2.

of z;-values.

7.8.2. Simulation results for the case of an unknown function o(z)

We next investigate the finite-sample performance of the method de-
scribed in Section [6.2l Therefore, we consider an extension of Example 2
with the constant 6y and « in Example 2 replaced by

61-‘,-320

O(x) =1-050 =152 and  alr) = ;g

(37)
We use a cross-validated bandwidth A€V for estimating 6; (x), O2(x) and a(x),
and subsequently the quantile function gs(z).

We simulated 100 samples for the simulation model in this extended Ex-
ample 2, and this for sample sizes n = 100, and n = 200. We report on
the quality of estimation of 6,(-), 62(-), a(-) and ¢s(-) using an AISE-type
criterion adapted to each of these target functions. Table |3| presents
mean and standard errors of the AISE-values for estimation of pu(-) = 6;(-),
o(-) = exp{f2(-)} and «(-). Table [3| summarizes the AISE-values for estima-
tion of the quantile function gs(-), for five values of 3. Table [3|also allows, to
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Figure 5: Examples 1 and 2 with Asymmetric Normal Error and o = 0.25: Estimates of
« based on 100 simulations for fixed bandwidth h = 0.090, using three different methods:
al) (Method j), j = 1,2, 3. Results for (a) Example 1; and (b) Example 2.

a certain extent, the see the effect when having to estimate three unknown
functions (0;(z), O2(x) and 05(z)), instead of one function (6, (z)). The func-
tion 61 (x) = p(z) is the same as in Example 2. Note that the AISE-values for
estimation of 0y (x) are only slightly higher than in Table . Since estimation
of the quantile function (see (34)) relies on estimation of 6;(z), f2(z) and
03(x), the estimation errors are also higher in Table [} Tables [3] and [4] also
show the effect of the sample size on the finite-sample performance.

7.4. Further simulation results

In Section in the Supplementary Material we investigate the quality
of the data-driven bandwidth selector discussed in Section £.2.3l The main
finding is: although the data-driven Quantile-Mean based bandwidth selector
is only a rough bandwidth selector, and tends to be larger than the theoretical
optimal bandwidth, it overall produces good quality (quantile) estimators.
Herein the quality of an estimator is measured according to a criterion that
approximates the mean integrated squared error. See (36). In Section
we also present estimated quantiles curves together with confidence bands.
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Table 3: Extended Example 2 ((37))): Mean (standard error) of AISE-values for estimation
of u(+), ¢(-) and «(+). Abbreviations: AND using f is a standard normal density and ALaD:
using f is a symmetric Laplace density. Results are for sample sizes n = 100 and n = 200.

Asymmetric Normal Distribution (AND)

n u() () a(-)
AND 100 1.9591 (1.8421) 1.1251 (0.4732) 0.0452 (0.0412)
200 1.6231 (1.2421) 1.0125 (0.3455) 0.0345 (0.0381)
ALaD 100 2.0140 (2.0214) 1.5498 (0.5155) 0.0421 (0.0515)
200 1.7583 (1.1523) 1.3242 (0.4215) 0.0312 (0.0318)
Asymmetric Laplace Distribution (ALD)
AND 100 2.1256 (1.9957) 1.2520 (0.5153) 0.0561 (0.0414)
200 1.8453 (1.1245) 1.0245 (0.3215) 0.0351 (0.0341)
ALaD 100 1.8759 (1.4683) 1.1995 (0.4210) 0.0486 (0.0401)
200 1.4125 (1.0065) 1.0152 (0.3154) 0.0394 (0.0315)

Table 4: Extended Example 2 ((37))): Mean (standard error) of AISE-values for estimation
of gp(+) across simulations for § = (0.10, 0.25,0.50,0.75,0.90). Abbreviations: AND using
f is a standard normal density; ALaD: using f is a symmetric Laplace density; Nonp.:
fully nonparametric quantile estimation. Results on the first row are for n = 100, on the
second row for n = 200.

Asymmetric Normal Error (AND)

B8 0.10 0.25 0.50 0.75 0.90
AND 10.7369 (4.7021) 7.7369 (3.6793)  7.6561 (2.2415) 11.1543 (4.1552) 14.4535 (5.5340)
6.8428 (3.0531)  4.5431 (2.7421)  3.1786 (1.7421)  5.2656 (2.1046) 7.1542(3.1765)

ALaD  11.5835 (5.0700)  8.1835 (3.9421) 8.5835 (2.5520) 14.4824 (4.7051)  19.2412 (7.0421)
6.9420 (3.4432) 4.6421 (2.9814)  3.4312 (1.9931) 6.4881 (2.1635) 12.4586 (4.4610)

Nonp  15.2276 (8.8447)  9.4331 (4.2960) 9.9925 (3.1445) 17.4612 (6.1834)  20.4921 (13.3412)
9.5923 (4.2185)  5.1415 (3.2561)  5.1521 (2.9431)  10.1592 (3.9813)  15.1488 (7.1541)

Asymmetric Laplace Error (ALD)

AND  12.2601 (5.8241)  7.3701 (4.3942) 8.1862 (2.5869) 12.4815 (5.1565)  17.7625 (9.1543)
7.4881 (3.8431)  2.8431 (2.1542)  3.1540 (1.6121)  7.1543 (3.1550)  11.1582 (5.1560)

ALaD  11.2172 (5.7481) 8.0291 (4.0281)  6.1876 (2.1492)  10.4982 (4.1875) 14.1434 (7.1574)
7.0164 (3.7462) 2.0598 (2.0482) 2.3614 (1.5421) 5.1698 (2.1065) 8.1681 (4.0450)

Nonp  16.4260 (8.4361)  10.0060 (5.4441) 8.1983 (3.1986)  14.8541 (7.1422)  24.1544 (10.1572)
10.1421 (4.4550) 3.5421 (2.7921)  4.0158 (1.9923) 8.1889 (4.3211) 14.1581 (6.1572)
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8. Real data application: Maximum wind speed in hurricanes

We illustrate the use of the proposed semiparametric estimation method
on two real data examples.

8.1. Mazximum wind speed in hurricanes

The National Hurricane Center (NHC) conducts a post-storm analysis
of each tropical cyclone in its area of responsibility to determine the offi-
cial assessment of the cyclone’s history. These analyses lead to the North
Atlantic hurricane database (or HURDAT). We consider this database of
size n = 764 with response variable (Y) the maximum wind speed of a
tropical hurricane and covariate (X) the year of its occurrence between
1971 to 2017. The winds were measured in knots (where one knot is equal
to 1.15 miles per hour). The data are available for download at https:
//www.nhc.noaa.gov/data/hurdat/ and via the R-package HURDAT. Part of
this dataset (the period 1981-2006) have been analyzed in the literature,
e.g. in [I5, I6]. [I7] fitted a linear quantile regression model and reported
that the strongest tropical cyclones in the North Atlantic basin have gotten
stronger over the last couple of decades. [15] used simultaneous linear quan-
tile regression estimation in a context of semiparametric Bayesian analysis
and reported that not only the upper tail of the intensity distribution but
also the entire range of the intensity distribution has gotten stronger during
the period 1981-2006. [16] used B-spline basis functions in nonparametric
simultaneous quantile regression analysis and found an increasing pattern of
the higher quantile curves during the periods 1987-1994 and 2002-2005 while
a decreasing pattern was found prominent during 1994-2002.

We analyze the available data for the period 1971-2017 using the semi-
parametric method exposed in Section[3.2] A scatter plot of the data together
with a local linear estimate m (using a Gaussian kernel) of the mean function
E(Y | X = z) is in Figure [f] (a). A density estimate based on the residuals
Y; —m(X;) is presented in Figure[6] (b). From this plot, it is clearly seen that
the residual data are right skewed.

For real data, and without any prior knowledge, one does not know
whether it is reasonable to assume « to not depend on the covariate x. We
therefore start our analysis by estimating a(z) as described in Section [6.2]
The results here are for f a Laplace density. The resulting estimated a(x) is
depicted in Figure[7] as a scatterplot of @(X;) and a smooth curve of these.
Some summary statistics describing the variability of a(-) over all values of
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Figure 6: Hurricane data. (a) Scatter plot of the data and estimated mean function m
using local linear fitting; (b) Kernel density estimate based on the residuals Y; — m(X;).

X; are provided in the first row of Table [} From this it appears that it is
reasonable to assume a to be a constant. We thus, in further analysis, work

under this assumption.
o - -5
00 ° o ° ) 27 Smooth curve

Gi(xo)

1850 1900 1950 2000
Year

Figure 7: Hurricane data. Estimated &(z) (smooth curve) together with the estimate a()
assuming « is a constant.

In Section [6.1] we discussed three methods to estimate a. In the second
column of Table [6] we present the estimated values for a for each of the
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Table 5: Hurricane data and Bone density data. Summary statistics for estimated a(x).

Min First Second Mean  Third Max
quartile quartile quartile

Hurricane 0.0979  0.1171  0.1238 0.1338  0.1306 0.1459
Bone Density 0.2848  0.3287  0.3425 0.3556  0.3572 0.4291

three methods. All these values confirm what was already suspected from
Figure [6] (b) (similar figure for Method 3, not presented here): there is a
clear asymmetry present in the residual observations. Following the findings
of Section we use & = 0.1240 in the next steps of our analysis.

Table 6: Hurricane data. The estimated &, the selected distribution and the data-driven
bandwidth values.

Method @ Selected Density P-value AIC-value hEOT — pCV

1 0.1240 Asymm. Laplace 0.8895  7017.427 1.9507 2.0425

2 0.1650 Asymm. Laplace 0.9990 7130.5480 2.1811 2.1130

3 0.1453 Asymm. Laplace 0.9941 7110.4810 1.7203 1.8670

With the estimated « at hand, we seek for finding an appropriate (un-
conditional) asymmetric density to fit to the data. As candidate densities we
consider asymmetric Laplace, normal, Student’s-t and logistic densities (@
with these listed choices for f). For each candidate density we test its appro-
priateness via the Kolmogorov Smirnov goodness-of-fit test (the P-value for
the selected density is given in column 4 of Table @ In the third column of
Table [6] we list the selected density model, when using the specified method
for estimating «. For all methods the same density was selected (among the
four candidate asymmetric densities). For each method we provide for the
selected density the AIC-value of the corresponding likelihood in column 5
of Table [6l

Note that for the selected conditional density, which is an Asymmetric
Laplace density, there is a clear interpretation of the parameter functions
involved. See [§]. Indeed, with « a constant, p(z) is the mode of the condi-
tional density, and the mean and the variance of the conditional density of
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Y given X = z, are

¢(x) [1 - 2a]

&*(z) [1 — 2 + 207]
a(l—a) ‘

a?(1—a)’

E(Y|z) = p(x) + and Var(Y|z) =

(38)
Furthermore we know that the mode () equals the conditional ath quantile
of Y. Using the estimators for «, u(-) and ¢(-) we thus obtain subsequently
estimates for this conditional mean and variance.

For estimating 6;(-) and 6,(-) we take p; = p = 1. For Methods 2 and 3,
we present the values for ?LQROT and }\LSV in columns 6 and 7 of Table |§| For
Method 1, we used as bandwidths just the averages of the bandwidths for
Methods 2 and 3. Using these bandwidths for Method 1 (to estimate a) we
obtain the estimates for 8;(zg) and 5(zo) via (13). An estimate for the Sth
quantile curve gg(xo) is then obtained from ((L1).

Recall that Method 1 resulted in @ = 0.1240. The g = (&, 0.5,0.90,0.95)th
estimated conditional quantile curves gs(-), using the bandwidth ﬁSOT, are
depicted in Figure (b) Recall that for = 0.5 we actually get the estimated
median curve.

Further, we depict in Figure[§(a) the estimated conditional variance func-
tion which is under the selected model, just a rescaling of the estimated
(¢(x))?, as can been seen from (38)). Two estimates of the conditional vari-
ance are shown in Figure (a), using the Rule of Thumb bandwidth and
the cross-validation bandwidth selectors of Section (.2l The two estimates
are almost indistinguishable, and indicate the non-constant and non-linear
pattern of the variance function (and the scale function) over the years. Of
interest is also to note the peak in estimated variance of the maximum wind
speed of hurricanes in the second half of the nineties. This could be linked
with a so-called super El Nino event, which began in the spring months of
1997.

Figure [§(b) presents the estimated 90%th quantile curve, together with
an estimated 95% Bonferroni-type confidence band. Since for obvious rea-
sons the interest mainly goes to hurricanes with very high maximum speeds,
it is most interesting to look at a high quantile, such as the 90%th quan-
tile. For constructing confidence bands we rely on the asymptotic normality
result established in Theorem 4.3l This however also requires to estimate
(asymptotic) bias and variance. There is an overall increasing trend in all
presented quantile curves. However, the signs and intensities of the changes
in maximum wind speed are not constant in the considered time period.
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Figure 8: Hurricane data. (a) Estimated conditional variance of the maximum wind
speed, as a function of years. (b) Estimated 3% conditional quantile curve (using AROT)
for 8 = 0.90, together with 95% Bonferroni-type confidence band.

)

Figure [I[b) shows an increasing pattern of the higher quantile curves during
the periods 1971-1997, 2001-2005 and 2012-2017 while a decreasing pattern
is prominent during 1997-2001 and 2005-2012. These nonlinear patterns
should be further investigated, possibly coupled with other meteorological or
environmental phenomena.

For comparison purpose, we also estimate the quantile functions non-
parametrically. See Section [SI} The performances of the semiparametric
method (using the three methods for estimating «) and nonparametric es-
timators of the quantile curve are evaluated via prediction errors calculated
through a cross-validation method. We split the full sample into a train-
ing set (used for estimation) with approximately 80% of the observations
(i.e. n. = 611), and 20% (i.e. Nprea = n — N = 153) is allocated to a test
set for validation/evaluation. The observations are chosen randomly with-

out replacement. Based on these splitted subsamples, we compute the pre-
TMpred

i . g . i i
dicted error defined as - Zgl ps (Y; — qs(X;)) for all three semiparametric

methods (abbreviated as SP(Method j) in the plots), and the nonparametric
quantile estimator. We repeat this R = 99 times and present the boxplots
of the obtained prediction error values for all methods in Figure [0 It is
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Figure 9: Hurricane data. The prediction error of the 90%th quantile curve obtained by
using semiparametric (SP) and nonparametric (NP) approach.

clearly seen that the predictive performance for the semiparametric method
is better than that of the nonparametric method, no matter which method
for estimation of v was used.

8.2. Real data application: Bone density

We consider a dataset concerning the actual measurements of bone den-
sity (BMD) of n = 485 adolescents. These data were originally reported in
[18], and are for example available via https://web.stanford.edu/~hastie/
ElemStatLearn/datasets/bone.data, and were analysed in e.g. [19]. [20]
used a quadratic programming method for estimating quantiles in a nonpara-
metric quantile regression context.

Measuring the bone mass in children can help to understand the pre-
disposition to suffer from osteoporosis in more advanced age. Osteoporosis
involves the loss and a consequent weakening of the bone tissue and affects
mostly women. Medical research proved that high peak bone density in early
age reduces osteoporosis risk at later age. It is therefore of interest to inves-
tigate how the peak bone mass varies in children and young adults, and in
particular when it achieves its maximal value. The response variable is the
change in spinal bone mineral density value and the covariate the age of the
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Figure 10: Bone Density data. Estimated &(x) (smooth curve) together with the estimate
& assuming « is a constant.

We analyse the data using the semiparametric method of Section (3.2, in
a similar fashion as for the Hurricane data. The estimate &(z) is depicted in
Figure Summary statistics about the values of this estimate are in the
second row of Table [f] Also in this example, it seems reasonable to assume
a constant « in further analysis. The results from the three methods for
estimating «, as discussed in Section [6.1] are presented in Table [7] In our
discussion further we focus on the semiparametric method using Method 1
to estimate a.

Figure (a) shows a scatter plot together with estimated quantile curves.
Note the smaller variability in the data for higher ages. The residual data
Y; — m(X;) (not shown here) are slightly positively skewed, which indicates
that the conditional error distribution is right skewed. This was also reported

in [20].

Table 7: Bone density data. The estimated &, the selected distribution and the data-driven
bandwidth values.

Method & Selected Density P-value AIC-value hROT ROV

1 0.3513 Asymm. Laplace 0.9935 —1772.198 0.6224 0.890

2 0.4101 Asymm. Laplace 0.9990 —1772.198 0.6170 0.873

3 0.3724 Asymm. Laplace 0.9939 —1728.697 0.6277 0.894
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Figure 11: Bone density data. (a) Semiparametrically estimated Sth quantile curves,
using an ALaD density. (b) Estimated 3% conditional quantile curve (using h2°T), for
B = a = 0.3513, together with 95% Bonferroni-type confidence band.

An appropriate asymmetric density for the residual data was found to be
also an asymmetric Laplace density (with an associated P-value of 0.9935 for
the Kolmogorov-Smirnow goodness-of-fit test, and an AIC-value of —1772.198,
smallest amongst all considered asymmetric density models). Fitting an
asymmetric Laplace density to the data, led to the maximum likelihood es-
timator &) = 0.3513. See also Table [7l

Using with f the symmetric Laplace density and o = 0.3513, we
obtain the estimated location and scale function (with p; = ps = 1) from
. For the Rule-of-Thumb bandwidth selector we here use the weight func-
tion wy(z) = Ijg.42555(2), leading to RROT — (.6224. The cross-validation
bandwidth selector for these data is ?LSV = 0.890. The estimated conditional
quantile curves for orders § = (&, 0.50,0.90,0.95), using iALEOT, are presented
in the Figure [La). Note that the estimated quantile curves also clearly
represent the reduced variability for higher ages. The estimated [ quantile
curve, with 8 = 0.3513, together with 95% Bonferroni-type confidence band
is depicted in Figure (b) Recall that this quantile is nothing but the con-
ditional mode of the density. Note that looking at the mode, the peak of
relative change in bone density is appearing around the age of 12-13.
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Figure 12: Bone density data. (a) Estimated conditional variance of the maximum wind
speed, as a function of years. Right panel: Estimated conditional variance of the change in
spinal bone mineral density. (b) The prediction error of the 90%th quantile curve obtained
by using ALaD likelihood and nonparametric approach.

We estimated the function 6,(-), using either the Rule-of-Thumb band-
width selector or the cross-validation bandwidth selector. Based on this
estimate and the estimated value for «, we obtain the estimated conditional
variance via ([38). Figure[12] (a) presents the estimated conditional variance
of change in spinal bone mineral density value, in function of its evolution
with age. Figure (a) reveals the importance of the evolution in the early
teenage years.

The cross-validated prediction error for estimation of the 0.90 quantile
curve, for both the studied semiparametric method and the nonparametric
method, are presented in Figure [12(b). Also here the conclusion is that
the prediction error for the semiparametric method SP (using the various
methods for estimating «/), which better exploits the particular asymmetry
(even if small) present in the data, has a lower estimated prediction error.

9. Further discussion

In this paper we study a semiparametric method to estimate regression
quantiles. The key advantage of the method is that it originates from a
family of asymmetric distributions. Hence asymmetry present in data can
be exploited in this way. Local likelihood techniques are at the core of the
method, which therefore involves a bandwidth parameter. As in all local
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modeling frameworks, the choice of the bandwidth needs to be studied, and
underpinned by theoretical considerations. A starting point hereby is the
study of asymptotic bias and variance, and obtaining optimal bandwidth
parameters by balancing the squared bias and variance of estimators. In
the paper several approaches to a practical bandwidth selector are explored.
One approach is based on a rule of thumb kind of method; and another
approach exploits the link between optimal bandwidths for mean and quantile
estimation. The theoretical derivations in Section [5| eventually focuses on
estimation of p(z), and thus is somewhat limited. It would be of interest
to investigate bandwidth selectors in general, considering in full estimation
of (), ¢(x) and «a(x). Nevertheless, all three practical bandwidth selectors
represented in Section [5| perform, according to our extensive experiences,
quite well.

The semiparametric framework involves the choice of the parametric com-
ponent f (the symmetric reference density). In the real data applications, a
set of candidates for f are considered, and via goodness-of-fit testing and an
AIC-criterion one of these candidate densities is selected as the final paramet-
ric component. It would be of interest to study in detail the model selection
issue that appears here.

The parameter « in the considered framework reflects the amount of
asymmetry present in the data. The semiparametric estimation method can
also deal with the cases that (i) « is constant and unknown, and (ii) «(z) is an
unknown function. This is exposed in Section [6] The asymptotic properties
of the semiparametric estimators are proven so far only for the case that o
is a known constant. Establishing asymptotic theory for the more general
settings would be very interesting (and tedious) and is part of future research.
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SUPPLEMENTARY MATERIAL

to “Semiparametric quantile regression using family of quantile-based
asymmetric densities”

by
Irene Gijbels, Rezaul Karim and Anneleen Verhasselt

This supplement contains the following additional parts:

Section S1: nonparametric local polynomial conditional quantile estimation;

Section S2: proofs of Theorem Lemmas and and of Theorems [4.2] and

Section S3: additional results regarding the simulation study;

Section S4: real data application - bone density data.

S1. Nonparametric conditional quantile estimators

S1.1. Asymptotic results for nonparametric conditional quantile estimators

As mentioned in Remark the local polynomial maximum likelihood estimator 6; (x0)
obtained in under an asymmetric Laplace likelihood and the fully nonparametric estimator
ég(mo) obtained in are identical only for o = 3 due to using an exactly same loss function
ps(-) when the scaling function 6, is constant and known. Following the same lines of proofs
as for Theorem we can thus derive the asymptotic distribution of the fully nonparametric
local pth polynomial estimator @3(xo), and hence subsequently that for the vth derivative of
the Sth conditional quantile function gg(-).

It suffices to consider in our framework the log-likelihood function ¢(u) = —u(8 — I{u < 0))
with ¢ (u) = I[(u < 0) — 5. Assumption (A5) needs to be replaced by

(A5’) The function gg(-) has a (p+ 1)th (respectively (p+ 2)nd) continuous derivative for p odd
(respectively p even).

The mathematical derivation for proving the asymptotic normality result for the fully non-
parametric conditional quantile estimator is similar to the proof of Theorem but now the
log-likelihood function only involves the unknown parameter 63. A main difference in this
setting is in the calculation of , for which now

M(01(2) = Eyx[I(Y < ps(X)) =B X =2]=0

A(bi(@) = iEY\x[ﬁ —IY <u) [ X = 7] = —frix(gs(x) | ).

ou u=qg(x)



This then leads to the following expressions for the crucial matrices

Yoo = (fyix (gs(zo)lwo) fx(20)) Nyp(o)

r,, = (5(1_5)fX(x0))Tpp(x0)
A = L (yix (@s(0)|20) Fx(20)) @poliro).

dl'o

where fy|x (- | z) is the (unknown) conditional density of the response Y given X = z, which is
assumed to be continuous and for which we assume fy|x (gs(z0)|zo) > 0. Theorem states
the asymptotic normal distribution result for the fully nonparametric local polynomial quantile
estimator.

Theorem S1.1. Assume (A5’) and (A6)—(A10) hold. For given xy we have:
(i) fp—wvodd (v=0,...,p), then for n — oo,

~1/2
Vnh2v1 5(1—-6)2 K 1Ldu>
<[fYX (g5(z0)|z0)]” fx (o) J »(1)

(p+1) o
X [QAﬁ,v(xo) — qg]) (m0) — hp_vﬂquT(l)!) {Jup“Kup(u)du} {14 Op(h)}

25 N(0,1);

(ii) If p—wveven (v=0,...,p), then for n — oo,

~1/2
v o) 2 Ky p(u 2du>
<[fY|X (a5(0)|0)]” fx (o) f »()

(p+2)
g5~ (@)
(p+2)! J “
(p+1) d

2 V) s (P @) fxe0) oL
P+ frix (gs(zo)|wo) fx (o) {J Kop(u)d

—UJUPHKULp(u)du ) hPTUT2(] 4 Op(h)}] 2, N(0,1).

X [@m(ﬂfo) - qff) (z0) —

Note that this result extends the result of [I] who established asymptotic results for the
nonparametric local linear Sth conditional quantile estimator. Their results are obtained as a
special case of Theorem by taking p = 1.

Remark S1.1. An advantage of our semiparametric approach (even when taking the Laplace
density), is that it exploits the asymmetry, which is not done in the existing nonparametric
approach (es).



S1.2. Bandwidth selection in nonparametric local polynomaial conditional quantile estimation
Recall that here we only have one target function, namely 6;(-) = gs(-).

S1.2.1. Theoretical optimal bandwidths
Here we use Theorem From this theorem we have asymptotic expressions for bias and
variance of the estimator, from which optimal theoretical local and global bandwidths

5(1 6) ] 2p+3
[Frix (@s(@o)lao)]” {aF ™ (o)} fx (o)

PISE _ (1) [ﬁﬂ ) Slhvixlasta )|$)]_2w(:c)/fx(x)dx] =
,0pt v,p S{q(p+1) }2w< )da:

1

n” % (S.1)

hglt\)/IpStE( 0) = Cv,p(K) [

=

T 2p+3
n epts,

are obtained.

These asymptotically optimal bandwidths depend on unknown quantities: the design den-
sity fx(-), the conditional density fy|x(:|z) and the derivative of the quantile function ¢y’ H)( ).
We next discuss practical bandwidth selectors for the nonparametric local polynomial quantlle
estimator gz(x).

S1.2.2. Data-driven bandwidth selection

Following a similar reasoning as for the Quantile-Mean type of bandwidth selector in Section
we discuss a data-driven bandwidth selection procedure for nonparametric local polynomial
conditional quantile estimation. Such a procedure extends that of [2] for local linear quantile
regression to local polynomial quantile regression estimation, and is a nice side-product of the

asymptotic results provided in Theorem [S1.1].
Using (S.1) and (26), for a local bandwidth selector, we find

Fsop (10) _ [ 51— 5) ] Y [_m<p+1><wo)r”2” .
)|o)]

hmean(xO) O‘Z(ZL‘O) [fy‘X (qB(Io Q[(3p+1)(IO)

As [2] proposed for local linear quantile estimation, we assume that q(p - )(._'E()) and m®*1 ()

are approximately equal. Therefore, we can write the expression of hg‘}(\)/[pstE(a:o) via data-driven

bandwidth selector given by

hQMt 20 = B (0 B(1—p5) 2] 2p+3 | S.2
,0p (o) (o) [Ji(iﬁo) [fY\X (qﬁ(x0)|l’o)] .

in which Apean(o) is to be replaced with a good data-driven bandwidth selector for mean
regression. For the special case that the conditional density if fy|x(-|z) is a member of the
quantile-based family of asymmetric densities, i.e., fy|x(:|z) = fy|x.a(:|2), this further reduces
to

_1

6(1 _ 5) ] 2p+3
412(0){(1 = 2a)2(po — 1) + (1 — ) 2} ’

00 = o)



for the local bandwidth and

o B(1—5) n
hﬂ,opt = hmean [4f2(0) {(1 _ QQ)Q(MQ — /JJ%) + Oé(l — O{)M2}:| )

1

(S.3)

for the global bandwidth.
In case of a general location-scale family of conditional densities fy|x(-|z), we can write
o+ (0) fyx (qs(z0)|z0) = fs(Fg'(B)), where fg and Fg are respectively the cumulative distri-

bution and the density function of S = YU;’ZX)(). Thus (from equation (S.2])) we obtain
pa-p |7

hg}(\)ﬂpt(mo) = hmean(xO) ( - ) 2
[fs(F5(B)]

1

pa-p) |7

and Ao = Tunean — ,
[fs(F5(B)]

Taking fs = ¢ and Fs = ®, respectively the standard normal density and distribution function,
this leads to

 _ BL-p) |7+
"5t hme”[w(@—lw))]?] '

When p = 1 this corresponds to the data-driven bandwidth selector proposed by [2] for local
linear quantile regression.

S2. Proofs of all theoretical results

S2.1. Necessary lemmas

A crucial quantity appearing in Theorem [4.1)is E[W"(x()]. Lemma provides an asymp-
totic expression for E[W"(zy)].

Lemma S2.1. Under the assumptions of Theorem [4.1] the following holds for W™ ()

(i). for 0 < k < p, (with r € {1,2}), an asymptotic mean expression for the kth component
of the mean vector E[W(x¢)] is

0$pr+1) (x())
(pr +1)!

+hpr+2ypr+k+1€rr(IO):| +0(\/ﬁhmin(p1,p2)+5/2)

(E[W; (20)])c = Vi fx (20)Tor (81 (0), (o)) | 1 vy,

0P D () 0P (1) = {x (20)Ter (61(0), 02 (0)) }
(pr +2)! (pr + 1)! Fx(x0)Zr (61(20), 02(20))

where &, (x) =



(ii). the variance-covariance matrix converges to
Cov[W™(z9)] > Ty, as n— oo,
where I, is defined as in ((19).

(iii). the asymptotic distribution:

\/E(Wn(xO) - E[W"(xg)]) Z p1+p2+2(0p1+p2+27 Fxo)a as n — 0.

Lemma [S2.2| provides an asymptotic expression for 3 'E[W;*(z,)] and

¥, AL, X, E[W] ()], which are appearing in the asymptotic distributional result in Theorem

A1l
Lemma S2.2. Under the assumptions of Theorem [1.1] for v = 0,1, ...,p, and r € {1,2}, we
have
1 apr+ay1/2 1 Q(WH)( 0) +1
- n — Pr Pr
(S EW @), = @R T [t ()
2pr+5y1/2 1 +2 P+
Pr _ Pr r
i) ju Ko () S
9(:0r+1)(m )
Pr2p¢ duy ——%
+Ju wpe () (pr +1)!

oA fx (@0) L (01 (0). B2 (0) )}
fx (20) L (01(20), O2(w0))
+0((nh2 min(pmv2)+5)1/2)7

(B2 A ZLEW (@0)])

= (nh2rt3)12 07D (o) ag {Fx (20)Zrw (61 (o), 62 (o)) }

(pr + ].)' fX (xo)Im«(% (l’(]), QQ(IO))
X l‘ |:'U J upr+1Kv71,Pr (U)du + ]% Ju’pr+ler pr( )du

v:

[ a1 K )]

1/2 dzo {fX )Irr(el (mo), 92@0))}
fX($0) rr(el(fEO) 92(1’0))

+(n thr+5) rr(Z0)

1
X — [v JupT”Kv 1 (w)du
+ — Jup”QKpT o (u)du J u’ K, , (u )du] + o (nh*r )12,
The proofs of both lemmas can be found in Section

bt



S52.2. Proof of Theorem

The proof is along the same lines as the proof of the main theorem in [3]. We use the
following notation:

é\ro - 67‘0 1 1
N h é\r . er X;—xg X—x9
0, = vnh (61 ) 1) AR h and Z, = h for r € {1,2}.
W (Brp, = O,) (=) (52)"
(S.4)
Pr . _ ~ _
Then Y, 6,;(X; — o) = 0,(X;, o) + a,0] Z,;, where 0,(X;,z0) is defined in and a, =

i=0
(nh)=12. As@ = (67, 67)T maximizes (13), we have that & = (87, 07)T maximizes 3.7 | (0 (X, x0)+
anOF Z1;,05(X;, 00) + 0,03 Zos; Y))K{(X; — 10)/h} as a function of @ = (87,01)7. We study

the asymptotic behaviour of 0 by using the quadratic approximation lemma described in [4]
(p. 210) applied to the maximization of the normalized function

Oh.ilﬁo

||M:

[ Xu-TO +an0 Z12702(X7,ax0)+an0 Z217 7,)
001X, 70), Bal(Xs, w0); Vi) | (X — o) /).

Note that @ maximizes £, (5 h,xy) with respect to 6. We can easily prove (as in the proof of
Theorem 3.3 in [5]) that under Assumption (A2) the Hessian matrix of £, (8; h, zo) is negative

definite, indicating that £,(8; h,zo) is concave in 8. Note that £,,(8: h, ) is differentiable on
a event with probability 1 (as the derivative of the density with respect to 61 (xy) does not exist
when Y; = 0;(z0), an event with probablity 0).

Using a Taylor approximation of £,,(8; h, zy) around (01(X;, zo), 02(X;, 20)), we find

L,(0;h,x) = anzzm(m,el(xz,xo) 05(X;, 20))07 Z, K {(X; — x0)/h}

i=1r=1
2 n
a
+7n Z Z wrs(Y;a 9 (Xza xO) 92(Xza xo))eTZmHTZSlK{( — [L'[))/h}
i=1r=1s=1
a3 n 2 2 2
VDD D Vi1, 62)0] 2,67 28] Zu K (X, — x) /), (S5)

where [|(01(X;, 20), 02(Xi, 20)) — (01,05)| < an||(8T Z1;, 07 Z1;)| and |.| the Euclidean norm.
Denote A}, = HZ? llpm(Y;,H (XZ,ZL’(]) 0o(X;, 20)) Zi ZLK{(X; — x0)/h}, then the second
term in is §37 32, 07 AL, Further (A7)n = E(AL)u + Op(Var((A7,)u)'?) (for
k=1,...p and | — 1,...,ps) and EA? = 1E(1,,(Y;0:1(X, 20),02(X, 20)) Z, ZT K{(X —
z9)/h). In a similar way as in the proof of Lemma [S2.1 using a Taylor approximation of



Urs(y; 01 (2, 70), 02 (2, 1)) around (0 (z0), f2(z0)) and fx(x) around zg, we find that

(EAZ ) = —[x(@0)Lrs(61(x0), b2(z0) ) Vis1- 2—hi{fx(mo)frs(el(fﬂo)a92(500))}’/k+l—1

dzxg
+o(h).
In a similar way, we find that Var((A?)x) = O(nh) Therefore, using Z,.(61 (), #2(x)) = 0 for
r # s and Assumptions (A7) and(A10), £,(8; h, z) = W"(z O)TB—%BT(ZIO—i—hAwO)g—i—op(h).

Further, we have that £/ (8;h,z0) = W™(zo) — (B4, + hAy,)0 + op(h) and L. (6;h, zy) =
—(X,, + hA,,) + op(h), where the derivatives are w.r.t. 8, and L/, is the gradient vector and

L the Hessian matrix. By the quadratic approximation lemma, we have that 0 = (Egol —

hE Ay X, YW (20) + op(h).

The asymptotic normality result of 6 follows from the asymptotic normality of W™ (zy), in
Lemma [S2.1k for n — o

~ ~ T
(22 T B2) V2V (Hy, (81(20) — 01(20)), Hy (9:(w0) — 02(x0)) )
- (E;ol - hE;olAiozajol)E[Wn(l‘O)]} 2’ P1+p2+2(0p1+p2+27 Ip1+p2+2)'

S$2.8. Proof of Lemma

The proof of this lemma is inspired by the proof of Lemma 2 in [3].
(i). From the definition of W™ (z,) with components W () given in (21)), we write W™ (z)
as a sum of independent random vectors:
()

where Y* = ,.(Y;; 01(Xy, 20), 02( Xy, 20)) K {(Xi — 20)/h} Z,; for r € {1,2}, and Z,; is as in (S.4).
Therefore we have that the k&th component of EY ! equals

B = [ [0t ) e mo) Kl = i) (52 fertede dy
[t —am (F52) " s { [ 608810000 Bz ol  do
~ | Kt - o (%

= th(z)zkle (20 + h2) M (01 (zo + hz, x0), 02(x0 + hz, 10))dz.

O)k—1 Fx (@) (01(2, 20), 02(2, 20) ) d

We use a first order Taylor approximation for M\ (01(20 + hz, 1), O5(x0 + hz, 20)) around
(01(x0, 70), 02(w0, 70)) = (61(20),02(70)), a (constant) Taylor approximation of B
Ars(01(xo+hz, x0),02(x0+hz, x0)) (for s € {1,2}), a Taylor approximation of ,.(z) = 0, (x, x¢)+



(pr+2)
w(w — x0)P" T2 + o(hPr T2, and Assumption (A7):

9£p7»+1)(mo) (Z’ . I‘o)pr—i_l +

(pr+1)! (pr+2)!
p— — 2 — —
M(01(xo + hz,x0),02(x0 + hz,20)) = — Z Ars(01(x0 + hz, ), 02(x0 + hz, x0))
s=1
g(pr+1)($0) e(pr+2)(x )
r ha)Prtl 4 7 O (hy)Prt2
: ( iy Ty ()
_i_o(hmin(Pl,Pz)JF?).
Therefore
2 — —
E[(Y.)] = — Z JK(z)zkle(xo + hz)\s(01(z0 + hz,x0),02(z0 + hz, x0))

(prJFl) (pr+2)
y (97(« +(1:E)0) hpr+2 pr+1 + 9( +(21;0) hp,~+3zpr+2) dz + O(hmin(pl’p2)+3).
DPr DPr

Finally using a first order Taylor expansion for fx(xg + hz)A, (51_ (zo + hz,20), 02 (z0 + hz, 20))
around zg, the fact that Z.,(01(z0),02(z0)) = —A, (Ql(xo,xo) 7 (xo,xo)), and Assumptions
(A7)-(A9) we find that

2 (Br1) (0
Z ( s +(1)!)fX(IO)I“(91(IO)=92($0))Vm+k

+h’pr+3fX(:E0) rs(el (xO)a 92(x0))€rs($0)ypr+k+l) + O(hmin(p1,p2)+3),

and since Z,4(01(xo), 02(x0)) = 0 for r # s

Q(WH)(IO)

(pr + 1)!
+hpr+2€rr(x0>ypr+k+1> + o(y/nhminprP2)¥5/2)

pr+k)

E[(W)l = Vi fx(w0) T (61 (w0), 8awo) (h

11). € covarliance between (S component o To) an € component o
(ii). Th iance between the kth component of W (zo) and the Ith component of

Wi (zg) (for k = 1,...,p, and | = 1,...,ps) can be calculated in a similar way, using
E[(W™),] = O(y/nhPr*32) a (constant order) Taylor approximation of



Fx (@) (01 (2, 20), 02 (2, 20) )0 (01 (2, 20), B2, 20)) and Assumptions (AT)-(A9):
Cov[W,j.(z0) Wi (20)]
] e

S

= E[W i (x0) Wi (20)] — [WZZ(%)]E[WQ (o)]
L N * * 2min(p1,p2)+3
,mE<Z¥xuannJ44Xh e )

= LB (V¥ + O(h2 )

= % war(gl(x, fﬂo),gg(l', xo)) ws(gl(m’ xo),§2($, xo))KQ{(l' . $0)/h}

) e 2 min( Y+3
% ( h ) fX,Y(I,y)dl‘ dy + O(h P1p2)+3)

= | [ 0@t Bt o)) B, 20). B, )

T — X

k2 .
x K*{(x — x0)/h} ( 5 ) Fx (@) fyix (y|z)dy dz + O(R?™nerp2)t3)

e (20) o (0 (), Ba(0)) f K2(2)4*1=2dz + O(h)
= (Tz)r + O(h).

Therefore F;01/2COV[W”(SUO)] — L, i pot2, @8 N — 00.
(iii). In a similar way as in the proof of Lemma 1 in [3], by using a Cramer-Wold device
and by checking Lyapunov’s condition, we find that for n — oo,

n n D
1/2\F (W (ZL‘O) E[W (‘TO)]) - P1+P2+2(0p1+172+27IP1+P2+2)'

S2.4. Proof of Lemma

The proof of this lemma is inspired by the proof of Lemma 2 in [3].

From the Fisher information matrix in (17): Zi2(61(x0), 02(20)) = Zo1(61(20), 62(x0)) = 0
implies [Z7(01 (o), 02(x0))]rr = 71 (01(20), 02(0)) for r € {1,2}. Therefore, X,,, A, and Ty,
are block diagonal matrices. Since, the inverse of a block diagonal matrix is again a block
diagonal matrix, we obtain,

-1 _ ( (B 0 ) with (3;1),, = Iﬁl(el($0)792($0))N*1 (x0),

o 0 (2;01)22 Fx (o) prpr
-1 -1 () Ay X, 0
g Aao Xy = ( 0 (SALS e

AL (@0 Lo (01 (20), Ba(0))}
fx(ffo)zfr(el(arg),@(g;o)) Nprpr

9

with (S71A,, 270, (%0) Qprp, (T0) N, 1 (20).



We now want to find an asymptotic expression for the (v + 1)th (v = 0,1, ..., p,) component
of X' E[W] ()] and X, ' A, 3, 'E[W,"(20)]. It is noted that (Qp, . (€0))ks = (Np,p, (20))ki+1
(k=1,..,p;1=0,1,...). In the proof of Lemma 2 of [3], it has been shown that

(Np:;;r (20)Qp,p, (:zjo)Np:]l?r (370)) (v+1),j

pr+1

— (N ), + { S (N o), } (N2 o) oy

k=1

for v =1,...,p, and that

pr+1
(Np_?"llgr (xO)Qp,-p,- (:E[))Np_?”ll?r (xo))l,j = { Z (Np_rllf)r (xo))l,k Vp7'+k} (NZ;ZIW (xO))(prJrl),j :

k=1

Lemma 3 of [3] further states that, for I = 0,1, ...,

pr+1
pr+l+1
et = ot 33N b (S.6)

Using ([S.6)), we find that, for v = 0, ..., p,,

pr+1

Z (Nl;llar (:L‘O)Qprpr- (xO)NZ;;l)r (I’O)) (U+1),j Vpr"rj

J=1

1
- oD f Ky (u)du

By using Lemma [S2.1] we can easily find an asymptotic expression of the (v + 1)th component
of E;()IE[WTH(xO)] (fOl" v=0,1,...,p; 7€ {1, 2}), which is

1
o | e ) [

(3., E[W, (20)]),,,
T2 (01(xo), B2 (o)) RN )
Fx (o) kZ (N (70)) 1y (BIW 0)])
s (pr+1)
07" X
i 2y (N3 (50) [h”“”pr%w(lﬁ) + hpr”vpﬁkﬂfrr(xo)]

+ O((nthm(pl p2)+5)1/2)
6(pT+1) 1 1 9&?7‘4‘2)
=vVvn hpTJrl (xO) JupTHKv pr(u)du + hpTJrQ— JupTHKv pr( )du —(IO)
(pr +1)! 0! ’ v! (pr +2)!

O (o) 75 fx (20) Ly (01 (0), B2(0)) }
(pr + 1! fx(@0)Zrr (01(20), O2(20))

}] + 0((nh2 min(p1,p2)+5)1/2

10



e(pr+2) (5170)

( hgpr+3)1/2 MJUpT—HK (u)du+(nh2pr+5)1/21 Jupr‘*‘?[( ( )du 0
ol (pr+1)! o v! o (r +2)!

_— 07 (w0) gao L x (00) L (01 (o), 02(0)) } 2 min(pyp2) 451 1/2
+ Ju K, p, (u)du Pt 1) Fx (@) (B (20). s (20)) }] + o (nh?min(PLp2)+5)1/2.

Similarly, the asymptotic expression of the (v + 1)th component of 3 1A, X E[W(z)]
(for v =0,1,...,pq; r € {1,2}) can be written as

(52 AnSLEW (@0)])

x(20) L (01(x0), 020 sy
TG A 5 (Vo s N 50y (DN

_ ao A fx(20) Lo (01 (20), O2(20)) } P »
= Vi Ix(20)Zrr(01(0), 02(20)) k:z—:l (NprT(xO)QprT(-TO)NprT(./I;O))(vJ’_I)’k

9$pT+1)($0)
X [hpT+1Vpr+k—(p 1) + hpr+2ypr+k+1£7“r(x0)] + O((nh2p7‘+5)1/2)

0P (20) 7o { fx (20) Lo (61(20), B2(0) ) }
(pr +1)! fX(l’o)Irr(@l (o), 02(x0))
il [ B a5 [ @ |0, ()]

U T 1) () o
Fx (@0) T (01 (20), 02 () >0

1 1
X [v JupT”Kv_LpT (u)du + o Ju”’”Kpr oelu )dufupT”KU,pT (u)du]

+ 0((nh2p’"+5)1/2).

( h2pr+3)1/2

(nthH-B)

S2.5. Proof of Theorem [{.3

S2.5.1. Preliminaries

Before proving the asymptotic results more specifically for each GATU(:EO) we discuss the
asymptotic bias in the foregoing general results. From Theorem 4.1, Lemmas [S2.1] and [S2.2] we
have that the (v + 1)th component of the asymptotic bias (v = 0,1, ...,p,) is

(ABiaS {\/% (Hpr (ér(mo) - OT(:Uo))) } )

1
_'az,v + 0((nh2pr+5)1/2)’
V.

v+1

1
_ (nthrJrS)l/QJaLv + (nthr+5)1/2

11



9£pr+1)
where a;, = W(S?)J PrHKva( )du
g(pr+2)(x0)
_ r pr+2
a2,’U - (pT+2)‘ J K'Upr( )du

97{”“)(2:0 dmo{fx 20)ZLrr (01 (20), 92(1‘0))}
(pr + 1)! Ix (20)Zyr(01(20), 02(0))

X {J u’ K, , (u)du  —v J uP K, (w)du
—-— fupT“KpT o (w)du J w K, (u)du} :

52.5.2. Proof of [4.3
Theorem follows from Thegrem 4.1], as the marginal distributions of the components of

6. The asymptotic covariance of 8, (for r € {1,2}) can be written as

ACov(8,) = T, (01 (x0), O2(0)) N, 5, (20)Tp,p, (x0) N, (0).

fx (z0)

The asymptotic variance of the ML estimator 5(”)(370) = U!é\m($0) (for v = 0,1,...,p;71 €
{1,2}) is (v!)2AVar(6,,(x¢)). Note that AVar(@m (x0)) is the (v + 1,v + 1) entry of the matrix

n~th=@+DACov(H,). The (v +1,v + 1) entry of ACov(8,) is

ACOV(OT)] = ——T10:(z0), 05 (z0) B ”“ T, 0 (20) b
|: v+1,0+1 fX(xO) ]CZI lz; prpr( P

1 —1 L 2 u)au
= g T O ). Oulan)) o [ K2 ()

where ¢; ; is the cofactor of {IN,,,. (z0)}; ;. Hence

AVar(8) (z0)) = (o) AVar(Bi (zg)) = 2z 1(20): O2(0)) J K2 (u)du.

nhvHD) fx (o) o

The asymptotic bias of gm (x0) is given in (S.7). Note that for p, = v, and p, — v even, we have
from Lemma 4 in [3] that {u” 1K, , (u)du = 0. In that case, a1, = 0 and

B 97(«’)”2)(%) ot Q,Epwl)(xo) ﬁ{fx(xo)zrr(el(lﬂo),92(370))}
o = g | e e S )

X {fup’"HKmpr(u)du —v Jup”HKU_l,pr (u)du} :

Hence, the expressions of asymptotic bias and asymptotic variance of o) (x0; pr, h) follow.

12



S2.6. Proof of Theorem[{.3
Theorem [4.1| gives the asymptotic joint multivariate normal distribution of (61 (z), 82(z0)).

By applying the multivariate delta method to g(él (l‘o),é\g(l’o)) = qp(zo) with g(u,v) = u +
Co(B) - ¥ and Vg(u,v) = (1,Cy(B) - €”), we find that, as n — oo,

\/nha? {g (51 (), ég(xo)) _g (E[§1 (0], E[ég(xo)])} D, N(0,1),

where o7 = Vg(]E[él (xo)],]E[§2 (:co))AVg(IE[GAl (x0)], ]E[§2 (70)])" and the asymptotic covariance
matrix

4 AVar[0; ()] ACov (91( 0), 0 (Io)) _ (AVar[@l(:Eo)] 0 )
ACov (él(xo),@,(xo)) AVar[ds(x0)] 0 AVar([fa(zo)] )

Note that E[6,(z0)] = 6,(xo) + Bias[0,(z)] for r € {1,2}. From Theorem m, we have that
the asymptotic bias of 6,.(xg) is

0£Pr+1) T . .
hpT“(pTI(),O) {§ur 1Ko, (w)du} (1 + O(l?) } if p,is odd
A ) _ o+ (5 42 0P+ (20) 29 Fx (20)Zrr (01 (x0),02(x0))
ABlaS[eT(xO)] [ (pr+2)! ) Sup i KOP ( )du + (pr+1)!0 OfX(a:O)ITT(91(:cO),92(xo))
x {§uPr T Ko, (u)du} ]hm”(l + O(h)) if p, is even,

and the asymptotic variance of 6, (x0) is

AVa(f o)) = 2 O] [z (i

Therefore, we have by Assumption (A10)

9 (B0 (x0)], E[f (x0)])
= E[fy(w0)] + Ca(8) - 1)
= 0, (z0) + Bias[0; (20)] + Ca(B) - ¢b2(@0)+Bias(fa(ao)]

(Bins[a(x0)])
i

= 01(z0) + Bias[9 (20)] + Cu(B) - Z

= qp(xo) + ABias[él( 0)] + Cua(B) - 662(x0)ABiaS[§2(l'g)]
+op(ABias[0; (z0)] + ABlas[H (x0)]),

13



~

Vg(E[0:(20)], E[fa(20)) AV (E[G: (w0)], E[f2(0)])"

= (1,C(8) - e]E[02 o) ) (

AVar [01 (20)]

0
AVar[0y(xo)]

. o2EB2(20)]

)(axme@@w)

. p262(0) 62BiaS[§2(xo)]

0

(x
0) J Om w)du + o(1).

S3. Simulation study: additional results

S3.1. Performance of data-driven bandwidth selectors in Section

Note that for a symmetric Laplace as well as for a symmetric normal density the quantity
~1 is 0.5. Consequently the expression for the theoretical optimal global bandwidth is the
same in both cases. From the expressions for the Quantile-Mean based bandwidth selector
for the AlaD and AND log-likelihood estimator of #; are

QM
h‘a JALaD —

and  hip =

hmean

hmean

a(l —a) 173
| {(1 —2a)? +2a(1 — a)}] for ALaD, (S.7)
[ a(l —a)r e
s | AN 58)

It is important to mention that the bandwidth selector for the nonparametric approach, hﬁ NP

in (S.3), and hm ALap are identical for f = a due to Remark

Recall also that in case

B = « the point estimates of the semiparametric conditional quantile function under the ALaD
(estimation) model and the nonparameric quantile estimator are equal.

Table S.1: True global bandwidth and its average estimated Values via data-driven bandwidth selectors.

AND x + 2167 0.0758  0.0923 0.0901 0.1010
sin(z?) + x + 27167 0.0753  0.0933  0.0912  0.1021
ALaD x + 2¢716+% 0.0758  0.1013 0.0990 0.0990
sin(z?) + x +2¢71%7 0.0753  0.1023 0.0999 0.0999

For each simulation example, the values of theoretical optimal bandwidths (S.7)) and (/S.8))
are listed, together with the average of the estimated bandwidths over the 100 simulations, in

14



25
I
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- - AlaD [
Nonparametric
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- - ALaD
- =+ Nonparametric

3.0
I

2.0
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2.0
1.5

Density
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15
1.0

1.0

0.5

-0.2 0.0 0.2 0.4 0.6 -0.2 0.0 0.2 0.4 0.6
QM ;. QM QM . QM
log(hg 25/Ng 25, (opt)) log(hg 25/Ng 25, (opt))

(a) (b)

Figure S.1: Example 2. Kernel density estimates of log(ﬁg25 / h(?g/é Opt) obtained by data-driven selector under

the true (a) AND; (b) ALaD likelihood.

Table . It is clearly seen that the estimated bandwidths BOQIQ‘@ ALap and ?L(?g/é Np are equal
under the true asymmetric Laplace error dlstrlbutlon for a = f3, Wthh is as expected In case of
a true asymmetric normal error distribution, ho o5, np 1S larger than ho gé Anp and ho 95, ALaD 111
each example although the values are close. In Figures[S.I|(a) and (b) kernel density estimates of
log( b opt) Obtained by using the three methods (two semiparametric estimation models,
and nonparametric approach) for the simulation model with 6, (x) = sin(z?)+z +2¢~'%*", under
asymmetric normal and asymmetric Laplace error distributions are presented. The rough data-
driven bandwidths tend to be often larger than the optimal bandwidth, but seem to lead to
good quality estimators.

S8.2. Further simulation results on Example 2

The estimated 25% quantile curve (mean of 100 estimated curves based on 100 simulated
samples) with its Bonferroni-type 95% confidence bands are presented in Figure (a) for
AND likelihood and in Figure [S.2(b) for ALaD likelihood. Note that the confidence band
of the estimated curves is narrower compared to others when indeed working with the AND
(simulation) model.

S8.3. Effect of estimating o additional results

S53.3.1. Simulation results for other bandwidth values
Table[S.2 complements Table 2 and presents results for bandwidths h = 0.075 and h = 0.095.
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—— 25% True Quantile function
—— Nonparametric (NP)

—— Asymmetric Laplace (ALaD) — , P
—— Asymmetric Normal (AND) N
— = 95% Conf. Band for NP o 3

-+ -+ 95% Conf. Band for ALaD
- - - 95% Conf. Band for AND 4

—— 25% True Quantile function
—— Asymmetric Laplace (ALaD)
—— Asymmetric Normal (AND)
95% Conf. Band for ALaD
- - 95% Conf. Band for AND

Figure S.2: Example 2. 95% Bonferroni-type confidence bands, using semiparametric ALaD and AND condi-
tional densities and nonpametric approach together with estimated 25% conditional quantile functions under
(a) a AND model (true); (b) a ALaD model (true).

Table S.2: Examples 1 and 2 with Asymmetric Normal Error: Mean (standard error) of AISE values based on
100 simulations for 8 = (0.25,0.90). Using three different methods to estimate o : a9) (Method 7), j = 1,2, 3.

Bandwidth A = 0.075

Example 1 Example 2
Method S 0.25 0.9 0.25 0.9
AND  1.8982(0.7553) 2.6641(0.6830) 1.7065(0.7310) 1.7862 (0.8501)
1 ALaD 3.6166(1.8479) 5.7934(2.6830) 3.6535(1.8623) 6.2259(2.8831)
AND  2.3445(1.0657) 3.4019(0.9339) 2.1485(0.7719)  3.4019(1.7426)
2 ALaD 3.5563(1.8817) 10.0399(2.8981) 4.2930(2.1692) 10.0399(6.1337)
3 AND  2.0001(0.7864) 3.1516(0.7959) 2.0075(0.7586)  2.9696(0.9339)
ALaD 3.4065(1.7938) 5.7690(2.7700) 3.6297(1.8144) 6.4370(2.8981)
Bandwidth h = 0.095
Example 1 Example 2
Method f 0.25 0.9 0.25 0.9
AND  2.0165(0.7479)  2.9542(2.6578) 1.7434(0.7164) 2.0529(0.9416)
1 ALaD 2.7566(1.4088) 5.0948(3.4930) 2.7721(1.4216) 5.1631(2.6049)
AND  2.4597(1.0521) 7.8926(4.0313) 2.0371(0.7597)  3.3829(1.6499)
2 ALaD 2.9606(1.7902) 6.0273(5.8069) 3.4222(1.7765) 9.5293(5.8021)
3 AND  1.9322(0.7631) 3.1009(3.5245) 1.9452(0.7307) 2.9364(0.9318)
ALaD 2.8046(1.6488) 5.7454(4.9430) 2.8625(1.4908) 5.8082(2.8680)
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S53.3.2. Effect of estimating a: computational costs

We recorded the computation time for the semiparametric method, when using the different
methods for estimating a. The average computation time (in seconds) of the resulting three
semiparametric methods are presented in Table[S.3] It is observed that the average computation
times when using Methods 2 and 3 are very close. When using Method 1 for estimating «,
calculations take a factor of about 4 to 5 times longer than for the two other methods.

Table S.3: Average computation time (in seconds) when using three different methods to estimate « : al)
(Method j), j = 1,2,3 for the sample sizes n = 100.

Bandwidth A = 0.075 Example 1 Example 2
Method f 0.25 0.9 0.25 0.9
AND 1.2236  1.0777 1.2584 2.03.54
1 ALaD 2.3603 2.3182 2.3578 2.5937
9 AND 0.2586 0.2580 0.2722 0.2792
ALaD 0.4670 0.4747 0.4871 0.4969
AND 0.4253 0.4857 0.9554 0.9965
3 ALaD 0.4825 0.5455 0.4208 0.4720
Bandwidth A = 0.090 Example 1 Example 2
Method f 0.25 0.90 0.25 0.90
AND 1.1091 1.3036 1.1884 1.2661
1 ALaD 24913 2.6766 27797 2.6444
5 AND 0.2672 0.2831 0.2498 0.2729
ALaD 0.4607 0.5258 0.4716 0.5415
AND 0.2745 0.2915 0.2646 0.3060
3 ALaD 0.4228 05215 0.4175 0.5502
Bandwidth A = 0.055 Example 1 Example 2
Method § 0.25 0.9 0.25 0.9
AND 1.2256 1.1914 1.1658 1.9713
1 ALaD 2.3838 4.4875 2.2769 2.1900
9 AND 0.2708 0.2663 0.2617 0.2597
ALaD 0.4787 0.5516 0.4604 0.4607
AND 0.3416 0.3451 0.3716 0.4616
3 ALaD 0.4489 0.4555 0.3226 0.3941
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