
Multi-scale methods for the numerical
simulation of flow and reactive transport in

porous media

Doctoral dissertation submitted to obtain the degree of

Doctor of Science: Mathematics.

Manuela Bastidas Olivares

Promotor: Prof. Dr. Iuliu Sorin Pop | Hasselt University

Co-promotors: Jun. Prof. Dr. Carina Bringedal | University of Stuttgart
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Chapter 1
Introduction

The mathematical models for many real-life applications involve hierarchically organized

structures and multiple scales. Examples of such models appear in the study of large

geological formations, oil recovery, CO2 sequestration, non-steady filtration in porous

medium, or reaction-diffusion systems. Realistic applications often involve heterogeneous

domains, which translate into rapidly oscillating properties.

Particularly challenging for the mathematical modeling and numerical simulations is

when the chemistry is affecting the micro-structure of the medium, in the sense that the

pore geometry and morphology are altered by dissolution or precipitation. At the micro

scale the geometry changes due to chemistry, which also impacts the averaged model

behavior at the macro scale.

The critical issue in developing numerical methods capturing the interaction between

scales is to avoid the high computational cost. The use of classical schemes over fine-

scale meshes has often unreachable requirements and the standard numerical methods

will either fail or become inefficient. For this reason, more complex numerical simulation

techniques like the multi-scale finite-volume (MSFV) [Hajibeygi et al. 2012; Jenny et al.

2003; Hajibeygi et al. 2008; Parramore et al. 2016; Cortinovis and Jenny 2014], the

algebraic dynamic multilevel (ADM) [HosseiniMehr et al. 2018; Cusini et al. 2018; 2016],

the heterogeneous multi-scale (HMM) [Abdulle et al. 2012; Abdulle and E 2003; Abdulle

and Nonnenmacher 2011; E et al. 2003; Chen et al. 2005; Henning et al. 2015], the multi-

1
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scale finite element (MsFEM) [Hellman et al. 2016; Henning et al. 2014; Muljadi et al.

2015; Chung et al. 2015; Abdulle and Nonnenmacher 2009; Arbogast 2011; Gulbransen

et al. 2010] and the equation-free methods [Kevrekidis and Samaey 2009; Kevrekidis et al.

2004; Bunder et al. 2017; Kevrekidis and Samaey 2010; Maclean et al. 2020] are pertinent

for solving problems that involve two or more scales in space and time.

This thesis concerns the design, analysis and application of numerical methods suited

to mathematical models over several scales. Here we focus on developing numerical

strategies to approximate the solution of the multi-scale models resulting from the use of

homogenization theory on different non-dimensional pore-scale models. The following are

the research highlights of this manuscript:

? Given a pore-scale model involving oscillatory characteristics and structural changes

on the micro-scale, we use homogenization theory to develop multi-scale models

describing the interaction between scales. Moreover, the main concern of this thesis

is to develop multi-scale methods based on the procedure of homogenization to

obtain accurate multi-scale simulations.

? The numerical strategies based on the homogenization theory tend to be complex

because they involve the computation of several problems over different scales. Here,

we propose various strategies to improve the accuracy and efficiency of the multi-

scale methods; these strategies include: iterations between scales, mesh refinement,

prediction-correction algorithms, heuristic adaptivity processes and efficient non-

linear solvers.

? We prove relevant mathematical aspects of the proposed numerical methods. More-

over, we give details of the numerical implementation of the multi-scale methods

and proposed numerical examples to analyze the algorithms’ performance.

Initially, this chapter provides a brief overview of the theoretical framework of the

thesis. Here, we first introduce the basic theory of homogenization that relates models

over different scales, and we give a brief overview of reactive transport models.

Notation. We consider a bounded domain Ω ⊂ Rd (d = {2, 3}) with Lipschitz boundary

∂Ω. We denote by Lp(Ω) the space of the p−integrable real-valued functions equipped
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with the usual norm and by H1(Ω) the Sobolev space of L2(Ω) functions having weak

derivatives in the same space. We let 〈·, ·〉 represent the inner product on L2(Ω) (or

[L2(Ω)]d) and the norm ‖v‖2L2(Ω) = ‖v‖2 := 〈v, v〉. Let ∂Ω denote the boundary of

Ω and n the normal outward vector at the boundary of the domain. Moreover, we call

C∞0 (Ω̄) the space of infinitely differentiable functions having a compact support Ω.

It is well known that if ∂Ω is Lipschitz, it is possible to define the trace γ̃0(u) = u|∂Ω

of u ∈ H1(Ω) on the boundary ∂Ω. The traces of functions in H1(Ω) span a Hilbert

space denoted H1/2(∂Ω) and H−1/2(∂Ω) being its dual. Finally, we define the space

H1
0 =

{
v | v ∈ H1(Ω) and γ̃0(u) = 0

}
.

We refer to [Evans 1998, p.273] for further details on traces operators.

1.1 The general framework of homogenization

In this section, we provide details on the general framework of periodic homogenization.

We focus on porous media, which are complex domains consisting of grains surrounded by

void pores and involving heterogeneous processes over multiple scales. The main interest

here is the average behavior of the system, thus at a larger scale, and this behavior

is determined by processes taking place at the scale of pores. Therefore, carrying out

simulations at a larger scale is inefficient, if not unfeasible, which motivates using upscaling

techniques and, specifically, the use of periodic homogenization. In this thesis, we consider

two main problems in porous media:

? The case of heterogeneous domains with involving rapidly oscillating characteristics

which may include perforations (Chapter 2-3).

? The case of processes involving reactive transport; that is, chemistry affecting the

pore-scale structure (Chapter 5).

To illustrate the homogenization procedure, we use the simple case of an elliptic

problem defined in a periodic perforated domain. The following general description of the

method is based on [Hornung 1997].
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1.1.1 The periodic homogenization for elliptic problems

We consider a porous medium domain Ωε ⊂ Rd (d = 2, 3). Its (outer) boundary is

denoted by ∂Ω. We assume that the domain Ωε can be written as the finite union of

micro-scale regions, namely Y . The micro-scale Y can be viewed as a perforated region

with a pore space and a solid grain (see, e.g., [Hornung 1997]) or simply where the

parameters changes rapidly.

Here we write Ω denoting the homogenized version of Ωε, i.e., Ω only contains the

macro-scale information of the domain. At the micro-scale Y and the macro-scale Ω we

assume characteristic lengths ` and L respectively. The factor ε := `
L denotes the scale

separation between the two scales. To identify the variations at the micro-scale we define

a fast variable y := x
ε . To each macro-scale point x ∈ Ω corresponds one micro-scale

cell Y that captures the fast changes in the parameters. A sketch of the porous medium

structure is shown in Figure 1.1.

Figure 1.1: The periodic perforated porous medium domain. The typical length scales

L and ` are indicated.

In the non-dimensional setting, the local cells are Y := [0, 1]d and they are separated

into two sub-domains: the inner grain G surrounded by the pore P , with Γ being the

boundary of G (see Figure 1.1). Therefore,

Ωε = ∪
{
ε(~i+ P ) |~i ∈ Iε

}
,
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for some set of vector indices Iε. We identify two kinds of boundaries: the outer boundary

∂Ω and the inner boundary Γε which is the total grain surface, i.e.,

Γε = ∪
{
ε(~i+ Γ) |~i ∈ Iε

}
.

We denote n as the unit normal to Γε pointing into the grains.

To fix ideas we consider the following elliptic problem

−∇ · (Kε∇pε) = fε, in Ωε,

−n · (Kε∇pε) = 0, on Γε,

pε = 0, in ∂Ω.

(1.1)

We assume the diffusion matrix Kε to be periodic in Y and uniformly positive definite:

? The diffusion matrix Kε : Ωε → Rd×d is symmetric for all x ∈ Ωε and continuous.

There exist β, λ > 0 such that

β‖ψ‖2 ≤ ψtKε(x)ψ ≤ λ‖ψ‖2, for all ψ ∈ Rd and x ∈ Ωε.

? Let K : Ω × Rd → Rd×d be a matrix-valued function and we write Kε(x) =

K
(
x, x

ε

)
= K (x,y) for all x ∈ Ωε.

? The source term fε : Ωε → R is essentially bounded uniformly w.r.t ε and we let

f : Ω× Rd → Rd be such that fε(x) = f
(
x, x

ε

)
= f (x,y) for all x ∈ Ωε.

1.1.1.1 The asymptotic expansion method

The target is to identify an effective model to approximate the original problem (1.1)

without oscillations. To this aim we use Homogenization Ansatz, meaning that pε can be

written as

pε(x) = p0(x,y) + εp1(x,y) + ε2p2(x,y) + . . . , (1.2)

where y = x
ε and each function pk : Ωε × Y → R is Y -periodic. Due to the dependency

of the fast variable y one needs to use the chain rule to re-write the gradient and the
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divergence operators by the linear combination of the gradients in x and y, that is ∇x
and ∇y

∇ = ∇x + 1
ε
∇y and div = divx + 1

ε
divy. (1.3)

Inserting (1.2) in (1.1), using the chain rule and grouping terms of the same order of

magnitude; we obtain

− 1
ε2∇y · (K(x,y)∇yp0(x,y))

− 1
ε
{∇x · (K(x,y)∇yp0(x,y)) +∇y · (K(x,y) (∇xp0(x,y) +∇yp1(x,y)))}

− ∇x · (K(x,y) (∇xp0(x,y) +∇yp1(x,y)))

+∇y · (K(x,y) (∇xp1(x,y) +∇yp2(x,y)))

+O(ε) = f(x,y), (1.4)

for all x ∈ Ω and y ∈ Y . For the boundary condition on Γε we have

− 1
ε
{n · (K(x,y)∇yp0(x,y))} − {n · (K(x,y) (∇xp0(x,y) +∇yp1(x,y)))}

− ε {n · (K(x,y) (∇xp1(x,y) +∇yp2(x,y)))}

+O(ε2) = 0. (1.5)

We assume separation of scales and take ε � 1. Therefore, we treat the terms of

order O(ε−2), O(ε−1) and O(1) separately.

The ε−2 problem. Multiplying the expansion (1.4) by ε2 and (1.5) by ε1 we get

−∇y · (K(x,y)∇yp0(x,y)) +O(ε) = O(ε2),

n · (K(x,y)∇yp0(x,y)) +O(ε2) = 0.
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If ε→ 0 this yields the following problem on Y

(P−2(x))


−∇y · (K(x,y)∇yp0(x,y)) = 0, in P,

n · (K(x,y)∇yp0(x,y)) = 0, on Γ,

p0(x,y) is Y -periodic.

Testing the above by p0 show that the solution p0 does not depend on the fast variable

y, that is p0(x,y) = p0(x). This implies that the first term of (1.2) only depends on x

and p0 represents the macro-scale component of the solution pε.

The ε−1 problem. Multiplying the expansion (1.4) by ε1 we get

− 1
ε
∇y · (K(x,y)∇yp0(x))

− {∇x · (K(x,y)∇yp0(x)) +∇y · (K(x,y) (∇xp0(x) +∇yp1(x,y)))}

+O(ε) = O(ε).

The independence of p0 from the fast variable y means that ∇yp0(x) = 0. Therefore,

∇y · (K(x,y) (∇xp0(x) +∇yp1(x,y))) +O(ε) = O(ε),

and for the boundary condition we have

n · (K(x,y) (∇xp0(x) +∇yp1(x,y))) +O(ε2) = 0.

If ε→ 0, these equations yield to the following problem on Y

(P−1(x))


−∇y · (K(x,y)∇yp1(x,y)) = ∇y · (K(x,y)∇xp0(x)) , in P,

−n · (K(x,y)∇yp1(x,y)) = n · (K(x,y)∇xp0(x)) , on Γ,

p1(x,y) is Y -periodic.

The solution of P−1(x) is p1(x,y) and depends on x implicitly through p0 and K. The
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gradient of p0(x) is

∇xp0(x) =
d∑
j=1

ej∂xjp0(x),

where ej is the unit vector in the j-th direction. For each j = 1, . . . , d, we define the

following auxiliary problems

(Pj(x))


−∇y ·

(
K(x,y)∇yωj(x,y)

)
= ∇y · (K(x,y)ej) , in P

−n ·
(
K(x,y)∇yωj(x,y)

)
= n · (K(x,y)ej) , on Γ,

ωj is Y − perdiodic.

To guarantee the uniqueness of the solution of Pj(x) we impose the functions ωj to have

zero mean over P .

By construction and after solving the cell-problems Pj(x) we re-write the solution of

P−1(x) as

p1(x,y) = p̂(x) +
d∑
j=1

ωj(x,y)∂xjp0(x),

with p̂ being an arbitrary function of x.

1.1.1.2 The homogenized problem

Taking the O(1) terms in (1.4) we have

−∇x · (K(x,y) (∇xp0(x,y) +∇yp1(x,y)))

+∇y · (K(x,y) (∇xp1(x,y) +∇yp2(x,y))) = f(x,y). (1.6)

From the boundary expansion (1.5) we get

− n · (K(x,y) (∇xp1(x,y) +∇yp2(x,y))) = 0, ∀x ∈ Γε. (1.7)
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Integrating over P on both sides of (1.6) and using the divergence theorem one obtains

−∇x ·
(∫

P

K(x,y) (∇xp0(x) +∇yp1(x,y)) dy
)

+
∫

Γ∪∂Y
n · (K(x,y) (∇xp1(x,y) +∇yp2(x,y))) dy =

∫
P

f(x,y) dy. (1.8)

In (1.8), the integral over ∂Y is zero due to the periodicity assumptions and the integral

over Γ is zero from (1.7).

Finally, for each x ∈ Ω, if we write p1 in terms of p0 the result is

−∇x ·

∫
P

K(x,y)

∇xp0(x) +
d∑
j

∇yωj(x,y)∂xjp0(x)

 dy

 =
∫
P

f(x,y) dy.

The solution of (1.1) can be approximated by the upscaled function p0 satisfying

−∇ · (K(x)∇p0(x)) =
∫
P

f(x,y) dy, in Ω,

p0(x) = 0, on ∂Ω.
(1.9)

The tensor K : Ω→ Rd×d has elements

Kij(x) =
∫
P

(
K(x,y)

(
ej +∇yωj(x,y)

))
· ei dy, i, j = 1, . . . , d. (1.10)

The tensor K is often called effective parameter, effective diffusion tensor or homogenized

permeability depending on the context.

Summarizing, to determine the value of the diffusion tensor K at each x ∈ Ω one has

to solve one cell problem Pj(x) per dimension. These problems reflect the micro-scale

features of the original problem. Instead of solving the full problem, in the upscaled case,

one solves many micro-scale cell problems, which are decoupled and can be solved in

parallel.

In this thesis, we concern about the efficient and accurate calculation of the effective

parameter K and the upscaled solution p0 even when the porous medium is not periodic

(see Chapter 2). Furthermore, we use the above-explained homogenization theory in

different contexts, and we analyze and discuss the applicability of this technique to more
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general frameworks.

The following lemmas highlight two important aspects of the effective parameter and

the upscaled solution. The details of the proofs can be found in [Hornung 1997; Cioranescu

and Donato 1999].

Lemma 1.1. Let Kε be a symmetric and uniformly positive definite tensor function. The

effective diffusion matrix K defined in (1.10) satisfies

? The effective diffusion matrix K is symmetric for all x ∈ Ω. There exist β, λ > 0

such that

β‖ψ‖2 ≤ ψtK(x)ψ ≤ λ‖ψ‖2, for all ψ ∈ Rd and x ∈ Ω.

? The effective matrix K is bounded by the harmonic and the arithmetic mean of Kε.

Specifically, for all ψ ∈ Rd and x ∈ Ω one has

ψt
(∫

P

(Kε(x,y))−1
)−1

ψ ≤ ψtK(x)ψ ≤ ψt
(∫

P

Kε(x,y)
)
ψ.

Lemma 1.2. Let fε ∈ H−1(Ω) and pε be the solution of (1.1) with Aε being periodic,

symmetric and positive definite. Then,

pε ⇀ p0 weakly in H1
0 (Ω),

Kε∇pε ⇀ K∇p0 weakly in [L2(Ω)]d.

where p0 is the unique solution in H1
0 (Ω) of the homogenized problem (1.9) and K is the

effective diffusion tensor.

1.2 The general framework of reactive transport in porous media

The following description is based on [Kumar 2012; van Noorden 2009a; Kumar et al.

2011; Bringedal et al. 2015; 2020].

Mathematical models for dissolution and precipitation in porous media have been

extensively discussed in the past decades. This section gives a brief overview of the
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models describing reactive flow in porous media and here we present the porous media

model that motivates the multi-scale numerical method proposed in Chapter 5.

We first mention the models of reactive transport in which the micro-scale geometry

remains fixed. Here, the chemical reactions take place on the boundaries of the porous

media, changing the local concentration but not the structure of the micro-scale. For

instance, we mention the model proposed in [Knabner et al. 1995], in which the possibility

of having an under- or over-saturated regime is expressed in rigorous mathematical terms.

Various mathematical aspects for fixed geometry models, like the existence and uniqueness

of a (weak) solution, the rigorous derivation of the macro-scale model from a micro-scale

one, the numerical approximation, or qualitative properties like traveling waves are studied

in [Knabner et al. 1995; Moszkowicz et al. 1996; Bouillard et al. 2007; Kumar et al. 2014;

Agosti et al. 2015; Kumar et al. 2016; Hoffmann et al. 2017]. The models discussed

there do not take explicitly into account any evolution of the micro-scale geometry. In

those cases, one works with the mineral as a surface concentration, and the micro-scale

volumetric changes in the mineral phase are neglected. We sketch the ideas of a fixed

geometry in Figure 1.2.

Solid

Precipitate

Void space

Figure 1.2: Sketch of a periodic porous medium. Description of the fixed geometry for

reactive flow models.

Whenever the mineral layer thickness changes considerably compared to the typical

micro-scale length, the micro-scale changes in morphology cannot be neglected. This

impacts the flow at the micro scale, and implicitly the macro-scale quantities, which are

of primary interest for real-life applications.
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The micro-scale geometry evolution can be described in various ways; in one spa-

tial dimension, a free boundary model for dissolution and precipitation in porous media

is proposed in [van Noorden and Pop 2008]. There, the existence and uniqueness of a

solution are proved. For closely related results, we mention [Muntean and Böhm 2009; Ku-

mazaki and Muntean 2020], where the existence of solutions for similar, one-dimensional

free-boundary problems is proved. On the other hand, when dealing with freely moving

boundaries in multiple spatial dimensions, the complexity of the models increases. For

instance, [van Noorden 2009a; Kumar et al. 2011; Bringedal et al. 2015] propose 2D

models of reactive transport where a layer thickness function can be defined to locate the

free boundary.

In other cases but yet dealing with moving boundaries, a level set approach can be

considered. Such models are suggested in [van Noorden 2009b; Schulz et al. 2017; 2019;

Bringedal et al. 2016; Ray et al. 2019]. There, the moving interface location is determined

by a level set function that tracks the position of the interface. In these cases, the geometry

evolves depending on the level set and implicitly of the unknowns of the model. Figure 1.3

sketches the geometry considered by the moving boundary models.

Solid

Mineral

Void space

Figure 1.3: Sketch of a periodic porous medium. Description of the moving geometry

for reactive flow models.

One of the firmer differences between the fixed geometry models and the moving

boundary models appears when applying homogenization to the micro-scale models. In

the first case, the upscaled model equations do not incorporate changes in the geometry

depending on the solute concentration. For this reason, the use of a fixed geometry leads
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to relatively simple models on the macro scale. This is convenient in some applications

but also very restrictive in other cases. On the other hand, when one assumes moving

boundaries the micro-scale structure changes in time, depending on the concentration of

the dissolved components, which is a model unknown. Moreover, when applying homog-

enization to this type of model, the macro-scale parameters are related to the structural

changes, making the upscaled models more realistic. In the case of level sets model, if

one assumes local periodicity and separation of scales, homogenization techniques lead

to upscaled models where the effective parameters are determined by solving local cell

problems involving level sets.

Another option for modeling reactive flow with evolving pore-scale geometry is to use

a phase-field approach. In this case, a thin, diffuse interface layer approximates the freely

moving interfaces separating the fluid from the mineral (the precipitate). Building on the

idea of minimizing the free energy (see, e.g., [Caginalp and Fife 1988]), the phase-field

indicator φ is an approximation of the characteristic function that approaches 1 in the fluid

phase and 0 in the mineral phase. In between, a smooth transition zone is encountered

(see e.g. [Rätz 2016]).

This approach was considered in [van Noorden and Eck 2011] for describing the disso-

lution and precipitation processes encountered at the micro scale. There, two phases are

encountered (the mineral and the solvent), both being immobile; the solute concentration

changes due to chemistry (precipitation and dissolution) and diffusion. The model in

[van Noorden and Eck 2011] is further extended in [Bringedal et al. 2020] to incorporate

fluid flow. In Figure 1.4 we sketch the phase-field geometry and there we highlight the

transition zone between the mineral and the fluid.

The main advantage of a phase-field model is that, unlike the moving boundary mod-

els, the phase-field does not track the boundary between the fluid and the mineral but

approximates it by solving a phase-field equation that is smooth and defined all over the

domain. In other words, we deal now with a stationary domain.

To fix ideas, we let Ω ⊂ Rd (d = 2, 3) denote the entire domain (the porous medium),

which is the union of two disjoint sub-domains: one occupied by the fluid and another

occupied by the mineral. We define (0,T) the time interval in which the reactions take

place and write ΩT := Ω × (0,T). The following model describes single-phase flow
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Void space

Solid

Transition zone

Figure 1.4: Sketch of a periodic porous medium. Description of a phase-field model

set-up.

and reactive transport through Ω where the fluid-solid interface evolves due to mineral

precipitation and dissolution. We denote the constant fluid density and viscosity ρf and

µf , respectively.

λ2∂tφ+ γP ′(φ) = γλ2∇2φ− 4λφ(1− φ) 1
u?
f(u), in ΩT,

∇ · (φq) = 0, in ΩT,

ρf∂t(φq) + ρf∇ · (φq ⊗ q) = −φ∇p+ µfφ∇2(φq)− g(φ, λ)q + 1
2ρfq∂tφ, in ΩT,

∂t(φ(u− u?)) +∇ · (φqu) = D∇ · (φ∇u), in ΩT,

with suitable boundary and initial conditions. Here the phase field φ approaches 1 in the

fluid phase and 0 in the mineral. The phase field has a smooth transition of width λ > 0

separating the phases. Moreover, q and p are the velocity and pressure in the fluid and

u is the solute concentration with D its diffusivity. The function f is the reaction rate.

In the mineral domain, the mineral is immobile and has a constant concentration u? > u

and γ denotes the diffusivity of the interface that separates the fluid and the mineral.

Further, P (φ) is the double-well potential, ensuring that the phase field mainly attains

values (close to) 0 and 1 for small values of λ. The function g(φ, λ) ensures that there is

zero flow in the mineral phase. This function is such that g(1, λ) = 0 and g(0, λ) > 0.

This phase-field model can be seen as an approximation of the sharp interface model,

defined in the entire domain and where a diffuse interface region replaces the free boundary.



1.3. The numerical framework 15

In [Bringedal et al. 2020] the authors show that when λ↘ 0 the phase-field model reduces

to a sharp-interface formulation similar to the one discussed in [van Noorden 2009b].

When applying homogenization techniques to this model, one obtains a system of

equations on the macro scale completed by supplementary cell problems. These cell

problems will be solved locally and provide effective properties for the upscaled system.

In Chapter 5 we develop and analyze an efficient two-scale algorithm applicable to the

upscaled phase-field model derived in [Bringedal et al. 2020].

1.3 The numerical framework

The mathematical models that describe flow, transport or momentum are all defined by

systems of partial differential equations that can not be solved explicitly. In this thesis, we

propose different numerical strategies to approximate the solution of partial differential

equations (or systems) that are non-linear and involve different scales.

1.3.1 The spatial discretization

We choose two kinds of spatial discretization to approximate the solution of the model

equations appearing in this thesis: the mixed finite element method (MFEM) and the

hybridizable discontinuous Galerkin method (HDG). Here we do not center the attention

on the practical implementation, such details are explained when necessary, in Section 4.5

and Section 5.7. The presentation of this section is based mainly on [Burden and Faires

2002; Brezzi and Fortin 1991; Cockburn 2014; Gatica 2014; Galligani and Magenes 2006].

In this section we use a partition of the domain Ω, the so-called triangulation and it

is sketched in Figure 1.5.

Definition 1.1. [A shape-regular/conformal triangulation] A triangulation Th of the clo-

sure Ω̄ of the polygonal domain Ω ∈ R2 is a subdivision consisting of non-overlapping

triangles T such that

Ω̄ =
⋃
T∈Th

T,

where no vertex of any triangle lies in the interior of an edge of another triangle.

We denote Eh the set of all the faces of a triangulation Th. Each triangle T ∈ Th has
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diameter hT defined as the maximum length of its edges. The index h of Th relates to

the mesh size h = max
T∈Th

hT .

Moreover, if hT is the diameter of T and ρT is the diameter of the largest ball inscribed

in T , the shape regularity parameter of Th is

σTh := max
T∈Th

hT
ρT
.

We only consider a sequence of meshes with σTh uniformly bounded away from zero.

We denote nT the unit outward normal along the boundary ∂T of T ∈ Th and there

exists ` > 1 independent of h such that

`−1 ≤ hT
hT ′
≤ `,

for two adjacent triangles T and T ′.

T T'

nT

hT

Figure 1.5: A finite element triangulation Th.

The definition of a triangulation in R3 is beyond our purpose in this thesis, but we

remark that the extension of the results of this section to R3 can be found in [Boffi et al.

2013].
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1.3.1.1 The mixed finite element method

The introduction of a mixed formulation was first motivated by the applications. Often,

one deals with constraints on the solution of the models, e.g., to add the condition

div(∇pε) = 0 to the problem (1.1).

In [Brezzi and Fortin 1991, p.11] and [Boffi et al. 2013, p.16] three more reasons for

using mixed formulations are given:

? The physical relevance of other quantities different from the main unknown of the

problem and the possible lack of precision of the post-processes.

? The difficulties of approximating functions in Hilbert spaces in which high regularity

is necessary, e.g., the use of functions in H2(Ω). This motivates using a numerical

scheme that reduces the order of the problems even though increasing the number

of unknowns.

? The necessity of formulating weak solutions that better represent the available data,

e.g., punctual loads.

Consider the elliptic problem

−div (K∇p) = f, in Ω,

p = 0, in ∂Ω,
(1.11)

where Ω ⊂ Rd with d = {2, 3}, f ∈ L2(Ω) and K = K(x) is a positive definite matrix

function. In many applications the variable of interest is

u = −K∇p,

which motivates to transform (1.11) into the following system, so-called mixed problem

u +K∇p = 0, in Ω,

div(u) = f, in Ω,

p = 0, in ∂Ω.

(1.12)
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This problem is characterized by a saddle point formulation,

inf
ϕ∈H(div,Ω)

sup
v∈L2(Ω)

1
2

∫
Ω
K−1|ϕ|2 dx−

∫
Ω
fv dx +

∫
Ω
vdiv(ϕ) dx,

and it corresponds to a standard weak mixed formulation: Find p ∈ L2(Ω) and u ∈

H(div,Ω) satisfying

〈K−1u,ϕ〉 − 〈p,div(ϕ)〉 = 0, ∀ϕ ∈ H(div,Ω),

〈div(u), v〉 = 〈f, v〉, ∀v ∈ L2(Ω).
(1.13)

In this mixed formulation, the function p can be seen as a Lagrange multiplier associ-

ated with the constrain div(u) = f .

One of the main differences between the conformal and the mixed formulations of

(1.11) is the imposition of the boundary conditions. Here we use homogeneous Dirichlet

conditions for simplicity, but this can be easily extended to non-homogeneous Dirichlet or

Neumann boundary conditions. We refer to [Gatica 2014, p.16] for a detailed explanation

of the role of the boundary conditions depending on the different formulations.

In order to introduce the discrete formulation of (1.13), we take two finite-dimensional

spaces Qh ⊂ H(div,Ω) and Vh ⊂ L2(Ω). The discrete mixed variational formulation of

(1.12) reads: Find ph ∈ Vh and uh ∈ Qh satisfying

〈K−1uh,ϕh〉 − 〈ph,div(ϕh)〉 = 0, ∀ϕh ∈ Qh,

〈div(uh), vh〉 = 〈f, vh〉, ∀vh ∈ Vh.
(1.14)

It remains to construct the subspaces Vh and Qh such that the formulation satisfies

the inf-sup condition in [Brezzi and Fortin 1991] and therefore guarantees the existence

and uniqueness of the discrete solution. In the discrete setting, the usual conformal

formulation requires the approximation of functions in H1(Ω), i.e., the construction of

piecewise polynomials vector functions with both components being continuous. However,

in the mixed formulation, the space H(div,Ω) restricts the approximation functions only

to have continuous normal components.

Consider a triangulation in the sense of Definition 1.1 and Figure 1.5. Here we present

the Raviart-Thomas spaces, which are the most popular spaces used for solving (1.14)
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but similar arguments hold for other subspaces available in the literature such as Brezzi-

Douglas-Marini (BDM) or Brezzi-Douglas-Fortin-Marini (BDFM). For further details we

refer to [Boffi et al. 2013; Brezzi and Fortin 1991].

Given a triangle T ∈ Th, the local Raviart-Thomas space of order r ≥ 0 is defined by

RTr(T ) = [Pr(T )]d + xPr(T ), (1.15)

for x ∈ Rd and with Pr(T ) being the space of piecewise polynomials of order r.

Remark. (Adapted from [Boffi et al. 2013, p. 116]). The original work [Raviart and

Thomas 1977] uses an expression equivalent to (1.15) on a reference element T̂ . There,

RTr(T ) is defined by a certain change of variable and depends on the orientation space.

For triangular elements, the expression (1.15) is easier to handle.

Lemma 1.3. The local Raviart-Thomas spaces RTr(T ) have the following properties

a) dim(RTr(T )) = d
(r+d

r

)
+
(r+d−1

r

)
.

b) If ϕ ∈ RTr(T ) then ϕ · ni ∈ Pr(Fi), where Fi denotes the i-th face (edge) of T .

c) If ϕ ∈ RTr(T ) is such that div(ϕ) = 0 then ϕ ∈ [Pr(T )]d.

For example, the spaceRT0(T ) in R2 is a space of dimension 3 containing polynomials

of the form

ϕ(x) = a+ bx,

with a ∈ R2 and b ∈ R. We specify a and b by computing the normal components of ϕ

on ∂T as sketched in Figure 1.6.

Finally, associated with the triangulation Th we introduce the following global spaces

RTr(Th) =
{
ϕ ∈ H(div,Ω) : ϕ

∣∣
T
∈ RTr(T ), ∀T ∈ Th

}
,

Pr(Th) =
{
v ∈ L2(Ω) : v

∣∣
T
∈ Pr(T ), ∀T ∈ Th

}
.

and we refer to [Raviart and Thomas 1977] for the proof of the following theorem.

Theorem 1.1. We assume p ∈ Hk+2(Ω) and div(∇p) ∈ Hk+1(Ω) for some integer k ≥

0. Take Qh = RTk(Th) and Vh = Pk(Th) in (1.14), then the solution (ph,uh) ∈ Vh×Qh
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T

Figure 1.6: The degrees of freedom of RT0(T ).

of (1.14) exists and it is unique. Moreover, there exist a constant C > 0 independent of

h such that

‖u− uh‖H(div,Ω) + ‖p− ph‖L2(Ω) ≤ Chk+1 (‖p‖Hk+2(Ω) + ‖div(∇p)‖Hk+1(Ω)
)
.

In Chapters 2 and 5 we use the lowest-order Raviart-Thomas space RT0(Th) for

approximating the vectorial unknown and for the scalar unknown we use the discrete

subspace of piecewise constant functions P0(Th). Furthermore, in Chapter 5 we use a

stable and popular two-dimensional finite-element space for a Stokes problem, the so-

called Crouzeix-Raviart elements. This approximation is non-conforming, meaning that

the finite-dimensional space is not a subspace of the Hilbert space to which the solution

belongs. More details of this procedure are given in Section 5.7, and we refer to [Boffi

et al. 2013] for a complete analysis of this finite element space.

1.3.1.2 The hybridizable discontinuous Galerkin method

In Chapter 4 we propose the hybridizable discontinuous Galerkin method (HDG) as a

strategy to solve the porous medium equation. In this subsection, we aim to give context

and present the general details of this numerical strategy. This subsection is based on

[Cockburn et al. 2009; Jaust and Schütz 2014; Schütz and May 2013; Boffi et al. 2013;

Nguyen et al. 2011; Ciarlet 2002].

The HDG method can be seen as a static-condensation-amenable type of DG method.

The core of the method is to obtain a discretization of the original problem that holds
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locally and a single global problem over the borders of the triangulation that determines

the entire solution. This method combines the strategies of the recently popular DG

methods and hybrid approaches. In [Nguyen et al. 2011], the following main advantages

of the HDG method are listed:

? The HDG method produces a global system in terms of the degrees of freedom of the

approximate traces defined on the element borders. This method has significantly

less globally coupled unknowns than other DG methods.

? For diffusion problems, the HDG method provides optimal convergence for the ap-

proximation of the gradient.

? Local post-processing can be developed to increase the spatial order of convergence

of the numerical solution. This post-processing is performed locally, making the

method highly parallelizable.

? The HDG method can be implemented on general unstructured meshes and is well-

suited to handle hp-adaptivity.

We highlight a strong connection between the static condensation method usually imple-

mented on the discrete formulation of mixed finite elements and the HDG method. We

refer to [Kirby et al. 2011; Yakovlev et al. 2016] for a comparative study of these methods

in 2 and 3 dimensions.

Here we restrict the presentation of the method to the elliptic mixed problem (1.11).

Although the HDG method can be applied on general meshes, we use a regular triangu-

lation in the sense of Definition 1.1.

Our target is to approximate the solution (p,u) with discrete discontinuous functions

(ph,uh) in the following finite dimensional spaces

Vh :=
{
vh ∈ L2(Th) : vh|T ∈ Pr(T ) ∀T ∈ Th

}
,

Qh :=
{
ϕh ∈ [L2(Th)]d : ϕh|T ∈ [Pr(T )]2 ∀T ∈ Th

}
,

where r ≥ 0 and Pr(T ) is the space of polynomials of order r over T ∈ Th.

We denote p̂h and ûh the restriction of ph and uh to the faces of the triangulation,

namely numerical traces. To guarantee the well-definedness of the HDG method the
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numerical traces should be (i) locally linearly dependent of ph and uh, (ii) consistent and

(iii) single valued. In the HDG context, the functions p̂h and ûh must be related in the

following way

ûh · n = uh · n + ξ(ph − p̂h),

with ξ being a positive function defined over the edges of the triangulation. A geometrical

interpretation of the scalar numerical trace is shown in Figure 1.7.

Figure 1.7: Geometrical interpretation of the numerical trace.

The numerical traces belong to the following spaces defined only at the edges of the

triangulation
Wh :=

{
v ∈ L2(Eh) : v|e ∈ Pr(e),∀e ∈ Eh

}
,

Rh :=
{
ϕ ∈ [L2(Eh)]d : ϕ|e ∈ [Pr(e)]d,∀e ∈ Eh

}
.

The local solvers. Assuming that the function p̂h is known for every T ∈ Th, we seek

for (ph,uh) satisfying

〈K−1uh,ϕh〉T − 〈ph,div(ϕh)〉T = −〈p̂h,ϕ · nT 〉∂T ,

〈div(uh), vh〉T + 〈ξph, vh〉∂T = 〈f, vh〉T + 〈ξp̂h, vh〉∂T ,
(1.16)

for all (vh,ϕh) ∈ Vh ×Qh.

We denote (pfh,u
f
h) and (pλh,uλh) the solution of (1.16) when λ := p̂h = 0 (heteroge-

neous local solver) and when f = 0 (homogeneous local solver), respectively. We write
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the local solvers in term of an operator L : L2(Ω)×Wh → Vh ×Qh as follows

L(f, 0) = (pfh,u
f
h),

L(0, p̂h) = (pλh,uλh),

L(f, p̂h) = (pfh + pλh,u
f
h + uλh) = (ph,uh).

(1.17)

It remains to determine p̂h by using the boundary conditions and by imposing ûh to

be single valued. In the case of homogeneous Dirichlet conditions we seek for (p̂h, ûh) ∈

Wh ×Rh satisfying

λ = p̂h on Eh,

λ = 0, on ∂Ω,∑
T∈Th

∫
∂T

(ûh · n)µdx = 0, ∀µ ∈Wh.

We write 〈·, ·〉∂Th =
∑
T∈Th〈·, ·〉∂T and use the notation on (1.17) to obtain

〈ûh · n, µ〉∂Th = 〈uh · n + ξ(ph − p̂h), µ〉∂Th ,

= 〈ufh · n + uλh · n + ξ(pfh + pλh − p̂h), µ〉∂Th = 0.

Therefore, the global problem defined over the skeleton Eh reads: Find λ ∈ Wh

satisfying

〈uλh · n + ξ(pλh − λ), µ〉∂Th = −〈ufh · n + ξpfh, µ〉∂Th , ∀µ ∈Wh.

Here the only degrees of freedom are those associated to the numerical trace p̂h and once

this global problem is solved, the approximate solution (ph,uh) can be easily obtained

element-by-element by solving (1.16). This procedure is clarified when one write the basis

functions of Vh, Qh and Wh and express all the operators in a matrix form, more details

of this procedure are given in Chapter 4.

We notice that there is a similarity between the local solvers L(f, p̂h) of the HDG

formulation and the micro-scale cell problems Pj(x) introduced in Section 1.1 and both

can be treated similarly.
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1.3.2 The time discretization

The presentation of this section is based on [Butcher and Goodwin 2008; Quarteroni et al.

2010; Burden and Faires 2002]. In Chapters 2-5 we consider time dependent problems

(this means that the solution of a certain set of partial differential equations evolves in

time). Here we use a stable and elementary approximation technique for solving time-

dependent problems: Euler’s method. The main idea is to discretize the time interval

and approximate the solution only at some discrete points. Given the complexity of our

problems, we propose to use this simple and robust technique in time.

We consider the following general system of ordinary equations

dϕ

dt
= F(ϕ, t), t ∈ (0,T], (1.18)

with the initial condition ϕ(0) = ϕ0. Here F : Rn× [0,T]→ Rn is a non-linear vector

function. We assume that F ∈ C1(Rn×[0,T]) is bounded and Lipschitz continuous with

Lipschitz constant L . This guarantees the existence of a unique solution and that d2ϕ
dt2

exists and is bounded. Without loss of generality, F can be seen as a non-linear operator

obtained through some spatial discretization.

We choose a positive integer N ∈ N and let ∆t = T/N . The mesh points in time are

defined as tn := n∆t and the distance between two consecutive points is called time step

size. Let ϕn be the approximation of the exact solution ϕ(tn). We set ϕ0 = ϕ0 and for

all n > 0 the approximation ϕn reads

ϕn = ϕn−1 + ∆tF(ϕn, tn). (1.19)

This method is called implicit Euler or backward Euler method. The equation (1.19)

defines a non-linear problem and can be solved by using a fixed point iteration or any

other non-linear solver (see Section 1.3.3).

For the implicit Euler method, the local truncation error, defined as the error induced

at every time-step, is O(∆t2). Hence, the method is referred to as a first order technique.

Furthermore, we introduce the global error en = ϕ(tn)− ϕn and our aim is to show

the convergence of the implicit Euler method. Using (1.19) we obtain an error equation
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of the form

en = en−1 +ϕ(tn)−ϕ(tn−1)−∆tF(ϕn, tn). (1.20)

Now, by using Taylor expansion we obtain

ϕ(tn−1) = ϕ(tn)−∆tdϕ(tn)
dt

+ ∆t2

2
d2ϕ(µn)
dt2

, (1.21)

for some µn ∈ (tn−1, tn). Replacing (1.21) in (1.20) we get

en = en−1 + ∆t (F(ϕ(tn), tn)− F(ϕn, tn))− ∆t2

2
d2ϕ(µn)
dt2

The assumptions on F guarantee the existence of M > 0 such that max
[0,T]
‖d

2ϕ(t)
dt2 ‖ ≤

M. Hence, using the Lipschitz continuity of F and summing over j = 1, . . . , k, for an

arbitrary k ∈ {1, . . . , N}, one gets

‖ek‖ ≤ ‖e0‖+ ∆tL
k∑
j=1
‖ej‖+

k∑
j=1

∆t2

2 M.

Applying the discrete Gronwall lemma (see [Quarteroni et al. 2010, Lemma 11.2]) we

obtain

‖ek‖ ≤
(
‖e0‖+ ∆t

2 TM
)

exp (TL ) .

Since e0 = 0, we get ‖ek‖ ≤ ∆t · C uniformly w.r.t k. Here C = TM
2 exp (TL ) is a

positive constant and it is independent of ∆t. Finally, this proves that lim
∆t→0

‖ek‖ = 0,

for all k ∈ {1, . . . , N}, i.e. the implicit Euler method is convergent and the order of

convergence is one.

Regarding the stability of the method, we remark that the method is zero-stable,

which means that in a fixed bounded interval small perturbations of data yield bounded

perturbations of the numerical solution when ∆t → 0. The zero stability follows for the

property of F being Lipschitz and the use of the Gronwall lemma as before. Further,

for the proof of absolute stability of the method we refer to [Quarteroni et al. 2010,

Section 11.3] for a rigorous analysis. We highlight that the implicit Euler method is

unconditionally absolutely stable, which means that, in the linear case and for a fixed
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∆t, the solution ϕn remains bounded as tn → ∞. Even though implicit Euler tends

to be slower in comparison with explicit approximations, the explicit methods are only

conditionally absolutely stable and introduce severe time discretization constraints.

1.3.3 The linearization method

In many cases, after the discretization in time and space, one obtains non-linear problems

that must be solved by using linear iterative methods. In this thesis, we discuss the

applicability of classical iterative solvers like Newton or Picard (see [Bergamaschi and

Putti 1999; Celia et al. 1990]) and we detail the formulation of a robust fixed-point

method called L-scheme proposed in [Pop et al. 2004].

Let us consider the system of equations (1.18) and the backward Euler discretization

explained before. For n > 0 and given ϕn−1 we seek for ϕn satisfying

ϕn −ϕn−1

∆t = F(ϕn, tn). (1.18 revisited)

We define G(ϕn, tn) := ϕn −∆tF(ϕn, tn)−ϕn−1 and write the problem (1.18) as:

Find ϕn satisfying

G(ϕn, tn) = 0.

To solve this non-linear system of equations, Newton’s method defines a sequence

{ϕni }i≥0 as follows

ϕni = ϕni−1 − J̃(ϕni−1, t
n)−1G(ϕni−1, t

n),

ϕni = ϕni−1 − J̃(ϕni−1, t
n)−1 (ϕni−1 −∆tF(ϕni−1, t

n)−ϕn−1) ,
where J̃ is the jacobian matrix of G and ϕn0 is given. The jacobian J̃ can be calculated

in terms of the jacobian matrix of F, so called J. We write J̃ = I−∆tJ and this implies

ϕni = ϕni−1 −
(
I−∆tJ(ϕni−1, t

n)
)−1 (

ϕni−1 −∆tF(ϕni−1, t
n)−ϕn−1) ,(

I−∆tJ(ϕni−1, t
n)
)
ϕni = −∆tJ(ϕni−1, t

n)ϕni−1 + ∆tF(ϕni−1, t
n) +ϕn−1.

The stopping criterion used for Newton’s method is to iterate until the L2-norm of
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the difference between two successive iterations reaches a certain threshold tol > 0, i.e.,

‖ϕni −ϕni−1‖ ≤ tol.

The Newton method is generally expected to give quadratic convergence under two main

restrictions: an accurate initial guess ϕn0 close enough to the solution and the existence

and the accurate calculation of J(·, ·)−1. Such requirements limit the choices of the

time step size and imply expensive calculations of J(·, ·)−1. Therefore, we detail the

formulation of a fixed-point method called L-scheme (see [Pop et al. 2004; Radu et al.

2015; List and Radu 2016; Mitra and Pop 2019]).

The problem (1.18) can be also seen as: Find ϕn satisfying

ϕn = ∆tF(ϕn, tn) +ϕn−1.

If F is monotone with respect to each component of ϕ and Lipschitz continuous with

Lipschitz constant L , the L-scheme approximates F(ϕn, tn) around a given value by a

linear function. Now, given ϕn0 we define a sequence {ϕni }i≥1 as follows

ϕni = ∆t
(
F(ϕni−1, t

n) + L
(
ϕni −ϕni−1

))
+ϕn−1,

(1−∆tL )ϕni = ∆tF(ϕni−1, t
n)−∆tLϕni−1 +ϕn−1.

Clearly, the formulation of the L-scheme coincides with Newton’s method if we replace

L by J(ϕni−1, t
n). Nevertheless, the L-scheme convergence is only linear, but it is inde-

pendent of the initial guess. Moreover, in specific cases the convergence of the L-scheme

is also independent of the time step size e.g. in [Pop et al. 2004; List and Radu 2016]

or it leads to mild restrictions on the time step as in [Karpinski and Pop 2017; Bastidas

et al. 2021a]. Moreover, for this scheme, neither the jacobian matrix J(·, ·) nor its inverse

needs to be calculated, which translates to faster calculations.

Inspired by [List and Radu 2016], in Chapter 2 we use the L-scheme to provide a

suitable non-problematic initial point for the Newton scheme. There we use the L-scheme

until certain tolerance is reached and then use the Newton method until convergence.

We use this strategy to improve the convergence of the scheme up to the quadratic

convergence.
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In Chapter 4 we prove the convergence of the L-scheme applied to a mixed formu-

lation of the porous medium equation and in Chapter 5 a similar result is proved when

applying the L-scheme to a micro-scale phase-field problem. Specifically, in Chapter 5

we use a splitting scheme in which we split the non-linearity into its convex and concave

components. There we apply the L-scheme to the convex part of the non-linear term and

we prove the convergence of the iterations under a mild restriction on the time step.

Outline of the thesis

The thesis structure takes the form of five main chapters. In the introductory chapter,

we have given the mathematical and numerical background of our work. The scientific

outputs of the methodology are detailed in Chapters 2-5 as follows:

Chapter 2. Numerical homogenization of non-linear diffusion problems. We propose an

efficient numerical strategy for solving non-linear diffusion problems defined in a

porous medium with highly oscillatory characteristics. This strategy is based on the

classical homogenization theory and uses a locally mass-conservative formulation

over several scales. Besides, we discuss some properties of the proposed non-linear

solvers and use an error indicator to perform a local mesh refinement. The main

idea is to compute the effective parameters to reduce computational complexity

and preserve accuracy. We illustrate the behavior of the homogenization scheme

and the non-linear solvers by performing some numerical tests. We consider first

a quasi-periodic example and a problem involving heterogeneities and non-periodic

media (the SPE10th project).

Chapter 3. A benchmark study of multi-scale methods. We perform a comparison of

two multi-scale methods: Multi-scale finite volumes and numerical homogeniza-

tion. Here we extend the applicability of these methods to fully implicit simulations

using the algebraic dynamic multilevel (ADM) method. At each time step, on the

given fine-scale mesh and based on error analysis, a fully implicit system is solved on

a dynamic multilevel grid. The entries of this system are obtained by using multi-

scale local basis functions or by homogenization over local domains. Both sets of

local basis functions and local effective parameters are computed at the beginning
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of the simulation, with no further updates during the multiphase flow simulation.

The two methods are extended and implemented in the same open-source DARSim2

simulator (https://gitlab.com/darsim2simulator). The results reveal an in-

sightful understanding of the two approaches and qualitatively benchmark their

performance. It is re-emphasized that the test cases considered here include perme-

ability fields with no clear scale separation. The development of this chapter sheds

new light on advanced multi-scale methods for simulation of coupled processes in

porous media.

Chapter 4. The HDG method for the porous medium equation. The goal of this chapter

is to provide the details of the formulation of the Hybridizable discontinuous Galerkin

method for solving the porous medium equation. Here we combine the HDG method

with the L-scheme, and we use modal Legendre–Dubiner basis functions. This

chapter gives the details of the formulation and the implementation of the HDG

method included in [Cancès et al. 2020]. The performance of several schemes

is compared when applied to a specific degenerate parabolic problem with mild

regularity.

Chapter 5. Numerical simulation of a two-scale phase-field model. Here, we adopt a

two-scale phase-field model of mineral precipitation and dissolution. Such processes

alter the structure of the porous medium and make numerical simulations a chal-

lenging task. We propose a robust scheme for the numerical approximation of the

solution of the two-scale phase-field model. The scheme considers both the scale

separation in the model and the non-linear character of the model. After proving the

convergence of the scheme, an adaptive two-scale strategy is incorporated, which

improves the efficiency of the simulations. This chapter includes the implementa-

tion details of the mixed finite element method used for the space discretization.

Finally, numerical tests are presented, showing the efficiency and accuracy of the

scheme in the presence of anisotropies and heterogeneities.

In the conclusion chapter we include a detailed discussion of the originality, impact

and remaining issues related with this thesis.

https://gitlab.com/darsim2simulator




Chapter 2
Numerical homogenization of

non-linear parabolic problems

This chapter is based on the following publication:

“ Numerical homogenization of non-linear parabolic problems on adaptive meshes. M

Bastidas, C Bringedal, IS Pop, FA Radu. Journal of Computational Physics, 109903,

2021. DOI:10.1016/j.jcp.2020.109903. ”

2.1 Introduction

Let Ωε be a bounded, possibly perforated domain in Rd (d = 2, 3) with Lipschitz boundary

∂Ωε and T > 0 be a maximal time. We consider the non-linear parabolic equation

∂tb
ε(x, pε(x, t))− div (Kε(x)∇pε(x, t)) = fε(x, t), in Ωε × (0,T] , (2.1)

with suitable initial and boundary conditions. Here the given data include the source fε,

the absolute permeability matrix Kε and the volumetric fluid saturation bε.

In this setting, ε is a positive small parameter and denotes the scale separation between

the micro-scale (e.g., the scale of pores in a porous medium) and the macro-scale (e.g.,

the Darcy scale, the scale of simulation in case of heterogeneous media). With the
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superscript 0 < ε � 1 we indicate that the medium is considered highly heterogeneous,

which induces rapid oscillations in the parameters, in the non-linearities and consequently

in the solution. Inspired by unsaturated fluid flow in a porous medium, the equation

(2.1) can, for example, represent the non-dimensional Richards equation after applying

the Kirchhoff transformation, without taking into account gravity effects (see [Bear and

Bachmat 2012]). In this case, the primary unknown pε(x, t) is the transformation of the

fluid pressure. For simplicity pε(x, t) will be called pressure in what follows.

There are numerous numerical simulation techniques for processes that involve two

or more scales in space and time. Concretely, the MSFV and ADM methods proposed

in [Hajibeygi et al. 2008; Cusini et al. 2016] aim to solve problems involving different

scales by incorporating the fine-scale variation into the coarse-scale operators. The multi-

scale finite volume method (MSFV) in [Cusini et al. 2016] includes a dynamic local grid

refinement method to provide accurate and efficient simulations, employing fine grids only

where needed.

On the other hand, the HMM (see [E et al. 2003; Abdulle et al. 2012]) relies on coupled

macro- and micro-scale solvers that can come from homogenization (see [Hornung 1997]).

This method takes advantage of the scale separation and is based on the numerical ap-

proximation of the macro-scale data. In [Abdulle et al. 2012; Abdulle and Nonnenmacher

2009; 2011] ideas on how to manage different scales in an efficient computational way

are developed, using the standard finite element method (FEM). Further, the numerical

computations using finite difference and discontinuous Galerkin method also demonstrate

the potential of this framework in [E et al. 2003; Chen et al. 2005].

Improved multi-scale methods to simulate non-linear single-phase and multi-phase flow

have been proposed in [Amanbek et al. 2019; Arbogast et al. 2007; Wheeler et al. 2002;

Møyner and Lie 2016; Singh et al. 2017]. Specifically, the ideas of adaptive homoge-

nization were applied in [Singh et al. 2017] for two-phase flow problems. An Enhanced

Velocity Mixed Finite Element method is proposed in [Wheeler et al. 2002] to deal with

non-matching, multi-block grids and couple micro- and macro-scale domains. In the same

line of research, [Arbogast et al. 2007] gives a computational strategy for the multi-scale

dynamics over non-matching grids using mesh refinement and enriched multi-scale basis

functions. In [Amanbek et al. 2019], the homogenization theory is combined with domain
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decomposition to obtain effective parameters and solve macro-scale problems. Further,

the multi-scale finite element (MsFEM) method presented in [Hellman et al. 2016; Hen-

ning et al. 2015; 2014] constructs a multi-scale mixed finite element space. Moreover, we

highlight the relevance of alternative approaches such as the equation-free method. In

[Kevrekidis and Samaey 2009; Kevrekidis et al. 2004; Bunder et al. 2017; Kevrekidis and

Samaey 2010; Maclean et al. 2020] and the references therein, the equation-free method

is implemented and extensively discussed. There, they apply homogenization to multi-

scale complex systems with periodic and non-periodic characteristics and combine it with

patch dynamic to improve the efficiency of their computations.

In this chapter, we develop a locally mass-conservative scheme that computes the

homogenized permeability field of (2.1) over coarse meshes. In contrast with the results

mentioned before, we use an error indicator on the macro-scale solvers to localize the error

and subsequently refine or coarsen the mesh accordingly. We propose a combination of

techniques supported in the theoretical framework of the homogenization (see [Hornung

1997]) for non-linear parabolic equations. Our adaptive homogenization strategy builds

on the ideas of the HMM method in [Abdulle et al. 2012; Abdulle and Nonnenmacher

2009; 2011] by using an efficient and robust non-linear solver and by considering important

aspects as the conservation properties in multiple scales. We use the solution of certain

micro-scale problems to calculate averaged parameters that are used in a macro-scale

solver. The computation of the effective parameters can be parallelized and it is cheap to

perform. The error induced by the calculation of the effective parameters can be dismissed

when one applies a sufficiently accurate micro-scale solver. It is important to remark that

although periodicity is assumed in the classical homogenization theory, we show in the

numerical examples that this upscaling technique can also be applied to problems involving

non-periodic media.

We apply the backward Euler (BE) method for the time discretization and the mixed

finite element method (MFEM) for the spatial discretization. Both strategies were in-

troduced in (Chapter 1) Section 1.3. We highlight that this strategy is not relying on

a particular choice of basis functions or discretization method, and that the micro- and

macro-scale solvers are completely independent. In order to solve the fully discrete for-

mulation of (2.1), non-linear solvers are required. We use an approach combining the L
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and the Newton schemes mentioned in (Chapter 1) Section 1.3.3.

For time-dependent problems the idea of adaptive meshes is very useful to localize

the changes in the solution between different time steps. On the other hand, reaching

finer meshes becomes computationally expensive because it requires extra calculations of

the macro-scale parameters. The finer the mesh for the upscaled model, the higher the

computational effort as the effective parameters need to be computed in more points, thus

more cell problems need to be solved. For this reason, we present an error indicator that

specifies when the numerical solution and the effective parameters should be re-computed.

With this strategy we aim to avoid unnecessary computations of the micro-scale problems

and localize the effort in zones of high velocity variations.

This chapter is organized as follows. In Section 2.2 the details of the model, the

geometry and the discrete formulation are given and the necessary assumptions are stated.

Section 2.3 gives a summary of the standard procedure of the homogenization for a

parabolic case in a periodic porous media. This can be seen as an extension of (Chapter 1)

Section 1.1 to the non-stationary case. In Section 2.4 the mesh refinement and the

coarsening strategy are stated and in Section 2.5 the linearization scheme is described.

We discuss the numerical tests in Section 2.6, where the quasi-periodic and non-periodic

cases are considered.

2.2 The model formulation and the spatial discretization

To construct a robust and locally conservative scheme we consider the mixed formulation

of (2.1). Letting uε(x, t) be the Darcy velocity, the unknowns (pε,uε) satisfy

∂tb
ε(x, pε(x, t)) + div (uε(x, t)) = fε(x, t), in ΩεT,

uε(x, t) = −Kε(x)∇pε(x, t), in ΩεT,

pε(x, t) = 0, on ∂ΩεT,

pε(x, 0) = pI(x), in Ωε.

(2.2)

Here ΩεT := Ωε× (0,T] and ∂ΩεT := ∂Ωε× (0,T]. As mentioned before, by using the

superscript ε > 0 we emphasize that rapidly oscillating characteristics are involved. For

example, the domain either involves characteristics changing within ε-sized regions, or it
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may include perforations.

We refer to [Alt and Luckhaus 1983] for the existence and uniqueness of a weak

solution of (2.1) under the following assumptions:

(A1) The function bε(x, ·) is non-decreasing, bε(·, 0) = 0 and locally Lipschitz continuous.

There exists Lb > 0 such that

|bε(x, p1)− bε(x, p2)| ≤ Lb|p1 − p2|,

for all x ∈ Ωε and p1, p2 ∈ R.

(A2) The permeability function Kε : Ωε → Rd×d is symmetric for all x ∈ Ωε and

continuous. There exist scalars β, λ > 0 such that

β‖ψ‖2 ≤ ψT Kε(x)ψ ≤ λ‖ψ‖2, for all ψ ∈ Rd and x ∈ Ωε.

(A3) The initial data pI (possibly depending of ε) and the source term fε are essentially

bounded uniformly w.r.t ε.

In [Radu et al. 2008] the equivalence between the mixed and conformal weak formulations

is proved in both continuous and semi-discrete cases. Moreover, a corresponding proof

for a similar problem is presented in Chapter 5.

2.2.1 The non-linear fully discrete problem

To define the discrete problem we let Thε be a triangular partition of the domain Ωε with

elements T of diameter hεT and hε := max
T ∈Thε

hεT such that hε � ε.

Further, 0 = t0 ≤ t1 ≤ t1 ≤ · · · ≤ tN = T, N ∈ N is a partition of the time interval

[0,T] with constant step size ∆t = ti+1 − ti, i ≥ 0. For the discretization of the flux uε

we consider the lowest-order Raviart-Thomas space Vhε := RT0(Thε) and for the pressure

pε we use the discrete subspace of piecewise constant functions Whε (see (Chapter 1)

Section 1.3.1)

Whε :=
{
q ∈ L2(Ωε) | q is constant on each element T ∈ Thε

}
,

Vhε :=
{

v ∈ H(div,Ωε) |v|T = a + bx for all T ∈ Thε , a ∈ Rd, b ∈ R
}
,
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with L2(Ωε) being the space of the square-integrable functions with the usual norm

and H(div,Ωε) :=
{

v ∈ [L2(Ωε)]d |div(v) ∈ L2(Ωε)
}

. We let 〈·, ·〉 represent the inner

product on L2(Ωε).

For simplicity, we omit writing the x argument in bε(x, pε), which becomes now bε(pε).

Problem PMε
n Let n ≥ 1. Given (pε)n−1

hε ∈Whε , find (pε)nhε ∈Whε and (uε)nhε ∈ Vhε

such that for any q ∈Whε and v ∈ Vhε there holds

〈
bε ((pε)nhε)− b

ε
(

(pε)n−1
hε

)
, q
〉

+ ∆t 〈div ((uε)nhε) , q〉 = ∆t 〈fε, q〉 ,〈
[Kε]−1 (uε)nhε ,v

〉
− 〈(pε)nhε ,div (v)〉 = 0.

We denote by (pε)0
hε the L2-projection of the initial condition pI over the mesh Thε .

For details about the existence and uniqueness of the solution to problem PMε
n we

refer to [Radu et al. 2008]. Note that the problem PMε
n is non-linear. Therefore a

non-linear solver is needed. This is detailed in Section 2.5.

2.3 The two-scale approach

We start the presentation for the case of a periodic medium. Building on this, we extend

these ideas for non-periodic situations. The concept of coupling the scales trough the

calculation of effective parameters is used, among others, in [Abdulle et al. 2012; Abdulle

and Nonnenmacher 2011; Amanbek et al. 2019]. Here we follow the ideas therein and

enhance the strategy with adaptive mesh refinement and robust non-linear solvers.

We assume that the domain Ωε can be written as the finite union of micro-scale

regions, namely Y , where the parameters change rapidly. In other words, the parameters

and non-linearities take different values inside of Y (see Figure 2.1). In the extreme case,

the micro-scale Y can be viewed as a perforated region with a pore space and a solid

grain (see, e.g., [Hornung 1997]). Here we give the ideas for non-perforated domains but

this can be adapted straightforwardly to perforated ones.

At the micro scale Y and the macro scale Ωε we assume characteristic lengths ` and

L respectively. The factor ε := `
L denotes the scale separation between the two scales.

To identify the variations at the micro scale we define a fast variable y := x
ε . To each



2.3. The two-scale approach 37

macro-scale point x ∈ Ωε corresponds one micro-scale cell Y := [0, 1]d that captures the

fast changes in the parameters. More details about the two-scale structure of Ωε were

given in Chapter 1.

Figure 2.1: The two-scale structure in R2: the macro-scale domain (left), the complex

structure (middle) and the micro-scale domain (right). Note the typical lengths L and `.

To formulate the homogenized problem, we make the following assumptions:

(B1) There exists a function b : Ωε×Rd×R→ R such that bε(x, pε) := b(x, x
ε , p

ε) and

b(x, ·, pε) is Y -periodic.

(B2) There exists a function K : Ωε × Rd → Rd×d such that Kε(x) := K(x, x
ε ) where

K(x,y) is a symmetric matrix and a continuous function for all (x,y) ∈ Ωε × Y

and K(x, ·) is Y -periodic.

2.3.1 The homogenization approach

A direct numerical approximation of the problem PMε
n requires the usage of an extremely

fine mesh to capture all the changes in the characteristics of the medium. We consider

a homogenization-based approach and compute an effective model involving only the

essential variations of the permeability matrix.

We restrict the presentation to the minimum needed for explaining the approach.

We make use of the homogenization ansatz and refer to [Hornung 1997; Cioranescu and

Donato 1999] for a detailed presentation of the method.
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Recalling the homogenization procedure explained in Section 1.1, here we assume that

pε can be formally expanded as

pε(x, t) = p(x, t) + εp1(x,y, t) + ε2p2(x,y, t) + ... , (2.3)

where y = x
ε stands for the fast variable, x is the slow variable and each function

pi : Ωε × Y × (0, T ]→ R is Y -periodic w.r.t y. The function p(x, t) does not depend on

y and is in fact the macro-scale approximation of the pressure pε(x, t).

Using (2.3) and the two-scale operators, as defined in (1.3), in (2.2) and applying the

Taylor expansion of b(·, ·, p) we obtain

∂tb−
(

divx + 1
ε

divy
)(

K

(
∇x + 1

ε
∇y
)(

p+ εp1 + ε2p2
))

+O (ε) = f.

To determine p1 as a function of p, for the terms of order O(ε−1) we can write

p1(x,y, t) = p̂1(x, t)+
∑d
j=1

∂p(x,t)
∂xj

ωj(x,y) where the function p̂1 is an arbitrary function

of x, and ωj are the solutions of the following mixed micro-cell problems

divyξj = divy (K(x, ·) ej) , in Y,

ξj = −K(x, ·)∇yωj , in Y,

ωj is Y − periodic.

(2.4)

Here {ej}dj=1 is the canonical basis of Rd. To guarantee the uniqueness of the solution

we assume that ωj has the average 0 over the micro cells, that is,
∫
Y
ωj(x,y)dy = 0 for

all x ∈ Ωε.

To highlight that the homogenized domain does not contain heterogeneities, we use

Ω instead of Ωε for the macro-scale domain and ∂Ω for its outer boundary. Following

the homogenization, Ω does not contain any oscillatory behavior. Recalling the periodic

boundary conditions and averaging over Y , one obtains the homogenized mixed formula-

tion.

Letting u(x, t) denote the upscaled Darcy velocity, the upscaled unknowns (p,u)
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satisfy
∂tb

?(x, p(x, t)) + div (u(x, t)) = f?(x, t), in ΩT

u(x, t) = −K(x)∇p(x, t), in ΩT,

p(x, t) = 0, on ∂ΩT,

p(x, 0) = pI , in Ω.

(2.5)

Here ΩT := Ω×(0,T] and ∂ΩT := ∂Ω×(0,T]. The effective permeability K : Ω→ Rd×d

has the elements

Ki,j(x) =
∫
Y

(
K(x,y)

(
ej +∇yωj(x,y)

))
· ei dy, (i, j = 1, . . . , d). (2.6)

The upscaled saturation and source terms are

b?(x, p) :=
∫
Y

b(x,y, p) dy and f?(x, t) :=
∫
Y

f(x,y, t) dy.

The difference between the solution of (2.2) and the solution of (2.5) is subtle. In the

original problem, the main characteristics are present at all scales in a strongly coupled

manner. Notice that a very fine mesh is needed to resolve all the variability in (2.2), leading

to expensive numerical methods and oscillatory solutions. The homogenized model instead

involves only essential variations at the macro-scale. The solution of (2.5) represents the

average behaviour of the solution of (2.2) and can be solved on much coarser meshes.

However, to determine the value of the permeability tensor at a macro point x ∈ Ω,

one has to solve d micro-cell problems (2.4) associated with that macro point. Note

that these problems reflect the rapidly oscillating characteristics and are decoupled from

the macro-scale variations. From a computational point of view, the importance of this

decoupling becomes obvious. Instead of solving the full problem on a very fine mesh, one

solves a collection of simpler problems. In general, analytic solutions are not available to

compute the homogenized parameters. Then K, b? and f? must usually be computed

numerically and can therefore only be obtained at discrete points of the domain Ω.

If the original permeability Kε satisfies (A2) and (B2) then the effective tensor in

(2.6) is also symmetric and positive definite. Nevertheless, even when the fine-scale

permeability is isotropic, the numerical approximation to the effective tensor can contain
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non-zero non-diagonal components or different diagonal components.

The non-linear discrete problem associated with the homogenized formulation (2.5) is

defined in the following sections.

2.3.2 The non-linear fully discrete homogenized problem

Let TH be a coarse, triangular partition of the domain Ω with coarse elements T of

diameter HT and H := max
T ∈TH

HT . For the discretization of the flux u we consider the

lowest-order Raviart-Thomas space VH := RT0(TH) and for the pressure p we use the

discrete subspace of piecewise constant functions WH (see [Brezzi and Fortin 1991]).

Problem PHn For a given pn−1
H ∈WH and n ≥ 1, find pnH ∈WH and unH ∈ VH such

that for any qH ∈WH and vH ∈ VH there holds

〈
b? (·, pnH)− b?

(
·, pn−1

H

)
, qH

〉
+ ∆t 〈div (unH) , qH〉 = ∆t 〈f?, qH〉 ,〈

[K]−1 unH ,vH
〉
− 〈pnH ,div (vH)〉 = 0.

Again p0
H is the L2-projection of the initial pI over the coarse mesh TH . For simplicity,

we omit writing the x argument in b?(x, p), which becomes now b?(p).

2.3.3 The micro-cell problems and the micro-scale discretization

As mentioned before, the effective parameters must be computed at each integration

point on the coarse triangulation TH . The effective tensor K depends on the solution of

the micro-cell problems (2.4). To solve (2.4) we use MFEM.

To approximate the solution of (2.4) we use a triangular decomposition Th of the

micro-scale domain Y with micro-scale mesh size h. For the discretization of the micro-

scale unknowns we consider the lowest-order Raviart-Thomas space Vh := RT0(Th) and

the discrete subspace of piecewise constant functions Wh. At each integration point

x ∈ T with T ∈ TH , the discrete micro-cell problem is
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Problem Phj Find (ωjh, ξ
j
h) ∈Wh × Vh satisfying

〈
divξjh, qh

〉
= 〈∇ · (K(x, ·)ej) , qh〉 ,〈

[K(x, ·)]−1
ξjh,vh

〉
−
〈
ωjh,div (vh)

〉
= 0,

ωjh is Y − periodic, and
〈
ωjh, 1

〉
= 0.

for all qh ∈Wh, vh ∈ Vh and j = 1, . . . , d. After solving the problems Phj, we use (2.6)

to compute the discrete effective permeability and solve the discrete problem PHn. The

cell problems Phj are linear problems that only need to be solved initially, or when the

mesh changes. The numerical cost of solving the micro-scale problems is minor compared

to solving the original problem.

2.3.4 Non-periodic case

Until now the two-scale approach has been referenced by assuming periodicity of the

permeability Kε. Nevertheless, we claim that the same strategy can be applied to non-

periodic structures. When the permeability field Kε is non-periodic, the periodic boundary

conditions in the problems Phj are artificially imposed. However, the problems Phj are

well defined and will yield to one upscaled tensor K. In other words, when one solves the

micro-cell problems the resulting effective permeability field can systematically be consid-

ered an upscaled quantity obtained from the original data. The main issue is whether this

upscaled permeability reflects the effective behavior at the macro-scale. Hence, we com-

bine the numerical homogenization with mesh adaptivity to capture the local variability.

In the numerical examples we show that the adaptive numerical homogenization applied

to the non-periodic cases produces profitable results.

2.4 The two-scale discretization

In practical cases, one does not necessarily have any structure in the oscillations of the

data. Nevertheless, the computation of macro-scale parameters remains a suitable idea.

We propose to solve the micro-cell problems Phj and compute the macro-scale parameters

over a coarse mesh defined beforehand. This procedure consists of two steps:
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? The macro-scale partition: Define a macro-scale division of the domain Ω with

elements Qk, (k = 1, 2, . . . ,M), where M is the total number of coarse cells.

? The micro-scale domains: Solve the micro-cell problems Phj and compute the con-

stant effective permeability (2.6) over each coarse cell Qk. Note that Qk determines

a micro-scale domain and there we define a micro-scale mesh size h. Moreover, at

each micro-scale domain we impose periodic boundary conditions.

Based on this, one can first construct a coarse mesh for the macro-scale domain and

inside each macro-scale element the effective parameters are obtained by solving the

corresponding micro-scale cell problems. Subsequently, one can solve the homogenized

problem PHn. It is important to highlight that over the coarse-scale partition we construct

a uniform triangular mesh such that a constant effective permeability is assigned to each

triangle. In Figure 2.2, we show the configuration of the macro- and micro-scale partition

and the procedure described previously.

Figure 2.2: The sketch of the macro-scale partition and the correspondent micro-scale

discretization in a domain Ω ⊂ R2. Different intensities represent different values of the

permeability.

2.4.1 The macro-scale mesh refinement and coarsening

We propose a three-step strategy to adapt the macro-scale mesh to the evolution of the

numerical solution of the homogenized problem. Our strategy is based on the idea of
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error control based on averaging technique introduced in [Carstensen 2004; Carstensen

and Funken 1999]. Later we use a smoother approximation to the discrete solution unH .

We define an average operator Az

AunH(z) = Az(unH) := 1
|wz|

∫
wz

unH dx,

where wz := int (∪{K ∈ THn : K ∩ T 6= ∅, z ∈ T }) is the patch corresponding to the

point z ∈ Ω. Notice that here we use an error indicator and not an error estimator. For

this reason our error control is less quantitative and is not based on an aposteriori error

analysis.

Our approach consists of the sequence: Solve - select the cells/triangles - re-

fine/coarsen the mesh. The mesh refining generates a sequence of triangular meshes

(one mesh per time step).

(S1) Solve: The starting point is an initial coarse mesh TH0 and the approximation of

the pressure and velocity (p0
H ,u0

H) that satisfy the discrete problem PHn in the

first time step.

(S2) Select the cells/triangles: Let the solution (pnH ,unH) over THn be given. Calculate

the error indicator

ηnT := ‖unH − AunH‖L2(T ), (2.7)

for all T ∈ THn . The elements marked to be refined are T ∈ THn such that (see

[Carstensen and Hoppe 2006])

ηnT ≥ Θr

(
max
K∈THn

ηnK

)
, with Θr ∈ (0, 1).

On the other hand, we select a set of triangles to be coarsened, i.e T ∈ THn such

that

ηnT ≤ Θc

(
min
K∈THn

ηnK

)
, with Θc ≥ 1.

We avoid overlapping in these processes by imposing that a triangle which has been

refined can not be selected to be coarsened.
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(S3) Adapt the mesh: The last step of the adaptive procedure consists of including new

elements, deleting the elements to be coarsened and re-meshing.

To avoid non-conforming meshes, we use a red-refinement procedure originally pro-

posed in [Bank et al. 1983]. For each triangle to be refined, we insert three new

points corresponding to its edges’ midpoints. Afterward, we delete the points cor-

responding to the elements marked to be coarsened and then re-mesh.

For the permeability grid, we refine each selected cell into four new cells to com-

pute four new effective permeabilities, and the reverse process when coarsening is

necessary.

Remark. With the choice of the error indicator in (2.7) we estimate the regions where

the flux is changing substantially. Other indicators are possible and can be incorporated

straightforwardly. For example, one could use estimators based on the changes in pressure,

front capturing or aim to minimize the residual of the numerical solution (aposteriori

estimators, e.g., [Ern et al. 2019; Cancès et al. 2014; Ern et al. 2016]). We remark that

by changing the error indicator one would not change the steps below, although different

macro-scale meshes would be obtained by the procedure.

The outline of the steps (S1) to (S3) is presented in Figures 2.3 and 2.4 for the 2D

case. In Figure 2.3 we sketch the situation when only refinement is encountered and in

Figure 2.4 we sketch the coarsening process. We will only consider 2D numerical examples,

but in 3D the mesh refinement can be done as described in [Golias and Dutton 1997]. In

Figures 2.3 and 2.4 we highlight that at every time step it is necessary to ensure that in

the new mesh each element corresponds only to one permeability value. That restriction

forces us to also refine/coarsen neighboring elements. This is also evident in Figure 2.5

in which we show three different steps of the mesh adaptivity.

With this strategy, we allow more than one level of refinement. In Figure 2.5 we sketch

the mesh adaptivity process when different levels are involved at one step. Note that the

thresholds for the refinement can be chosen depending on the problem. Higher values of

Θr and Θc lead to coarser meshes and less error control. We remark that the adaptive

homogenization strategy does not depend on which error indicator is applied and can be

changed without modifying the steps presented here.
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Figure 2.3: The outline of the mesh refinement in R2. (Left to right) Initial effective

permeability. Initial triangulation and selected triangles to refine (?). Refinement of the

permeability field. Refinement of the triangular mesh such that each element corresponds

to one and only one (effective) permeability.

Figure 2.4: The outline of the mesh coarsening in R2. (Left to right) Refined effective

permeability. Refined triangulation and selected triangles to coarsen (?). Coarsened

permeability field. Coarsened triangulation such that each element corresponds to one

and only one (effective) permeability.
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Figure 2.5: The outline of the mesh adaptivity. (Left) Three different levels of the

effective permeability refinement (bottom to top) or coarsening (top to bottom) and

(right) three different levels of the mesh refinement (bottom to top) or coarsening (top

to bottom).
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2.5 The linearization scheme and the final algorithm

Since the time discrete problem PHn is non-linear, solving it requires a linear iterative

scheme. A popular choice is the Newton method (see [Bergamaschi and Putti 1999]),

which converges quadratically. However, we remark that the quadratic convergence is only

achieved under certain restrictions. Specifically, the initial guess for the iterations must

be close enough to the solution. For evolution equations, the solution computed at the

previous time step is a natural choice for the initial guess. Therefore, the time step should

be small enough. Depending on the spatial discretization and the mesh size this often

leads to impractical values (see [Radu et al. 2006; Brenner and Cancès 2017]). We refer

to [Jones and Woodward 2001; Knoll and Keyes 2004; Wang and Tchelepi 2013; Hamon

et al. 2018; Lee and Efendiev 2018; Younis et al. 2010; Jenny et al. 2009] for several

modifications of the Newton scheme leading to an improved convergence behavior. We

remark that in these works the properties of the model equations are different from our

setting. Here we apply the L-scheme described in Section 1.3.3. Although it is only linearly

convergent, the convergence is guaranteed regardless of the initial guess, and it does not

involve the computation of derivatives (see [Pop et al. 2004; List and Radu 2016; Slodicka

2002; Mitra and Pop 2019]). Moreover, if one applies a consistent spatial discretization,

the L-scheme is robust and one can show convergence under very mild restrictions on the

time-step size. We refer to Pop et al. [2004]; Karpinski and Pop [2017] for examples of

the use of the L-scheme and the proofs of convergence of this linearization method after

spatial discretization.

Let L ≥ Lb (see (A1)) be fixed and assume pn−1
H given. With i ∈ N, i ≥ 1 being the

iteration index, the next iteration in the L-scheme is the solution of the following linear

problem.

Problem PHi
n Find p

n,(i)
H ∈ WH and un,(i)H ∈ VH such that for any qH ∈ WH and
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vH ∈ VH there holds

〈
L
(
p
n,(i)
H − pn,(i−1)

H

)
+ b?

(
·, pn,(i−1)

H

)
, qH

〉
+∆t

〈
div
(

un,(i)H

)
, qH

〉
= ∆t 〈f?, qH〉+

〈
b?(·, pn−1

H ), qH
〉
,〈

un,(i)H ,vH
〉
−
〈
K p

n,(i)
H ,div (vH)

〉
= 0.

As discussed, the natural choice for the initial iteration pn,(0)
H is pn−1

H but the convergence

of the scheme does not depend on this choice. In the non-linear solver the iterations take

place until one reaches a prescribed threshold for the L2-norm of the difference between

iterations, namely δ(pn,(i)H ) := p
n,(i)
H − pn,(i−1)

H .

We refer to [Pop et al. 2004] for the details and the properties of the scheme. Here

we remark that the convergence rate is α = L−m
L +C∆t for some C > 0 and 0 < m < L .

Moreover, when using the L-scheme with L = Lb and mixed finite element method the

discrete maximum principle is guaranteed.

Finally, we combine the non-linear solver, the mesh adaptivity and the homogenization

ideas in a simple algorithm presented below. For a better understanding of the stages

in the proposed method, a flow chart is given in Figure 2.6, presenting the steps in the

algorithm.

2.6 Numerical results

We present two numerical examples in R2 to illustrate the behavior of the proposed

adaptive homogenization procedure. We first verify our numerical homogenization ap-

proach using a manufactured periodic and quasi-periodic media and subsequently use a

non-periodic test case. Note that all parameters specified in the following examples are

non-dimensional. The pressures are also shifted to lie between 0 and 1.

2.6.1 The periodic and quasi-periodic cases

Consider the macro-scale domain Ωε = (0, 1) × (0, 1
2 ) with initial condition p0 = 0.

We impose the pressure to be 1 and 0 in the upper-right and the lower-left corners

respectively (element-wise), and we use no-flow boundary conditions elsewhere. The
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Algorithm 1 Adaptive numerical homogenization
Result: Pressure pHN and velocity uHN over a refined mesh THN

Choose an initial coarse-mesh TH0 and compute the coarse effective permeability K (2.6).

for time step tn do
Estimate the error indicator (2.7) of the solution uHn−1

Refine/coarsen the mesh THn−1

if new/deleted elements then
Solve the micro-cell problems Phj

Re-compute the effective parameter K (2.6)

end

while ‖δ(pn,(i)H )‖ > tol do

Compute the solutions pn,(i)Hn
and un,(i)Hn

by solving problem PHi
n over the new

mesh THn

end

end
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Figure 2.6: The sketch of the adaptive numerical homogenization strategy.
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volumetric concentration is bε(x, pε) = R · (pε)3. Here R is a non-dimensional constant

and it is chosen to be R = 0.5E-1. This choice of R is such that the dynamic behavior

extends up to the reference time T = 1. Finally, we take ∆t = 0.1 and the isotropic

periodic permeability field is defined by Kε(x) = κε(x)I2×2 with

κε(x) =
(

10x2
1x2 + 1

2 + 1.8 cos(2π x1
ε ) cos(2π x2

ε )

)
. (2.8)

To solve the problem PMε
n with the necessary resolution to capture the oscillations

over Ωε the mesh size is restricted to be hε � ε. We use a uniform mesh with 65536

elements and hε = 5E-3 to compute the fine-scale solutions (phε ,uhε) when ε = 1
8 ,

1
16

and 1
32 . The fine-scale solutions are computed using the same MFEM, backward Euler

scheme and the L-scheme with L = 3R ≥ max
(
3R · (pε)2).

Table 2.1 shows the history of convergence of the error for different values of ε and

three fixed and uniform coarse meshes TH (without refinement) and H � hε. In other

words, in Table 2.1 we evidence the behavior of the method on three different static coarse

meshes for different values of ε. The L2-error of the upscaled pressure pH is calculated

as

Ep = ‖Πhε(pH)− phε‖L2([0,T];L2(Thε )), (2.9)

where Πhε(pH) is the L2-projection of the upscaled solution in the fine mesh Thε . With

this result we show how the homogenized solution tends to the solution of the original

problem when H → 0 (rows) and also when ε→ 0 (columns).

1.22

Mesh 1 Mesh 2 Mesh 3
H #Elements H #Elements H #Elements

0.1768 64 0.0884 256 0.0442 1024
ε = 1/8 8.145E-2 2.549E-2 1.415E-2
ε = 1/16 6.616E-2 2.497E-2 1.349E-2
ε = 1/32 5.594E-2 1.721E-2 1.128E-2

Table 2.1: The error Ep for three values of ε and three macro-scale coarse meshes. No

adaptivity is included.
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As follows from Table 2.1, a finer mesh reduces the errors. However, the errors are

not necessarily distributed uniformly. The domain can include regions where the errors

are significantly larger than in other regions, and these regions may also change in time.

Whit this example we motivate the use of an adaptive mesh refinement, combined with

an error indicator to identify the regions where the errors are high.

2.6.1.1 The isotropic case

We use a modified permeability field to indicate that the assumption of periodicity is not

essential. We include in the same domain Ωε a high permeability region Ω1 and a low

permeability region Ω2 where the scalar permeability is 1E-2 and 1E-7 respectively.

Ω1 := [0.21, 0.41]× [0.11, 0.41] and Ω2 :=
{

x ∈ Ωε | ‖x− [0.75, 0.26]‖2 ≤ 0.12} .
In Figure 2.7 the normalized (quasi-periodic) permeability field is shown for two values

of the scale parameter ε. The boundary conditions, the volumetric concentration, the

source term and the time discretization remain the same as before.

Figure 2.7: The fine scale permeability field (Kε
1,1) (top) ε = 1

8 and (bottom) ε = 1
16

(log10 scale).
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Figure 2.8 shows four levels of the first component of the effective permeability tensor

(K1,1) with ε = 1
16 starting with a coarse grid of 16 × 8 cells. Referring to the differ-

ent levels of the effective permeabilities, it is important to remark that the coarse-scale

permeabilities are computed in zones that not always match with the initial resolution or

periodicity. Here one can notice the influence of neighbouring macro-cells in the numerical

solution of the micro problems Phj. This effect is evident at the boundary of the low

permeability zone Ω2. To point out this behaviour in the Figure 2.8 we highlight with a

dashed lines the original location of the low and high permeability areas.

Figure 2.8: The coarse-scale permeability distribution (K1,1) (log10 scale) starting with

a coarse grid of 16 × 8 cells. The red lines indicate the original location of the low

permeability zone (Kε = 1E-7I2×2) and high permeability zone (Kε = 1E-2I2×2).

To quantify the anisotropic deviation of K we compute the following quantities

τ1 =
(∫

Ω ||KD(x)−K(x)||22dx∫
Ω ||KD(x)||22dx

) 1
2

and τ2 =
(∫

Ω |K1,1(x)−K2,2(x)|2dx∫
Ω

K1,1(x)2

2 + K2,2(x)2

2 dx

) 1
2

,

where KD is the diagonal matrix that contains the diagonal elements of K.

The anisotropic deviation of the effective permeability tensor in the quasi-periodic case

(see Figure 2.8) corresponds to 9.65E-5 ≤ τ1 ≤ 3.18E-4 and 3.57E-5 ≤ τ2 ≤ 8.06E-4.

With this we conclude that the non-diagonal components of K can be neglected and due



2.6. Numerical results 53

to the similarity between K1,1 and K2,2 in Figures 2.8 and 2.9 we only show the first

component (K1,1) of the effective parameter.

In Table 2.2 we present the results of the adaptive homogenization process when using

different values of Θr. Given the parabolic nature of the problem the coarsening process

is expected to be less relevant during the simulation. In Table 2.2 the upscaled solution

is computed employing the mesh refinement described in Section 2.4 by using Θc = 1,

i.e., without coarsening the mesh. This allows studying the influence of the refinement

parameter Θr only.

Θr

0.2 0.3 0.5 0.7 0.8

#Elements 2755 1295 692 392 331

Ep 1.581E-2 1.664E-2 1.727E-2 1.8422E-2 1.901E-2

Table 2.2: The adaptivity results for Θc = 1 and a varying refining parameter Θr.

#Elements corresponds to the average number of elements during the simulation.

Furthermore, after the adaptivity process we obtain a refined version of the perme-

ability field and Figure 2.9 shows the result of the refined permeability at t = 1 for two

different values of the refinement parameter. The numerical solution of the upscaled

problem PHn when using Θr = 0.5 is showed in Figure 2.10. There, after the whole

simulation we use only 1.06% of the original degrees of freedom used in the computation

of the reference solution. Moreover, in Figure 2.11 we zoom-in on two critical areas of

the domain and show the refined mesh details.

Concerning the behavior of the non-linear solver, to compute the homogenized solution

using only the L-scheme, as in PHi
n, an average of 50 iterations are needed until the

threshold ‖δ(pn,(i)H )‖2 decays below 1E-8. To improve the linear solver a mixed strategy

is adopted (see [List and Radu 2016]). The target is to construct an initial solution that

suits a non-problematic starting point for the Newton method. In this case we use the L-

scheme until ‖δ(pn,(i)H )‖2 < 1E-2 and then the classical Newton method until one reaches



54 Chapter 2. Numerical homogenization of non-linear parabolic problems

Figure 2.9: The refined permeability field (K1,1) at t = 1 (log10 scale) by using Θr = 0.3

(top) and Θr = 0.5 (bottom).

‖δ(pn,(i)H )‖2 < 1E-8. In Figure 2.12 we show the convergence of the non-linear solver for

five time steps using first the L-scheme and the Newton method afterwards. An average

of 3 iterations are needed for the L-scheme to reach the threshold ‖δ(pn,(i)H )‖2 < 1E-2.

2.6.1.2 The anisotropic case

One can also apply the adaptive homogenization strategy to anisotropic media. Consider

the same macro-scale domain, the volumetric concentration, the initial and the boundary

conditions as before. The anisotropic quasi-periodic permeability field is defined by

Kε(x) = κε(x)

 cos(θ) − sin(θ)

sin(θ) cos(θ)


 1 0

0 1E-3


 cos(θ) − sin(θ)

sin(θ) cos(θ)


−1

,

with κε(x) as in equation (2.8). Moreover κε(x) = 1E-2 in the sub-domain Ω1 and

κε(x) = 1E-7 in the sub-domain Ω2. We take the rotation angle θ = 30◦.

In Figure 2.13 we show the resulting permeability field when using Θc = 1 and Θr =

0.3. Figure 2.14 shows the numerical solution of the upscaled problem PHn for the

anisotropic test case.
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Figure 2.10: The results when using adaptive homogenization at t = 0.2 (top), 0.5

(middle), 1 (bottom). The pressure pHn (left) and the magnitude of the velocity field

‖uHn‖2 (right) are computed for ∆t = 0.1 and by using Θr = 0.5 and Θc = 1.
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Figure 2.11: The magnitude of the velocity field at t = 1 and the zoom-in on two

different locations of the domain.

Figure 2.12: The convergence of the non-linear solver. The results for five different

times using the L-scheme until ‖δ(pn,(i)H )‖2 < 1E-2 and the Newton method afterwards.
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Figure 2.13: The anisotropic permeability field (left) and the refined permeability (right)

K1,1, K2,2 and K1,2 = K2,1 (top to bottom) at t = 1 (log10 scale) by using Θr = 0.3

and Θc = 1.
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The L2-error of the upscaled pressure pH , calculated as in (2.9), is Ep = 5.96E-2

for the anisotropic case. Finally, we remark that the convergence of the non-linear solver

is not affected by the anisotropy of the medium and remains similar as in Figure 2.12.

Moreover, in Figure 2.15 we zoom-in on a critical area of the domain and show the refined

mesh details.

Figure 2.14: The results when using adaptive homogenization at t = 1. The pressure

pHn (top) and the magnitude of the velocity field ‖uHn‖2 (bottom) by using Θr = 0.3

and Θc = 1.

2.6.2 The non-periodic case

Here we consider a highly heterogeneous and non-periodic medium. We utilize the data

of the SPE Comparative Solution Projects [Christie and Blunt 2001]. This provides a

vehicle for an independent comparison of methods and a recognized suite of test datasets

for specific problems. We show simultaneously the results when using the isotropic per-

meability field Kε defined by the top layer and the 38th-layer of the SPE10th data set

(see Figure 2.16).
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Figure 2.15: The magnitude of the velocity field at t = 1 and the zoom-in on two

different locations of the domain.

Figure 2.16: The fine scale permeability distribution (Kε
1,1) for the SPE10th-TopLayer

(top) and SPE10th-38thLayer (bottom) of the SPE10th (log10 scale).
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The macro-scale domain is a two-dimensional rectangle (see Figure 2.16). We impose

the pressure to be 1 and 0 in the upper-right and the lower-left corners, respectively

and we use no-flow boundary conditions elsewhere. The volumetric concentration is

bε(x, pε) = R · (pε)3. Here R is a non-dimensional constant and it is chosen to be

R = 1E-4 such that the dynamic behavior extends up to T = 1 and we choose ∆t = 0.1.

The parameter for the non-linear solver is L = 3R ≥ max
(
3R · (pε)2).

To solve the problem (2.2) with the resolution of Figure 2.16 we construct a grid with

26400 elements in a homogeneous triangular mesh Thε . In Figures 2.17-2.18 we show the

reference solution (phε ,uhε) at the last time step.

Figure 2.17: The fine scale pressure pεh for the SPE10th-TopLayer (top) and SPE10th-

38thLayer (bottom).

Using a coarse grid of 55 × 15 squares we compute the first effective permeability

field. This coarse grid corresponds to a macro-scale mesh with 1650 triangular elements,

which is 6.25% of the number of elements used to compute the reference solution. In

Figure 2.19 we show the first component (K1,1) of the coarse-scale permeability fields.

When computing the solution of the problem PHn using the coarse-scale permeabil-

ities displayed in Figure 2.19 and without mesh adaptivity, the L2-error of the solution is

Ep = 5.956E-2 for the top layer and Ep = 6.227E-2 for the 38th layer.
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Figure 2.18: The fine scale magnitude of the velocity field ‖uhε‖2 for the SPE10th-

TopLayer (top) and SPE10th-38thLayer (bottom).

Figure 2.19: The coarse-scale permeability distribution (K1,1) (log10 scale) for the

SPE10th-TopLayer (top) and SPE10th-38thLayer (bottom).
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In Figure 2.20 we show the difference between the effective permeabilities computed

with homogenization and using the harmonic average. Such a strategy is used to calculate

upscaled parameters, among others, in [Renard and De Marsily 1997; Lie 2019]. The dif-

ference between these strategies is higher in zones with high permeability. One can point

out that the harmonic averaging underestimates the permeability. This is problematic be-

cause the high permeability regions are regions where one should increase the accuracy of

the effective parameter in order to have better numerical solutions. When we compute the

solution of the problem PHn using the coarse-scale permeabilities obtained by harmonic

average and without mesh adaptivity the L2-error of the solution are Ep = 7.542E-2 and

Ep = 2.283E-1 when using the SPE10th top layer and 38th layer, respectively.

Figure 2.20: The normalized difference between the coarse-scale effective permeabilities

using homogenization vs harmonic average for the SPE10th-TopLayer (top) and SPE10th-

38thLayer (bottom).

In Tables 2.3 and 2.4 we study the error when using different values of the parameters

Θc and Θr for the dynamic mesh refinement. We remark that regardless of the choice of

the coarsening parameter Θc the L2-error Ep (computed as in (2.9)) tends to decrease

for smaller values of Θr. Nevertheless, due to the interplay of the parameters Θc and Θr

one sees that for high values of the coarsening parameter the average number of elements

does not change significantly and the difference in the errors is negligible. For these test

cases and due to the choice of bε(x, pε), the refinement of the mesh plays a larger role in
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Θc

Θr
0.3 0.5 0.7

1
#Elements 2176 1873 1779

Ep 5.006E-2 5.146E-2 5.292E-2

5
#Elements 2110 1799 1723

Ep 5.092E-2 5.393E-2 5.431E-2

10
#Elements 2051 1709 1716

Ep 5.098E-2 5.460E-2 5.468E-2

Table 2.3: The adaptivity results for the SPE10th-TopLayer and different values of

parameters Θc and Θr. #Elements indicates the average number of elements during the

simulation.

Θc

Θr
0.3 0.5 0.7

1
#Elements 4088 2305 1949

Ep 3.691E-2 4.398E-2 4.684E-2

5
#Elements 3586 2162 1873

Ep 3.875E-2 4.549E-2 4.772E-2

10
#Elements 3603 2102 1793

Ep 3.955E-2 4.821E-2 5.127E-2

Table 2.4: The adaptivity results for the SPE10th-38thLayer and different values of

parameters Θc and Θr. #Elements indicates the average number of elements during the

simulation.
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the error control compared to the coarsening process.

Using the adaptivity process we obtain a refined version of the permeability field.

Figure 2.21 shows the permeability fields after the mesh adaptivity when using Θr = 0.3

and Θc = 5.

Figure 2.21: The refined permeability field (K1,1) at t = 1 (log10 scale) for the SPE10th-

TopLayer (top) and SPE10th-38thLayer (bottom) by using Θr = 0.3 and Θc = 5.

Figures 2.22-2.25 show the numerical solution of the upscaled problem PHn using

the mesh adaptivity strategy described in Section 2.4. In this examples we used 7.99%

and 13.58% of the original degrees of freedom used in the reference solutions.

Finally, in Figure 2.26 we show the convergence of the norm δ(pn,(i)H ) when one uses

a combination of the L-scheme and Newton method. Here we use a mixed strategy

(see [List and Radu 2016]) to construct an initial solution that suits a non-problematic

starting point for the Newton method. As in the previous example we use the L-scheme

until ‖δ(pn,(i)H )‖2 < 1E-2 (typically 3 iterations) and then the classical Newton method

until one reaches ‖δ(pn,(i)H )‖2 < 1E-8.
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Figure 2.22: The homogenized pressure pHn for the SPE10th-TopLayer at t = 0.2 (top),

0.5 (middle), 1 (bottom) and computed with ∆t = 0.1, Θr = 0.3 and Θc = 5.
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Figure 2.23: The magnitude of the homogenized velocity field ‖uHn‖2 for the SPE10th-

TopLayer at t = 0.2 (top), 0.5 (middle), 1 (bottom) and computed with ∆t = 0.1,

Θr = 0.3 and Θc = 5.
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Figure 2.24: The homogenized pressure pHn for the SPE10th-38thLayer at t = 0.2 (top),

0.5 (middle), 1 (bottom) and computed with ∆t = 0.1, Θr = 0.3 and Θc = 5.
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Figure 2.25: The magnitude of the homogenized velocity field ‖uHn‖2 for the SPE10th-

38thLayer at t = 0.2 (top), 0.5 (middle), 1 (bottom) and computed with ∆t = 0.1,

Θr = 0.3 and Θc = 5.
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Figure 2.26: The convergence of the non-linear solver for the SPE10th-TopLayer (top)

and SPE10th-38thLayer (bottom). Results for five different times steps using the L-

scheme until ‖δ(pn,(i)H )‖2 < 1E-2 and the Newton method afterwards.
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2.7 Conclusions

We have presented a numerical scheme based on homogenization to solve a non-linear

parabolic equation defined in a heterogeneous porous medium. The discrete non-linear

system is obtained by a backward Euler and the lowest order Raviart-Thomas mixed finite

element discretization. Our approach proposes a local mesh adaptivity that leads to the

computation of the effective parameters locally through decoupled cell problems. The

mesh adaptivity is based on the idea that the upscaled parameters are updated only

when necessary. Moreover, to illustrate the performance we have presented two general

examples. First we considered a periodic case to show the history of convergence of the

error when the scale separation tends to zero. Here we included an anisotropic case and

also studied the effect of the anisotropic deviation caused by homogenization. Further we

considered a non-periodic case based on a benchmark from the SPE10th project and we

shown that the homogenization can be used also in more general non-periodic cases.



Chapter 3
A benchmark study of

multi-scale methods for

multiphase flow simulations

This chapter is based on the following publication:

“A benchmark study of the multiscale and homogenization methods for fully implicit

multiphase flow simulations. H Hajibeygi, M Bastidas, M HosseiniMehr, S Pop, M

Wheeler. Advances in Water Resources, 103674, 2020.

DOI:10.1016/j.advwatres.2020.103674.”

3.1 Introduction

Geological formations span large length scales (km), having heterogeneous properties

characterized at high resolutions (cm and below). As for the uncertainty within the

integrated field data, typically, several equiprobable realizations of the property fields

are generated to study and simulate the fluid flow and transport. Classical simulation

approaches are too expensive for such studies. Therefore, advanced simulation methods

are required to allow for an accurate representation of the heterogeneous properties. At
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simulations

the same time, they should provide an efficient simulation framework to study multiple

realizations [Jansen et al. 2009; Wachspress 1966].

Model order reduction techniques have been developed to provide a meaningful ap-

proximate simulation framework. Such techniques have to be fast enough to be applied

to large-scale computational domains. In this sense, any advanced method of this type

can be seen as field applicable only if it allows for reducing the error below any desired

threshold value [Hajibeygi et al. 2012].

Here we only consider numerical model order reduction techniques, among which

multi-scale [Efendiev and Hou 2009; Hou and Wu 1997] and homogenization [E 2011]

methods stand very promising.

These approaches are different in the sense that the multi-scale method deals with

crossing the solution, e.g., the pressure, across the scales [Aarnes and Hou 2002; Jenny

et al. 2003; Hajibeygi et al. 2008; Chung et al. 2015], whereas in the latter effective,

lower-resolution parameters and functions like the permeability or the transmissibility, are

derived [E and Yue 2004; Abdulle et al. 2012; E et al. 2007; Li et al. 2020; Singh and

Wheeler 2018; Vasilyeva et al. 2020]. Moreover, while the multi-scale basis functions

have been expressed in a purely algebraic formulation [Wang et al. 2014], the same does

not hold for the homogenization approach. Specially the integration of homogenized

parameters within the fully implicit framework in an algebraic manner has not yet been

developed so far.

At the same time, the two methods have many similarities. Both find their mapping

strategy via local solutions of the original governing equations with local boundary condi-

tions. Multi-scale basis functions often employ reduced-dimensional boundary conditions

[Tene et al. 2015; Møyner and Lie 2016], while homogenization schemes use periodic

boundary conditions and consider local representative micro-structures even in case of

non-periodic media [Allaire 1992; Abdulle and E 2003; Arbogast and Xiao 2013; Bastidas

et al. 2021b; Brown et al. 2013]. Both methods are effective for global equations within

the fully coupled system of local-global unknowns, e.g., the global pressure and the lo-

cal saturation. Both have been extended to nonlinear and geologically complex models

[Amanbek et al. 2019; HosseiniMehr et al. 2018; Singh et al. 2019]. Recent developments

of these two classes of approaches have introduced a fully-implicit dynamic multilevel
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simulation framework (ADM) in which heterogeneous detailed geo-models are mapped

into adaptive dynamic coarser mesh [Cusini et al. 2018; Faigle et al. 2014; Klemetsdal

et al. 2020; Carciopolo et al. 2020].

The ADM method develops a fully-implicit discrete system for coupled flow and trans-

port system of equations, in which each equation can be represented at a different resolu-

tion than the defined fine-scale one. This procedure can be done fully algebraic by using

a front-tracking strategy. In contrast to the rich existing literature of Adaptive Mesh

Refinement (AMR) methods [Pau et al. 2009; 2012; Berger and Oliger 1984a; Schmidt

and Jacobs 1988; Edwards 1996; Sammon 2003; Klemetsdal and Lie 2020], ADM can

be defined as an adaptive mesh coarsening strategy which is conveniently applicable for

heterogeneous and nonlinear coupled systems [Cusini et al. 2016].

Irrespective of the choice of the dynamic mesh strategy, it is always a challenge to

construct adaptive multi-scale entries of the implicit systems. The ADM method so far

has included multi-scale basis functions [Cusini et al. 2016]. In addition, homogenization

methods have also been developed for multiphase simulations on dynamic grids [Amanbek

et al. 2019; Cusini et al. 2019]. In this context, two aspects can be of interest: the study

of the homogenization-based coarser system entries and the development of a benchmark

study of the quality of the two approaches of ADM-multi-scale (ADM-MS) and ADM-

homogenized (ADM-HO) for coupled implicit multiphase flow scenarios.

This chapter develops such a unified framework in which the ADM method is extended

to account for both multi-scale and homogenization schemes for multiphase flow simu-

lations. This development makes it possible to allow for different coarse-scale entries for

dynamic simulations, and importantly to benchmark the two classes of multi-scale and

homogenization strategies. Noteworthy is that, once the effective parameters are com-

puted, all other homogenization procedures are implemented algebraically. This is done

by introducing constant unity local basis, with the support of primal (non-overlapping)

coarse-scale partitions. The multi-scale ADM is implemented fully algebraic since local ba-

sis functions are also solved algebraically over the overlapping (dual) coarse grid domains

[Zhou and Tchelepi 2012].

In this chapter, numerical test cases are considered for the challenging, highly het-

erogeneous SPE10 [Christie and Blunt 2001]. The number of active grid cells, pressure
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and saturation errors, and the solution maps are all reported in detail. The development

of this chapter sheds new lights in the application of multi-scale and homogenization ap-

proaches in advanced next-generation environments for field-relevant simulation scenarios.

The outcome of our work is made available to the public via an open-source DARSim2

simulator, https://gitlab.com/darsim2simulator.

The chapter is structured as follows. Next, in Section 3.2, the mathematical model is

stated briefly. Section 3.3 presents the computational framework for both multi-scale and

homogenization ADM methods. Section 3.4 presents the test cases, and conclusions are

drawn in Section 3.5.

3.2 Governing equations

We consider flow of two immiscible and incompressible phases of α and β through a

heterogeneous porous medium. At the Darcy scale, mass balance for the phase i ∈ {α, β}

reads
∂

∂t
(φρiSi)−∇ · (ρiλi · (∇p− ρig∇z)) = ρiqi. (3.1)

Here, φ is the porosity of the medium, ρi [kg/m3] and Si are the density and saturation

of the phase i, respectively. The phase mobility tensor λi is equal to KKi
r/µi, where K

[m2] is the rock permeability tensor, Ki
r = Ki

r(Si) is the saturation dependent relative

permeability tensor of phase i. Moreover, µi [Pa.s] is the phase viscosity. For the ease of

presentation, the two phase pressures are assumed equal, p = pα = pβ [Pa] (see e.g. [Aziz

and Settari 2002]). However, the extension to models involving a saturation dependent

capillary pressure is also possible. In addition, g [m/s2] is the gravitational acceleration

which acts in ∇z direction, and qi [1/s] is the phase source term.

Here it is assumed that the two fluids are occupying completely the pore space, and

no other fluid phase is present. This gives the constraint Sα + Sβ = 1, which reduces

the number of unknowns in the above equations to two: Sα (in short from here on, S)

and p. Finally, the model is completed by initial conditions for the saturation, and with

boundary conditions. We do not specify them explicitly since none of them play a role in

the multi-scale strategy.

The fully-implicit coupled simulation approach [Aziz and Settari 2002] estimates all

https://gitlab.com/darsim2simulator
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the parameters at next time step (n + 1). As such, the semi-discrete nonlinear residual

for the phase i ∈ {α, β} reads

Rn+1
i = [ρiqi]n+1 − (φρiSi)n+1 − (φρiSi)n

∆t

+∇ · (ρiλi · (∇p− ρig∇z))n+1.

(3.2)

For finding the solution pair (pn+1, Sn+1) one needs to employ a linearization scheme.

Here we restrict the discussion to the Newton scheme, which is 2nd-order convergent but

requires a starting point that is close enough to the solution. In other words, the time

step may be subject to restrictions also depending on the mesh size. Alternatively, one

may consider approaches like the modified Picard [Celia et al. 1990] or the L-Scheme

[Radu et al. 2017], which are less demanding from the computational point of view, or

more robust w.r.t. the starting point and mesh resolution, but converge slower than the

Newton scheme [Bastidas et al. 2021b]. Applied to (3.2), the Newton linearization reads

Rn+1 ≈ Rν + ∂R

∂p
|νδpν+1 + ∂R

∂S
|νδSν+1,

which can be expressed algebraically as Jνδxν+1 = −Rν , i.e.,

 ∂Rα
∂p

∂Rα
∂S

∂Rβ
∂p

∂Rβ
∂S


︸ ︷︷ ︸

J

ν δp

δS


︸ ︷︷ ︸

δx

ν+1

= −

 Rα

Rβ


︸ ︷︷ ︸

R

ν

. (3.3)

In each time step, the linear equation (3.3) is solved iteratively (inner loop) several

times until nonlinear convergence (outer loop) is reached. The overall computational

complexity of the simulation depends highly on the complexity of the solution of this

linear system. Advanced multi-scale and homogenization methods aim at solving this

linear system on a dynamic multilevel mesh. Note that, as shown before [Cusini et al.

2018], the overall efficiency of any advanced method should include not only the speedup

of solving the linear equation (3.3) but also the count of the Newton (outer) loops. Next,

the ADM method based on multi-scale and homogenization formulations is presented.
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3.3 Dynamic Multilevel Simulation based on multi-scale and Ho-

mogenization Methods

3.3.1 ADM framework formulation

The fully-implicit linear system (3.3) is too expensive to be solved for real field scenarios. A

multilevel dynamic mesh, as shown in Figure 3.1, is generated within the ADM framework.

Here the grid resolution is chosen based on a front-tracking criterion, we use a Dynamic

Local Grid Refinement (DLGR) technique as proposed and described in [Cusini et al. 2018;

Berger and Oliger 1984b; Hornung and Trangenstein 1997].

The fine-scale system is then algebraically reduced into this multilevel grid, through

sequences of restriction and prolongation operators. To obtain the ADM grid, first, sets

of N l = N l
x ×N l

y hierarchically nested coarse grids are imposed on the fine mesh. Here,

l indicates the coarsening level. Moreover, γl is the coarsening ratio which is defined as

γl = (γlx, γly) = (N
l−1
x

N l
x

,
N l−1
y

N l
y

),

for two-dimensional (2D) domains. The ADM grid is constructed by assembling a com-

bination of cells at different resolutions within the computational domain. By using the

sequence of restriction (R) and prolongation (P) operators, one can express the ADM

system as

R̂l−1
l . . . R̂0

1 J0 P̂1
0 . . . P̂l

l−1︸ ︷︷ ︸
JADM

δx̂ADM = − R̂l−1
l . . . R̂0

1 r0︸ ︷︷ ︸
R̂ADM

. (3.4)

Here, R̂l−1
l is the restriction operator which maps the parts of the solution vector that

are at level (l − 1) to level l. Similarly, the prolongation operator P̂l
l−1 maps the parts

of the solution vector that are at level l to level l − 1. Once the ADM system (3.4) is

solved, the approximated fine-scale solution δx′0 can be acquired by prolonging the ADM

solution δx̂ADM, i.e.

δx0 ≈ δx′0 = P̂1
0 . . . P̂l

l−1 δxADM.

The ADM Restriction R̂l−1
l and prolongation P̂l

l−1 operators are assembled using
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the static multilevel multi-scale restriction Rl−1
l and prolongation Pl

l−1 operators, re-

spectively. They are constructed only at the beginning of the simulation and are kept

unchanged throughout the entire simulation.

The static prolongation operator Pl
l−1 is constructed as an assembly of the locally

computed basis functions at each coarsening level l and reads

Pl
l−1 =

(Pp)ll−1 0

0 (PS)ll−1


Nl−1×Nl

.

Here, (Pp)ll−1 and (PS)ll−1 are the two main diagonal blocks corresponding to main

unknowns (i.e., pressure p and saturation S). In the case of using the homogenization

scheme, i.e. ADM-HO, as will be described in Section 3.3.3, constant basis functions

for pressure are used. However, for the multi-scale-based ADM, i.e. ADM-MS, as will

be described in Section 3.3.2, locally-computed basis functions are used. Note that the

saturation prolongation operator for both approaches is a constant unity function at all

coarsening levels, which represents the conservative finite-volume integration.

The static restriction operator Rl−1
l reads

Rl−1
l =

(R)l−1
l 0

0 (R)l−1
l


Nl×Nl−1

.

In this work, a finite-volume restriction operator is used to guarantee local mass con-

servation, i.e.

Rl−1
l (i, j) =

{
1 if cell i is inside coarser cell j,

0 otherwise.

3.3.2 ADM using multi-scale (ADM-MS)

In the ADM-MS method, the prolongation operator for pressure is found based on multi-

scale basis functions. These local basis functions are computed algebraically [Wang et al.

2014], based on the steady-state pressure equation. In this study, the incompressible flow

equation (elliptic pressure equation) is used to construct the multi-scale basis functions

[Tene et al. 2015]. An example of a basis function is shown in Figure 3.2.
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Figure 3.1: The example of an ADM grid (4th from the top), obtained by combining

fine-scale (top) and coarser resolutions of level 1 (2nd from the top) and level 2 (3rd from

the top). Also shown is the saturation profile corresponding to the ADM grid (bottom).
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Figure 3.2: An example of a basis function belonging to the middle coarse node of a

heterogeneous 2D domain.

In the ADM-MS approach, multi-scale finite volume method (MSFV) [Jenny et al.

2003; Cortinovis and Jenny 2014] is used to compute local basis functions at multiple

coarsening levels. The computation of basis functions Φ is done by solving the incom-

pressible fluid flow equation (elliptic part of the mass balance) [Cortinovis and Jenny 2017]

which reads

−∇ ·
(
λ · ∇Φ

)
= 0. (3.5)

This choice of the basis functions ensures that one captures the local changes in the

permeability. This incompressible basis functions are found to be the most efficient ones,

compared with the compressible and more complex formulations [Tene et al. 2015]. The

first step is to impose coarse grids on top of the fine mesh, for the coarse level 1. Here, to

simplify the visualization, a 2D 15×15 discrete domain is considered (see Figure 3.3). By

connecting the centers of the coarse cells, the dual-coarse grid is obtained. The dual grid

makes an overlapping partitioning of the fine-scale domain, with 3 categories of interior

(white), edge (green), and vertex (blue) cells. The coarsening ratio in the illustrated

example of Figure 3.3 is 5× 5.

The equation (3.5) is solved at each dual coarse grid h and for each coarse node

(vertex) k, i.e., −∇ ·
(
λ · ∇Φhk

)
= 0. In order to solve this local system, Dirichlet

boundary conditions of 1 (for the corresponding coarse node) and 0 (for the other three
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Primal coarse grid

Dual coarse grid

Interior Edge Vertex

Figure 3.3: The construction of the coarse and dual-coarse grids on the fine-scale discrete

domain. Fine cells are partitioned w.r.t. the dual coarse mesh as: interior, edge and vertex

cells.

coarse nodes) are imposed. These Dirichlet values allow to solve the basis functions on

the edges, if a reduced dimensional (1D) elliptic problem is considered. The solution at

the edge and vertex cells are then imposed as Dirichlet boundary condition for the full 2D

problem. The solution of this well-posed system is the basis function of the corresponding

coarse node at the corresponding dual coarse grid. Figure 3.4 shows a schematic of the

mentioned dual coarse grid h and an example of a basis function belonging to the bottom

left coarse node (Φh1 ).

Figure 3.5 shows all the four basis functions for the mentioned dual coarse grid h.

The combination of the basis functions at all the dual coarse grid cells surrounding

the corresponding coarse node forms the basis function belonging to that coarse node.

Figure 3.6 illustrates an example of a basis function belonging to the bottom left coarse

node of an example heterogeneous 2D domain.

To obtain the basis functions at higher coarsening levels, the hierarchically nested

coarse grid is constructed on the same domain. The same procedure is followed to

compute the basis functions at higher coarsening levels. Figure 3.7 shows the coarse grid

construction at 2 consequent coarsening levels, for a 2D domain with 75× 75 fine cells.

Note that, according to the vast multi-scale literature, construction of basis functions
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Figure 3.4: Illustration of a dual coarse grid and a basis function belonging to the bottom

left coarse node. As it can be seen, the value of the bottom left coarse node is set to be

1, while the other three vertex cells are set to 0
.

Figure 3.5: The four basis functions belonging to the dual coarse grid h. Shown below

each plot is the Dirichlet value at the corner of each dual coarse cell for the plotted basis

function.
.
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Figure 3.6: An example of a basis function belonging to the bottom left coarse node of

a heterogeneous domain with 27× 27 grid cells. The coarsening ratio here is 9× 9.

Finescale Resolution = 75x75

Coarsening Level 1 Resolution = 15x15 Coarsening Level 2 Resolution = 3x3

Figure 3.7: The coarse grid construction at 2 consequent coarsening levels for a 2D

domain with 75 fine cells. The coarsening ratio of 5 × 5 is chosen. The grid sizes of

coarse level 1 and 2 are 15× 15 and 3× 3, respectively.
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can be done purely algebraic, once the wire-basket decomposition of the fine cells into

vertex, edge, face, and interior is known [Tene et al. 2016]. A partitioning method

should be applied for complex mesh [Møyner and Lie 2016; Parramore et al. 2016; Shah

et al. 2016; Gulbransen et al. 2010; Bosma et al. 2017; Mehrdoost 2019; Mehrdoost and

Bahrainian 2016].

3.3.3 ADM using homogenization (ADM-HO)

Homogenization is another method that can be applied to problems involving multiple

scales. In this method, one uses the mathematical models at micro (fine) scale (3.1) to

derive effective upscaled models and parameters in which the rapidly oscillating charac-

teristics are averaged out. In doing so, the upscaled model may have a different structure

than the ones at the fine scale. We refer to [Amaziane et al. 2017; Bourgeat et al. 1996;

Hornung 1997; van Duijn et al. 2007] for theoretical details.

The goal of this work is to build a unified ADM platform where the multi-scale and

homogenization methods can be compared. Therefore, here, the homogenization method

is used only to construct effective properties at the dynamic multilevel mesh. In this setup,

the homogenized properties of ADM-HO at multilevel mesh are found as in ADM-MS by

solving local flow (pressure) equations based on an incompressible (elliptic) equation.

More precisely, one assumes that a scale separation holds and doubles the spatial

variable into a fast and a slow one. The method relies on the homogenization ansatz,

meaning that all quantities in (3.1) can be expanded regularly in terms of a scale separation

parameter. Such ideas are employed in [Bastidas et al. 2021b; Abdulle and Nonnenmacher

2009; Amanbek et al. 2019; Amaziane et al. 1991; Singh et al. 2019; Szymkiewicz et al.

2011; Henning et al. 2015; 2013] to develop effective numerical simulation schemes even

in case of non-periodic media.

We recall that for each phase the phase mobility tensor λi is equal to KKi
r/µi, i.e.

its depends on the rock permeability tensor K. In the present context, for a given fine-

scale permeability K and for each coarsening level l, an effective permeability tensor Kl

is computed locally in a pre-processing step. First the domain Ω ⊂ R2 is divided into

coarse cells Ωl that correspond to a partition of the domain Ω as shown in Figure 3.8.

For each coarse cell Ωl at level l, the components of the effective permeability tensor
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Figure 3.8: The sketch of the coarse partition of Ω when using two coarsening levels.

are calculated as

Kli,j

∣∣∣∣
Ωl

=
∫

Ωl

(
K
(
ej +∇yωj

))
· ei dy,

for i, j = 1, 2. Here ωj are the periodic solutions of the pressure equation on local domains

(known as micro-cell problem in HO literature), i.e.

−∇y ·
(
K
(
∇yωj + ej

))
= 0, for all y ∈ Ωl. (3.6)

We remark that {ej}2j=1 is the canonical basis of dimension 2 and K is the above men-

tioned permeability tensor. To guarantee the uniqueness of the solution ωj one assumes

that its average value over the local coarse cell Ωl is 0. More details about the cell problems

and its calculation and mathematical justification were presented before in (Chapter 1)

Section 1.1.

To determine the value of the effective permeability tensor at each coarse cell Ωl, two

local (micro-cell) problems (3.6) are solved for each spatial direction in 2D. Figure 3.9

provides an illustration of these local solutions for a coarse element.

Note that the local problems (3.6) capture the rapidly oscillating characteristics within
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Figure 3.9: The example of the local solutions ω1 (top right, for x-direction) and ω2

(bottom right, for y-direction) for a coarse cell inside a 2D domain. The heterogeneous

permeability field is also shown for the entire domain (left).

a coarse element, completely decoupled from other coarse elements. The homogenized

parameters, like multi-scale bases, are computed at the beginning of the simulation. Fig-

ure 3.10 illustrates the calculation of the effective permeability at different levels.

The homogenized parameters are used to construct the coarse system entries. More

precisely, the homogenized value in a coarse cell is distributed equally to the fine cells

constructing it. Then the fine-scale Jacobian and residual are computed with the fine-

scale saturation field. This system is then mapped to the ADM resolution by setting

prolongation operators in (3.4) to unity. This is a convenient procedure, developed in

this work, to integrate the numerical homogenization method with an existing advanced

simulator.

Notice that based on the features of the permeability tensor K, the resulting effective

parameter K depends on the macro-scale location and the size of the the coarse-scale

partition. Nevertheless, one can show that in practice, the adaptive refinement of the

mesh is an important aspect that improves the calculation of the effective parameters

(see [Bastidas et al. 2021b], Chapter 2 and Figure 3.10).

More details about the role of the homogenization in the off-line stage and the com-

plete algorithm of ADM-MS and ADM-HO can be found in Algorithm 1.
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Figure 3.10: The example of four different levels of homogenized permeability values:

fine scale (bottom right), coarse level 1 (bottom left), coarse level 2 (top right) and coarse

level 3 (top left).
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Algorithm 2 The ADM algorithm using multi-scale basis functions (ADM-MS) or ho-
mogenization (ADM-HO)
Start of the simulation;
Read the input files and scan the keywords;

Given a fine scale permeability (K) and the number of coarsening levels (L):
if multi-scale then

for l = 0 to L do
Compute the multi-scale basis functions ΦlMS ;

end
else

Homogenization is chosen.
for l = 0 to L do

Compute the homogenized Kl;
Compute the constant basis functions ΦlConst;

end
end
for time step tn do

Select ADM grid resolution;
Build ADM prolongation and restriction operators;
Take iter = 1 and use initial pressure and saturation;
while error ≥ tolerance & not converged do

Assemble fine scale system;
Solve the ADM system;
Prolong solution back to fine scale;
Update properties;
if error ≤ tolerance then

Converged.
else

Not converged.
end
Next iteration i = i+ 1

end
Next time step (t = t+ ∆t)

end
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3.4 Simulation results

To benchmark the homogenization and multi-scale based solutions for the dynamic mesh

on heterogeneous media, two heterogeneous non-periodic permeability fields from the top

and bottom layers of the SPE 10th Comparative Solution Project [Christie and Blunt

2001] are considered. For both test cases, the computational domain entails 216 × 54

grid cells at fine-scale with ∆x = ∆y = 1[m]. A no-flow condition is imposed on all

boundaries. Initially the reservoir contains only the 2nd phase (e.g. oil), i.e. S = 0.

The 1st phase (e.g. water) is injected from an injection well, while the reservoir fluid is

produced from the production well. The locations of the injection and production wells

are specified in each test case.

Table 3.1 shows the input parameters of the fluid and rock properties used in all test

cases.

Table 3.1: The input parameters of fluid and rock properties.

Property value

Porosity (φ) 0.2

Water density (ρw) 1000 [Kg/m3]

Oil density (ρo) 1000 [Kg/m3]

Water viscosity (µw) 10−3 [Pa·s]

Oil viscosity (µo) 10−3 [Pa·s]

Initial pressure (p0) 107 [Pa]

Connate water saturation (Swc) 0 [-]

Residual oil saturation (Sor) 0 [-]

Injection pressure (pinj) 2× 107 [Pa]

Production pressure (pprod) 0 [Pa]

The numerical results provided by the ADM-MS and ADM-HO methods are compared



3.4. Simulation results 89

to those obtained from simulation at fine scale (reference). Both ADM methods employ

the coarsening ratio of 3× 3 with two coarsening levels. This is set according to the size

of the domain.

3.4.1 Test case 1: SPE10 top layer

In this test case, one injection well and one production well are placed in the bottom left

corner and top right corner of the domain, respectively. The simulation time is t = 1000

[days] and the results are reported on 100 equidistant time intervals. The permeability

distribution of the SPE10 top layer is shown in Figure 3.11.

Figure 3.11: The fine-scale permeability (Log10 scale) from top layer of the SPE10

dataset.

Figure 3.12 shows the homogenized version of the permeability at two different levels.

We highlight that the homogenized permeability at both coarse levels preserves the struc-

ture of the original fine-scale permeability. The high and low permeable zones remain

clearly detectable.

The saturation and pressure fields at the final time step are shown in Figure 3.13 and

Figure 3.14, respectively.

From these results, it is understood that ADM-HO on a coarse cell containing high

and low permeable fine cells can lead to a higher flow leakage, as compared to fine-scale

and ADM-MS approaches. This effect can be seen in Figure 3.13, and in Figure 3.15

we illustrate the adaptive mesh at 2000 days after injection. Notice that the refinement

of the permeability is most dominant at the saturation front, due to the chosen mesh

refinement criterion. For this figure, the coarsening threshold value is ∆S = 0.3, i.e., a

cell is successively coarsened if ∆S is lower than 0.3.

The error history maps for both ADM-MS and ADM-HO are shown in Figure 3.16.
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(a) Level 1 (72 × 18 cells).

(b) Level 2 (24 × 6 cells).

Figure 3.12: The homogenized permeability of the top layer of the SPE10 with coarsening

ratio 3.

The relative errors, presented in Figure 3.16 and Figure 3.18, are expressed in terms of

the L2 norm over the entire medium, calculated with respect to the fine-scale solution as

Error(S) = ‖Sref − SADM‖2
‖Sref‖2

Error(P ) = ‖Pref − PADM‖2
‖Pref‖2

.

The results indicate that the homogenization-based simulations have higher errors

compared with the multi-scale-based simulations. They both have similar average us-

age of active grid cells, with ADM-MS having slightly fewer grid cells. This is shown in

Figure 3.17. Note that the grid cells around wells are kept at the fine-scale resolution per-

manently. Furthermore, for tighter error tolerance values, the quality of both approaches

become comparable.

Figure 3.18 provides the average pressure and saturation errors together with the

average percentage of active grid cells during the whole simulation time as functions of

the coarsening criterion threshold.
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(a) ADM using homogenized permeabilities.

(b) ADM using multi-scale basis functions.

(c) Fine-scale (Reference solution).

Figure 3.13: The saturation profiles at 2000 days. The threshold value for the front

tracking criterion is ∆S = 0.3.
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(a) ADM using homogenized permeabilities.

(b) ADM using multi-scale basis functions.

(c) Fine-scale (Reference solution).

Figure 3.14: The pressure profiles at 2000 days. The threshold value for the front

tracking criterion is ∆S = 0.3.

Figure 3.15: The adaptive mesh and homogenized permeability for the SPE10 top layer

test case. The threshold value for the front tracking criterion is ∆S = 0.3.
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Figure 3.16: The comparison of the saturation and pressure error using ADM-MS and

ADM-HO and 3 different values for the front tracking criterion.

Figure 3.17: The comparison of the active grid cells using ADM-MS and ADM-HO and

3 different values for the front tracking criterion.
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Figure 3.18: The average errors for the pressure and saturation and average active grid

cells for each strategy (ADM-MS and ADM-HO).

3.4.2 Test case 2: SPE10 bottom layer

In the second test case the permeability distribution of the SPE10 bottom layer, presented

in Figure 3.19, is considered. The location of the injection and production wells are the

top left and the bottom right corners, respectively. The simulation time is 20 [days]. All

other simulation parameters remain unchanged.

Figure 3.19: The fine-scale permeability (Log10 scale) from bottom layer of the SPE10

test case.

Figure 3.20 shows the homogenized permeability values at two different levels. Due

to the many high contrast channels, more active cells are employed compared with the

SPE top layer, as shown in Figure 3.21.

The saturation and pressure maps at the final time step are shown in Figure 3.22 and

Figure 3.23, respectively.
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(a) Level 1 (72 × 18 cells).

(b) Level 2 (24 × 6 cells).

Figure 3.20: The homogenized permeability of the SPE10 bottom layer with coarsening

ratio 3.

Figure 3.21: The refinement of the permeability of the bottom layer of the SPE10 using

ADM-HO after 20 days. The threshold value for the front tracking criterion is ∆S = 0.3.
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(a) ADM using homogenized permeabilities.

(b) ADM using multi-scale basis functions.

(c) Fine-scale (Reference solution).

Figure 3.22: The saturation profiles at 20 days. The threshold value for the front tracking

criterion is ∆S = 0.3.
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(a) ADM using homogenized permeabilities.

(b) ADM using multi-scale basis functions.

(c) Fine-scale (Reference solution).

Figure 3.23: The pressure profiles at 20 days. The threshold value for the front tracking

criterion is ∆S = 0.3.



98
Chapter 3. A benchmark study of multi-scale methods for multiphase flow

simulations

Similar to the previous test cases, Figure 3.24 compares the error between the two

ADM approaches. Moreover, in Figure 3.25, the percentage of active grid cells per each

time-step is shown.

Figure 3.24: The comparison of the saturation and pressure error using ADM-MS and

ADM-HO and 3 different values for the front tracking criterion.

Figure 3.25: The comparison of the active grid cells using ADM-MS and ADM-HO and

3 different values for the front tracking criterion.

Figure 3.26 illustrates the average values of the errors in the pressure and the satura-

tion, and the percentage of the active grid cells for each coarsening criterion threshold.

The results indicate a noticeable difference in the errors of ADM-MS and ADM-HO.

The pressure error in ADM-HO is significantly higher since ADM-HO uses homogenized
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Figure 3.26: The average errors for the pressure and saturation and average active grid

cells for both approaches (ADM-MS and ADM-HO)

effective parameters. This aspect can be improved by employing first order corrections.

However, such an approach would deviate from the ADM framework, and requires more

computational effort, therefore it is not adopted here. ADM-MS instead employs multi-

scale basis functions. Due to the more accurate pressure calculations, the ADM-MS

saturation error is also lower than that of ADM-HO. The difference in the percentage

of active grid cells used in the two approaches is less noticeable than the difference in

the errors. However, the ADM-HO uses more active grid cells, especially in this SPE10

bottom layer test case.

3.5 Conclusions

Homogenization and multi-scale methods have been developed and evolved during the

past decade as promising advanced simulation approaches for large-scale heterogeneous

systems. In this work, the two methods were investigated, extended into a unified fully-

implicit framework, and benchmarked for simulation of multiphase flow in porous media. It

was shown that the two methods allow the construction of coarser level systems, and both

rely on local solutions to find their corresponding maps. While homogenization methods

deliver effective models and parameters, multi-scale methods find an interpolation of the

solution (pressure) across scales. This is the main difference between the two approaches.
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For highly heterogeneous test cases, it was shown that the two approaches provide

accurate solutions. With the developed multi-scale numerical strategies, the ADM-MS

solutions are more accurate when compared to ADM-HO. The use of a constant effective

parameter instead of local multi-scale basis function can lead to a less error control. On

the other hand, the presented work evidences that ADM-HO method can be applied

straightforwardly to permeability fields with non-periodic structure by setting a constant

unity prolongation operator. Note that the computational costs of the two approaches

were comparable, as they applied almost the same active cells during the simulation.

Moreover, we notice similarities between the results obtained here by using dynamic local

grid refinement and the results of the adaptive multi-resolution Discontinuous Galerkin

schemes presented in [Gerhard and Müller 2016]. Further work could include different

mesh refinement strategies and benchmark studies of ADM-HO and ADM-MS for 3D

fractured porous media, on compilable simulation platform, which allows scientific CPU

comparison study.



Chapter 4
The HDG method for the

porous medium equation

The arguments and results described in this chapter can be found in:

“Error estimates for the gradient discretisation of degenerate parabolic equation of

porous medium type. C Cancès, J Droniou, C Guichard, G Manzini, M Bastidas, IS Pop.

https://www.uhasselt.be/Documents/CMAT/Preprints/2020/UP2004.pdf. To

appear in: Polyhedral Methods in Geosciences. Daniele Di Pietro, Luca Formaggia,

Roland Masson (Eds.), SEMA SIMAI Springer Series, vol. 27 (2021). Springer

International Publishing. DOI:10.1007/978-3-030-69363-3.”

4.1 Introduction

Degenerate parabolic equations appear as mathematical models for numerous real-life

applications, like reactive solute transport in porous media, water infiltration in the vadose

zone, geological CO2 sequestration, oil recovery, biological systems, or phase transition

101
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problems. In the simplest form, one has

∂tu−∆ζ(u) = f, in ΩT := Ω× (0,T],

ζ(u) = 0, on ∂ΩT := ∂Ω× (0,T],

u(·, 0) = uini, in Ω.

(4.1)

With L∞ denoting the space of essentially bounded functions and ‖·‖∞ the corresponding

norm, throughout this chapter we assume the following.

(A1) T > 0 and Ω is a bounded connected open set of Rd (d ∈ {2, 3}) with Lipschitz

continuous boundary ∂Ω.

(A2) ζ : R→ R is continuous, non-decreasing and satisfies ζ(0) = 0.

(A3) uini ∈ L∞(Ω), with M0 := ‖uini‖∞.

(A4) f ∈ L∞(ΩT), with Mf := ‖f‖∞.

As follows from (A2), ζ ′ may become zero, or unbounded for certain arguments u. Con-

sequently, the equation may degenerate from a parabolic equation into an elliptic or an

ordinary one. The degeneracy regions are not known apriori but depend on the solution

itself and may change in time.

One of the most representative examples in this sense, the porous medium equation

(PME), appeared in the last century as a mathematical model for the flow of an ideal gas

in a porous medium (see [Vázquez 2007]). In this case, one has

ζ(u) = |u|m−1u, for some m > 1. (4.2)

Compared to the heat equation, which is obtained for m = 1 and in which the equation

is linear and parabolic everywhere regardless of the data, if m > 1 the non-linear diffusive

term vanishes if u = 0, and the equation degenerates. In particular, this leads to the

occurrence of free boundaries separating regions in Ω where u > 0 from those where

u ≤ 0. These free boundaries have an apriori unknown location and move in time with a

finite speed, which is the reason for calling such cases ”slow diffusion” ones.
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Another remarkable example in the category of ”slow diffusion” equations is the Stefan

problem, which models phase transition problems like melting or solidification. In this case

ζ ′ is bounded but it vanishes on the entire interval (0, 1). We refer to [Gupta 2017] for

details on this variant of (4.2).

A different situation appears when ζ is as in (4.2), but with m ∈ (0, 1). In this case, no

free boundaries occur, but ζ ′ →∞ whenever u→ 0 so the diffusion coefficient becomes

unbounded. This equation is also known as the generalized porous medium equation

(GPME), and it is detailed in [Vázquez 2006; 2007]. In this case one speaks about a ”fast

diffusion” and it can appear as a mathematical model for reactive transport in porous

media, for equilibrium kinetics (see [Droniou and Le 2020; Barrett and Knabner 1997]).

The degeneracy has a direct impact on the regularity of the solutions. Unlike the

regular parabolic case, the solutions to degenerate parabolic problems have lower regu-

larity, and the singularities are not smoothed out but may even develop in time. Such

effects are mainly encountered at the free boundaries. The lack of regularity motivates

the introduction of a notion of a weak solution.

We use standard notations and function spaces in the functional analysis: L2(Ω),

L∞(Ω), H1
0 (Ω), or its dual H−1(Ω). Whenever obvious, the domain Ω is left out. With

X being one of the spaces before, L2(0,T;X) is the space of X-valued measurable

functions that are square-integrable in the sense of Bochner. We let 〈·, ·〉Ω stand for the

inner product on L2(Ω), or the duality pairing between H1
0 (Ω) and H−1(Ω), and ‖ · ‖

for the norm in L2(Ω), or the straightforward extension to L2(Ω)d, and ‖ · ‖∞ is the L∞

norm in Ω or in ΩT.

We start by defining a weak solution for (4.1)

Definition 4.1. A weak solution to (4.1) is a measurable function u : ΩT → R such that

u ∈ H1(0,T;H−1(Ω)), ζ(u) ∈ L2(0,T;H1
0 (Ω)), u(·, 0) = uini in H−1(Ω) and, for a.e.

t ∈ (0,T] and for all v ∈ H1
0 (Ω), it holds

〈∂tu(t), v〉Ω + 〈∇ζ(u(t)),∇v〉Ω = 〈f(t), v〉Ω. (4.3)

The existence and uniqueness of a weak solution to (4.1) is proved e.g. in [Alt and

Luckhaus 1983] and [Otto 1996] in the case where ζ is increasing. If ζ is merely non-
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decreasing, existence and uniqueness still hold, see e.g. [Carrillo 1999], as well as [Pop

and Schweizer 2011]. As already suggested, the degenerate aspect of the problem makes

the usual regularity theory for parabolic problems (see for instance [Ladyženskaja et al.

1968]) fail. What is kept is mainly the following

? Maximum principle (see [Vázquez 2007, Lemma 3.3]): the solution u belongs to

L∞(ΩT), with

‖u‖∞ ≤M0 + TMf . (4.4)

? Energy estimate (see [Vázquez 2007, Section 5.6]): Consider the primitive of ζ

defined by κ : R→ R, κ(v) =
∫ v

0 ζ(z)dz. κ is convex and positive and one has

∫
Ω
κ(u(t)) + 1

2

∫ t

0

∫
Ω
|∇ζ(s)|2 ≤

∫
Ω
κ(uini) + 1

2‖f‖
2
L2(0,T;H−1(Ω)). (4.5)

? Continuity of ζ(u): it is shown in [Ziemer 1982] under quite general assumptions on

ζ (including cases where ζ is constant on an interval) that ζ(u) belongs to C(ΩT).

In the case where ζ is increasing (thus invertible), one gets that u ∈ C(ΩT) too.

Because of the degeneracy of the problem, this estimate is not enough to initiate a

bootstrap to recover the usual parabolic regularity theory.

? Time continuity of u: even if ζ is not invertible, one can still give a (weaker)

sense to u(t) as a function (and not only as a distribution in H−1 as suggested

by Definition 4.1). Indeed, u ∈ C((0,T];Lp(Ω)) for all p ∈ [1,+∞) as shown in

[Cancès and Gallouët 2011].

Further regularity results in the PME case where ζ(u) = |u|m−1u (or more generally when

ζ is increasing) can be found in the monographs [Vázquez 2006; 2007] (see also [Liao

2020] for the local Hölder continuity), while the Stefan problem is extensively discussed

in [Meirmanov 1992].

The literature on the numerical approximation of degenerate parabolic equations is

extremely rich. Often, the numerical schemes include a regularization step, which is used

to deal with the lack of regularity of the solution to degenerate problems. Whenever

regularization is involved, this is obtained through a perturbation ζε of ζ. The derivative
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of ζε is bounded away from 0 from below and from infinity from above (see, e.g., [Nochetto

and Verdi 1988a]). Alternatively, one can exploit the maximum principle and perturb the

boundary and initial data so that the solution stays away from values at which degeneracy

is encountered.

Concerning various specific numerical schemes, we mention that often the time step-

ping is of first order. In particular, Euler implicit or semi-implicit methods are popular,

and this is due to the lack of regularity of the solution. For the spatial discretization, we

mention that the conformal finite element schemes are analyzed, e.g., in [Nochetto and

Verdi 1988a] for the slow diffusion, or in [Barrett and Knabner 1997] for the fast diffusion.

The convergence of the mixed finite element discretization is proved in [Arbogast et al.

1996; Woodward and Dawson 2000] for the slow diffusion case and for a range allowing

for both kinds of degeneracies in [Radu et al. 2008]. We also mention [Yotov 1997] for

the analysis of a scheme combining mortars with mixed finite elements. These papers

are proving the convergence of the scheme by obtaining apriori error estimates rigorously.

The convergence of finite volume schemes is proved in [Andreianov et al. 2017; Angelini

et al. 2013; Eymard et al. 1998; 2006] through compactness arguments, and in [Eymard

et al. 2003] for a finite volume phase-by-phase upstream weighting. Error estimates are

obtained in [Klausen et al. 2008] for a multipoint flux approximation scheme by using

the equivalence with a mixed finite element scheme, and in [Pop et al. 2010] for the

simplest two-point approximation in the slow diffusion case, but under minimal regularity

assumptions. Discontinuous Galerkin schemes for porous media flow models leading to

degenerate parabolic equations are analyzed, e.g., in [Epshteyn and Rivière 2009; Ern and

Mozolevski 2012].

This chapter describes the use of the hybridizable discontinuous Galerkin method

(HDG) to solve (4.1). Here, we find the approximate solution of a differential equation by

solving an equivalent system of equations associated only with the skeleton of a triangula-

tion of the domain. We refer to [Cockburn et al. 2009; Cockburn 2014; Jaust and Schütz

2014; Schütz and May 2013; Egger and Schöberl 2010] among many others for further

studies of the HDG method and the applications of this method to different problems,

including elliptic problems and compressive flow models. Here we present and implement

the Dubiner polynomial basis proposed in [Dubiner 1991; Deng and Cai 2005]. Moreover,
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in this chapter, we use and detail the formulation of fixed-point type method called L-

scheme proposed in [Pop et al. 2004]. Here we prove the convergence of the L-scheme

in a semi-discrete setting. We combine the HDG scheme with the L-scheme to efficiently

approximate the solution of (4.1) and we give the rigorous proof for the existence and

uniqueness of the fully discrete solutions.

This chapter consists of five sections. First, we present the conformal and mixed time-

discrete formulation of (4.1). In Section 4.3, we present the linearization procedure and

prove its convergence. Further, in Section 4.4 the details of the formulation of the HDG

method are given, and in Section 4.5 we discuss some technicalities of the implementation

of the method. Finally, in Section 4.6, a numerical test is presented and we show the

comparison of the HDG against other methods.

4.2 The time discrete problem

Let N ∈ N be the number of time steps and ∆t = T/N be the time step size. For

n ∈ {1, . . . , N}, we define tn = n∆t. Moreover, we denote the time-discrete function by

un = u(·, tn) and u0 = uini. To define a weak solution to the time-discrete problems we

use the following subspace of L2(Ω)

X0 := {u ∈ L2(Ω) : ζ(u) ∈ H1
0 (Ω)}.

After applying the backward Euler scheme (see Section 1.3.2), the time discrete coun-

terpart of (4.3) consists in finding a sequence of solutions {un}n>0 defined in

Definition 4.2. A weak solution to the time discrete counterpart of (4.3) is a function

un ∈ X0 satisfying

〈un, v〉Ω + ∆t〈∇ζ(un),∇v〉Ω = 〈un−1 + ∆tfn, v〉Ω, (4.6)

for all v ∈ H1
0 (Ω) and fn(x) = 1

∆t
∫ tn
tn−1 f(x, s) ds.

Remark. We highlight that rigorous error estimates can be obtained for the Euler dis-

cretization in (4.6). For example, in [Nochetto and Verdi 1988b] the following error
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estimate is given

‖ζ(u)− ζ(uh,∆t)‖L2(Ω×(0,T )) ≤ C
(

∆t 1
2 + h

)
with C > 0 being a positive constant and ζ(uh,∆t) being the fully-discrete approximation

to ζ(u) obtained by using a first order method in space with mesh size h and backward

Euler. We refer to [Arbogast and Wheeler 1996; Nochetto and Verdi 1988b; Pop 2002;

Magenes et al. 1987; Pop and Yong 2002] for related results giving error estimates of order

O(∆t 1
2 ). For particular cases, one can obtain optimal error estimates of order O(∆t) and

we refer to [Rulla 1996] for more details of the optimal error estimates for degenerate

parabolic problems.

Now, we define the auxiliary functions p := ζ(u) and z := −∇p and denote the time-

discrete functions by pn = p(·, tn) and zn = z(·, tn). Formally, the time discrete mixed

formulation of (4.1) reads

un + ∆t∇ · zn = un−1 + ∆tfn, in Ω,

zn +∇pn = 0, in Ω,

pn − ζ(un) = 0, in Ω,

pn = 0, on ∂Ω.

(4.7)

Let n > 0 and un−1 ∈ L2(Ω) be given, a weak solution of (4.7) is defined in

Definition 4.3. A weak solution to the time discrete problem (4.7) is a triplet of functions

(un, pn, zn) ∈ L2(Ω)×H1
0 (Ω)×H(div,Ω) satisfying

〈un, v〉Ω + ∆t〈∇ · zn, v〉Ω = 〈un−1 + ∆tfn, v〉Ω,

〈zn,ϕ〉Ω − 〈pn,∇ ·ϕ〉Ω = 0,

〈pn, q〉Ω − 〈ζ(un), q〉Ω = 0,

(4.8)

for all (v, q,ϕ) ∈ L2(Ω)×H1
0 (Ω)×H(div,Ω).
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4.3 The linearization method

Observe that Definition 4.3 leads to a non-linear problem. To obtain an approximation of

its solution one needs to employ an iterative method. Specifically, for (4.1), the Newton

method described in Section 1.3 can fail to converge due to the degeneracy of ζ, and

in particular, for the fast diffusion case (see [Droniou and Le 2020]). To overcome this,

one can regularize ζ, but even in this case, guaranteeing the convergence will depend on

the regularization parameter, so the restrictions on the time step are severe. To address

these shortcomings, alternative iterative schemes have been designed. We mention here

the relaxation scheme in [Jäger and Kačur 1995], which shows to be more stable w.r.t.

the choice of the initial condition, and the modified Picard scheme in [Celia et al. 1990],

which is a simplified version of the Newton method. Both schemes are converging linearly.

For these, the convergence is guaranteed rigorously under restrictions for the time step

that are similar to those for the Newton method, as proved in [Radu et al. 2006].

A fixed point (contraction) scheme exploiting the monotonicity of ζ has been proposed

in [Pop et al. 2004] for the fast diffusion case and extended to more general situations in

[Radu et al. 2017]. We also mention the scheme in [Mitra and Pop 2019], where the fixed

point approach is combined with the Picard or Newton method by adding a stabilization

term. This leads to a scheme with the stability of the fixed point scheme and converging

like the Picard scheme.

Here we discuss a simple iterative scheme inspired by the fixed point approach in [List

and Radu 2016; Pop et al. 2004] and introduced in Section 1.3.3. We restrict to the case

where ζ is at least locally Lipschitz continuous and let Lζ denote the Lipschitz constant.

The ideas here can be extended to more general situations, as in [Brenner and Cancès

2017].

Take L ∈ R+ such that L ≥ Lζ
2 and let j ∈ N, j > 0 be an iteration index. For

n > 0, j > 0 and given un−1, unj−1 ∈ L2(Ω), a weak solution of the linear problem

associated to (4.8) is defined in

Definition 4.4 (Linear iterations). A weak solution to the linearized counterpart of (4.8)
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is a triplet of functions (unj , pnj , znj ) ∈ L2(Ω)×H1
0 (Ω)×H(div,Ω) satisfying

〈unj , v〉Ω + ∆t〈∇ · znj , v〉Ω = 〈un−1 + ∆tfnv〉Ω,

〈znj ,ϕ〉Ω − 〈pnj ,∇ ·ϕ〉Ω = 0,

〈pnj , q〉Ω − 〈L unj , q〉Ω = 〈ζ(unj−1)−L unj−1, q〉Ω,

(4.9)

for all (v, q,ϕ) ∈ L2(Ω)×H1
0 (Ω)×H(div,Ω).

The natural choice for the initial iteration un0 is un−1. Nevertheless, this choice is

not compulsory for the convergence of the linear solver. We will see below that the

convergence is independent of the initial guess. The iterations (4.9) are performed until

one reaches a prescribed threshold tol for the following L2-norm

εn,j := ‖znj − znj−1‖[L2(Ω)]2 ≤ tol. (4.10)

The following theorem gives the convergence of the non-linear iterations.

Theorem 4.1 (Convergence of the linear iterative scheme). For each n > 0, if L ≥ Lζ
2

then the linear iteration introduced in Definition 4.4 is convergent. Specifically, one has

‖ez
j‖+ ‖epj‖ → 0 as j →∞.

Proof. For a fixed n > 0 and an iteration index j > 0 we define the difference functions

euj := unj − un, ez
j := znj − zn and epj := pnj − pn,

where (unj , pnj , znj ) denotes the solution of (4.9) and (un, pn, zn) is the solution of (4.8).

Subtracting (4.8) from (4.9) we obtain the following error equations

〈euj , v〉Ω + ∆t〈∇ · ez
j , v〉Ω = 0, (4.11)

〈ez
j ,ϕ〉Ω − 〈e

p
j ,∇ ·ϕ〉Ω = 0, (4.12)

〈epj , q〉Ω = 〈L (euj − euj−1) +
(
ζ(unj−1)− ζ(un)

)
, q〉Ω, (4.13)

for all (v, q,ϕ) ∈ L2(Ω)×H1
0 (Ω)×H(div,Ω).

We take the test functions v = epj , ϕ = ez
j and q = euj in (4.11), (4.12) and (4.13),
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respectively. Multiplying (4.12) by ∆t and summing (4.11) we get

〈euj , e
p
j 〉Ω + ∆t‖ez

j‖2 = 0, (4.14)

〈epj , e
u
j 〉Ω = 〈L (euj − euj−1) +

(
ζ(unj−1)− ζ(un)

)
, euj 〉Ω. (4.15)

Subtracting (4.15) from (4.14) we obtain

∆t‖ez
j‖2 + L ‖euj ‖2 = 〈L euj−1 −

(
ζ(unj−1)− ζ(un)

)
, euj 〉Ω.

Since ζ is Lipschitz, by the choice of L one has |L euj−1−
(
ζ(unj−1)− ζ(un)

)
| ≤ L |euj−1|.

This, together with the Cauchy–Schwarz inequality leads to

∆t‖ez
j‖2 + L ‖euj ‖2 ≤ L ‖euj ‖‖euj−1‖.

Applying Young’s inequality and multiplying the resulting inequality by 2 yields

2∆t‖ez
j‖2 + L ‖euj ‖2 ≤ L ‖euj−1‖2. (4.16)

Adding (4.16) for j = 1, . . . , k (k being arbitrary) leads to

2∆t
k∑
j=1
‖ez
j‖2 + L ‖euk‖2 ≤ L ‖eu0‖2.

This shows that the first term above is a convergent series, implying that ‖ez
j‖ → 0 when

j →∞.

Now we turn our attention to epj . From (4.12) for all ϕ ∈ H(div,Ω) we have that

〈ez
j ,ϕ〉Ω − 〈e

p
j ,∇ ·ϕ〉Ω = 0,

For epj ∈ L2(Ω), we let ξ ∈ H1
0 (Ω) be the unique solution to

−∆ξ = epj , in Ω, and ξ = 0, on ∂Ω,

By the Poincaré inequality, one obtains that there exists a C > 0 such that ‖∇ξ‖ ≤ C‖epj‖.
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Observe that since epj ∈ L2(Ω) for ϕ = −∇ξ one has that ∇ · ϕ ∈ L2(Ω). Therefore it

can be used as test function in (4.12) to obtain

‖epj‖
2 = 〈ez

j ,−∇ξ〉Ω ≤ C‖ez
j‖‖∇ξ‖ ≤ ‖ez

j‖‖e
p
j‖.

Therefore, if ‖ez
j‖ → 0 then ‖epj‖ → 0 when j →∞. �

Notice that the choice of the stopping criterion (4.10) is made in agreement with the

convergence result in Theorem 4.1.

Remark. For each n > 0, if L ≥ Lζ
2 Theorem 4.1 states the convergence of p and z, this

also implies the point-wise convergence of u. The assumptions on ζ and the convergence

of p in L2(Ω) lead to the convergence of u a.e. in Ω.

4.4 The hybridizable discontinuous Galerkin method

Let Th be a conforming triangulation of Ω̄ with elements T of diameter hT and h :=

max
T∈Th

hT . We write ∂T referring to the boundary of each element and we denote by Eh the

set of all edges in the triangulation with the subsets EI and EΓ corresponding to interior

and boundary faces. Here we extend the introduction given in (Chapter 1) Section 1.3.1.

From here we use the notation 〈·, ·〉T for the inner product on L2(T ), i.e. locally

on one element T ∈ Th. Moreover, we write 〈·, ·〉Th =
∑
T∈Th〈·, ·〉T and 〈·, ·〉∂Th =∑

T∈Th〈·, ·〉∂T .

For each n > 0 and j > 0, let un−1, unj−1 ∈ L2(Ω) be given. For an arbitrary chosen

T ∈ Th, we write the weak formulation of (4.9) locally.

Definition 4.5 (Local weak formulation). A local weak solution of (4.9) is a triplet of

functions (unj , pnj , znj ) ∈ L2(T )×H1(T )×H(div, T ) satisfying

〈unj , v〉T + ∆t〈∇ · znj , v〉T = 〈un−1 + ∆tfn, v〉T ,

〈znj ,ϕ〉T − 〈pnj ,∇ ·ϕ〉T = 0,

〈pnj , q〉T − 〈L unj , q〉T = 〈ζ(unj−1)−L unj−1, q〉T ,

(4.17)

for all (v, q,ϕ) ∈ L2(T )×H1(T )×H(div, T ).
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Our target is to approximate the solution (unj , pnj , znj ) with discrete discontinuous

functions (unjh, pnjh, znjh) in a certain finite dimensional space. To derive the hybridizable

discontinuous Galerkin (HDG) formulation of (4.9) we introduce two new unknowns p̂nj
and ẑnj . These new unknowns are called numerical traces. The numerical traces can be

interpreted as single-valued approximations of pnj and znj over Eh.

Take r ∈ N and denote Pr(T ) the space of polynomials of order r over T . We define

the following spaces

Qh :=
{
qh ∈ L2(Th) : qh|T ∈ Pr(T ), for all T ∈ Th

}
,

Vh :=
{
ϕh ∈ [L2(Th)]d : ϕh|T ∈ [Pr(T )]d, for all T ∈ Th

}
,

Furthermore, for the numerical traces we use the following spaces defined only at the

edges of the triangulation

Wh :=
{
q ∈ L2(Eh) : q|e ∈ Pr(e), for all e ∈ Eh

}
,

Rh :=
{
ϕ ∈ [L2(Eh)]d : ϕ|e ∈ [Pr(e)]d, for all e ∈ Eh

}
.

For n > 0, j > 0 and at each T ∈ Th, we assume un−1, unj−1 ∈ L2(T ) known. The

fully discrete counterpart of Definition 4.5 is

Definition 4.6. Let T ∈ Th be fixed. A discrete local weak solution of (4.17) is a 5-tuple

of functions (unjh, pnjh, znjh, p̂nj , ẑnj ) ∈ Qh ×Qh × Vh ×Wh ×Rh satisfying

〈unjh, v〉T + ∆t〈znjh,∇v〉T + ∆t〈ẑnj · n, v〉∂T = 〈un−1 + ∆tfn, v〉T ,

〈znjh,ϕ〉T − 〈pnjh,∇ ·ϕ〉T + 〈p̂nj ,ϕ · n〉∂T = 0,

〈pnjh, q〉T − 〈L unjh, q〉T = 〈ζ(unj−1)−L unj−1, q〉T ,

(4.18)

for all (v, q,ϕ) ∈ Qh ×Qh × Vh. Here n denotes the exterior unit normal vector to the

element T ∈ Th.

Now we relate the numerical traces as

ẑnj · n = znjh · n + κ(pnjh − p̂nj ), (4.19)
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for some positive penalty function κ > 0 defined over Eh. As before, for each n > 0,

j > 0 and given un−1, unj−1 ∈ L2(Ω), one can sum (4.18) over all the triangulation Th

to obtain the definition of a global fully discrete weak solution.

Definition 4.7 (Global weak formulation). A discrete discontinuous global solution of

(4.9) is a 4-tuple of functions (unjh, pnjh, znjh, p̂nj ) ∈ Qh ×Qh × Vh ×Wh satisfying

〈unjh, v〉Th + ∆t〈∇h · znjh, v〉Th + ∆t〈κ(pnjh − p̂nj ), v〉∂Th = 〈un−1 + ∆tfn, v〉Th ,

〈znjh,ϕ〉Th − 〈pnjh,∇h ·ϕ〉Th + 〈p̂nj ,ϕ · n〉∂Th = 0,

〈pnjh, q〉Th − 〈L unjh, q〉Th = 〈ζ(unj−1)−L unj−1, q〉Th ,

〈znjh · n + κ(pnjh − p̂nj ), µ〉∂Th = 0,
(4.20)

for all (v, q,ϕ, µ) ∈ Qh × Qh × Vh ×Wh. Here the expression ∇h means the gradient

restricted to each element.

Observe that the last equation of (4.20) gives the continuity of the normal component

of the numerical flux ẑnj . The following theorem gives the existence and uniqueness of a

solution in the sense of Definition 4.7.

Theorem 4.2. Let n > 0 and j > 0 be fixed. Given un−1, unj−1 ∈ L2(Th), there exist a

unique discrete discontinuous global solution (unjh, pnjh, znjh, p̂nj ) ∈ Qh×Qh×Vh×Wh in

the sense of Definition 4.7.

Proof. For the existence and uniqueness of a solution of (4.20) it is sufficient to show

that the homogeneous counterpart of (4.20) has trivial solution only. Take the right-hand

side of (4.20) equal to zero, the set of test functions (v, q,ϕ, µ) = (pnjh, unjh, znjh, p̂nj ) and

multiply by ∆t and −1 appropriately to obtain

〈unjh, pnjh〉Th + ∆t〈∇h · znjh, pnjh〉Th + ∆t〈κ(pnjh − p̂nj ), pnjh〉∂Th = 0,

∆t‖znjh‖2[L2(Th)]2 −∆t〈pnjh,∇h · znjh〉Th + ∆t〈p̂nj , znjh · n〉∂Th = 0,

−〈pnjh, unjh〉Th + L ‖unjh‖2L2(Th) = 0,

−∆t〈znjh · n + κ(pnjh − p̂nj ), p̂nj 〉∂Th = 0.
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Summing up the four equations above gives

∆t‖znjh‖2[L2(Th)]2 + L ‖unjh‖2L2(Th) + ∆t〈κ(pnjh − p̂nj ), (pnjh − p̂nj )〉∂Th = 0.

This implies that znjh = 0 and unjh = 0 in Th and that pnjh − p̂nj = 0 in ∂Th. From the

third equation of the homogeneous version of (4.20), if unjh = 0 in Th we get

〈pnjh, q〉Th = 0, for all q ∈ Qh.

Therefore, pnjh = 0 in Th and consequently p̂nj = 0 in ∂Th. �

4.4.1 Characterization of the numerical trace

The formulation of the discrete global problems presented before increases the number of

degrees of freedom when compared with other discretization methods. The idea of the

HDG method is to benefit from the relation (4.19) and re-write the global problem (4.20)

only in terms of p̂nj . To this aim, for each T ∈ Th, n > 0 and j > 0, we introduce the

so-called local problems (or local solvers) in which we assume un−1, unj−1 ∈ L2(Th) and

p̂nj ∈Wh known.

Local problems (PLoc). Assume the trace datum p̂nj given. Find the triplet of functions

(unjh, pnjh, znjh) ∈ Qh ×Qh × Vh satisfying

〈unjh, v〉T + ∆t〈∇ · znjh, v〉T + ∆t〈κpnjh, v〉∂T = 〈un−1 + ∆tfn, v〉T + ∆t〈κp̂nj , v〉∂T ,

〈znjh,ϕ〉T − 〈pnjh,∇ ·ϕ〉T = −〈p̂nj ,∇ϕ · n〉∂T ,

〈pnjh, q〉T − 〈L unjh, q〉T = 〈ζ(unj−1)−L unj−1, q〉T ,
(4.21)

for all (v, q,ϕ) ∈ Qh ×Qh × Vh.

As before, the existence and uniqueness of a solution of (4.21) is obtained by showing

that the homogeneous problem (4.21) has only the trivial solution. The proof of the

following theorem is analogous to the proof of Theorem 4.2.

Theorem 4.3. The local problem PLoc has unique solution (unjh, pnjh, znjh) ∈ Qh×Qh×
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Vh.

Based on this, one can define the operator L : L2(Ω) × L2(Ω) × L2(Ω) ×Wh →

Qh ×Qh × Vh, as follows

L((fn, un−1, unj−1), p̂nj ) = (unjh, pnjh, znjh),

where the triplet (unjh, pnjh, znjh) is the solution of the local problems PLoc. Further,

we use the following notation

L((fn, un−1, unj−1), 0) = ((unjh)f , (pnjh)f , (znjh)f ),

L((0, 0, 0), λ) = ((unjh)λ, (pnjh)λ, (znjh)λ).

Specifically, ((unjh)f , (pnjh)f , (znjh)f ) denotes the solution of the local problems PLoc when

p̂nj is zero, while, ((unjh)λ, (pnjh)λ, (znjh)λ) denotes the solution of the local problems PLoc

in the quasi-homogeneous case, i.e. fn = un−1 = unj−1 = 0 and p̂nj = λ for some

λ ∈Wh.

Theorem 4.4. For a fixed n > 0, j > 0 and given un−1, unj−1 ∈ L2(Th), the solution

(unjh, pnjh, znjh) ∈ Qh ×Qh × Vh of each local problem PLoc can be written as

unjh = (unjh)f + (unjh)λ,

pnjh = (pnjh)f + (pnjh)λ,

znjh = (znjh)f + (znjh)λ,

p̂nj = λ,

(4.22)

with λ being the solution of the following problem

A(λ, µ) = b(µ), for all µ ∈Wh, (4.23)

with A : Wh ×Wh → R and b : Wh → R being defined as

A(λ, µ) = 〈(znjh)λ · n + κ((pnjh)λ − λ), µ〉∂Th ,

b(µ) = −〈(znjh)f · n + κ(pnjh)f , µ〉∂Th .
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Proof. Using (4.22) in the last equation of (4.20) we obtain the formulation in (4.23). �

Theorem 4.4 implies that given the solution of the local problem

L((fn, un−1, unj−1), 0) at each T ∈ Th one can obtain the solution λ of the

skeleton problem defined by (4.23). Thereafter, by using (4.22) we compute the global

solution in Definition 4.7. We sketch this process in more detail in the next section.

Remark. Concerning the convergence of L-scheme in the discrete setting we highlight

that in the HDG formulation the non-linearities are only encountered on each local prob-

lem. In this sense, the proof of convergence of the linear HDG iterations would be an

straightforward extension of Theorem 4.1. We refer to [Cancès et al. 2020; Karpinski

and Pop 2017] for different approaches to show the convergence of a fully discrete linear

iterations in the case of the porous medium equation and a DG approximation.

4.5 Implementation details

For simplicity, from here we restrict to the case of a two-dimensional domain Ω. For each

triangle T ∈ Th and for each edge e ∈ Eh we take the basis of the finite dimensional

spaces Vh, Qh and Wh as follows

Pr(T ) = 〈{vk}d1
k=1〉,

[Pr(T )]2 = 〈{ϕk}d2
k=1〉,

Pr(e) = 〈{µk}d1−1
k=1 〉,

where d1 and d2 are the cardinalities of the bases and vk, ϕk and µk are the correspondent

basis functions.

4.5.1 Dubiner basis

To construct the spaces Vh and Qh over triangles in R2, we use the Dubiner basis. This

basis is an orthogonal and complete set of functions that generates spaces of polynomials

of order r > 0. The Dubiner basis was proposed in [Dubiner 1991]. For triangular

elements, the approximation space on the standard reference triangle is chosen as in

[Deng and Cai 2005].
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Let Tref be the reference triangle given by

Tref := {(x, y)|0 ≤ x, y;x+ y ≤ 1} ,

and P γ,θr be the Jacobi polynomials of order r defined recursively for x ∈ [−1, 1] as follows

(see [Abramowitz and Stegun 1964])

P γ,θ0 (x) = 1,

P γ,θ1 (x) = 1
2 (2(γ + 1) + (γ + θ + 2)(x− 1)) ,

P γ,θn+1(x) = 1
L

(
(2n+ α+ 1)(γ2 − θ2) + x

(2n+ α+ 2)!
(2n+ α− 1)!

)
P γ,θn (x)

− 2
L

(n+ γ)(n+ θ)(2n+ α+ 2)P γ,θn−1(x),

for n = 1, 2, . . . , L = 2(n + 1)(n + α + 1)(2n + α) and α = γ + θ. The Dubiner

polynomials are defined as

vmn(κ, η) := 2mP 0,0
m

(
2κ

1− η − 1
)

(1− η)m P 2m+1,0
n (2η − 1) , (4.24)

for (κ, η) ∈ Tref . The polynomials (4.24) constitute an orthogonal basis of the space

Pr(Tref) with cardinality d1 = (r + 1)(r + 2)/2. We use the notation vj(κ, η) instead of

vmn(κ, η) with 1 ≤ j ≤ d1, for any arbitrary bijection j ≡ j(n,m) (see [Pasquetti and

Rapetti 2004]).

For example, the first three non-normalized Dubiner basis functions on Tref are

v1(κ, η) = v00(κ, η) = 1,

v2(κ, η) = v01(κ, η) = 3η − 1,

v3(κ, η) = v10(κ, η) = 4κ+ 2η − 2.

For the case of vector valued functions in R2, we choose a set of basis functions

{ϕj}
d2
j=1, with d2 = 2d1, defined in such a way that

ϕj(κ, η) := vj(κ, η)e1 and ϕd1+j(κ, η) := vj(κ, η)e2, j = 1, . . . , d1,
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where {ei}i=1,2 is the canonical basis of R2.

Finally, for the space Wh we use a one-dimensional basis given by the Legendre poly-

nomials at the reference edge I := [−1, 1] and we take advantage of their orthogonality.

These polynomials are defined as

µj(x) := P 0,0
n (x),

with cardinality d1 − 1 and where j and n correspond to the bijection j = j(n,m)

mentioned before.

4.5.2 Local problems and the global assembly

At each time step n > 0 and iteration j > 0 we write the unknowns in Definition 4.7 as a

linear combination of the elements of the Dubiner basis. We denote
[
znjh
]
,
[
pnjh

]
,
[
unjh

]
and

[
p̂nj
]

the degrees of freedom associated with znjh, pnjh, unjh and p̂nj at each element

or edge of the triangulation. Specifically,

unjh
∣∣
T

=
d1∑

k=1

[
unjh
]

k vk, pnjh
∣∣
T

=
d1∑

k=1

[
pnjh
]

k vk,

znjh
∣∣
T

=
d2∑

k=1

[
znjh
]

kϕk, p̂nj
∣∣
e

=
d1−1∑
k=1

[
p̂nj
]

k µk.

(4.25)

Replacing (4.25) in the local problem PLoc we obtain a linear system of equations.

We call A, B, C, D, E, F1, F2 and G the local matrices with entries

Ak` :=
∫
T

ϕk ·ϕ`, Bk` :=
∫
T

vk divϕ`,

Ck` :=
∑
e

∫
e

κvk v`, Dk` :=
∫
T

vk v`,

Ek` :=
∑
e

∫
e

(ϕk · n)µ`, Gk` :=
∑
e

∫
e

κµk v`,

F1
k :=

∫
T

( 1
∆tu

n−1 + fn) vk, F2
k :=

∫
T

(
ζ(unj−1)−L unj−1

)
vk,

Rk` :=
∑
e

∫
e

κφk φ`.
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Finally, the local linear system of equations is
A −B 0

Bt C 1
∆tD

0 Dt −L D


︸ ︷︷ ︸

M



[
znjh
]

[
pnjh

]
[
unjh

]

 =


−E

G

0


[
p̂nj
]

+


0

F1

F2

 . (4.26)

From the fourth equation of (4.20) we have

∑
Th




E

G

0



t 

[
znjh
]

[
pnjh

]
[
unjh

]

−R
[
p̂nj
]
 = 0. (4.27)

Notice that in (4.27) and from here, the notation
∑

Th
does not indicate the sum over

all the triangles but refers to the assembling of a global system of equations.
By replacing the local solution of (4.26) in (4.27) we obtain

∑
Th




E

G

0


tM−1


−E

G

0


[
p̂n

j

]
+ M−1


0

F1

F2



− R
[
p̂n

j

]
 = 0,

∑
Th






E

G

0


t

M−1


−E

G

0

− R


︸ ︷︷ ︸

X

[
p̂n

j

]
+


E

G

0


t

M−1


0

F1

F2


︸ ︷︷ ︸

Y


= 0.

∑
Th

(
X
[
p̂nj
]

+ Y
)

= 0,

H
[
p̂nj
]

= −K,

(4.28)

Here H is the assembly of the local matrices X and K is the assembly of the local

matrices Y.

The global system (4.28) has ((d1 − 1) ∗ |Eh|) unknowns and each local system has
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(d1 +d2) degrees of freedom but those are independent and can be solved in parallel after

solving (4.28).

Dirichlet boundary conditions Notice that the discretization of the boundary terms

plays an important role in the implementation of the HDG method. We refer to [Schütz

and May 2014; Egger and Schöberl 2010; Woopen et al. 2014] for different approaches

to the imposition of the boundary conditions. Here, we impose the boundary conditions

of ph by following a typical approach and using static condensation on each local system

(see [Hughes 2012, p.8]). We re-organize the vector of the degrees of freedom
[
pnjh

]
and

denote
[
pnjh

]
I

the set of degrees of freedom that correspond to the inner unknowns, i.e.,

the degrees of freedom that do not belong to the boundary ∂Ω. To the same extent,[
pnjh

]
D

denotes the set of degrees of freedom that correspond to the boundary.

The system (4.26) is then re-written as

A −BI −BID 0

Bt CI CID
1

∆tD

0 0 ID 0

0 Dt
I Dt

ID −L D





[
znjh
]

[
pnjh

]
I[

pnjh

]
D[

unjh

]


=



−E

GI

0

0


[
p̂nj
]

+



0

F1
I

0

F2


,

where BI , CI and DI are the matrices related with the inner degrees of freedom and BID,

CID and DID correspond to the matrices for which the rows are related with inner degrees

of freedom and the columns are related with the boundary terms. Moreover, ID is an

identity matrix with the cardinality of
[
pnjh

]
D

and on the right hand side the matrices GI

and F1
I denote the sub-matrices that correspond to the inner unknowns. This formulation

is only valid for homogeneous boundary conditions, but the non-homogeneous case follows

straightforwardly. In our case, the last system of equations leads to the following simplified

system
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

A −BI 0 0

Bt CI 0 1
∆tD

0 0 ID 0

0 Dt
I 0 −L D





[
znjh
]

[
pnjh

]
I[

pnjh

]
D[

unjh

]


=



−E

GI

0

0


[
p̂nj
]

+



0

F1
I

0

F2


. (4.29)

When one solves the global system (4.28) we obtain an approximation of p̂nj over all

the skeleton Eh and based on that solution we compute the solution of each local system

(4.29).

4.6 Numerical results

For the numerical tests, we consider the porous medium equation in dimension 2, cor-

responding to (4.1) with ζ(u) = |u|m−1u for m ∈ {2, 3, 4} and source f = 0. The

computational domain is given by T = 1 and Ω = (0, 1)2, and the exact solution is

u(x, t) = B(x− x0, t0 + t), where t0 = 0.1, x0 = (0.5, 0.5) and

B(x, t) = t−
1
m


CB − m− 1

4m2

 |x|
t

1
2m

2
+


1

m−1

, (4.30)

is the Barenblatt–Pattle solution (see [Barenblatt 1952]). The initial solution is fixed by

uini = u(·, 0). We choose CB = 0.005, so that B remains equal to 0 on ∂Ω during the

entire simulation t ∈ [0, 1]. Note that by the offset t0 in B, the singularity of this function

at t = 0 is avoided, and the initial condition satisfies Assumption (A3).

4.6.1 First order HDG

We present the history of convergence of the error when using a family of uniform meshes

and the HDG method of order 1, i.e. r = 1. An example of the triangular meshes is

provided in Figure 4.1.

The accuracy of the scheme is provided through the following quantities, all measured

at the final time
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Figure 4.1: An example of a triangular meshes used in numerical tests.

? Relative error in L2-norm between the gradients of the approximation of ζ(u) and

the projection of the solution Πζ(u)

EH1,ζ =
‖∇ζ(uN )−∇Πζ(u(·,T))‖L2(Ω)

‖∇Πζ(u(·,T))‖L2(Ω)
. (4.31)

? Relative error in Lm+1-norm between the approximate solution and the projection

of the exact solution u

ELm+1 =
‖uN −Πu(·,T)‖Lm+1(Ω)

‖Πu(·,T)‖Lm+1(Ω)
. (4.32)

? Relative error in L2-norm between the approximate solution and the projection of

the exact solution u

EL2 =
‖uN −Πu(·,T)‖L2(Ω)

‖Πu(·,T)‖L2(Ω)
. (4.33)

? Fraction of negative mass over total mass

NMass =

∫
Ω
uN−∫

Ω
|uN |

, (4.34)

where s− = max(−s, 0) is the negative part of s ∈ R.

In Figures 4.2, 4.3 and 4.4 we report the history of the error for the different values of
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m and four different meshes. The outputs are given in logarithmic scale. In these figures,

the chosen reference slopes correspond to an estimate of the overall behavior of each test.

Notice that for these simulations we consider uniform time steps. For the coarsest mesh,

the time step is ∆t = 0.25. Since we use implicit Euler time-stepping and a low order

method with r = 1, then, for each mesh refinement, the time step is divided by 4. This

choice of time steps ensures that the spatial truncation error is the leading term in the

error and it is chosen based on the error estimates presented e.g. in [Magenes et al. 1987;

Nochetto and Verdi 1988b; Radu et al. 2004]. In all the simulations the threshold for the

stopping criteria of the non-linear solver is tol = 1E-6 and we use

Llin = m

2 ‖u
n
j−1‖m−1

∞ ≈ 5
10( 2m+1

m ) .
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Figure 4.2: The errors ELm+1 , EL2 (left) and EH1,ζ (right) versus the mesh size for

m = 2.

As can be seen in Figures 4.2, 4.3 and 4.4, for the considered tests, the rates for ELm+1

are sub-optimal and the convergence rates deteriorate even further when m increases. The

reason is that as m increases the regularity of the exact solution u decays. The solution

u is H1 in space, for m = 2, but no longer for m > 2.

Interestingly, but not surprisingly, the rates of convergence for EH1,ζ seem to decrease

less than the rates of ELm+1 as m increases. Although EH1,ζ measures an approximation

of the gradient, which can be expected to be of a lower order than that of a function, it
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Figure 4.3: The errors ELm+1 , EL2 (left) and EH1,ζ (right) versus the mesh size for

m = 3.
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Figure 4.4: The errors ELm+1 , EL2 (left) and EH1,ζ (right) versus the mesh size for

m = 4.
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measures this in a norm that is independent of m and relates to ζ(u), a function that has

better regularity properties than u. For example, ζ(u) ∈ H1(Ω) irrespective of the value

of m.

Notice that the results in Figures 4.2, 4.3 and 4.4 might not be conclusive due to the

size of the meshes and the rough time stepping. We present a more detailed study with

finer meshes in Section 4.6.5.

4.6.2 Positivity of the scheme

We also look at the positivity properties of the scheme. As the standard linear heat equa-

tion, the porous medium equation satisfies a maximum principle: if the initial solution

and the source terms are positive, then the solution remains positive for all times. Main-

taining this property at the discrete level is particularly challenging. Moreover, with our

choice of Llin the boundedness of the solution might be not guaranteed. Therefore, the

study of positivity is worthwhile. In Figure 4.5 we present the relative negative masses

NMass versus the mesh sizes in logarithmic scale. The scheme produces some negative

mass, but it decays as the mesh is refined, and it is rather small relative to the total mass

of the solution at the final time. This result demonstrates a strong interaction between

the scheme design and the mesh geometries when it comes to preserving the maximum

principle of the continuous model.

4.6.3 The convergence of the non-linear solver

For the analysis of the non-linear solver, we consider the mesh corresponding to the third

refinement in Figure 4.2. We take the uniform triangular mesh with mesh size h =
√

2
16

and ∆t = 0.0156. In Figure 4.6 we show the convergence of the non-linear solver for

three different values of m. The rate of convergence of the non-linear solver decreases

for the higher values of m. This is expected due to the lack of regularity of the expected

solution u when m increases. Moreover, due to our choice of Llin the rate of convergence

of the non-linear solver increases when the L∞-norm of the solution decreases or when

m increases. These features of the convergence are evident in Figure 4.6.
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Figure 4.5: The fraction of negative mass versus the mesh size for three different values

of m = 2, 3, 4.

4.6.4 High order HDG

In [Cancès et al. 2020] we study the performance of the low order HDG method compared

with several other schemes. Despite the comparison only concerns low order approxima-

tions, here we briefly comment on the applicability of a higher-order HDG method. Notice

that the expected solution of (4.1) have low regularity and its singularities evolve in time,

however, we wish to compare the performance of the first order HDG method and higher-

order schemes. In Figure 4.7 we show the convergence history for the second-order HDG

method, i.e., taking r = 2 and for the case of m = 4. For the second-order HDG, for each

mesh refinement, the time step is divided by 8. In Figure 4.7 we compare the results with

the first order errors shown in Figure 4.4. None of the rates of convergence are improved

when compared with the first-order scheme, as expected. Moreover, in Table 4.1 we

present the errors ELm+1 , EL2 and EH1,ζ versus the degrees of freedom when using high

order approximations. The degrees of freedom reported in Table 4.1 correspond to the

size of the global system of equations (4.28). There, we fix a mesh size h =
√

2
16 and we

take ∆t = 0.1, i.e. only the order of the approximation is varying. The results in Table 4.1

reflect that the use of only high order schemes does not improve the quality of the results.

In both cases, m = 3 and m = 4, the errors decrease until a certain level, meaning that

higher order approximation are unable to reproduce more accurately the singularities of
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Figure 4.6: The convergence of the non-linear solver for m = 2 (top-left), m = 3 (top-

right) and m = 4 (bottom). The legend n indicates the n-th time step of the simulation

with mesh size h =
√

2
16 and ∆t = 0.0156.
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the solution. Such behavior also reflects the error in the time discretization and sheds

lights on the application of more advanced methods in time as proposed in [Jaust and

Schütz 2014]. On the other hand, the fraction of negative mass decreases for the higher

order of the polynomials, which is an indication of more accurate results.
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Figure 4.7: The errors ELm+1 (left) and EH1,ζ (right) versus the mesh size for m = 4

and r = 1 and r = 2.

Given the results of the high order HDG method presented here, a natural extension

would be to apply a hp-refinement strategy as mentioned in [Daniel et al. 2018; Ern and

Vohraĺık 2015]. One could localize the use of higher order polynomials to zones were the

solution can in fact be improved. Furthermore, one of the strengths of the HDG method

is that such refinements based on the polynomial degree can be easily applied due to the

flexibility of the method (see (Chapter 1) Section 1.3.1).

4.6.5 The comparison with other methods

Finally, we briefly discuss the performance of the first order HDG method relative to other

schemes. We compare the HDG method with the following strategies.

? CFVEM (Conforming Virtual Element) [Beirão da Veiga et al. 2013]: applicable on

generic polytopal meshes, one unknown per internal vertex, based on the elliptic

projection of virtual shape functions, with algebraic mass-lumping.

? HMM (Hybrid Mimetic Mixed scheme) [Droniou et al. 2018, Chapter 13]: appli-
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Order r D.o.f ELm+1 EL2 EH1,ζ NMass

m = 3

2 1600 2.710E-01 2.065E-01 1.556E-01 1.893E-02

3 2400 1.796E-01 1.407E-01 1.519E-01 7.544E-03

4 3200 1.880E-01 1.465E-01 1.497E-01 5.284E-03

5 4000 1.873E-01 1.460E-01 1.416E-01 4.611E-03

6 4800 1.873E-01 1.460E-01 1.415E-01 4.237E-03

m = 4

2 1600 3.055E-01 1.998E-01 1.892E-01 1.360E-02

3 2400 2.178E-01 1.538E-01 1.444E-01 9.658E-03

4 3200 2.124E-01 1.504E-01 1.409E-01 7.180E-03

5 4000 2.122E-01 1.499E-01 1.395E-01 4.806E-03

6 4800 2.118E-01 1.498E-01 1.389E-01 3.987E-03

Table 4.1: The results of the high order HDG using a fixed mesh size h =
√

2
16 and

∆t = 0.1.
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cable on generic polytopal meshes, one unknown per internal edge (after static

condensation), based on local reconstruction of piecewise constant functions and

gradients.

? LEPNC (Locally Enriched Polytopal Non-Conforming scheme) [Droniou et al. 2020]:

applicable on generic polytopal meshes, one unknown per internal edge (after static

condensation), based on broken polynomial functions with weak continuity proper-

ties across the edges. We have taken a zero weight $ on the edge unknowns, so

ΠD is only computed from the cell unknowns.

? MLP (Mass-Lumped P1 finite element) [Droniou et al. 2018, Section 8.4]: only

applicable on triangular meshes, one unknown per vertex, based on standard P1

shape functions for the gradient and piecewise constant reconstruction around each

vertex.

? VAG1 (Vertex Approximate Gradient, first presentation) [Droniou et al. 2018, Sec-

tion 8.5]: applicable on generic polytopal meshes, one unknown per internal vertex

and one unknown per cell, based on standard P1 on a triangular subdivision of the

cells (using the center of the cell as additional vertex), with a mass-lumping that

equally distributes the available area between cell and vertex unknowns. A local al-

gebraic elimination (static condensation) of cell unknowns is also performed, leading

to a globally coupled system on the vertex unknowns only.

? VAG2 (Vertex Approximate Gradient, second presentation) [Cancès and Guichard

2017]: as above, but applied after writing the diffusion term as div(m|u|m−1∇u).

Note that this scheme does not present itself as a gradient scheme.

Focusing only on m = 4 (the most severe case), we plot in Figure 4.8 the errors

ELm+1 and EH1,ζ of each scheme versus the mesh size. Notice that for this study we

use a different family of meshes and ∆t. The coarsest mesh size is h = 0.0625 and the

correspondent time step is ∆t = 0.1. For each mesh refinement, the time step is divided

by 4, as explained before.

Comparing the various schemes, they all seem to adopt similar rates of convergence.

Focusing on EH1,ζ , which is a more stable measure, we see that MLP outperforms the
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Figure 4.8: The comparison of seven different methods. The errors ELm+1 (top) and

EH1,ζ (bottom) versus the mesh size.
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other schemes. The rate of HDG is slightly lower than the other schemes; the reason

for that might be found in the total number of degrees of freedom, which is lower for

HDG than some other schemes, and which therefore prevents this scheme from achieving

optimal rates with respect to the mesh size. It can also be noticed that some schemes

produce a better EH1,ζ error than others, but that the “ranking” between the schemes

can be reversed if we look at the error ELm+1 . This result justifies the use and the analysis

of more generic frameworks designed specifically for degenerate cases. For example, the

gradient discretization method (GDM) explained an analyzed in [Cancès et al. 2020] or

regularization of the original problem (4.1) to avoid the non-smooth solutions.
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Chapter 5. Numerical simulation of a two-scale model for precipitation and

dissolution in porous media

5.1 Introduction

In this chapter we focus on the two-scale model derived in [Bringedal et al. 2020]. The cor-

respondent pore-scale model describing single-phase flow and reactive transport through

a porous medium, where the solid interface evolves due to mineral precipitation and dis-

solution was introduced in (Chapter 1) Section 1.2.

This chapter is proposing a two-scale iterative scheme for approximating the solution

of a two-scale model, in which the so-called cell problems defined at the micro scale are

solved for determining the effective parameters appearing in the macro-scale equations

modeling the flow and the chemical processes. The scheme is dealing with the non-

linearities in the model and at the same time with the scale separation. Though being

motivated by the mathematical model mentioned above, the approach proposed here can

be applied to other two-scale models obtained by homogenization. Unlike classical multi-

scale schemes, e.g., [Efendiev and Hou 2009], where one has the same type of equations at

both the macro and micro scales, the scheme proposed here allows for different equations

at the micro and the macro scale. This approach is hence in line with the heterogeneous

multi-scale methods in [E et al. 2007]. In the present context, we mention the similarities

with [Gärttner et al. 2020; Ray et al. 2019], where a multi-scale scheme is developed for

reactive flow and transport in porous media where a level-set is employed to track the

evolution of the solid-fluid interface at the micro scale.

The scheme proposed here is a two-scale iterative one and relies on the backward Euler

method for the time discretization. Inspired by [Brun et al. 2020], an artificial term is

included in the (micro-scale) phase-field equation. This parameter has a stabilizing effect

in the coupling with the (macro-scale) flow and reactive transport equations. We mention

that, compared to [Brun et al. 2020], this coupling is bridging here two different scales.

In a simplified setting, we give the rigorous convergence proof of the scheme. This result

is obtained without specifying any particular spatial discretization.

To guarantee mass conservation, the mixed finite element method (MFEM) is em-

ployed for the spatial discretization at both scales. Since effective quantities are needed

for each macro-scale element, the finer the macro-scale mesh is, the more micro-scale

problems have to be solved numerically. This increases the computational effort signifi-
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cantly. To deal with this aspect, a macro-scale adaptive strategy is included, inspired by

[Redeker and Eck 2013]. The main idea is to select at each time step a representative

fraction of the macro-scale points (so-called active nodes), for which the cell problems

are solved and the effective quantities updated. The results are then transferred to the

remaining (inactive) nodes, which are assigned to an active node based on a similarity

criterion. A similar approach was also applied in [Redeker et al. 2016; Gärttner et al.

2020].

Adaptivity is further applied at the micro scale, where it is crucial to have an accurate

description of the diffuse transition zone. In such regions, a fine mesh is necessary to

capture the phase-field changes at every time. On the other hand, away from such

transition zones, in both the mineral and the fluid phases, the phase field is barely varying.

There a coarser mesh is sufficient to obtain an accurate numerical solution. Therefore

we use an adaptive mesh that follows the movement of the phase-field transition zone.

We start with a coarse micro-scale mesh and apply a prediction-correction strategy as

described in [Heister et al. 2015] for a phase-field model for fracture propagation. Finally,

since the cell problems for the phase field are non-linear, we use a fixed-point iterative

scheme called L-scheme, as described in [Pop et al. 2004; List and Radu 2016] and

introduced in (Chapter 1) Section 1.3.3. Incorporating this linearization scheme in the

two-scale iterative one mentioned above can be made with no effort, as they both involve

similar stabilization terms. We show that the iterative scheme guarantees the lower and

upper bounds for the phase field and in the numerical tests we evidence that the bounds

are preserved after the spatial discretization.

The remainder of this chapter is structured as follows. In Section 5.2, the geometry

and the details of the model are presented. In Section 5.3, we formulate the iterative

scheme and in Section 5.4, we introduce the non-linear solver used on the micro-scale

problems. In Section 5.5, we prove the convergence of the two-scale iterative scheme. The

micro- and macro-scale adaptive strategies are described in Section 5.6 and in Section 5.7

we give the details of the spatial discretization. Finally, in Section 5.8, two numerical test

cases are applied in which we study in detail the effect of different choices of parameters.
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5.1.1 Notations

In this chapter we use common notations from the functional analysis. For a general

domain D ⊂ Rd with d = 2, 3, we denote by Lp(D) the space of the p−integrable real-

valued functions equipped with the usual norm and by H1(D) the Sobolev space of L2(D)

functions having weak derivatives in the same space.

We let 〈·, ·〉D represent the inner product on L2(D) (or [L2(D)]d) and the norm

‖v‖2L2(D) = ‖v‖2D := 〈v, v〉D. Take Y = [−0.5, 0.5]d, for defining a solution in a weak

sense we use the space H1
#(Y ) = { p ∈ H1(Y ) | p is Y -periodic } with H−1

# (Y ) being

its dual space. With D1, D2 ⊂ Rd being two domains, we use the Bochner spaces

Lp(D1;Lq(D2)) for p, q ∈ [1,∞), equipped with the usual norm. In the case p = q = 2

we denote the corresponding norm ‖v‖D1×D2 := ‖v‖L2(D1;L2(D2)).

We use the positive and negative cut of a real number v, defined as [v]+ := max(v, 0)

and [v]− := min(v, 0).

5.2 The two-scale model

Let Ω ⊂ Rd be a bounded macro-scale domain with Lipschitz continuous boundary ∂Ω

and let T ∈ (0,∞) be the final time. The macro-scale domain should be interpreted as a

homogenized porous medium in which the micro-scale complexities (e.g., the alternating

solid and void parts) are averaged out. Following the homogenization procedure sketched

in (Chapter 1) Section 1.1, to each macro-scale point x ∈ Ω, a micro-scale domain

Y ⊂ Rd is assigned, representing an idealization of the complex structure at the micro

scale. These micro-scale domains are used to define the cell problems, yielding the effective

parameters and functions required at the macro scale.

At the micro scale the geometry consists of solid grains surrounded by void space

(pores). The precipitation and dissolution processes are encountered on the boundary of

already existing mineral (grains) and not in the interior of the void space. We assume

that the mineral never dissolves entirely and that the void space is always connected; thus

the porosity is never vanishing.

We write the model in non-dimensional form by following the non-dimensionalization

in [Bringedal et al. 2020]. In doing so, we use a local unit cell Y = [−0.5, 0.5]d and to
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identify the variations at the micro scale we define a fast variable y. We associate one

micro-scale cell Y to every macro-scale location x ∈ Ω (see Figure 5.1).

x

Figure 5.1: The two-scale domain: the macro scale, homogenized porous medium Ω

(left) and the micro-scale domain Y (right) corresponding to a point x ∈ Ω.

The macro-scale parameters φ, A and K appearing below are obtained from the micro

scale by following the homogenization procedure. At the macro scale, the unknowns q,

p denote the (macro-scale) velocity and pressure in the fluid and u is the upscaled solute

concentration. All of them are functions of x ∈ Ω and t > 0. The macro-scale flow is

given by

(PM
p )



∇ · q = 0, in Ω,

q = −K∇p, in Ω,

∇p · n = 0, on ∂Ω,∫
Ω
p dx = 0.

The solute concentration is given by

(PM
u )


∂t(φ(u− u?)) +∇ · (qu) = D∇ · (A∇u), in Ω× (0,T],

∇u · n = 0, on ∂Ω× (0,T],

u = uI , in Ω and t = 0,

where all the spatial derivatives are taken with respect to the macro-scale variable x.

Here D denotes the pore-scale diffusivity of the solute and n denotes the outward unit
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normal to the boundary ∂Ω. The mineral has a constant concentration u?. To derive the

macro-scale parameters φ, A and K, the phase field φ(x, ·, ·) is determined for all x ∈ Ω

by solving the following micro-scale problem

(Pµφ)


λ2∂tφ+ γP ′(φ) = γλ2∇2φ− λM(φ) 1

u?
f(u), in Y × (0,T],

φ is Y -periodic,

φ = φI , in Y for t = 0,

where all the spatial derivatives are taken with respect to the micro-scale variable y. The

function f(u) is the reaction rate, λ > 0 is related to the width of the fluid-mineral

transition zone, and γ is the diffusion coefficient controlling the diffusive time scale of

the transition zone. Additionally, P is the double-well potential and its local minima are

the values corresponding to the two phases (fluid or mineral) and M is a function that

ensures that the reactions only take place in the transition zone between the fluid and the

mineral. For improving the local conservation of the phase field φ, one may follow [Chen

et al. 2010; Bringedal 2020] and include an additional Y -averaged term in the phase-field

equation.

While φ enters in the micro-scale problems through the effective parameters defined

below, the reverse coupling with the micro scale is given through the reaction rate f(u),

with u being constant w.r.t the variable y ∈ Y . The macro-scale porosity in (PM
u ) is

defined for each x ∈ Ω and t > 0 by averaging the phase field

φ(x, t) =
∫
Y

φ(x,y, t)dy.

To determine the effective matrices A and K one has to solve two types of cell

problems. We use a regularized phase field φδ := φ + δ with δ > 0, ensuring that the

cell problems are well defined. Notice that the regularization only plays a role in the

calculation of the effective parameters and does not appear explicitly in (Pµφ),(PM
p ) and

(PM
u ). For each x ∈ Ω and t > 0, the functions ωs, Πs and zs = [zs

1, . . . , zs
d]t with
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s ∈ {1, . . . , d} are the solutions of the following cell problems

(PµA)


∇ · (φδ(∇ωs + es)) = 0, in Y,

ωs is Y -periodic and

∫
Y

ωsdy = 0,

(PµK)



∇Πs + es + µf∇2(φδzs) = g(φ, λ)
φδ

zs, in Y,

∇ · (φδzs) = 0, in Y,

Πs is Y -periodic and

∫
Y

Πsdy = 0.

Here es is the s-th canonical vector and µf is the constant fluid viscosity. The role of the

function g(φ, λ) is to guarantee that there is no flow in the mineral phase. As motivated

by [Garcke et al. 2015] we take g(φ, λ) := 250(1−φ)
λ(φ+10) .

The elements of the effective matrices A and K are defined for each x ∈ Ω and t > 0

by
Ars(x, t) =

∫
Y

φδ(x,y, t) (δrs + ∂rω
s(x,y, t)) dy,

Krs(x, t) =
∫
Y

φδ(x,y, t) zs
r(x,y, t)dy,

(5.1)

for r, s ∈ {1, . . . , d} and where δrs denotes the Kronecker delta. We highlight that even

though we denote the micro-scale problems (Pµφ), (PµA) and (PµK), each of these problems

depend on the macro scale and on time.

Finally, the initial conditions in (PM
u ) and (Pµφ) satisfy the following assumptions

(A1) The function uI ∈ L∞(Ω) and it is such that 0 ≤ uI ≤ u? a.e. in Ω.

(A2) The function φI ∈ L∞(Ω× Y ) and it is such that 0 ≤ φI ≤ 1 a.e. in Ω× Y .

5.2.1 Preliminaries

For a fixed micro-scale domain Y corresponding to one macro-scale point x ∈ Ω, we write

the non-linear part of (Pµφ), namely F : R× R→ R, as follows

F (φ, u) := −γP ′(φ)− λM(φ) 1
u?
f(u). (5.2)
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Further, we choose the reaction rate f(u), the double-well potential P (φ) and the function

M(φ) to be

f(u) :=


k
(

[u]2+
u2
eq
− 1
)
, for u ≤ u?,

k
(
u?

u2
eq
− 1
)
, for u > u?,

P (φ) :=


8φ2(1− φ)2, for φ ∈ [0, 1],

0, otherwise,

M(φ) :=


4φ(1− φ), for φ ∈ [0, 1],

0, otherwise,

where ueq is the equilibrium concentration and k is a reaction constant.

Under this choice the function F is Lipschitz continuous with respect to both argu-

ments and we denote by ∂`F the partial derivative of F with respect to the `-th argument.

Specifically, there exist two constants MF1 , MF2 ≥ 0 such that |∂`F | ≤MF` a.e. in R2

with ` = 1, 2.

For each u ∈ R, the function F (·, u) is continuous and can be decomposed as

F (·, u) := F+(·, u) + F−(·, u) with F+(·, u) denoting the increasing part of F (·, u) and

F−(·, u) the decreasing part of F (·, u), namely

F+(α, u) =
∫ α

0
[∂1F (z, u)]+ dz, and F−(α, u) =

∫ α

0
[∂1F (z, u)]− dz.

In Figure 5.2 we present an example of the splitting of the non-linear term for different

values of u.

In Section 5.4 we propose a micro-scale non-linear solver and there the splitting of the

non-linear term F (·, u) guarantees the convergence. In the following sections we treat F−
implicitly and F+ explicitly. Similar ideas of splitting the non-linearities into their convex

and concave components can be found in [Eyre 1998; Frank et al. 2018].
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Figure 5.2: The splitting of F for different values of u and for the specific choice of the

phase-field parameters used in the numerical examples in Section 5.8.
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5.3 The two-scale iterative scheme

We propose an iterative scheme to simulate the two-scale behavior of the phase-field model

presented in Section 5.2. Here we use an artificial coupling parameter between the two

scales, namely Lcoup. In [Brun et al. 2020; Mikelić and Wheeler 2015] similar approaches

about handling the coupling between scales and non-linear systems of equations can be

found.

We first discretize the equations in time. With N ∈ N we let ∆t = T/N be the

time step size and define tn = n∆t. We denote the time-discrete approximations by

φn ≈ φ(·, ·, tn) and νn ≈ ν(·, tn) for ν ∈ {A,K, p,q, u}. Accordingly, at each time tn

one has to determine a six-tuple {φn,An,Kn, pn,qn, un} depending on the solution of

previous time step. The time stepping starts with φ0 = φI and u0 = uI .

Notice that we combine the splitting the non-linearities with an implicit/explicit

(IMEX) method. Such strategies have been widely studied before and we refer to [Eyre

1998; Hundsdorfer and Ruuth 2007; Boscarino 2007; Ascher et al. 1995; Kaiser and Schütz

2018] and the references therein for more details.

In order to approximate the discrete solutions {φn,An,Kn, pn,qn, un} we consider an

iterative algorithm. With i > 0 being the iteration index, the two-scale iterative scheme

defines a sequence {φni ,Ani ,Kni , pni ,qni , uni }. The initial guess for the iterations φn0 and

un0 are the solution at the previous time step, i.e. φn0 = φn−1 and un0 = un−1.

The iterative scheme is defined as follows. First, for n > 0, i > 0 and Lcoup > 0 with

given un−1, uni−1, φn−1 and φni−1, one solves the micro-scale phase-field problem

(Pµ,iφ )


φni −∆tγ∇2φni −

∆t
λ2 F−(φni , uni−1) + Lcoup

(
φni − φni−1

)
= φn−1 + ∆t

λ2 F+(φn−1, uni−1), in Y,

φni is Y -periodic.

By using the solution φni in (5.1), (PµA) and (PµK) we calculate the iterative effective
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parameters Ani and Kni . Then, one continues with the macro-scale problems

(PM,i
p )



∇ · qni = 0, in Ω,

qni = −Kni ∇pni , in Ω,

∇pni · n = 0, on ∂Ω,∫
Ω
pni dx = 0.

(PM,i
u )


φ
n

i (uni − u?) + ∆t∇ · (qni uni )

= ∆tD∇ · (Ani ∇uni ) + φ
n−1(un−1−u?), in Ω,

∇uni · n = 0, on ∂Ω× (0,T],

The two-scale iterations For n > 0 and i > 0 with given un−1, uni−1, φn−1 and φni−1,

to compute the next iteration one performs the following steps

(S1) For each x ∈ Ω, find φni by solving the phase-field problem (Pµ,iφ ).

(S2) Given φni , find the effective matrices Ani and Kni in (5.1) by solving the cell problems

(PµA) and (PµK).

(S3) Given φ
n

i , Kni and Ani , find pni , qni and uni by solving the macro-scale problems

(PM,i
p ) and (PM,i

u ).

The two-scale iterations in steps (S1) - (S3) take place until one reaches a prescribed

threshold tolM > 0 for the following L2-norm

εn,iM := ‖φni − φ
n

i−1‖Ω ≤ tolM .

We highlight that this stopping criterion is chosen according to the results in Theorem 5.2

in Section 5.5. There we will observe that the convergence of the porosity φni guarantees

the convergence of the macro-scale concentration uni , so the stopping criterion above

is sufficient. However, different stopping criteria can also be used, including e.g., the

residuals of the macro-scale concentration and velocity. In Figure 5.3 we sketch the

multi-scale iterative scheme.
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Figure 5.3: The sketch of the multi-scale iterative scheme.
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Proving the existence and uniqueness of a solution to the coupled system (PM
p ), (PM

u ),

(Pµφ), (PµA) and (PµK) is beyond the scope of this thesis. Such results are known if each

model component is considered apart. For example, when taken individually the problems

(PM
p ), (PM

u ), (PµA) and (PµK) are linear and elliptic, while the non-linearity in (Pµφ) is

monotone and Lipschitz continuous. For such problems the existence and uniqueness of

a weak solution is guaranteed by standard arguments. The same holds for (PM,i
p ) and

(PM,i
u ). For the parabolic counterparts, before applying the time discretization, we refer

to [Friedman and Tzavaras 1988; Friedman and Knabner 1992; Muntean and Neuss-Radu

2010; Redeker et al. 2016]. There the existence and uniqueness of solutions to similar

problems related to phase-field modeling or the interaction between scales are addressed.

5.4 The micro-scale non-linear solver

The two-scale iterative scheme in steps (S1) - (S3) includes a non-linear problem at the

micro scale. At each time and for each x ∈ Ω, these iterations require solving the micro-

scale non-linear problem (Pµ,iφ ) in the micro-scale domain Y . For this we construct an

iterative non-linear solver based on the L-scheme [Pop et al. 2004; List and Radu 2016].

To be specific, let n > 0 and x ∈ Ω be fixed and φn−1(x, ·) ∈ L2(Y ), un(x) ∈ R be

given. The weak solution of the time discrete counterpart of (Pµφ) is defined as follows

Definition 5.1. A weak solution to the time discrete counterpart of (Pµφ) is a function

φn(x, ·) ∈ H1
#(Y ) satisfying

〈φn, ψ〉Y + ∆tγ〈∇φn,∇ψ〉Y −
∆t
λ2 〈F−(φn, un), ψ〉Y

= 〈φn−1+ ∆t
λ2 F+(φn−1, un), ψ〉Y ,

(5.3)

for all ψ ∈ H1
#(Y ).

Further, let i > 0 be the two-scale iteration index and φni−1(x, ·) ∈ L2(Y ), uni−1(x) ∈ R

be known. The weak solution of the problem (Pµ,iφ ) is defined as follows

Definition 5.2. A weak solution to the problem (Pµ,iφ ) is a function φni (x, ·) ∈ H1
#(Y )
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satisfying

〈φni , ψ〉Y + ∆tγ〈∇φni ,∇ψ〉Y −
∆t
λ2 〈F−(φni , uni−1), ψ〉Y +

〈
Lcoup

(
φni −φni−1

)
, ψ
〉
Y

= 〈φn−1+ ∆t
λ2 F+(φn−1, uni−1), ψ〉Y ,

(5.4)

for all ψ ∈ H1
#(Y ).

Observe that (Pµ,iφ ) is a non-linear problem and to approximate its solution a lineariza-

tion scheme is needed. To this aim we take Llin ∈ R+ such that Llin ≥MF1 . Let j ∈ N,

j ≥ 1 be the micro-scale iteration index and φni,j−1(x, ·) ∈ L2(Y ) be given. The weak

solution of the linear problem associated to (Pµ,iφ ) is defined as follows

Definition 5.3 (Micro-scale linear iteration). A weak solution to the linearized version of

problem (Pµ,iφ ) is a function φni,j(x, ·) ∈ H1
#(Y ) satisfying

〈
(1 + Lcoup)φni,j , ψ

〉
Y

+ ∆tγ〈∇φni,j ,∇ψ〉Y −
∆t
λ2 〈F−(φni,j−1, u

n
i−1), ψ〉Y

+ ∆t
λ2 〈Llin(φni,j − φni,j−1), ψ〉Y = 〈φn−1 + ∆t

λ2 F+(φn−1, uni−1) + Lcoupφ
n
i−1, ψ〉Y ,

(5.5)

for all ψ ∈ H1
#(Y ).

The natural choice for the initial micro-scale iteration φni,0 is φni−1, that is the phase

field from the previous two-scale iteration. Nevertheless, this choice is not compulsory for

the convergence of the micro-scale linear solver as the convergence is independent of the

initial guess. The iterations (5.5) are performed until one reaches a prescribed threshold

tolµ � tolM for the following L2-norm

εn,i,jµ := ‖φni,j(x, ·)− φni,j−1(x, ·)‖Y ≤ tolµ,

where i > 0 is the two-scale iteration index of the two-scale scheme and j > 0 indicates

the micro-scale iterations index of the non-linear solver.

We highlight that in this specific case and due to the strong coupling between the

flow, chemistry and the phase field over two scales, an accurate solution of the micro-scale

problems is crucial to achieve convergence of the two-scale iterations. For this reason we

solve the micro-scale non-linear problem at every iteration and take tolµ � tolM .
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Now we show that the solution of the phase-field problem (Pµ,iφ ) at every x ∈ Ω

remains bounded.

Lemma 5.1 (Maximum principle for the phase-field). For a fixed x ∈ Ω and for each n > 0

and i > 0, we let φn−1(x, ·), φni−1(x, ·) and φni,j−1(x, ·) ∈ L∞(Y ) be given. If φn−1(x, ·),

φni−1(x, ·) and φni,j−1(x, ·) are all essentially bounded by 0 and 1; then φni,j(x, ·) ∈ H1
#(Y )

in Definition 5.3 satisfies the same essential bounds.

Proof. First, we test in (5.5) with ψ := [φni,j(x, ·)]−, then

(
1 + Lcoup + ∆t

λ2 Llin

)
‖[φni,j ]−‖2Y + ∆tγ‖∇[φni,j ]−‖2Y

= 〈φn−1 + ∆t
λ2 F+(φn−1, uni−1) + Lcoupφ

n
j−1, [φni,j ]−〉Y

+ ∆t
λ2 〈F−(φni,j−1, u

n
i−1) + Llinφ

n
i,j−1, [φni,j ]−〉Y .

(5.6)

Using the mean value theorem on the right hand side of (5.6) one obtains

〈φn−1 + ∆t
λ2 F+(φn−1, uni−1) + Lcoupφ

n
j−1, [φni,j ]−〉Y

= 〈(1 + ∆t
λ2 ∂1F+(ξ, uni−1))φn−1 + Lcoupφ

n
j−1, [φni,j ]−〉Y ,

(5.7)

and
∆t
λ2 〈F−(φni,j−1, u

n
i−1) + Llinφ

n
i,j−1, [φni,j ]−〉Y

= ∆t
λ2 〈

(
∂1F−(η, uni−1) + Llin

)
φni,j−1, [φni,j ]−〉Y ,

(5.8)

where ξ : Y → R and η : Y → R are two functions such that ξ(y) ∈ (0, φn−1(x,y)) and

η(y) ∈ (0, φni,j−1(x,y)) for all y ∈ Y . Knowing that Lcoup, ∂1F+ ≥ 0 and Llin ≥MF1 ,

we get that the right-hand sides of (5.7) and (5.8) are negative. Consequently,

(
1 + Lcoup + ∆t

λ2 Llin

)
‖[φni,j ]−‖2Y + ∆tγ‖∇[φni,j ]−‖2Y ≤ 0,

which implies
(
1 + Lcoup + ∆t

λ2 Llin
)
‖[φni,j ]−‖2Y = 0. In conclusion [φni,j(x, ·)]− = 0 a.e.

in Y , and with this we obtain the lower bound of φni,j(x, ·).

The upper bound follows by testing (5.5) with [φni,j(x, ·)−1]+ and following the same

steps. We obtain φni,j(x, ·) ≤ 1 a.e. in Y . �
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Solving the non-linear problem accurately is crucial to guarantee the convergence of

the two-scale iterative scheme. The following theorem ensures the convergence of the

micro-scale non-linear iterations under mild restrictions on ∆t, Llin and Lcoup.

Theorem 5.1 (Convergence of the non-linear solver). For a fixed x ∈ Ω and for each

n > 0 and i > 0; if Llin ≥ MF1 and ∆t ≤ λ2(1+Lcoup)
MF1

, the micro-scale linear iteration

introduced in Definition 5.3 is convergent.

The proof of Theorem 5.1 follows the same steps as the proof in [Kumar et al. 2014,

Lemma 4.1].

Proof. For a fixed n > 0 and an iteration index i > 0 we define the difference function

eφj := φni,j − φni where φni denotes the solution of (Pµ,iφ ). Subtracting (5.3) from (5.5)

we obtain the following error equation

〈(1 + Lcoup)eφj , ψ〉Y + ∆tγ〈∇eφj ,∇ψ〉Y −
∆t
λ2 〈F

n
−,i,j−1 − Fn−,i, ψ〉Y

+ ∆t
λ2 〈Llin

(
eφj − e

φ
j−1

)
, ψ〉Y = 0.

(5.9)

We call α = 1 + Lcoup + ∆t
λ2 Llin and take the test function ψ = eφj in (5.9). After

some algebraic manipulations we obtain

α‖eφj ‖
2
Y + ∆tγ‖∇eφj ‖

2
Y = ∆t

λ2 〈
(
Llin − ∂1F−(ξ, uni−1)

)
eφj−1, e

φ
j 〉Y ,

where ξ : Y → R is a measurable function given by the mean value theorem and it is

such that ξ(y) ∈ (φni,j−1(y), φni (y)) ∪ (φni (y), φni,j−1(y)) for all y ∈ Y .

Since Llin ≥ MF1 and the terms on the left hand side are all positive, we get by

applying the Hölder inequality that

(
1 + Lcoup + ∆t

λ2 Llin

)
‖eφj ‖

2
Y ≤

∆t
λ2 (MF1 + Llin)‖eφj−1‖Y ‖e

φ
j ‖Y . (5.10)

If the time step is such that ∆t ≤ λ2(1+Lcoup)
MF1

, then (5.10) is a contraction which

implies the convergence of the L-scheme. �

Remark. For a fixed x ∈ Ω and given the initial condition φ0(x, ·) ∈ L∞(Y ) as explained
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before, the choice of the initial two-scale iterations is φ1
0 = φ0 and the choice of the initial

micro-scale iterations is φ1
1,0 = φ1

0. Therefore, Lemma 5.1 implies that for all j ≥ 1

the solution φ1
1,j(x, ·) in Definition 5.3 is bounded. Moreover, the convergence of the

non-linear solver (see Theorem 5.1) implies the boundedness of φ1
1(x, ·). Additionally,

the convergence of the two-scale iterative scheme (proved in Section 5.5) implies the

boundedness of φ1(x, ·). Likewise, reasoning by induction, we conclude that for all n ≥ 1,

i ≥ 0, j ≥ 0 the solutions φn(x, ·), φni (x, ·) and φni,j(x, ·) are all essentially bounded by

0 and 1.

5.5 Analysis of the two-scale iterative scheme

In this section we show the convergence of the two-scale iterative scheme in steps (S1) -

(S3). We verify a relation between the effective diffusivity and the porosity and prove the

convergence of the scheme. The main difficulty in the convergence proof is due to the

two-scale characteristics of the scheme and the presence of the non-linear terms.

Assumptions Next to (A1) and (A2), to prove the convergence of the two-scale iterative

scheme we consider a simplified setting. Specifically,

(A3) The flow component is disregarded. That is, we assume that the pressure is constant

over the whole macro-scale and therefore the term ∇ · (qni uni ) vanishes in (PM,i
u ).

(A4) For n > 0, the porosity φn is bounded away from 0 and 1. That is, there exists two

constants φm and φM such that 0 < φm ≤ φ
n ≤ φM < 1 a.e. in Ω.

(A5) For n > 0, the concentration is such that ‖∇un‖L∞(Ω) ≤ Cu for some constant

Cu > 0.

(A6) For every time step n > 0, iteration i > 0 and macro-scale location x ∈ Ω, the time

discrete solution of the cell problems (PµA), i.e. ωs,n(x, ·) ≈ ωs(x, ·, tn), is such that

‖∇ωs,n(x, ·)‖L∞(Y ) ≤ Cw for some constant Cw > 0 and for all s ∈ {1, . . . , d}.

We remark that (A3) and (A4) are assumptions related with the physical context of the

following numerical analysis. Specifically, in (A4) we assume the porosity to be bounded

away from zero to avoid clogging, which would lead to no solute diffusion. Further, we
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assume the porosity to be bounded away from one to ensure that we still have a porous

medium. We refer to [Schulz 2020b;a] for the analysis of models including a vanishing

porosity and to [Bringedal and Kumar 2017] for a comparison of different approaches used

in the context near clogging. We remark that in the context of no-flow, in which the proofs

will be presented, the maximum bound of the porosity φM does not play an important

role. Nevertheless, we need φM in the numerical examples when the simulations include

flow. Assuming the essential boundedness of the gradients of un and ωs in (A5) and

(A6) is justified under certain conditions. For example, since uni−1 is constant in Y , the

solutions to the micro-scale elliptic problems are bounded uniformly w.r.t. i in H1(Y ),

and have a better regularity than H1. Assuming that ∇φn−1 is essentially bounded, one

obtains bounds for ∇φni by using (Pµ,iφ ). Furthermore, with a fixed δ > 0 and recalling

the essential bounds proved in Lemma 5.1, the problem (PµA) solved by ωs is linear,

elliptic, and the coercivity constant is uniformly bounded. In view of the regularity and

boundedness of φni , one obtains that ∇ωs is essentially bounded as well. Finally, for the

macro-scale problem (PM,i
u ), assuming the domain Ω and the initial data are sufficiently

smooth, the essential boundedness of the gradient of un can be obtained e.g. as in

[Ladyženskaja et al. 1968, Chapter 3.15]. Here the rigorous proofs of (A5) and (A6) are

omitted for the sake of clarity in the present discussion.

For n > 0, let un−1 ∈ L2(Ω) and φn, φn−1 ∈ L∞(Ω) be given. In the absence of flow,

i.e. with ∇ · (qni uni ) = 0, the weak solution of the time discrete counterpart of (PM,i
u ) is

defined as follows

Definition 5.4. A weak solution to the time discrete counterpart of (PM,i
u ) is a function

un ∈ H1(Ω) satisfying

〈
φ
n(un − u?), v

〉
Ω

+ ∆tD 〈An∇un,∇v〉Ω =
〈
φ
n−1(un−1 − u?), v

〉
Ω
, (5.11)

for all v ∈ H1(Ω).

We let i ∈ N denote the two-scale iteration index. The iterated porosity φni (x) :=∫
Y
φni (x,y) dy is given for all x ∈ Ω and the diffusivity tensor Ani depends on φni as

explained in (5.1). In the absence of flow, i.e. with ∇ · (qni uni ) = 0, the weak solution of

the problem (PM,i
u ) is defined as follows
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Definition 5.5. A weak solution to the problem (PM,i
u ) is a function uni ∈ H1(Ω) satis-

fying

〈
φ
n

i (uni − u?), v
〉

Ω
+ ∆tD 〈Ani ∇uni ,∇v〉Ω =

〈
φ
n−1(un−1 − u?), v

〉
Ω
, (5.12)

for all v ∈ H1(Ω).

For proving the convergence of the two-scale iterative scheme we start by showing

that the changes in the phase field are bounding the variations in the diffusion tensor. We

refer to [Schulz et al. 2019; Bringedal and Kumar 2017; Ray et al. 2018] for numerical

studies revealing the relation between diffusivity (and permeability) and porosity.

Proposition 5.1. For each n > 0 and i > 0, the effective diffusion tensors An and Ani
are continuous and positive definite. In other words, the constants am, aM > 0 exist such

that for all ψ ∈ Rd and x ∈ Ω

am‖ψ‖2 ≤ ψT An(x)ψ ≤ aM‖ψ‖2, and am‖ψ‖2 ≤ ψT Ani (x)ψ ≤ aM‖ψ‖2.

We refer to [Cioranescu and Donato 1999, Proposition 6.12] for the proof of the

symmetry and positive definiteness of the effective diffusion tensor.

Lemma 5.2. For each n > 0 and i > 0, there exists a constant CA > 0 such that

‖Ani − An‖Ω ≤ CA‖φni − φn‖Ω×Y . (5.13)

Proof. For each x ∈ Ω we denote ωs
i,n and ωs

n the s-component of the solution of the

cell problems (PµA) that correspond to φni and φn. By subtracting those two cell problems

we get formally that

∇ · (φniδ(∇(ωs
i,n − ωs

n))) = −∇ · ((φni − φn)(es +∇ωs
n)).

where φniδ = φni + δ and δ > 0. From this, one immediately obtains that

|
〈
φniδ∇(ωs

i,n − ωs
n),∇ψ

〉
Y
| = | 〈(φn − φni )(es +∇ωs

n),∇ψ〉Y | (5.14)
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for all ψ ∈ H1
#(Y ). Since |Y | = 1 and 0 ≤ φni , by taking ψ = ωs

i,n − ωs
n in (5.14),

applying Cauchy-Schwartz and due to Assumption (A6) we obtain

‖∇(ωs
i,n − ωs

n)‖L1(Y ) ≤ ‖∇(ωs
i,n − ωs

n)‖L2(Y ) ≤
1 + Cw
δ
‖φni − φn‖Y . (5.15)

On the other hand, for each component rs of Ani (x)−An(x) it is easy to show that

|[Ani (x)]rs − [An(x)]rs| ≤
∫
Y

|φni − φn|dy +
∫
Y

|φniδ∂rω
s
i,n − φnδ ∂rω

s
n|dy,

≤
∫
Y

|φni − φn|dy

+
∫
Y

|φniδ
(
∂rω

s
i,n − ∂rω

s
n

)
|+ |(φni − φn)∂rω

s
n|dy,

≤ (1 + Cw)‖φni − φn‖Y +
∫
Y

|φniδ(∂rω
s
i,n − ∂rω

s
n)|dy.

By using (5.15) and the equivalence of norms in Rd×d one gets

Cf‖[Ani (x)]− [An(x)]‖2,Rd×d , ≤ ‖[Ani (x)]− [An(x)]‖1,Rd×d ,

≤ d(1 + Cw)(1 + δ)
δ

‖φni − φn‖Y ,

where ‖ · ‖p,Rd×d denotes the matrix p-norm induced by the p-norm for vectors with p = 1

or p = 2. The constant Cf > 0 is coming from the equivalence between the induced

norms. By integrating over Ω, we conclude that

‖Ani − An‖Ω ≤
d(1 + Cw)(1 + δ)

δ Cf
‖φni − φn‖Ω×Y ,

�

We then show the maximum principle for the concentration under mild restrictions on

the phase-field parameters.

Lemma 5.3 (Maximum principle for the concentration). For each n > 0, given un−1 ∈

H1(Ω) essentially bounded by 0 and u?. If 4γ ≤ λk
u? then un ∈ H1(Ω) solving (5.11)

satisfies the same essential bounds.
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Proof. We test (5.11) with the cut function [un − u?]+ to obtain

〈
φ
n(un−u?), [un−u?]+

〉
Ω

+ ∆tD 〈An∇un,∇[un−u?]+〉Ω

=
〈
φ
n−1(un−1−u?), [un−u?]+

〉
Ω
.

Since the diffusion tensor An is positive definite and by using Assumption (A4), it follows

that ‖[un − u?]+‖2Ω ≤ 0, implying [un − u?]+ = 0 a.e in Ω. For proving the lower bound

of the concentration un we test (5.11) with the cut function [un]− to obtain

〈
φ
n
un, [un]−

〉
Ω

+ ∆tD 〈An∇un,∇[un]−〉Ω =
〈
φ
n−1
un−1, [un]−

〉
Ω

+
〈

(φn − φn−1)u?, [un]−
〉

Ω
.

Since φn−1, un−1 and φn are all positive and An is positive definite, there exists a constant

C > 0 such that

C‖[un]−‖2Ω ≤
〈

(φn − φn−1)u?, [un]−
〉

Ω
. (5.16)

It is sufficient to show that φn − φn−1 ≥ 0 a.e. in Ω in the case of un ≤ 0. From the

definition of the non linear term (5.2) we have that F (·, un) = F (·, 0) for all un < 0

and if 4γ ≤ λk
u? one can show that ∂1F (·, 0) = 0 only at z? = −α+12γ+

√
48γ2+α2

24γ < 1.

Knowing this we can rewrite F+ and F− as follows

F−(φn, 0) =


0, for φn ∈ [0, z?],

F (φn, 0)− F (z?, 0), φn ∈ (z?, 1],

F+(φn−1, 0) =


F (φn−1, 0), for φn−1 ∈ [0, z?],

F (z?, 0), φn−1 ∈ (z?, 1].

We construct a partition of Y = ∪3
i=0Yi where the subsets Yi are defined as

Y0 :=
{

y ∈ Y | 0 ≤ φn−1(y) ≤ φn(y) ≤ 1
}
,

Y1 :=
{

y ∈ Y | 0 ≤ φn(y) ≤ φn−1(y) ≤ z?
}
,

Y2 :=
{

y ∈ Y | 0 ≤ φn(y) ≤ z? ≤ φn−1(y) ≤ 1
}
,

Y3 :=
{

y ∈ Y | z? ≤ φn(y) ≤ φn−1(y) ≤ 1
}
.
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We test (5.3) with ψ = 1 to obtain

φ
n − φn−1 = ∆t

λ2

∫
Y

F−(φn, 0) + F+(φn−1, 0)dy,

=
∫
Y0

φn − φn−1dy + ∆t
λ2

( 3∑
i=1

∫
Yi

F−(φn, 0) + F+(φn−1, 0)dy
)
,

≥ ∆t
λ2

(∫
Y1

F (φn−1, 0)dy +
∫
Y2

F (z?, 0)dy +
∫
Y3

F (φn, 0)dy
)
.

(5.17)

Moreover, F (φn, 0) is positive if and only if

min
φn∈[0,1]

M(φn)
(

16γ(2φn − 1) + 4λk
u?

)
≥ 0,

or equivalently

min
φn∈[0,1]

(
16γ(2φn − 1) + 4λk

u?

)
≥ 0.

Consequently, F (φn, 0) ≥ 0 in the case of 4γ ≤ λk
u? . Following the same argument

one has that F (φn−1, 0) ≥ 0 and F (z?, 0) ≥ 0. Using this in (5.17) we conclude that

φ
n − φn−1 ≥ 0 when un ≤ 0. Finally, (5.16) implies that ‖[un]−‖2Ω ≤ 0 and the lower

bound for the concentration is proven. �

Remark. Note that, given the choice of u0 ∈ L∞(Ω) as explained before, Lemma 5.3

implies by induction that for each n > 0, the weak solution un in Definition 5.4 is such

that 0 ≤ un ≤ u? a.e. in Ω.

To prove the convergence of the two-scale iterative scheme we introduce some nota-

tion: for a fixed n > 0 and the two-scale iteration index i > 0, we define eφi := φni − φn,

eui := uni − un and eφi := φ
n

i − φ
n. Subtracting (5.4) from (5.3) and (5.12) from (5.11)

the following equations are satisfied by the errors eφi , eui and eφi

〈eφi , ψ〉Y + ∆tγ〈∇eφi ,∇ψ〉Y + Lcoup〈(eφi − e
φ
i−1), ψ〉Y

= ∆t
λ2 〈F−(φni , uni−1)− F−(φn, un), ψ〉Y

+ ∆t
λ2 〈F+(φn−1, uni−1)− F+(φn−1, un), ψ〉Y ,

(5.18)

〈
φ
n

i e
u
i , v
〉

Ω
+ ∆tD (〈Ani ∇uni ,∇v〉Ω − 〈A

n∇un,∇v〉Ω) =
〈

(u? − un)eφi , v
〉

Ω
, (5.19)



5.5. Analysis of the two-scale iterative scheme 155

for all ψ ∈ H1
#(Y ) and v ∈ H1(Ω). Note that (5.18) is defined for every x ∈ Ω.

Theorem 5.2 (Convergence of the two-scale iterative scheme). For each n > 0, under

the Assumptions (A1) - (A6), with M := max (MF1 ,MF2), 4γ ≤ λk
u? and Lcoup > 12M;

if the time step is small enough (i.e. satisfying (5.23) below and ∆t ≤ 2λ2), the two-scale

iterative scheme in steps (S1) - (S3) is convergent.

Proof. For a fixed macro-scale point x ∈ Ω and the two-scale iteration index i > 0, we

consider the error equation (5.18) and take the test function ψ = eφi . By the mean value

theorem, one gets

‖eφi ‖
2
Y + ∆tγ‖∇eφi ‖

2
Y + Lcoup‖eφi ‖

2
Y ≤ Lcoup〈eφi−1, e

φ
i 〉Y

+ ∆t
λ2 〈2Meui−1, e

φ
i 〉Y + ∆t

λ2 〈Meφi , e
φ
i 〉Y .

Using Young’s inequality on the first two terms on the right hand side, with δ1, δ2 > 0

one obtains(
1 + Lcoup −

∆t
λ2 M

)
‖eφi ‖

2
Y + ∆tγ‖∇eφi ‖

2
Y

≤ Lcoup
δ1
2 ‖e

φ
i−1‖

2
Y + Lcoup

1
2δ1
‖eφi ‖

2
Y + M

∆tδ2
λ2 |e

u
i−1|2Y + M

∆t
λ2

1
δ2
‖eφi ‖

2
Y .

By taking δ1 = 1 and δ2 = 1
2 , we get

(
1 + Lcoup

2 − 3∆t
λ2 M

)
‖eφi ‖

2
Y ≤

Lcoup
2 ‖eφi−1‖

2
Y + M

∆t
2λ2 |e

u
i−1|2Y .

Integrating over the macro-scale domain Ω and since eui−1 is constant w.r.t y, we obtain

(
1 + Lcoup

2 − 3∆t
λ2 M

)
‖eφi ‖

2
Ω×Y ≤

Lcoup
2 ‖eφi−1‖

2
Ω×Y + M

∆t
2λ2 ‖e

u
i−1‖2Ω. (5.20)

Notice that if ∆t ≤ 2λ2 the positivity of 1 + Lcoup
2 − 3∆t

λ2 M is guaranteed. On the other

hand, taking the test function v = eui on the macro-scale error equation (5.19) and using

the Assumption (A4) and the Proposition 5.1, we have

φm‖eui ‖2Ω + ∆tDam‖∇eui ‖2Ω ≤ ∆tD〈(Ani − An)∇un,∇eui 〉Ω + 〈(u? − un)eφi , e
u
i 〉Ω.
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When using Young’s inequality twice with δ3, δ4 > 0, we obtain

φm‖eui ‖2Ω + ∆tDam‖∇eui ‖2Ω ≤ ∆tD
(
δ3
2 ‖(A

n
i − An)∇un‖2Ω + 1

2δ3
‖∇eui ‖2Ω

)
+ δ4

2 ‖(u
? − un)eφi ‖

2
Ω + 1

2δ4
‖eui ‖2Ω.

We take δ3 = 1
am

and δ4 = 1
φm

and due to Lemma 5.2, Lemma 5.3 and Assumption (A5)

we obtain

φm
2 ‖e

u
i ‖2Ω + ∆tDam

2 ‖∇eui ‖2Ω ≤
∆tD
2am

C2
uC

2
A‖e

φ
i ‖

2
Ω×Y + 1

2φm
u?2‖eφi ‖

2
Ω,

Moreover, one can easily show that ‖eφi ‖Ω ≤ ‖e
φ
i ‖Ω×Y , implying

‖eui ‖2Ω ≤

(
∆tD
amφm

C2
uC

2
A + u?2

φ
2
m

)
‖eφi ‖

2
Ω×Y . (5.21)

Observe that the constants in (5.21) do not depend on the two-scale iteration index, i.e.

(5.21) can be written for the index i− 1 as well. Using this in (5.20) we obtain

(
1 + Lcoup

2 − 3∆t
λ2 M

)
‖eφi ‖

2
Ω×Y

≤

(
Lcoup

2 + M
∆t
2λ2

(
∆tD
amφm

C2
uC

2
A + u?2

φ
2
m

))
‖eφi−1‖

2
Ω×Y . (5.22)

Clearly, (5.22) can be rewritten to ‖eφi ‖2Ω×Y ≤ C‖eφi−1‖2Ω×Y . By taking the time

step ∆t sufficiently small, one obtains C < 1, so the error is contractive. Specifically, if

∆t > 0 satisfies the inequality

(
MDC2

uC
2
A

2λ2amφm

)
∆t2 + M

λ2

(
u?2

2φ2
m

+ 3
)

∆t < 1, (5.23)

then (5.22) is a contraction. By the Banach theorem we conclude that ‖eφi ‖Ω×Y → 0 as

i→∞. This, together with (5.21) implies that ‖eui ‖Ω → 0 as i→∞, which proves the

convergence of the two-scale iterative scheme.

�
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Remark. To conclude, we highlight that the convergence of the two-scale iterative scheme

is guaranteed under certain conditions

? The motion of the diffuse interface and the width of the transition zone are related

such that 4γ ≤ λk
u? .

? The coupling parameter Lcoup is such that Lcoup > 12 max (MF1 ,MF2).

? The inequality (5.23) imposes a restriction in the time step ∆t, and can clearly be

fulfilled for some real ∆t > 0. This restriction does not depend on the starting point.

Nevertheless, finding specific bounds for ∆t from (5.23) is not obvious because it

depends on unknown constants. In Section 5.8 we choose ∆t based on numerical

experiments inspired by [Storvik et al. 2019], where a coarse spatial discretization

is used to estimate a suitable time step size.

5.6 The adaptive strategy

We design an adaptive strategy to localize and reduce the error and to optimize the

computational cost of the simulations.

Let TH be a triangular partition of the macro-scale domain Ω with elements T of

diameter HT and H := max
T∈TH

HT . We assign one micro-scale domain Y to the barycentre

(or integration point) of each macro-scale element T . At each micro-scale domain Y

we define another triangular partition Th with elements Tµ of diameter hTµ and h :=

max
Tµ∈Th

hTµ . In Figure 5.4, the structure and the notation of the meshes are shown. We

first present the mesh refinement strategy used in the micro scale and thereafter we turn

to the macro-scale adaptive strategy used to optimize the computations.

5.6.1 The micro-scale mesh adaptivity

The accuracy in the solution of the phase field is influenced by the mesh size of the

micro-scale discretization. It is necessary to create a fine mesh such that h � λ to

capture the diffuse transition zone. Nevertheless, such a fine uniform mesh would make

the computation of the phase field and the effective parameters very expensive. Here we
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x1

x2

y1

y2

Figure 5.4: The sketch of the macro-scale and micro-scale meshes. For each T ∈ TH

there is one corresponding micro-scale domain Y with a micro-scale mesh Th.

propose an adaptive micro-scale mesh with fine elements only in the diffuse transition

zone of the phase field.

The mesh refinement strategy relies on an estimation of the evolution of the phase

field. Here we use the fact that φ is essentially bounded by 0 and 1 a.e. in Y and that the

large changes in the gradient of φ are encountered in the transition zone. Nevertheless,

other methods or refinement criteria can be used without modifying the whole strategy.

Here the local mesh adaptivity is divided into three main steps: prediction - projection

- correction. This strategy is an extension of the predictor-corrector algorithm proposed

in [Heister et al. 2015] and by construction, our strategy avoids nonconforming meshes.

For a fixed time n > 0, consider a micro-scale domain Y and let φn−1 be given over a

mesh Tn−1
h . The mesh Tn−1

h is refined only in the diffuse transition zone of φn−1. Take also

an auxiliary coarse mesh Tc, which is uniform with mesh size hmax � λ (see Figure 5.5).

Prediction. Given the mesh Tn−1
h compute a first approximation to the solution of prob-

lem (Pµ,1φ ). We call this approximation the auxiliary solution φn∗1 . Project the

solution φn∗1 on the coarse mesh Tc (see Figure 5.5 (a)). The elements marked to
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be refined are Tµ ∈ Tc such that

θrλ ≤ φn∗1 |Tµ ≤ 1− θrλ

for some constant 0 < θr <
1

2λ . After marking the triangles, we refine the mesh in

the selected zone. The refinement process is repeated until the smallest element is

such that hTµ ≤ hmin � λ. The result is a refined mesh Tn∗h that is fine enough

at the predicted transition zone of the phase field φn∗1 .

Projection Create a projection mesh Tr that is the union of the previous mesh and the

predicted mesh. The mesh Tr = Tn−1
h ∪ Tn∗h is fine enough at the transition zone

of φn−1 and φn∗1 (see Figure 5.5 (b)). To properly describe the interface of both

φn−1 and φn∗1 we project the previous solution φn−1 over Tr (see Figure 5.5 (c)).

Correction Given the mesh Tr and the projection of φn−1 compute once more the solution

of problem (Pµ,1φ ). The projection of this result over the mesh Tnh corresponds to

the solution φn1 (see Figure 5.5 (d)).

This process is necessary at every time step and every micro-scale domain and we perform

the mesh refinement only in the first iteration of the coupled scheme. Notice that higher

values of the parameter θr lead to coarser meshes and less error control. We will illustrate

the role of θr in Section 5.8.

In Figure 5.5 we sketch the prediction-projection-correction strategy by zooming in

on the transition zone of a phase field. There the mineral is shrinking from the time

n−1 to n. In Figure 5.5 (a) and (d) we mark the center of the transition zone of the

auxiliary solution φn∗1 and the corrected solution φn1 , and we see how the mesh follows

the transition zone of the phase field.

5.6.2 The macro-scale adaptivity

The computations on the micro scale can be optimized by the mesh adaptivity discussed

before and the cell problems can be computed in parallel. Nevertheless, it is demanding to

compute the micro-scale quantities at every element (or integration point) of the macro-

scale mesh. Here, the scale separation allows us to solve the model adaptively in the sense
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(a) (b)

(c) (d)

Figure 5.5: The prediction- projection - correction strategy. (a) The auxiliary solution

φn∗1 over the mesh Tn−1
h and the (green) line marks where φn∗1 = 0.5 indicating the center

location of the predicted transition zone. (b) The auxiliary mesh Tr and the triangles

that belong to the transition zone of φn−1 (×) and φn∗1 (◦). (c) The solution of problem

(Pµ,1φ ) over Tr and the elements outside of the transition zone (×). (d) The solution

φn1 over the refined mesh Tnh and the (green) line marks where φn1 = 0.5 indicating the

center location of the transition zone.
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of the strategy introduced in [Redeker and Eck 2013] and further studied in [Redeker et al.

2016]. There the macro-scale adaptivity uses only the solute concentration to locate where

the micro-scale features need to be recalculated. Here we implement a modified adaptive

strategy on the micro scale that depends on the solute concentration and the phase-field

evolution. With this, we extend the method in [Redeker and Eck 2013] to more general

settings, including heterogeneous macro-scale domains.

To be more precise, we define the metric dE such that it measures the distance of two

macro-scale points x1,x2 ∈ Ω in terms of the solute concentration and the phase-field

evolution, i.e.

dE(x1,x2; t;Λ) :=
∫ t

0
e−Λ(t−s)

(
du(x1,x2; s) +

∫
Y

dφ(x1,x2,y; s)dy
)
ds.

Here du and dφ are defined as follows

du(x1,x2; s) := |u(x1, s)− u(x2, s)| and dφ(x1,x2,y; s) := |φ(x1,y, s)− φ(x2,y, s)|,

and Λ ≥ 0 is a history parameter. In the discrete setting we calculate the distance dE
recursively, i.e.

dE(x1,x2;n∆t;Λ) ≈ e−Λ∆tdE(x1,x2; (n−1)∆t;Λ)

+ ∆t
(
du(x1,x2;n∆t) +

∫
Y

dφ(x1,x2,y;n∆t)dy
)
.

The spatial integrals are also calculated numerically depending on the spatial discretiza-

tion.

At each time n ≥ 0 we divide the set of macro-scale points (elements) into a set

of active points (NA(n)) and a set of inactive points (NI(n)). Specifically, NTotal =

NA(n) ∪NI(n) and NA(n) ∩NI(n) = ∅ for all n ≥ 0.

The cell problems will only be solved for points that are active. In this way, the

effective parameters and the porosity are updated only in such points. For the inactive

points, the effective parameters and the porosity are updated by using the Copy method

described in [Redeker et al. 2016] and explained below.

Let 0 ≤ Cr, Cc < 1 be given and define the refinement and coarsening tolerances as
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follows

tolr(t) := Cr · max
x1,x2∈Ω

{dE(x1,x2; t;Λ)} and tolc(t) := Cc · tolr(t).

For n > 0 and on the first iteration, i.e. before the iterative process, the solutions

un−1(x) and φn−1(x,y) for all x ∈ Ω and y ∈ Y are given. The adaptive process consists

of the following steps

? Initially, for n = 0 all the points are inactive, i.e. NA(0) = ∅ and NI(0) = NTotal.

? Update the set of active points NA(n) and NI(n).

– Set NA(n) = NA(n−1) and NI(n) = NI(n−1). For each active point

xA ∈ NA(n) repeat the following: if there exists another active node xB ∈

NA(n) such that dE(xA,xB ; (n−1)∆t;Λ) < tolc, then xA is deactivated, i.e.

xA ∈ NI(n). Otherwise, xA ∈ NA(n).

– For each inactive point xI ∈ NI(n) repeat the following: if NA(n) = ∅ the

point xI is activated. Otherwise, calculate the distance to all the active nodes.

If min
xA∈NA(n)

{dE(xI ,xA; (n−1)∆t;Λ)} > tolr then the point xI is activated,

i.e., xI ∈ NA(n).

? Associate all the inactive points to the most similar active point. In other words,

an inactive point xI ∈ NI(n) is associated with xA ∈ NA(n) if

xA = argmin
x∈NA(n)

{dE(xI ,x; (n−1)∆t;Λ)}.

After updating the sets of active and inactive points we use the two-scale iterations

to solve the micro- and macro-scale problems. At each iteration (i > 0) we solve (Pµ,iφ ),

(PµA) (and (PµK)) and transfer the solutions φni , Ani (and Kni ) from the active points

to their associated inactive ones. We then solve the macro-scale problem (PM,i
u ) (and

(PM,i
p )) and continue the iterations until convergence.

The two tolerances tolr and tolc are controlled through the values of Cr and Cc.

For a fixed value of Cr the role of Cc is to control the upper bound for the distance

between active points. In other words, higher values of Cc imply that more active points

in NA(n−1) remain active in NA(n). On the other hand, for a fixed value of Cc the



5.6. The adaptive strategy 163

role of Cr is to control the upper bound for the distance between active and inactive

points. Namely, higher values of Cr imply that less inactive points in NI(n) become

active. In accordance with [Redeker and Eck 2013] and to avoid a complete update of

the set of active nodes, it is wise to use smaller values for tolc than for tolr. Therefore, in

Section 5.8.1 we analyse the role of Cr in the macro-scale error control when Cc is fixed

and is chosen to be small.

5.6.3 The adaptive algorithm

We combine the two-scale iterative scheme and the adaptive strategies in a simple al-

gorithm, see Algorithm 1. Even though we showed the convergence of the two-scale

iterative scheme in a simplified setting disregarding the flow ((A3)), we mention the solu-

tion of the effective permeability Kni and include the flow problem (PM,i
p ) in Algorithm 1.

The reason for this is that in the numerical tests, specifically in Section 5.8.2, we evidence

that the iterative scheme also converges in the complete scenario.
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Algorithm 3 The two-scale iterative scheme using adaptive strategies on both scales
Result: Concentration u, porosity φ (and pressure p).

Given the initial conditions uI and φI
for time tn do

Adjust the set NA(n) of the active macro-scale points

Take i = 1 and un0 = un−1

while εn,iM ≥ tolM do

for x ∈ NA(n) do

if i==1 then
Adaptivity on the micro-scale meshes

end

Solve (Pµ,iφ ) using the L-scheme until εn,i,jµ ≤ tolµ
Compute the effective matrix Ani (and Kni )

end

For x ∈ NI(n) copy the solution from the nearest x ∈ NA(n)

Solve the problem (PM,i
u ) (and (PM,i

p ))

Next iteration i = i+ 1
end

Next time n = n+ 1
end
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5.7 The spatial discretization

This section is devoted to giving the details of the spatial discretization used for solving

each of the micro- and macro-scale problems described before. Here the numerical ap-

proximation of the solutions of all the problems is computed by using the Mixed Finite

Element Method (MFEM). Specifically, for (PM
p ), (PM

u ), (Pµφ) and (PµA) we use the low-

est order Raviart-Thomas elements (see [Bahriawati and Carstensen 2005]) and for the

micro-scale problems (PµK) we use the Crouzeix–Raviart elements (see [Boffi et al. 2013,

Section 8.6.2]).

Preliminaries

For a general domain D ⊂ R2 and to define the weak solutions in this section we use the

following spaces

C∞(D̄) = { f : D̄→ R | Dαf exists, ∀ multi-indices α } ,

H(div,D) = { v ∈ [L2(D)]2 | ∇ · v ∈ L2(D) } .

We denote ∂D the boundary of D and n the outward normal vector at ∂D. Moreover,

we call C∞0 (D̄) the space of infinitely differentiable functions having a compact support

in D.

It is well known that if ∂D is Lipschitz, it is possible to define the trace γ̃0(u) = u|∂D
of u ∈ H1(D) on the boundary ∂D. The traces of functions in H1(D) span a Hilbert

space denoted H1/2(∂D) and H−1/2(∂D) is its dual (see [Evans 1998, Section 5.5]).

We denote ‖ · ‖H(div,Y ) the norm induced by the following inner product

〈u,v〉H(div,Y ) = 〈u,v〉[L2(Y )]2 + 〈∇ · u,∇ · v〉Y , u, v ∈ H(div, Y ).

For functions in H(div,D) the following lemma defines a trace operator. Details of the

proof and further implications of Lemma 5.4 can be found in [Brezzi and Fortin 1991,

p. 91].

Lemma 5.4 (Trace of H(div,D)). For any bounded Lipschitz domain D ∈ R2 with

outward normal n, the mapping γ̃n : C∞(D) → C∞(∂D) with γ̃n(v) = v · n
∣∣
∂D

can
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be extended to a continuous map γ̃n from H(div,D) onto H−1/2(∂D). Moreover, the

following Green’s identity holds for functions v ∈ H(div,D) and q ∈ H1(D)

〈γ̃n(v), γ̃0(q)〉∂D = 〈divv, q〉D + 〈v,∇q〉D.

We denote H0(div,D) the spaces of functions in H(div,D) with zero normal trace,

i.e.,

H0(div,D) = { v ∈ [L2(D)]2 | ∇ · v ∈ L2(Y ) and v · n = 0 on ∂D } .

Similarly, we denote L2
0(D) the spaces of functions in L2(D) with zero mean, i.e.,

L2
0(D) = { v ∈ L2(D) |

∫
D

v = 0 } .

On the micro-scale we use the space

C∞# (Ȳ ) = { f ∈ C∞(Ȳ ) | f is Y -periodic } .

The space H1
#(Y ) can be also seen as the closure of C∞# (Ȳ ) in H1(Y ), i.e.,

H1
#(Y ) = C∞# (Ȳ )

‖·‖H1(Y )
.

Finally, we define the following subspace of H(div, Y )

V =
{

v ∈ H(div, Y ) | 〈∇ · v, q〉Y = −〈v,∇q〉Y , ∀q ∈ H1
#(Y )

}
. (5.24)

5.7.1 The non-linear phase-field equation

For n > 0, the iteration index i > 0, at each x ∈ Ω, un−1(x), uni−1(x), φn−1(x) and

φni−1(x, ·) are given. From now on and to ease the notation we omit writing the macro-

scale dependency whenever obvious. The iterative micro-scale phase-field problem is to
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find φni satisfying

(Pµ,iφ revisited)


φni −∆tγ∇2φni −

∆t
λ2 F−(φni , uni−1)

+ Lcoup

(
φni − φni−1

)
= φn−1 + ∆t

λ2 F+(φn−1, uni−1), in Y,

φni is Y -periodic,

The problem (Pµ,iφ ) can be rewritten in mixed form. The mixed micro-scale phase-field

problem is to find φ̃ni and ϕni satisfying

φ̃ni + ∆t∇ ·ϕni −
∆t
λ2 F−(φ̃ni , u

n
i−1) + Lcoup

(
φ̃ni − φ

n
i−1
)

= φn−1 + ∆t
λ2 F+(φn−1, uni−1), in Y,

γ−1ϕni = −∇φ̃ni , in Y,

φ̃ni is Y -periodic,

(5.25)

In Section 5.4 we obtain the following conformal formulation

Definition (5.2 Revisited). A weak solution to the problem (Pµ,iφ ) is a function φni (x, ·) ∈

H1
#(Y ) satisfying

〈φni , ψ〉Y + ∆tγ〈∇φni ,∇ψ〉Y −
∆t
λ2 〈F−(φni , uni−1), ψ〉Y

+
〈
Lcoup

(
φni −φni−1

)
, ψ
〉
Y

= 〈φn−1+ ∆t
λ2 F+(φn−1, uni−1), ψ〉Y ,

(5.4 revisited)

for all ψ ∈ H1
#(Y ).

The weak solution of the mixed problem (5.25) is defined as follows

Definition 5.6. A weak solution to the problem mixed counterpart of (Pµ,iφ ) is a pair of

functions (φ̃ni (x, ·),ϕni (x, ·)) ∈ H1
#(Y )× V satisfying

γ−1〈ϕni ,v〉Y − 〈φ̃ni ,∇ · v〉Y = 0, (5.26a)

〈(1 + Lcoup)φ̃ni , ψ〉Y + ∆t〈∇ ·ϕni , ψ〉Y

− ∆t
λ2 〈F−(φ̃ni , u

n
i−1), ψ〉Y = 〈Gni−1, ψ〉Y , (5.26b)
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for all (ψ,v) ∈ H1
#(Y ) × V. Here Gni−1 := φn−1 + ∆t

λ2 F+(φn−1, uni−1) + Lcoupφ
n
i−1 with

uni−1 ∈ R, φn−1 and φni−1 ∈ L2(Y ) known.

In Definition 5.6 the periodic boundary conditions are essential boundary conditions,

i.e., the periodicity is explicitly imposed trough the use of the spaces H1
#(Y ) and V.

Notice that, in Definition 5.6 we impose more regularity than usual on the test functions

and in the solution. Nevertheless, these conditions allow us to easily show that the weak

formulations in Definition 5.2 and Definition 5.6 are equivalent. The following theorem

holds for each n > 0, i > 0 and x ∈ Ω.

Theorem 5.3 (Equivalence of formulations). Given φni ∈ H1
#(Y ) a weak solution in the

sense of Definition 5.2, then the pair (φ̃ni ,ϕni ) with

φ̃ni = φni and ϕni = −γ∇φni (5.27)

is a weak solution in the sense of Definition 5.6. Conversely, given (φ̃ni ,ϕni ) ∈ H1
#(Y )×V

a weak solution in the sense of Definition 5.6, then φni = φ̃ni is a weak solution in the

sense of Definition 5.2.

Proof. “⇒” Take φni ∈ H1
#(Y ) being a solution of (5.4) and (φ̃ni ,ϕni ) defined as in

(5.27). For all v ∈ V and from the definition of V we have

〈ϕni ,v〉Y
(5.27)= −γ〈∇φni ,v〉Y

(5.24)= γ〈φni ,∇ · v〉Y
(5.27)= γ〈φ̃ni ,∇ · v〉Y ,

so the pair (φ̃ni ,ϕni ) verifies (5.26a).

Now, we identify ∇2φni in the distributional sense by taking ψ ∈ C∞0 (Y ) in (5.4).

Using Green’s identity we obtain

〈φni , ψ〉Y −∆tγ〈∇2φni , ψ〉Y −
∆t
λ2 〈F−(φni , uni−1), ψ〉Y

+
〈
Lcoup

(
φni −φni−1

)
, ψ
〉
Y

= 〈φn−1+ ∆t
λ2 F+(φn−1, uni−1), ψ〉Y .

Notice that φni , φni−1, φn−1, F−(φni , uni−1) and F+(φn−1, uni−1) ∈ L2(Y ), implying that

∇2φni ∈ L2(Y ). Therefore, from (5.27) one gets ϕni ∈ H(div, Y ). Moreover, the
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following equality holds a.e. in Y

∆t∇ ·ϕni = Gni − (1 + Lcoup)φni −
∆t
λ2 F−(φni , uni−1) (5.28)

Now, we take ψ ∈ H1
#(Y ) in (5.4) and we use Green’s identity once more to obtain

〈φni , ψ〉Y + ∆t〈∇ ·ϕni , ψ〉Y + 〈ϕni · n, γ̃0(ψ)〉∂Y

− ∆t
λ2 〈F−(φni , uni−1), ψ〉Y + 〈Lcoupφ

n
i , ψ〉Y = 〈Gni , ψ〉Y .

(5.29)

Consequently, (5.28) and (5.29) imply that 〈ϕni · n, γ̃0(ψ)〉∂Y = 0 for an arbitrary

ψ ∈ H1
#(Y ). Hence, ϕni ∈ V and clearly the pair (φ̃ni ,ϕni ) satisfies (5.26b).

“⇐” Let (φ̃ni ,ϕni ) ∈ H1
#(Y )× V be a solution of (5.26). Obviously (5.27) implies that

φni = φ̃ni ∈ H1
#(Y ) and we only need to show that φ̃ni satisfies (5.4). For all

ψ ∈ H1
#(Y ) one has

∆t〈∇ ·ϕni , ψ〉Y
(5.24)= −∆t〈ϕni ,∇ψ〉Y

(5.27)= ∆tγ〈∇φni ,∇ψ〉Y .

Replacing this in (5.26b) we obtain

〈(1 + Lcoup)φni , ψ〉Y + ∆tγ〈∇φni ,∇ψ〉Y −
∆t
λ2 〈F−(φni , uni−1), ψ〉Y = 〈Gni−1, ψ〉Y .

In conclusion, φni ∈ H1
#(Y ) satisfies (5.4).

�

Notice that the mixed formulation inherits the non-linearities of (5.4). To approximate

the solution of (5.26) we use the same strategy as in Section 5.4. Take Llin ∈ R+

such that Llin ≥ MF1 and let j ∈ N, j ≥ 1 be a micro-scale iteration index. Given

φni,j−1(x, ·) ∈ L2(Y ), the weak solution of the mixed linear problem associated to (5.26)

is defined as

Definition 5.7 (Micro-scale linear iteration (mixed formulation)). A weak solution to

the linearized version of problem (5.26) is a pair of functions (φni,j(x, ·),ϕni,j(x, ·)) ∈
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H1
#(Y )× V satisfying

γ−1〈ϕni,j ,v〉Y − 〈φni,j ,∇ · v〉Y = 0,

〈(1 + Lcoup + ∆t
λ2 Llin)φni,j , ψ〉Y + ∆t〈∇ ·ϕni,j), ψ〉Y = 〈Jni,j , ψ〉Y ,

(5.30)

for all (ψ,v) ∈ H1
#(Y ) × V and Jni,j := Gni−1 + ∆t

λ2 F−(φni,j−1, u
n
i−1) + ∆t

λ2 Llinφ
n
i,j−1. Here

uni−1 ∈ R, φn−1, φni−1 and φni,j−1 ∈ L2(Y ) are known.

Theorem 5.4. There exists a unique weak solution (φni,j(x, ·),ϕni,j(x, ·)) ∈ H1
#(Y )× V

that satisfies (5.30).

Proof. To guarantee the existence and uniqueness of the solution in Definition 5.7 it is

sufficient to notice that the correspondent homogeneous problem has trivial solution only.

Take Jni,j = 0, ψ = φni,j and v = ϕni in (5.30). Multiplying the first equation in (5.30)

by ∆t and summing both equations we obtain

γ−1∆t‖ϕni ‖2[L2(Y )]2 + (1 + Lcoup + ∆t
λ2 Llin)‖φni,j‖2Y = 0.

Since γ−1∆t and (1 + Lcoup + ∆t
λ2 Llin) are both positive one gets ‖φni,j‖2L2(Y ) = 0 and

‖ϕni,j‖2[L2(Y )]2 = 0. By using Green’s identity in the first equation of (5.30) we obtain

γ−1〈ϕni,j ,v〉Y − 〈φni,j ,∇ · v〉Y = 〈∇φni,j ,v〉Y = 0, ∀v ∈ C∞0 (Y ).

Therefore, ‖φni,j‖2H1(Y ) = 0 meaning that φni,j = 0 a.e. in Y .

Analogously, if Jni,j = 0, ψ = ∇ ·ϕni,j and v = ϕni,j one has

γ−1(1 + Lcoup + ∆t
λ2 Llin)‖ϕni,j‖2[L2(Y )]2 + ∆t‖∇ ·ϕni,j)‖2Y = 0,

implying that ‖ϕni,j‖2H(div,Y ) = 0 and therefore the solution is trivial. A direct application

of the Banach’s closed range theorem implies the existence and uniqueness of the solution

in Definition 5.7. �

For the mixed formulation, the maximum principle for the phase field and the conver-

gence of the linear iterations can be proved by following the same steps as in Lemma 5.1
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and Theorem 5.1. Here we omit the details.

5.7.1.1 The choice of Llin

We calculate the constant Llin analytically at each time step n > 0 and at each two-scale

iteration i > 0. From Definition 5.7 one requires

Llin ≥ max
{
|∂1F (z, uni−1)| | z ∈ [0, 1] and uni−1 ∈ [0, u?]

}
.

It is easy to show that ∂2
1F (z, uni−1) = 0 at z? = 1

2 + f(uni−1)λ
24γu? . For a fixed uni−1, the

maximum value of |∂1F (z, uni−1)| is reached at either z = 0, z = 1 or z = z?, i.e.

MF1 =


4 max

{
|4γ + α|, |4γ − α|, |2γ + 1

24α
2|
}
, for z? ∈ [0, 1],

4 max {|4γ + α|, |4γ − α|} , otherwise.

where α = λ
f(uni−1)
u? .

In practice we narrow the choice of Llin and follow the arguments in [List and Radu

2016] by using

Llin ≥
1
2 max

{
|∂1F−(z, uni−1)| | z ∈ [0, 1] and uni−1 ∈ [0, u?]

}
.

With this choice of Llin one could not guarantee the discrete maximum principle

of the solution. However, in practice such issues did not appear. One can show that

∂1F (z, uni−1) = 0 at

z∓ = 1
2 + 1

24γ

λf(uni−1)
u?

∓

√
49γ2 +

(
λ
f(uni−1)
u?

)2
 .

This z∓ can be rewritten as z∓ = z?∓ ž with ž = 1
24γ

√
49γ2 +

(
λ
f(un

i−1)
u?

)2
. Clearly

z− ≤ z? ≤ z+. Hence, we rewrite ∂1F−(z, uni−1) as follows

∂1F−(z, uni−1) =


∂1F (z, uni−1), for 0 ≤ z ≤ z− or z+ ≤ z ≤ 1,

0, otherwise.
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This analysis implies that the maximum of |∂1F−(z, uni−1)| can not be reached at z∗. In

conclusion, we take Llin = 2 max
{
|4γ + λ

f(uni−1)
u? |, |4γ − λ f(uni−1)

u? |
}

.

5.7.1.2 The mixed finite element method

Let Tnh be an ideal triangular partition of the domain Y with elements Tµ of diameter

hTµ and h := max
Tµ∈Th

hTµ . We denote Enh the skeleton of the triangular mesh, i.e. the

set of all the edges in the triangulation. The micro-scale triangulation Tnh is an ideal

partition of the micro-scale domain in the sense explained in (Chapter 1) Section 1.3.1

and Section 5.6. Our target is to approximate the solution (φni,j(x, ·),ϕni,j(x, ·)) with

discrete functions ((φni,j)h, (ϕni,j)h) in a certain finite dimensional space.

In Definition 5.6 and Definition 5.7 we use the spaces H1
#(Y ) and V. In this section,

we consider an L2-conforming formulation, and the periodic boundary conditions are

imposed explicitly later in the resulting system of equations.

Denote RT0(Tnh) the lowest-order Raviart-Thomas space and P0(Tµ) the space of

piecewise constant functions. The finite dimensional discrete spaces read

Wh = { ψ ∈ L2(Tnh) | Tµ ∈ Tnh, ψ
∣∣
Tµ
∈ P0(Tµ) } ,

Vh = { v ∈ RT0(Tnh) | v · n = 0 on ∂Y } .
(5.31)

Note that Vh ⊂ H(div, Y ) and Wh ⊂ L2(Y ). To simplify the notation we denote

(φni,j ,ϕni,j) the discrete approximations ((φni,j)h, (ϕni,j)h) and we write the mixed finite

element formulation of (5.30) as follows

Definition 5.8. A mixed finite element approximation of (5.30) is a pair of Y -periodic

functions (φni,j ,ϕni,j) ∈Wh × Vh satisfying

γ−1〈ϕni,j ,v〉Tnh − 〈φ
n
i,j ,∇ · v〉Tnh = 0,

〈(1 + Lcoup + ∆t
λ2 Llin)φni,j , ψ〉Tnh + ∆t〈∇ ·ϕni,j , ψ〉Tnh = 〈Jni,j , ψ〉Tnh ,

(5.32)

for all (ψ,v) ∈Wh × Vh.
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Implementation details

We call nEdgeh and nElemh the total number of edges and elements in the triangulation

Tnh. Let v1, . . . ,vnEdgeh and ψ1, . . . , ψnElemh form two bases for the spaces Vh and Wh,

respectively. Each unknown and test function can be written as linear combination of the

basis functions, i.e.,

ϕni,j =
nEdgeh∑

k=1
[ϕni,j ]kvk and φni,j =

nElemh∑
k=1

[φni,j ]kψk.

We avoid writing the contribution of each element into the discrete operators. Here,

the basis functions are defined over the complete triangulation, and we assume that the

local calculations and the global assemble of the matrices are well known.

The degrees of freedom [ϕni,j ]k are defined as fluxes across element edges and [φni,j ]k
are defined as element values. Denote A, B, C, D and E the matrices with elements

Ak,` :=
∫
Tn
h

vk · v` dy, Bk,` :=
∫
Tn
h

ψk∇ · v` dy, Ck,` :=
∫
Tn
h

ψk ψ` dy,

Dk :=
∫
Tn
h

(
φn−1 + Lcoupφ

n
i−1 + ∆t

λ2 Llinφ
n
i,j−1

)
ψk dy,

Ek :=
∫
Tn
h

∆t
λ2

(
F+(φn−1, uni−1) + F−(φni,j−1, u

n
i−1)
)
ψk dy.

(5.33)

The above discretization yields to a linear system of the form γ−1A −Bt

∆tB (1 + Lcoup + ∆t
λ2 Llin)C


 [ϕni,j ][

φni,j
]
 =

 0

D + E

 . (5.34)

The matrix A has dimensions nEdgeh × nEdgeh, B has dimensions nElemh × nEdgeh,

C has dimensions nElemh × nElemh and D and E has dimensions nElemh × 1.

For calculating the matrices D and E we use the L2-projection of φn−1, φni−1 and
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φni,j−1 over the Tnh. Specifically, the matrices D and E can be computed as

Dk :=
nElemh∑
`=1

∫
Tn
h

(
φn−1∣∣

`
+ Lcoupφ

n
i−1
∣∣
`

+ ∆t
λ2 Llinφ

n
i,j−1

∣∣
`

)
ψ`ψk dy,

Ek :=
nElemh∑
`=1

∫
Tn
h

∆t
λ2

(
F+(φn−1, uni−1)

∣∣
`

+ F−(φni,j−1, u
n
i−1)
∣∣
`

)
ψ`ψk dy.

where φ
∣∣
`

denotes the value of any function φ at the barycentre of the element `.

Periodic boundary conditions In practice, the periodic boundary conditions are imple-

mented by first formulating the pure Neumann discrete problem and modifying it after-

wards. The degrees of freedom associated with the edges on the boundary are imposed

by using the periodicity condition; that is, one equation of the linear system is replaced

by an equation enforcing equality of values at the two edges.

We pre-process the discretization of Y by choosing the couples of edges that cor-

respond to opposite boundaries. In Figure 5.6 we sketch the association of edges in a

periodic micro-scale cell.

Figure 5.6: Sketch of the association of edges over opposite boundaries (left) and an

example of a discretization where five different groups of edges are highlighted (right).

In Figure 5.6 we highlight five different groups of edges denoted Gri with i =

{1, 2, 3, 4, 5}. The groups Gr1, Gr2 and Gr4 represent the degrees of freedom for which

the system will be solved. The unknowns associated with these groups are called real

unknowns and nReal is total number of real unknowns. The unknowns associated to
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Gr3 and Gr5 are called mirror unknowns. We denote
[
ϕni,j

] ∣∣
Gri

the set of degrees of

freedom that correspond to the i-th group;
[
ϕni,j

] ∣∣
Gri

has cardinality ni. The solution

of the degrees of freedom corresponding to the mirror unknowns is obtained implicitly by

constructing the following relation

[
ϕni,j

] ∣∣
Gr1[

ϕni,j
] ∣∣
Gr2[

ϕni,j
] ∣∣
Gr3[

ϕni,j
] ∣∣
Gr4[

ϕni,j
] ∣∣
Gr5


=



In1 0 0

0 In2 0

0 −In2 0

0 0 In4

0 0 −In4


︸ ︷︷ ︸

Z0


[
ϕni,j

] ∣∣
Gr1[

ϕni,j
] ∣∣
Gr2[

ϕni,j
] ∣∣
Gr4


︸ ︷︷ ︸

[ϕni ]
R

, (5.35)

where Ini indicates the identity matrix of order ni. We take Z0 as defined in (5.35) and

construct the following matrix

Z =

 Z0 0

0 InElemh


(nEdgeh+nElemh)×(nReal+nElemh).

Then the linear system of equations in (5.34) is completed with periodic boundary

conditions as followsZt

 γ−1A −Bt

∆tB (1 + Lcoup + ∆t
λ2 Llin)C

Z


 [ϕni,j ]R[

φni,j
]
 = Zt

 0

D + E

 .
(5.36)

Finally, we solve the linear system (5.36) and use (5.35) to reconstruct the full solution.

As mentioned in Section 5.3, our choice of the initial micro-scale iteration φni,0 is φni−1 and

for each j ≥ 1 the system (5.36) is solved until εn,i,jµ ≤ tolµ. Hence, the solution φni,j

obtained after convergence is called φni .

5.7.2 The micro-scale cell problems

For n > 0, the iteration index i > 0 and at each x ∈ Ω, after solving the phase-field

problem (Pµ,iφ ), we compute numerically the porosity φni . We denote Tµk the k-th element
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of the micro-scale triangulation Tnh and |Tµk | its area. Therefore, we calculate the porosity

φ
n

i =
∫
Y

φni dy =
∫
Tn
h

φni dy u
nElemh∑

k

[φni ]k |Tµk |.

Afterwards we calculate the numerical approximation of the solution of the micro-scale

cell problems and the effective parameters.

5.7.2.1 The effective diffusion tensor

For n > 0, the iteration index i > 0 and at each x ∈ Ω, the micro-scale cell problems

associated to the effective diffusivity are

(PµA revisited)


∇ · (φniδ(∇ωs + es)) = 0, in Y,

ωs is Y -periodic and

∫
Y

ωsdy = 0,

with s ∈ {1, 2} and es being the s-th canonical vector. The problem (PµA) can be

rewritten in the following mixed form

(φniδ)−1ws = ∇ωs, in Y,

∇ ·ws = γ−1(ϕni )s, in Y,

ωs is Y -periodic and

∫
Y

ωsdy = 0.

(5.37)

Here (ϕni )s denotes the s-th component of the vectorial solution of the corresponding

phase-field problem (5.32) and it is known. The weak solutions of the mixed problems

(5.37) are defined as follows

Definition 5.9. For s ∈ {1, 2} and given (ϕni )s ∈ L2(Y ), a weak solution to the problem

(5.37) is a pair of functions (ωs,ws) ∈ L2
0(Y )× V satisfying

〈(φniδ)−1ws,v〉Y + 〈ωs,∇ · v〉Y = 0,

〈∇ ·ws, ψ〉Y = γ−1〈(ϕni )s, ψ〉Y ,
(5.38)

for all (ψ,v) ∈ L2
0(Y )× V.
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The existence and uniqueness of a weak solution in the sense of Definition 5.9 is

a well-known result. We refer to [Gatica 2014, Sec 2.4.1] for the details of the proof

by using Babuska-Brezzi theory. Moreover, the equivalence of the mixed and conformal

formulations can be treated as in Theorem 5.3.

The mixed finite element method and the implementation details.

Consider a triangular partition of the domain Y as explained in page 172. The target is

to approximate the solution (ωs,ws) with discrete functions (ωs
h,ws

h) in the finite dimen-

sional space Wh×Vh (defined in page 172). To simplify the notation we denote (ωs,ws)

the discrete approximations (ωs
h,ws

h) and write the mixed finite element formulation of

(5.38) as follows

Definition 5.10. A mixed finite element approximation of (5.38) is a triplet (ωs,ws, ξ) ∈

Wh × Vh × R satisfying

〈(φniδ)−1ws,v〉Tn
h

+ 〈ωs,∇ · v〉Tn
h

= 0,

〈∇ ·ws, ψ〉Tn
h

+ 〈ξ, ψ〉Tn
h

= γ−1〈(ϕni )s, ψ〉Tn
h
,

〈ωs, 1〉Tn
h

= 0,

(5.39)

for all (ψ,v) ∈Wh×Vh. Here ξ ∈ R is a Lagrange multiplier used to impose the condition∫
Y
ωsdy = 0.

The unknowns and the test functions in (5.39) can be written as a linear combination

of the basis functions of Wh and Vh in the same way as we do in page 172. Let us define

the following matrices

A1
k,` :=

∫
Tn
h

(φniδ)−1vk · v` dy, Es
k :=

∫
Tn
h

(ϕni )s · ψk dy, Hk :=
∫
Tn
h

ψk dy.

and recall the matrices defined in (5.33).

We impose the periodic boundary conditions using the strategy explained in Sec-
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tion 5.7.1.2 but using the following transformation matrix

Z1 =


Z0 0 0

0 InElememh 0

0 0 1


(nEdgeh+nElemh+1)×(nReal+nElemh+1).

(5.40)

The correspondent linear system of equations is(Z1)t


A1 Bt 0

B 0 H

0 Ht 0

Z1




[ws]

[ωs]

ξ

 = (Z1)t


0

γ−1Es

0

 . (5.41)

Here [ωs] and [ws] denote the degrees of freedom associated to the scalar and vectorial

unknowns in (5.39). The matrix A1 has dimensions nEdgeh×nEdgeh, Es has dimensions

nElemh × 1 and H has dimensions nElemh × 1.

We solve the linear system (5.41) and use (5.40) to reconstruct the full solution.

Subsequently, the effective matrix Ani is calculated at each x ∈ Ω and at each time-step

as

Ani (x) =


∫
Tn
h
φniδ + (w1)1 dy

∫
Tn
h
(w2)1 dy∫

Tn
h
(w1)2 dy

∫
Tn
h
φniδ + (w2)2 dy

 . (5.42)

Here (ws)r indicated the r-th component of the s-th discrete solution in (5.41). The

integrals in (5.42) are calculated numerically. For instance, the first component of Ani (x)

is calculated as follows

∫
Tn
h

φniδ + (w1)1 dy =
nElemh∑

k

∫
Tµk

φniδ + (w1)1 dy,

=
nElemh∑

k

([φni ]k + δ) |Tµk |+
∫
Tµk

(w1)1 dy

As before, the approximation of ws is a linear combination of the basis functions, i.e.,

ws =
nEdgeh∑

k=1
[ws]kvk.
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Finally, the first component of Ani (x) is

∫
Tn
h

φniδ + (w1)1 dy =
nElemh∑

k

([φni ]k + δ) |Tµk |+
∑
e∈Tµk

∫
e

([w1]
∣∣
e
ve)1 dy. (5.43)

5.7.2.2 The effective permeability tensor

For n > 0, the iteration index i > 0 and at each x ∈ Ω, the micro-scale cell problems

associated to the effective permeability are

(PµK revisited)



∇Πs + es + µf∇2(φniδzs) = g(φni , λ)
φniδ

zs, in Y,

∇ · (φniδzs) = 0, in Y,

Πs is Y -periodic and

∫
Y

Πsdy = 0.

with s ∈ {1, 2} and es being the s-th canonical vector. We define ẑs := φniδzs with

φniδ = φni + δ to ease the notation. Here φni is the mixed finite element approximation

to the scalar solution of the phase-field problem (5.30) after convergence. The weak

solutions of the problems (PµK) are defined as follows

Definition 5.11. For s ∈ {1, 2}, a weak solution to the problem (PµK) is a pair of functions

(Πs, ẑs) ∈ L2
0(Y )× [H1

#(Y )]2 satisfying

µf 〈∇ẑs,∇ν〉Y + 〈Πs,∇ · ν〉Y + 〈g(φni , λ)
(φniδ)2 ẑs,ν〉Y = 〈es,ν〉Y ,

〈∇ · ẑs, ψ〉Y = 0,
(5.44)

for all (ψ,ν) ∈ L2
0(Y )× [H1

#(Y )]2.

The existence and uniqueness of a weak solution in the sense of Definition 5.11 is a

well-known result. We refer to [Brezzi and Fortin 1991, p.155] for the details of the proof

of existence and uniqueness by using Babuska-Brezzi theory.

The mixed finite element method and the implementation details.

Consider a triangular partition of the domain Y as explained before. The target is

to approximate the solutions (Πs, ẑs) with discrete functions (Πs
h, ẑs

h) in some finite-
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dimensional spaces. We use the Crouzeix-Raviart finite element method. In this case,

the approximation space is not H1-conforming, but this method is designed as a stable

technique to solve the stationary Stokes equation. We introduce the Crouzeix-Raviart

finite-dimensional space Σh

Σh :=
{
ν ∈ [L2(Tnh)]2 | ν

∣∣
Tµ
∈ [P1(Tµ)]2, ∀Tµ ∈ Tnh and

∫
e

JνK = 0, ∀e ∈ Enh
}
,

where JνK denotes the jump of ν across an internal edge and JνK = ν on the boundary

∂Y . We refer to [Boffi et al. 2013, Section 8.6.2][Muljadi et al. 2015] for more details

about this non-conforming finite element method.

To simplify the notation we denote (Πs, ẑs) the discrete approximations (Πs
h, ẑs

h) ∈

Wh × Σh and write the mixed finite element formulation of (5.44) as follows

Definition 5.12. A mixed finite element approximation of (5.44) is a triplet (Πs, ẑs, ξ) ∈

Wh × Σh × R satisfying

µf 〈∇ẑs,∇ν〉Tn
h

+ 〈Πs,∇ · ν〉Tn
h

+ 〈g(φni , λ)
(φniδ)2 ẑs,ν〉Tn

h
= 〈es,ν〉Tn

h
,

〈∇ · ẑs, ψ〉Tn
h

+ 〈ξ, ψ〉Tn
h

= 0,

〈Πs, 1〉Tn
h

= 0,

(5.45)

for all (ψ,ν) ∈Wh×Σh. Here ξ ∈ R is a Lagrange multiplier used to weakly impose the

condition
∫
Y

Πsdy = 0.

Each unknown and test function can be written as linear combination of the elements

of the basis of the spaces Wh and Σh, i.e.,

ẑs =
nEdgeh∑

k=1
[ẑs]kνk and Πs =

nElemh∑
k=1

[Πs]kψk.

The degrees of freedom [Πs]k are defined as element values and [ẑs]k are associated

with the vector field across the edges of the mesh. Denote K, M and N the matrices
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with elements

Kk,` :=
∫
Th

∇νk : ∇ν` dy +
∫
Tn
h

g(φni , λ)
(φniδ)2 νk · ν` dy,

Mk,` :=
∫
Tn
h

ψk∇ · ν` dy, and Ns
k :=

∫
Tn
h

es · νk dy,

and H as before. The above discretization yields to a linear system of the form
K Mt 0

M 0 H

0 Ht 0




[ẑs]

[Πs]

ξ

 =


Ns

0

0

 .

The matrix K has dimensions nEdgeh × nEdgeh, M has dimensions nElemh × nEdgeh,

Ns has dimensions nElemh × 1.

We impose the periodic boundary conditions using the transformation matrix (5.40).

Therefore, the correspondent linear system of equations is(Z1)t


K Mt 0

M 0 H

0 Ht 0

Z1




[ẑs]

[Πs]

ξ

 = (Z1)t


Ns

0

0

 . (5.46)

We solve the linear system (5.46) and use (5.40) to reconstruct the full solution. Sub-

sequently, the effective matrix Kni is calculated at each x ∈ Ω and at each time-step

as

Kni (x) =


∫
Tn
h

φni
(φn
i

+δ) (ẑ1)1
∫
Tn
h

φni
(φn
i

+δ) (ẑ2)1∫
Tn
h

φni
(φn
i

+δ) (ẑ1)2
∫
Tn
h

φni
(φn
i

+δ) (ẑ2)2

 . (5.47)

Here (ẑs)r indicates the r-th component of the s-th discrete solution in (5.46) and we

follow the procedure in (5.43) to calculate numerically the integrals in (5.47).

Remark. Due to the regularization of the phase field used in (5.47) and the definition

of the cell problems associated to the permeability, the resulting effective permeability

tensor K is positive definite. The proof of this statement follows the same steps of the
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proof of Proposition 5.1 and we refer to [Cioranescu and Donato 1999, Proposition 6.12]

and [Hornung 1997, Lemma 4.2] for more details.

5.7.3 The macro-scale problems

For n > 0, for each iteration index i > 0 and after computing the approximate solution

of the phase-field problem (Pµ,iφ ) and the macro-scale parameters φni , Ani and Kni as

explained in Section 5.7.2, we compute the numerical approximation to the solution of

the macro-scale problems (PM,i
p ) and (PM,i

u ).

5.7.3.1 The macro-scale flow problem

For n > 0 and for i > 0, the macro-scale flow problem reads: To find pni and qni satisfying

(PM,i
p revisited)



∇ · qni = 0, in Ω,

qni = −Kni ∇pni , in Ω,

∇pni · n = 0, on ∂Ω,∫
Ω
pni dx = 0.

The weak solution of the macro-scale problem (PM,i
p ) is defined as follows

Definition 5.13. A weak solution to the problem (PM,i
p ) is a pair of functions (pni ,qni ) ∈

L2
0(Ω)×H0(div,Ω) satisfying

〈(Kni )−1qni ,v〉Ω − 〈pni ,∇ · v〉Ω = 0,

〈∇ · qni , ψ〉Ω = 0,
(5.48)

for all (ψ,v) ∈ L2
0(Ω)×H0(div,Ω).

Notice that in (PM,i
p ) the Neumann boundary conditions act as essential boundary

conditions, due to the mixed form of (PM,i
p ).

The existence and uniqueness of a weak solution in the sense of Definition 5.13 strongly

depends on the boundedness of the effective permeability Kni . A direct application of
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Banach’s closed range theorem implies the existence and uniqueness of the weak solution

in Definition 5.13.

The mixed finite element method. Let TH be a triangular partition of the macro-

scale domain Ω with elements T of diameter HT and H := max
T∈TH

HT . We denote EH
the skeleton of the triangular mesh, i.e., the set of all the edges in the triangulation. The

target is to approximate the solution (pni ,qni ) with discrete functions ((pni )H , (qni )H) in

a certain finite dimensional space.

Denote RT0(TH) the lowest-order Raviart-Thomas space and P0(T ) the space of

piecewise constant functions. The finite dimensional discrete spaces read

WH = { ψ ∈ L2(TH) | T ∈ TH , ψ
∣∣
T
∈ P0(T ) } ,

VH = { v ∈ RT0(TH) | v · n = 0 on ∂Ω } .
(5.49)

To simplify the notation we denote (pni ,qni ) the discrete approximations

((pni )H , (qni )H) and write the mixed finite element formulation of (5.48) as follows

Definition 5.14. A mixed finite element approximation of (5.48) is a triplet (pni ,qni , ξ) ∈

WH × VH × R satisfying

〈(Kni )−1qni ,v〉TH − 〈pni ,∇ · v〉TH = 0,

〈∇ · qni , ψ〉TH + 〈ξ, ψ〉TH = 0,

〈pni , 1〉TH = 0,

(5.50)

for all (ψ,v) ∈ WH × VH . Here ξ ∈ R is a Lagrange multiplier used to weakly impose

the condition
∫

Ω p
n
i dy = 0.

Implementation details. We call nEdgeH and nElemH the total number of edges and

elements in the triangulation TH , respectively. Let v1, . . . ,vnEdgeH and ψ1, . . . , ψnElemH

form two bases for the spaces VH and WH , respectively. Each unknown and test function

in (5.50) can be written as linear combination of the basis functions, i.e.,

qni =
nEdgeH∑

k=1
[qni ]kvk and pni =

nElemH∑
k=1

[pni ]kψk.
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The degrees of freedom [qni ]k are defined as fluxes across element edges and [pni ]k are

defined as element values. Denote KM , BM and HM the matrices with elements

KM
k,` :=

∫
TH

(Kni )−1vk · v` dy, BM
k,` :=

∫
TH

ψk∇ · v` dy,

HM
k,` :=

∫
TH

ψk dy.
(5.51)

The above discretization yields to a linear system of the form
KM −(BM )t 0

BM 0 HM

0 (HM )t 0




[qni ]

[pni ]

0

 =


0

0

0

 .

The matrix KM has dimensions nEdgeH × nEdgeH , BM has dimensions nElemH ×

nEdgeH and HM has dimensions nElemH × 1.

5.7.3.2 The macro-scale solute concentration problem

For n > 0 and i > 0, after computing the approximate solution of (PM,i
p ) we solve the

macro-scale problem associated with the solute concentration

(PM,i
u revisited)


φ
n

i (uni − u?) + ∆t∇ · (qni uni )

= ∆tD∇ · (Ani ∇uni ) + φ
n−1(un−1−u?), in Ω,

∇uni · n = 0, on ∂Ω.

By applying the product rule in the first equation of (PM,i
u ) we can rewrite it as

φ
n

i (uni − u?) + ∆t (∇uni · qni + (∇ · qni )uni )

= ∆tD∇ · (Ani ∇uni ) + φ
n−1(un−1−u?).

From (PM,i
p ) we know that ∇ · qni = 0. Therefore, the problem (PM,i

u ) can be rewritten
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in the following mixed form

φ
n

i (uni −u?) + ∆t (D∇ · νni +∇uni · qni ) = φ
n−1(un−1−u?), in Ω,

νni + Ani ∇uni = 0, in Ω,

∇uni · n = 0, on ∂Ω.

(5.52)

The weak solution of the mixed problem (5.52) is defined as follows

Definition 5.15. A weak solution to the problem (5.52) is a pair of functions (uni ,νni ) ∈

L2(Ω)×H0(div,Ω) satisfying

〈(Ani )−1νni ,v〉Ω − 〈uni ,∇ · v〉Ω = 0,

〈φni (uni − u?), ψ〉Ω + ∆tD〈∇ · νni , ψ〉Ω

−∆t〈(Ani )−1νni · qni , ψ〉Ω = 〈φn−1(un−1−u?), ψ〉Ω,

(5.53)

for all (ψ,v) ∈ L2(Ω)×H0(div,Ω).

Notice that in Definition 5.4 the boundary condition ∇uni ·n = 0 is a natural boundary

condition. Nevertheless, this boundary condition becomes essential in the mixed form

(5.52). We impose such boundary conditions trough the space H0(div,Ω).

Remark. The proof of existence and uniqueness of a solution in the sense of Defini-

tion 5.15 is beyond the scope of this thesis. Nevertheless, if one assumes no-flow the

proof follows directly by using the steps of the proofs of Theorem 5.4 and the arguments

in the proof of Lemma 5.3. For the more general setting we refer to the similar problem

studied in [Radu et al. 2009].

The mixed finite element method and the implementation details. Consider a

triangular partition of the domain Ω as in page 182. The target is to approximate the

solution (uni ,νni ) with discrete functions ((uni )H , (νni )H) in the finite dimensional space

WH × VH (see page 182). To simplify the notation we denote (uni ,νni ) the discrete

approximations ((uni )H , (νni )H) and write the mixed finite element formulation of (5.53)

as follows
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Definition 5.16. A mixed finite element approximation of (5.53) is a pair of functions

(uni ,νni ) ∈WH × VH satisfying

〈(Ani )−1νni ,v〉TH − 〈uni ,∇ · v〉TH = 0,

〈φni (uni − u?), ψ〉TH + ∆tD〈∇ · νni , ψ〉TH

−∆t〈(Ani )−1νni · qni , ψ〉TH = 〈φn−1(un−1−u?), ψ〉TH ,

(5.54)

for all (ψ,v) ∈WH × VH .

The unknowns and the test functions in (5.54) can be written as a linear combination

of the basis functions of WH and VH . We denote AM1, AM2, CM and DM the matrices

with elements

AM1
k,` :=

∫
TH

(Ani )−1vk · v` dy, AM2
k,` :=

∫
TH

(Ani )−1qni · vkψ` dy,

CM
k,` :=

∫
TH

φ
n

i ψk ψ` dy,

DM
k :=

∫
TH

(
φ
n−1(un−1−u?) + φ

n

i u
?
)
ψk dy,

and we consider the matrices defined in (5.51). Finally, the above discretization yields to

a linear system of the form AM1 −(BM )t

∆t(DBM −AM2) CM


 [νni ]

[uni ]

 =

 0

DM

 .
The matrix AM1 has dimensions nEdgeH × nEdgeH , AM2 has dimensions nEdgeH ×

nElemH , CM has dimensions nElemH × nElemH and DM has dimensions nElemH × 1.
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Summary Here we briefly summarize the main aspects of the proposed two-scale

method:

X At the micro scale we solve the phase-field problem (Pµφ) and two micro-scale

problems, so called (PµA) and (PµK).

∗ For solving (Pµφ) we use a non-linear solver (L-scheme).

∗ We proved the maximum principle of the time-discrete phase field and the

convergence of the non-linear solver.

∗ At each micro-scale domain we use a predictor-corrector algorithm to refine

the micro-scale mesh.

∗ We use the mixed finite element method to solve the micro-scale phase-field

problem. The details of the spatial discretization are given in Section 5.7.1.

∗ We use the mixed finite element method to solve the micro-scale problems (PµA)

and (PµK). The details of each spatial discretization are given in Section 5.7.2.

X At each time step we propose to determine a set of macro-scale active nodes where

the micro-scale problems need to be solved. We use the copy method to transfer

the micro-scale solutions to the corresponding inactive nodes.

X On the macro scale we solve two problems. The flow problem (PM
p ) and the solute

concentration problem (PM
u ). The details of each spatial discretization are given in

Section 5.7.3.

X At each time step we iterate between the two scales, we proved the following aspects

of the iterate solutions:

∗ The maximum principle for the discrete solution of (PM
u ).

∗ A relation between the diffusion tensor and the porosity.

∗ The convergence of the two-scale iterations.
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5.8 The numerical results

In this section, we present three numerical tests for the two-scale iterative scheme. We

restrict our implementations to the 2D case and all parameters specified in the following

examples are non-dimensional according to the non-dimensionalization in [Bringedal et al.

2020].

For the first test, in Section 5.8.1 and Section 5.8.2 we use a simple setting where

the performance of the adaptive techniques are investigated. In Section 5.8.3 we analyze

an anisotropic and heterogeneous case where different shapes of the initial phase field are

used. The numerical solutions of macro- and micro-scale problems (PM
p ), (PM

u ), (Pµφ) and

(PµA) are computed using the lowest order Raviart-Thomas elements (see [Bahriawati and

Carstensen 2005]). For the micro-scale problems (PµK) we use the Crouzeix–Raviart ele-

ments (see [Boffi et al. 2013, Section 8.6.2]). The following (non-dimensional) constants

have been used in all the simulations

D = 1; µf = 1; u? = 1; ueq = 0.5;

γ = 0.01; λ = 0.08; δ = 1E-4; k = 1.
(5.55)

Note that for these choices of u?, k, λ and γ the restriction 4γ ≤ λk
u? in Lemma 5.3

is fulfilled.

5.8.1 Test case 1. Circular shaped phase field

Consider the macro-scale domain Ω = (0, 1) ×
(
0, 1

2
)

and take T = 0.25. The system

is initially in equilibrium, i.e. the initial concentration is u(x, 0) = ueq and p(x, 0) = 0

for all x ∈ Ω. We impose a Dirichlet boundary condition u = 0 in a portion of the

lower-left corner of the domain Ω, i.e., from (0, 0) to (0, H) and (H, 0). Further, we

take homogeneous Neumann boundary conditions everywhere else for both the solute

concentration and pressure problems. This choice of the boundary conditions initiates a

dissolution process. At every micro-scale domain Y the initial phase field φI has a circular

shape with initial porosity φ0 = 0.5. This configuration is displayed in Figure 5.7. We

allow the mineral to dissolve until a maximum porosity φM = 0.9686 is reached.

For the time discretization, even though Theorem 5.2 gives a theoretical restriction on
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∆t, the estimation of an accurate bound is not evident. Here we choose ∆t experimentally

by choosing an initial value of ∆t which is sufficiently small to ensure convergence of the

micro-scale non-linear solver (see Theorem 5.1). If the multi-scale iterations converge in

the first time step, this value of ∆t is used in the whole simulation. Otherwise, smaller

values of ∆t are tested. Here the time step is chosen to be ∆t = 0.01, and was found to

always ensure convergence in these tests.

H

Figure 5.7: The configuration of the macro scale (left) and phase-field initial condition

(right) - Test case 1.

5.8.1.1 The micro-scale non-linear solver and adaptivity

To study the features of the micro-scale non-linear solver and the micro-scale refinement

strategy, we look closer on the micro-scale domain Y corresponding to the macro-scale

location x = (0, 0) with an initial phase field as shown in Figure 5.7 and a constant

concentration u = 0.

Concerning the behavior of the micro-scale non-linear solver, we take dynamically

the value of the linearization parameter Llin = max (|8γ + 2λf(u)|, |8γ − 2λf(u)|),

which changes at every two-scale iteration if the solute concentration u changes (see

Section 5.7.1.1). This choice of Llin gives convergence of the micro-scale iterations, as

shown in [Pop et al. 2004]. We use this choice of Llin in all the simulations below as well

as the micro-scale stopping criterion tolµ = 1E−8. We choose tolµ so small to ensure

sufficient accuracy of the micro-scale problems and to not influence the convergence. For

all the micro-scale meshes used in Table 5.1 the average number of micro-scale iterations

is 13 in the prediction stage and 6 in the correction stage. This improvement is expected
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due to the correction of the mesh explained in Section 5.6. Here we do not iterate between

scales and we choose Lcoup = 0 having no effect on the convergence of the non-linear

solver.

In Figure 5.8 we show the phase field at time tn = 0.10. On each micro-scale domain

Y we use an initial uniform mesh with 200 elements and apply three different values for

the mesh refinement parameter, namely θr = 1, 2, and 5.

Figure 5.8: The phase field φn(x) corresponding to the macro-scale location x = (0, 0)

at the time tn = 0.10. Refinement parameters θr = 1, 2, (top left and top right) and 5

(bottom) .

It is clear that the micro-scale refinement parameter slightly changes the representation

of the phase-field transition zone. This result is also evident in Table 5.1. There we

show a comparison between the micro-scale solutions when using different values of θr
and the reference solution φref. We use a fixed uniform mesh with 7 200 elements and

mesh size href = 2.36E-2 � λ to compute the reference solution φref. In Table 5.1
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we report the average number of elements for each micro-scale mesh (#Elements) and

there the accuracy of the numerical solution is provided through the L2-error, namely

Eφ := ‖φref − Ph(φ)‖L2([0,T];L2(Y )) with Ph(φ) being the projection of the solution φ

over the reference mesh.

All the meshes in Figure 5.8 and Table 5.1 are constructed such that the minimum

diameter in the mesh is hTµ ≤ hmin = λ
3 . In Figure 5.8, the length of the smallest edge

in the meshes is min
Tµ∈Th

hTµ = 2.50E-2 and the length of the largest edge (located far from

the transition zone) is hmax = 1.41E-1. We remark that the uniform reference mesh size

href is only slightly smaller than hmin. In Figure 5.8 and Table 5.1 we have used the

same hmin for all θr, while href ≈ hmin to ensure a fair comparison and to address the

effect of θr.

θr #Elements %#Elements Eφ %Eφ

0.5 1 200 16.72% 9.69E-3 2.27%

1 1 040 14.51% 1.01E-2 2.37%

2 864 12.00% 1.19E-2 2.79%

5 560 7.77% 1.99E-2 4.68%

Table 5.1: The micro-scale adaptive results for a varying refinement parameter θr. The

column %#Elements corresponds to the percentage of the original number of elements

used in each mesh and %Eφ is the relative error compared to the reference solution.

Smaller values of θr lead to better error control, but those values also imply more

degrees of freedom and therefore increase the computational effort. In the following

numerical experiments, we choose θr = 2 to control the error on the micro scale and, at

the same time, limit the number of elements at each micro-scale domain.

5.8.1.2 The two-scale coupling and the macro-scale adaptivity

We study the convergence of the two-scale iterative scheme for different values of the

parameter Lcoup. In Theorem 5.2 the value of Lcoup is restricted to be Lcoup > 12M.
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Figure 5.9: The number of multi-scale iterations (log) at time tn = 0.01 for different

values of Lcoup. Zoom in of the plot for small values of Lcoup (min(Lcoup) = 0).

Using the parameters in (5.55) we obtain that M ≥ 1.12. In Figure 5.9 we compare

the convergence of the two-scale iterative scheme when using different values of Lcoup.

Specifically, in Figure 5.9 we show the number of iterations used at the first time step

for eleven different values of Lcoup. It is evident that the conditions in Theorem 5.2 are

rather restrictive and in practice, one can achieve convergence using smaller values of

Lcoup ≥ 0. For very small values of Lcoup (even for Lcoup = 0), the iterations needed

in the two-scale iterative scheme remain constant, which we highlight in Figure 5.9. Here

we choose tolM = 1E-6 for the stopping criterion and we do not use the macro-scale

adaptive strategy, i.e., we solve all the micro-scale problems. After this study, we choose

Lcoup = 1E−4 in all the simulations below.

In Figure 5.10 and Table 5.2 the results of the macro-scale adaptivity are shown. We

choose the history parameter Λ = 0.1 and the coarsening parameter Cc = 0.2 based on

the sensitivity analysis presented in [Redeker and Eck 2013] and used in [Redeker et al.

2016]. Figure 5.10 illustrates the effect of the refinement parameter Cr on the proportion

of active nodes. There, the different intensities and sizes represent the percentage of the

total number of times that each element was active during the whole simulation.

In Table 5.2 we analyse the effect of the macro-scale adaptive strategy on the L2-error

of the concentration and porosity. We call uref and φref the solutions that corresponds
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Figure 5.10: The results of the macro-scale adaptive strategy for different values of

the refinement parameter Cr = 0.5, 0.2, 0.05, and 0.01. Different intensities and sizes

indicate the percentage of times that each macro-scale element was active.
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to Cr = 0, i.e., the solutions of the test case without using the macro-scale adaptive

strategy. The number of active nodes in the reference case is 1 600. Table 5.2 compares

the following L2-errors with the number of macro-scale active elements during the whole

simulation

Eu := ‖uref − u‖L2([0,T];L2(Ω)) and Eφ := ‖φref − φ‖L2([0,T];L2(Ω)).

As expected and coinciding with [Redeker and Eck 2013], larger values of Cr imply less

error control. Nevertheless, when Cr increases the computational cost of the simulations

decreases and the convergence of the two-scale iterative scheme is not affected.

Cr #Active %#Active Eu %Eu Eφ %Eφ

0.50 82 5.13% 8.26E-3 5.23% 2.00E-2 10.16%

0.20 134 8.38% 7.11E-3 4.50% 1.26E-2 6.41%

0.05 257 16.06% 2.05E-3 1.30% 4.92E-3 2.51%

0.01 512 32.00% 7.14E-4 0.45% 1.81E-3 0.92%

Table 5.2: The adaptive results for Λ = 0.1, Cc = 0.2 and a varying refining parameter

Cr. The columns %#Active, %Eu and %Eφ correspond to the average percentage of the

original number of active elements used in each case and the relative errors with respect

to the reference solution.

Finally, we show the results of the complete algorithm when using Lcoup = 1E-4 and

Cr = 0.05. Figure 5.11 shows the evolution of the phase field corresponding to three

different macro-scale locations. There we also show the corresponding micro-scale mesh

that captures the movement of the phase-field transition zone.

The macro-scale solute concentration and porosity are displayed in Figure 5.12. The

effective parameters are shown in Figure 5.13. The boundary conditions trigger the de-

crease of the solute concentration and its effect is the dissolution of the mineral. This

translates into higher porosity and effective diffusivity. Moreover in Figure 5.13 we show

that the effective permeability can be calculated although we do not consider flow, i.e.
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Figure 5.11: The evolution of the phase fields corresponding the macro-scale locations

x = (0.1, 0.1), x = (0.5, 0.25), x = (0.9, 0.4) (left to right) at two times tn = 0.05 (top)

and tn = 0.25 (bottom).

the pressure is constant in this test case.

Due to the symmetry of the phase field at the micro scale, the expected results are

isotropic effective tensors. The non-diagonal components of A and K are close to zero and

can be neglected. Moreover, due to the similarity between K1,1 and K2,2 and between A1,1

and A2,2 we only show one of the components of the effective parameters in Figure 5.13.

In this test case the average number of degrees of freedom in both scales is 52 216

per time step. At the macro scale we have 64 elements and for each active element we

solve the phase-field problem and update the porosity and the effective parameters at

each iteration. All the micro-scale problems have been solved in parallel.

Finally, in Figure 5.14 we show the convergence of εn,iM at different times. The linear

convergence of the two-scale iterative scheme is evident in Figure 5.14. We highlight

that the total number of iterations in the two-scale iterative scheme does not increase in

time. By comparing Figure 5.14 and Figure 5.9 we evidence that the convergence of the

two-scale iterative scheme is not being affected by the macro-scale adaptivity.
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Figure 5.12: The numerical solution of the concentration un (left) and porosity φ (right)

at two times tn = 0.05 (top) and 0.25 (bottom).

Figure 5.13: The first components of the effective difussivity tensor (left) and the effec-

tive permeability tensor (log10) (right) at two times tn = 0.05 (top) and 0.25 (bottom).
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Figure 5.14: The convergence of the two-scale iterative scheme for five different times

with tolM = 1E-6.

5.8.2 Test case 2. 1D Isotropic case

We consider a simplified 2D situation where the processes are expected to be uniform in

the vertical direction. The macro-scale domain is Ω = [0, 1]2 and a dissolution process is

triggered by imposing a Dirichlet condition for the concentration on the right boundary of

Ω. The system is initially in equilibrium, i.e. the initial concentration is u(x, 0) = ueq and

p(x, 0) = 0 for all x ∈ Ω. We take u = 0 on the right boundary of Ω and homogeneous

Neumann boundary conditions everywhere else for both the solute concentration and

pressure problems. At every micro-scale domain Y the initial phase field φI has a circular

shape with initial porosity φ0 = 0.5. This configuration is displayed in Figure 5.15. We

allow the mineral to dissolve until a maximum porosity φM = 0.87 is reached. The

following parameters have been used in the simulation

Lcoup = 1E-4; θr = 2; Cr = 0.

For the simulation time we take T = 0.5 and the time step is chosen to be ∆t = 0.05.

As before, it is evident that the conditions in Theorem 5.2 are rather restrictive. Notice

that although the election of ∆t is such that ∆t > 2λ2, we still get convergence of the

two-scale scheme.
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Figure 5.15: The configuration of the macro scale (left) and phase-field initial condition

(right) - Test case 2.

Figure 5.16 shows the evolution of the phase field corresponding to the macro scale

location (0.5, 0.5). At each time step we construct a micro-scale mesh with 800 elements.

This mesh is refined in the first iteration of the scheme by following the prediction-

correction strategy. The non-linear solver at each micro-scale domain Y is stopped once

one reaches a prescribed threshold tolµ = 1E−10.

The Darcy-scale solute concentration is displayed in Figure 5.17. Due to the chosen

boundary and initial conditions, this solution does not depend on the vertical component

and therefore the 1D projection in the horizontal direction is sufficient. The results for

the porosity and the effective parameters are shown in Figures 5.17 and 5.18.

We highlight that even if we are not computing the flow in this case, i.e. the pressure

here is constant, the effective permeability can still be calculated. Where the concentration

decreases, it induces a dissolution of the mineral, which then increases the diffusivity and

the permeability until the system reaches the maximum porosity φM .

Finally, in Figure 5.19 we show the convergence of the multi-scale iterative scheme.

In this numerical example the averaged number of degrees of freedom is 7× 106 per

time step. At the macro scale we have 512 elements and for each element the porosity

and the effective parameters must be updated at each iteration. Due to the local mesh

refinement the micro-scale degrees of freedom vary between 1200 and 1400. However,

the micro-scale problems are solved in parallel.
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Figure 5.16: The evolution of the phase fields corresponding the macro-scale location

x = (0.5, 0.5) at three times tn = 0.10 (top left), tn = 0.25 (top right) and tn = 0.25

(bottom).

Figure 5.17: The 1D projection of the concentration un(x) and porosity φ(x) for ten

different times.
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Figure 5.18: The 1D projection of the diagonal components of effective diffusion tensor

and the effective permeability tensor (log10) for ten different times.

Figure 5.19: The convergence of the multi-scale iterative scheme for ten different times

with tolM = 1E-6.
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5.8.3 Test case 3. Anisotropic case

Consider the macro-scale domain Ω = (0, 1) ×
(
0, 1

2
)

where the system is initially in

equilibrium, i.e. the initial concentration is u(x, 0) = ueq and p(x, 0) = 0 for all x ∈ Ω.

Here we add the flow that was dismissed during the proofs in Section 5.5. In this sense we

impose non-constant boundary conditions for the flow problem (PM
p ). We take u = 0 and

p = 0 on the right boundary of Ω; p = 0.25 on the left boundary of Ω and homogeneous

Neumann boundary conditions everywhere else for both the solute concentration and

pressure problems. On the micro scale, we consider an initially inhomogeneous distribution

of the mineral. We define two sub-domains of Ω; the left half is Ωl := (0, 0.5)× (0, 0.5)

and the right half Ωr := (0.5, 1)× (0, 0.5). The initial phase field is chosen to be

φI(x,y) =

φ
0
l (y), if x ∈ Ωl,

φ0
r(y), otherwise,

where the micro-scale functions φ0
l and φ0

r are taken as follows

φ0
l (y) =

0, if y ∈ [−0.4, 0.4]× [−0.3, 0.3],

1, otherwise,

φ0
r(y) =

0, if y ∈ [−0.3, 0.3]× [−0.4, 0.4],

1, otherwise.

The configuration of the test case 3 is displayed in Figure 5.20. With this example we

show the potential of the model and the numerical strategy in a heterogeneous scenario.

The following parameters have been used in the simulation

Lcoup = 1E-4; θr = 2; Cr = 0; φM = 0.9686.

For the simulation time we take T = 0.25 and the time step is chosen to be ∆t = 0.01

as in test case 1.

Due to the structure of this example and the chosen boundary and initial conditions,

the macro-scale solution does not depend on the vertical component. In Figures 5.21
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Figure 5.20: The configuration of the macro scale (top) and the phase-field initial

conditions (bottom) - Test case 3.
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and 5.22 we show the evolution of the phase field corresponding to different macro-scale

locations. On each micro-scale domain Y we use an initial uniform mesh with 800 elements

and the minimum diameter hTµ in the refined mesh is hTµ = 0.025. Moreover, for the

micro-scale non-linear solver we choose Llin = max (|2λf(u) + 8γ|, |2λf(u)− 8γ|) and

tolµ = 1E−8.

Figure 5.21: The evolution of the phase fields φl corresponding to the macro-scale

locations x = (0.1, 0.1) (top) and x = (0.4, 0.25) (bottom) at three times tn = 0.05, 0.10

and 0.25 (left to right).

The 1D projection of the macro-scale solute concentration, pressure and porosity is

displayed in Figure 5.23. As expected, where the concentration decreases, the dissolution

of the mineral is induced, which then increases the porosity. This effect is also evident in

Figure 5.24, where the 1D projection of the effective parameters is displayed.

In this test case, the phase fields φ0
l and φ0

r are both asymmetric and for this reason,

the expected results are anisotropic effective tensors. The non-diagonal components of

A and K are however close to zero and can be neglected. In Figure 5.24 we display the

diagonal components of both effective tensors. Notice the discontinuous behavior of the

effective parameters as a result of the macro-scale heterogeneous distribution.
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Figure 5.22: The evolution of the phase fields φr corresponding to the macro-scale

locations x = (0.6, 0.25) (top) and x = (0.9, 0.4) (bottom) at three times tn = 0.05, 0.10

and 0.25 (left to right).

In the 2D macro-scale domain we have 256 elements. The porosity and the effective

parameters must be updated only on the 32 elements located at the lowest part of the

domain (1D projection) and copied (transferred in a sense explained in Section 5.6) over

the whole 2D macro-scale domain. Following this, we obtain that the average number of

degrees of freedom in both scales is 213 031 per time step.

Finally, in Figure 5.25, we show the convergence of εn,iM at different times when the

stopping criterion is tolM = 1E-6. Notice that in this test case the total number of

iterations remains constant in time and the convergence is shown to be linear.

5.9 Conclusions

We have presented a two-scale iterative strategy that can be applied to models involving

coupling of scales. In particular, we used this two-scale iterative scheme to solve the two-

scale phase-field model proposed in [Bringedal et al. 2020]. In the numerical examples we

show how the changes within the micro-scale geometry are influencing the macro-scale
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Figure 5.23: The 1D projection of the concentration un(x), pressure p(x) and porosity

φ(x) for five different times.
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Figure 5.24: The 1D projection of the diagonal components of effective diffusion tensor

(top) and the effective permeability tensor (log10) (bottom) for five different times.

Figure 5.25: The convergence of the multi-scale iterative scheme for five different times

with tolM = 1E-6..
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parameters and the macro-scale solution.

We calculate macro-scale quantities that are valid at the Darcy scale. Besides the

macro-scale concentration and pressure, we calculate effective permeability, diffusivity,

and porosity, which depend on the evolution of the phase field at the micro scale. We

have proven the convergence of the two-scale iterative scheme and combined it with a

robust micro-scale linearization strategy and adaptive strategies on both scales. We use

mesh refinement to reduce the numerical error in the solution of the phase-field evolution

on the micro scale. For the macro scale, our adaptive strategy aims to localize where the

effective parameters need to be recalculated. The two-scale iterative scheme is shown to

be convergent under certain choices on the coupling parameter Lcoup and for sufficiently

small time steps. However, the numerical examples show that the scheme converges under

even milder restrictions on the coupling parameter Lcoup and the linearization parameter

Llin.

Moreover, our numerical scheme can be parallelized. The local cell problems related

to the micro scale are decoupled and can straightforwardly be solved in parallel.

It is relevant to mention that besides the theory considered in this thesis, the ap-

plicability of this strategy is vast. Extensions of our adaptive algorithm, including more

complex micro-scale models, are possible.





Chapter 6
Conclusions and future work

In this thesis, we have discussed the use of numerical methods applied to complex mathe-

matical models that describe coupled phenomena in porous media. Initially, we have pro-

posed a numerical strategy that follows the ideas of the classic homogenization theory for

solving non-linear diffusion problems. We computed the solution of micro-scale problems

to obtain effective parameters that complete an upscaled non-linear model. Moreover, to

achieve a good approximation of the upscaled solution, we have used a robust non-linear

solver and an indicator to perform a local mesh refinement. This refinement was designed

to localize the computations around zones with higher changes in the Darcy velocities.

The basic ideas of numerical homogenization have been later applied to multiphase

flow simulations. We have used the homogenization ideas to compute averaged param-

eters, although we did not derive the correspondent homogenized models rigorously. We

included the computation of the effective permeability in the open-source DARSim2 simu-

lator. Particularly, in cases of no clear scale separation, we used a fully implicit system on

a dynamic multilevel grid to study the implication of computing homogenized parameters

instead of using multi-scale local basis functions.

The implementation of numerical homogenization in those scenarios sheds new light

on applying multi-scale methods based on homogenization. A natural extension would

be deriving upscaled models that correspond to the micro-scale multiphase flow and use

the upscaled solution for further comparison. We expect that such a strategy will give an

209
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unbiased framework for studying the diverse multi-scale methods. Moreover, combining

homogenization with other multi-scale methods implies further research in novel concepts,

like model adaptivity.

Furthermore, when it comes to more complex models in porous media, we have dis-

cussed the application of different numerical strategies. First, we have presented the

porous medium equation (PME) as a degenerate parabolic equation that results in the

appearance of free boundaries with an unknown location. The low regularity of the solu-

tions makes this problem a challenge for classical numerical methods. [Cancès et al. 2020]

presented the error analysis of a specific numerical scheme and the comparison of different

numerical strategies. Here we have shown the details of implementing the hybridizable

discontinuous method applied in that work.

In the last chapter, we have presented a two-scale numerical method to approximate

the solution of an upscaled phase-field model. We have used a robust non-linear

solver combined with a stable two-scale iterative scheme to achieve efficient numerical

simulations of mineral dissolution and precipitation.

Finally, we highlight the following aspects concerning the originality, impact and

further work of this manuscript:

Originality. The literature on numerical methods for flow and reactive transport in porous

media is extremely vast and covers multi-scale methods, adaptive mesh refinement

and linear iterative schemes. This thesis contributes to the subject by combining

different approaches to deal with various aspects, including non-linearities, oscilla-

tory characteristics, the interaction between scales and degeneracies. The original

contributions are in the development of efficient multi-scale solvers by combining

robust linearization schemes, adaptive mesh refinement, adaptive computations and

iterations between scales. From the theoretical point of view, this work gives rig-

orous mathematical proofs of the existence and uniqueness of the solution in the

HDG discretization of the porous medium equation and the convergence of iterative

coupling techniques for multi-scale models and of linear iterative schemes for multi-

scale non-linear elliptic equations. These theoretical developments are completed

with several numerical tests, and all the codes used here are publicly available.
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Impact. From the applied point of view, this work is relevant for important topical en-

vironmental applications like geothermal energy, subsurface water contamination,

oil recovery, soil salinization and geological CO2 sequestration. In situations like

these, the mathematical models are coupled systems of partial differential equations,

parabolic or elliptic, including oscillatory characteristics, strong coupling between

scales, non-linearities and degeneracies. This thesis proposes practical approaches

for the efficient simulation of complex mathematical models at lower computational

costs, which can be beneficial to several other applications. Moreover, the numerical

techniques proposed here are supported by rigorous mathematical analysis, making

them robust and inspiring further theoretical research.

Future work. Open issues that can be addressed in a follow-up are related to the rigorous

aposteriori error estimators for the HDG formulation of the porous medium equa-

tion and for the multi-scale mesh refinement strategies. Also, the implementation

of the methods can be optimized to create a potential open-source simulator. As

a natural extension of the adaptive multi-scale computations implemented in this

work, future work will be done using machine learning techniques. Such strategies

have become more popular during the last years. We refer to [Beck and Kurz 2020;

Esmaeilzadeh et al. 2020] among others, for novel frameworks combining machine

learning techniques, data-driven models and multi-scale numerical methods. Fur-

thermore, we pursue developing a similar multi-scale numerical scheme to simulate

two-phase flow in porous media and extend the models in [Sharmin et al. 2020] and

[Lunowa et al. 2021] to periodic perforated porous media. Also, domain decompo-

sition techniques are envisaged, allowing an extension to different types of models

adopted adaptively in sub-domains of the domain of interest.
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E. Keilegavlen, A. F. Radu, and J. Fuhrmann, editors, Finite Volumes for Complex

Applications Ix - Methods, Theoretical Aspects, Examples, volume 323 of Springer

Proceedings in Mathematics & Statistics, pages 537–545. Springer International Pub-

lishing, 2020. doi: https://www.doi.org/10/ghhzsz.

C. Bringedal and K. Kumar. Effective behavior near clogging in upscaled equations for

non-isothermal reactive porous media flow. Transport in Porous Media, 120(3):553–

577, 2017. doi: https://www.doi.org/10/gckwh2.

C. Bringedal, I. Berre, I. S. Pop, and F. A. Radu. A model for non-isothermal flow and



218 Bibliography

mineral precipitation and dissolution in a thin strip. Journal of Computational and

Applied Mathematics, 289:346–355, 2015. doi: https://www.doi.org/10/ghhzt3.

C. Bringedal, I. Berre, I. S. Pop, and F. A. Radu. Upscaling of non-isothermal reactive

porous media flow with changing porosity. Transport in Porous Media, 114(2):371–

393, 2016. doi: https://www.doi.org/10/f82zdp.

C. Bringedal, L. von Wolff, and I. S. Pop. Phase field modeling of precipitation and dissolu-

tion processes in porous media: Upscaling and numerical experiments. Multiscale Mod-

eling & Simulation, 18(2):1076–1112, 2020. doi: https://www.doi.org/10/ghhzvs.

D. L. Brown, Y. Efendiev, and V. H. Hoang. An efficient hierarchical multiscale Finite

Element method for stokes equations in slowly varying media. Multiscale Modeling &

Simulation, 11(1):30–58, 2013. doi: https://www.doi.org/10/ghhzvf.

M. K. Brun, T. Wick, I. Berre, J. M. Nordbotten, and F. A. Radu. An iterative stag-

gered scheme for phase field brittle fracture propagation with stabilizing parameters.

Computer Methods in Applied Mechanics and Engineering, 361:112752, 2020. doi:

https://www.doi.org/10/ghhzvg.

J. Bunder, A. Roberts, and I. Kevrekidis. Good coupling for the multiscale patch scheme

on systems with microscale heterogeneity. Journal of Computational Physics, 337:

154–174, 2017. doi: https://doi.org/10/f94vf3.

R. Burden and J. Faires. Numerical Analysis. International Thomson Editores, 2002.

J. C. Butcher and N. Goodwin. Numerical Methods for Ordinary Differential Equations,

volume 2. Wiley Online Library, 2008. doi: https://www.doi.org/10/ghn6z6.

G. Caginalp and P. C. Fife. Dynamics of layered interfaces arising from phase boundaries.

SIAM Journal on Applied Mathematics, 48(3):506–518, 1988. doi: https://www.

doi.org/10/dq5mzb.
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ear diffusion equations. ESAIM: Mathematical Modelling and Numerical Analysis-
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Modélisation Mathématique et Analyse Numérique, 29(5):605–627, 1995. doi:

https://www.doi.org/10/ghhzvv.

J.-D. Jansen, R. Brouwer, and S. G. Douma. Closed loop reservoir management. In

SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 2009. doi:

https://www.doi.org/10/d5qjcr.
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Summary

This thesis concerns the design, analysis and application of numerical methods applied to

mathematical models over several scales. First, we propose an efficient numerical strategy

for solving non-linear parabolic problems defined in a heterogeneous porous medium.

The scheme presented here is based on the classical homogenization theory and uses

a locally mass-conservative formulation at different scales. Besides, we discuss some

properties of the proposed non-linear solvers and use an error indicator to perform a local

mesh refinement. The main idea is to compute the effective parameters so that the

computational complexity is reduced but preserving the accuracy.

We perform a benchmark study of two multi-scale methods. The parameters of the

system are obtained by using multi-scale local basis functions and by homogenization over

local domains. Both sets of local basis functions and effective parameters are used after-

wards in an algebraic dynamic multilevel (ADM) solver. The results reveal an insightful

understanding of the two approaches and qualitatively address their performance. It is

emphasized that the test cases considered here include permeability fields with no clear

scale separation. This development sheds new light on advanced multi-scale methods for

simulation of coupled processes in porous media.

In addition, we present the details of the implementation of the hybridizable discon-

tinuous Galerkin method (HDG) to solve the porous medium equation (PME). This is a

representative example of a degenerate parabolic equation appearing in the last century

as a mathematical model for the flow of an ideal gas in a porous medium. We combine
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the HDG scheme with a robust non-linear solver to efficiently approximate the solution

and give rigorous proofs for the existence and uniqueness of the fully discrete solutions

and the convergence of the scheme.

Finally, we consider mineral precipitation and dissolution processes in a porous medium.

Such processes alter the structure of the medium at the scale of pores and make numerical

simulations a challenging task as the pores’ geometry changes in time. To deal with such

aspects, we adopt a two-scale phase-field model and propose a robust scheme for the

numerical approximation of the solution. The scheme takes into account both the scale

separation in the model, as well as the non-linear character of the model. After proving

the convergence of the scheme, an adaptive two-scale strategy is incorporated, which

improves the efficiency of the simulations.
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in Mathematical Engineering at EAFIT University in Medelĺın, Colombia. During her
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Bogotá, Colombia and a research stay at the University of Concepción in Concepción,

Chile. Subsequently, she pursued a Master in Science in Mathematics at the National
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