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Abstract: Long-haul continental freight flows still heavily rely on unimodal road transport. Inter-
modal transport, combining road transport with other transport modes, has the potential to have
lower operating costs and to be more environmentally sustainable. However, road transport benefits
from its better flexibility and adaptability to sudden disruptions and uncertainties. To facilitate a
modal shift towards intermodal transport, it is crucial to improve its resilience (i.e., capability to
resist and recover from sudden disruptions). Synchromodality is an extension of intermodality in
which decisions on modal choice and routing are not predefined long in advance but are taken based
on real-time information and may provide a step in that direction. The conducted literature review
investigates how uncertainty can be handled in intermodal and synchromodal freight transport
networks. The literature is classified based on the planning level, which is either strategic, tactical
or operational. The main focus is on the studied types of uncertainty and the proposed solution
approaches. This work contributes to the research field by reviewing the literature on intermodal and
synchromodal transport with uncertainty, presenting measures to mitigate the effects of uncertainty
and proposing future research directions.

Keywords: intermodal transport; synchromodal transport; disruption; stochastic; literature review

1. Introduction

In 2017, 73.3% of all inland freight transport was by road in the European Union, and
this value is increasing [1] (p. 37). In an effort to reduce the environmental impact and
costs, more efficient transport modes are being considered by logistics service providers. A
combination of modes is often used in which high-capacity modes such as trains and ships
perform long-haul transport and trucks perform first- and last-mile delivery. Intermodal
transport is the transport of goods with at least two different modes, whereby the goods
remain in the same loading unit throughout the whole trip [2]. Although no formal
definition exists, this definition is widely adopted [3].

Intermodal transport is potentially cheaper and more sustainable than unimodal
road transport [4]. This results from the lower costs and emissions per ton/km of trains,
barges and ships compared to trucks. For instance, a study that compares road and coastal
container transport in Taiwan concludes that emissions could be reduced by over 60% by
switching from road to ships [5]. However, pre- and end-haulage are typically performed
by trucks in intermodal transport. The cost and environmental benefits of the modal switch
should therefore compensate for the additional trans-shipment operations, making it less
attractive for short distances [6]. Apart from more energy-efficient transport modes, total
emissions can also be reduced by consolidating shipments, which in turn increases fill-rates
and reduces empty vehicle trips. Studies from Pan et al. [7] and Van Heeswijk et al. [6]
indicate that intermodal transport with consolidation can lead to higher fill-rates and lower
costs and emissions compared to road transport.
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Despite having a higher operating cost than other modes, road transport remains
heavily used. One reason is that logistics service providers are faced with many uncertain-
ties that can lead to disruptions and variations. Supply chain disruptions are defined as
unplanned and unanticipated events that disrupt the normal flow of goods in a supply
chain [8,9]. Examples of disruptions are labour strikes, accidents, natural disasters and bro-
ken infrastructure. Besides disruptions, networks are also subject to normal variations (e.g.,
variations in travel times due to normal congestion). Although the distinction between
them is not clear-cut, both aspects are the result of uncertainties.

As a result of these uncertainties, there is a need for flexibility and resilience. An exact
definition of flexibility is not available, since its meaning varies depending on the literature.
Evans [10] defines flexibility as the ability to make continuous adjustments in constantly
changing conditions. It is a general term that encompasses concepts such as resilience
and corrigibility, among others. Resilience is defined by Goetz and Szyliowicz [11] as
the ability of an organisation to continue to function after unexpected changes, whereas
corrigibility is the ability to learn and adapt to new conditions. For transport networks,
Chen and Miller-Hooks [12] define resilience as the capability to resist and recover from
disruptions. SteadieSeifi et al. [13] define a resilient freight transport network as one that
can recover from any disruption by preventing, absorbing, or mitigating its effects. The last
two definitions can be interpreted as a combination of resilience and corrigibility, which
illustrates that the differences between these concepts are vague. A measure of resilience
used by Chen and Miller-Hooks [12] and Miller-Hooks et al. [14] is the expected fraction of
demand that can be satisfied post disaster. In this paper, this definition of resilience from
Chen and Miller-Hooks [12] is used.

A review from Flodén et al. [15] on transport service choice indicates that cost is the
most important factor when choosing the transport service. However, only alternatives
that meet an adequate service quality are considered. Transport time and reliability are
major components of service quality. Intermodal transport is slower than unimodal road
transport, for instance due to trans-shipments and consolidation [16], and road transport
is more flexible than other transport modes [17–19], thereby hindering a modal switch.
Mitigating this lower flexibility is a key issue to facilitate a modal shift. Synchromodal
transport is meant to resolve this issue by allowing more flexible planning and real-time
updates. Synchromodal transport is an extension of intermodal transport with synchro-
nised operations between carriers, by including real-time rerouting of loading units over
the network to cope with uncertain events and operational or customer requirements [20].
According to Ambra et al. [21], synchromodality can be perceived as real-time, dynamic
and optimised intermodal transport. In their review on developments on synchromodal
transport related to the hinterland network of European Gateway Services (EGS), van
Riessen et al. [22] report that the main challenge for a transportation network operator
is the allocation of containers to inland services. They define the following three steps
to enable synchromodal transport: integrated network planning, real-time planning and
creating planning flexibility. Synchromodal transport has the potential to offer a better
performance than intermodal transport on flexibility, reliability and capacity utilisation.

Compared to unimodal transport, intermodal networks have more sources of un-
certainty with the additional use of terminals and trans-shipment [23]. Although many
studies address uncertainties in intermodal networks, an extensive overview of the existing
literature on the topic is missing. SteadieSeifi et al. [13] include but are not focused on
uncertainty in their large-scale literature review on intermodal transport. The authors
classify the literature into strategic, tactical and operational problems based on the planning
horizon. These horizons correspond, respectively, to long-term, medium-term and short-
term decisions. The strategic planning level regards the design of the physical network
and the investment decisions in the infrastructure. The tactical level concerns the design of
the service networks and planning routes. These decisions are made such that resources
for a given network are allocated and utilised optimally [13,24]. The containers can be
aggregated at this level. Operational planning problems address some of the same issues as
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tactical problems, such as routing and scheduling, but with individual containers and much
shorter planning horizons, such as on a day-to-day basis or in real-time [25,26]. Another
literature review by Elbert et al. [27] provides a detailed overview of the literature on both
deterministic and stochastic tactical planning in a multimodal setting. Our study differs
by specifically focusing on stochastic problems and by including all planning levels. The
aim of this study is to provide an extensive overview of the literature on intermodal and
synchromodal transport with uncertainty.

The main three contributions of our paper are: (1) an exhaustive overview of the
literature on intermodal and synchromodal transport with uncertainty; (2) an overview of
measures to mitigate the effects of uncertainty to facilitate the implementation of intermodal
transport; and (3) the proposal of relevant future research directions. Our methodological
approach is described in Section 2. The following sections each focus on one of the three
planning levels. Section 3 investigates strategic planning problems, studies on tactical
planning are reviewed in Section 4, and Section 5 addresses operational planning problems.
Each of these sections is further divided into a discussion of the studied planning problems
and a discussion of the proposed solution methods. Finally, Section 6 contains an in-depth
overall discussion and presents future research opportunities for each planning level.

2. Methodology

This section describes the method that was used to identify relevant papers and the
criteria to retain them. Searches are performed in the databases of Google Scholar and
the Hasselt University library. Only peer-reviewed journal publications are considered.
Academic literature is searched by looking up key words in the title. The title must contain
the word multimodal, intermodal or synchromodal and at least one of the following words:
uncertain(ty), stochastic(ity), random, disruption, perturbation or robust. This led to
561 results, of which 487 contain multimodal in their title, 70 contain intermodal and only
4 contain synchromodal. The ancestry approach is also used where literature that contains
uncertainty is cited.

To retain the most relevant literature, only papers which meet the following criteria are
kept: (1) the paper studies intermodal or synchromodal freight transport; (2) it contains at
least one source of uncertainty and (3) it presents a planning model. The scope of this review
is limited to network and flow planning in continental intermodal and synchromodal
transport. For instance, the study from Pizzol [28] was not selected because although it
includes uncertainty in an intermodal network, it focusses on the uncertainty of emissions
rather than intermodal planning. Terminal operations and maritime transport are also left
out of this review and therefore papers such as Carlo et al. [29–31] are omitted. Drone
delivery concerns small packages, which is why studies of this transport mode are left out.
This left us with 42 references, which are classified into different planning levels. Table 1
shows the number of studies on each planning level and type of uncertainty. Studies that
consider multiple uncertain elements appear several times. The number of studies per
year is shown in Figure 1. This figure indicates that the focus on uncertainty in intermodal
transport planning is a recent development, with most of the research performed in the
last ten years. The year 2018 appears as an outlier with the most publications. Figure A1
in Appendix A lists the number of studies per journal, which shows a vast range of
journals with a single reference. Only the European Journal of Operational Research,
Transport Research part B: Methodological and Transport Research part E: Logistics and
Transportation Review contain three or more references.
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Table 1. Number of studies and types of uncertainty by planning level.

Planning
Level Total Transit

Times Demand Capacity Costs Hub
Failures

Departure Times
and Cancellations

Strategic 7 3 4 1 2 1
Tactical 23 12 11 7 1

Operational 12 6 7 2 1 1

Figure 1. Number of studies on intermodal and synchromodal transport planning with uncertainty
per year.

3. Strategic Decisions

In their literature review on multimodal freight transport planning, SteadieSeifi
et al. [13] conclude that research on strategic problems mostly addresses hub location
problems, but only rarely considers uncertainties. The objective of hub location problems
is to find the optimal locations of hubs to transport orders from their origin to their destina-
tion. Apart from direct shipping, orders can be consolidated at hubs to create economies of
scale. In the context of intermodal transport, hubs can refer to intermodal terminals such as
seaports and rail terminals. An example of a hub location problem is shown in Figure 2. For
general overviews of hub location problems we refer to Alumur and Kara [32], Campbell
and O’Kelly [33] and Farahani et al. [34]. In the following section (Section 3.1), studies
on strategic planning problems that specifically account for uncertainties are discussed.
Considered uncertainties are related to transit times, demand, terminal capacity, costs and
hub failures. Section 3.2 gives an overview of the applied solution approaches to solve
these problems. An overview of the literature on the strategic planning of intermodal
transport with the type of uncertainty, solution methods and measures against uncertainty
is given in Table 2. All papers in Table 2 study hub locations problems. Most studies do not
take any active measures such as rerouting to mitigate the effects of uncertainty. Instead,
the scenarios are generated from random distributions and the solution with the lowest
expected cost is kept. This is referred to as “Scenario generation”. Three studies at the
strategic level apply robust optimisation. One of these constructs solutions which remain
feasible for any realisation of uncertainty, whereas the other two minimise the cost of the
worst case scenario.
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Figure 2. Example of a hub location problem.

Table 2. Strategic studies with uncertainty.

Authors
(Year) Reference Transport

Modes
Transit
Times Demand Capacity Hub

Failures Costs Solution
Method 1

Uncertainty
Mitigation

Sim et al.
(2009) [35] Unspecified x A: Heuristic Scenario

generation

Ishfaq and
Sox (2012) [36] Rail, road x A: Tabu-search

metaheuristic
Scenario

generation

Meraklı and
Yaman
(2016)

[37] Unspecified x E: Benders
decomposition

Robust
optimisation

Fotuhi and
Huynh
(2017)

[38] Rail, road x x A: Genetic
algorithm

Robust
optimisation

Karimi et al.
(2018) [39] Unspecified x E: Solver Scenario

generation

Wang et al.
(2018) [40] Rail, road x x x A: Memetic

algorithm
Scenario

generation

Abbassi et al.
(2019) [41] Ship, road x x

A: Simulated
annealing

metaheuristic

Robust
optimisation

1 E: Exact method, A: Approximation.

3.1. Planning Problems

Stochastic transit times are a first category of uncertainty considered at the strategic
level. Sim et al. [35] investigate small package delivery companies and include time-
windows. Deliveries have an origin and destination node. They must first be transported
to a hub, then possibly to another hub, and finally to the destination. A hub-and-spoke
network [42] is considered in which transport between two hubs is faster than between
nonhub nodes. The objective is to minimise the longest path for a given minimum service
level and number of hubs to be located. The model is applied on a case with up to 25
demand nodes and four facilities located in the US. The authors conclude that increased
transit time variability leads to optimal locations for hubs closer to a central hub.

Ishfaq and Sox [36] study hub location problems while accounting for delays at hubs,
which are a type of transit time uncertainty. Hubs are modelled as a queuing system
with limited resources and time constraints. The more resources are available at a facility,
the higher its processing capacity. Shipments need to be transported from an origin to a
destination in a hub-and-spoke network that includes road and rail transport. They can
be transported at lower cost on inter-hub connections. In contrast to Sim et al. [35], the
number of hubs is not predetermined. A fixed cost is incurred per opened facility. The
results of a case study of 25 US cities reveal an interaction effect between resources and
time constraints. Differences in the amount of resources only affect the costs if the time
constraints are strict, in which case lower resources lead to higher costs. The result is that
more hubs are opened when resources per hub are lower and shipments are more spread



Sustainability 2021, 13, 3980 6 of 25

out over facilities to reduce queue lengths. With smaller time-windows, fewer facilities are
opened and more shipments only pass through a single facility. This is caused by more
direct shipments, which are faster than inter-hub transport. The total costs are higher as a
result because direct shipments are more expensive than inter-hub transport.

Stochastic demand is the second category of uncertainty. Karimi et al. [39] propose a
mixed-integer linear program (MILP) for the hub location problem with stochastic demand
and multiple commodities. Their model allows orders to be split and transported separately.
The objective is to minimise costs, which include flow costs, costs for establishing and
operating hubs and costs for new infrastructure. The number of hubs to build is not fixed.
A sensitivity analysis shows that splitting orders results in total cost reductions of up to
50% by fully using vehicle capacities.

Meraklı and Yaman [37] investigate the robust uncapacitated hub location problem
with demand uncertainty. To model demand, upper bounds are defined for inbound
and outbound traffic at each node. The objective is to determine locations for a fixed
number of hubs such that costs of the worst-case demand scenario are minimised. As
the problem is uncapacitated, all demand is routed through the shortest path between
its origin and destination. Three test instances are used with 25, 81 and up to 200 nodes.
The problem is solved with a linear mixed integer programming formulation and two
Benders decomposition based exact algorithms. The authors conclude that the optimal
hub locations when uncertainty is accounted for are either identical or close to those in the
deterministic case.

The third category of uncertainty is hub failures. Strategic studies without hub failures
mitigate the expected effects of uncertainty by reducing their likelihood or impact, but
do not provide an answer on how to resolve disruptions when they occur. Orders are
either rejected or delivered late and a penalty cost is incurred. Studies that account for hub
failures reroute flows from inoperative to operating facilities, thus presenting a solution in
case of disruptions. A study on the expansion of intermodal networks from Fotuhi and
Huynh [38] includes both stochastic demand and hub failures. These networks can be
expanded by increasing the capacities or adding new terminals and links. Only existing
infrastructure can be affected by disruptions, in which case their capacities are reduced.
Fixed costs are incurred for infrastructure investments. Late deliveries incur a penalty cost
and deliveries are not carried out if the delivery cost is higher than the penalty cost. The
objective is to minimise total costs. Robust optimisation is used to solve the problem under
uncertainty. It constructs a solution that remains feasible for any realisation of uncertainty.
The paths are infeasible if they include a terminal which has not been selected to be built.
The solution with the lowest optimality gap for all scenarios is chosen. The sum of losses
by not choosing the optimal solution in each individual scenario is called regret. The test
case includes a realistic-size rail–road network with 20 terminals, 10 potential locations for
new terminals and 45 cities. Five demand scenarios are run based on forecasted demands
from 2020 to 2040. The results suggest that expanding the rail network will cost less in
the long run. New facilities are opened that provide sufficient capacity to absorb demand
from disrupted facilities. Disruptions have a higher impact on total costs than demand
uncertainty. As the robust function also includes the worst-case scenarios, regret is high in
about 30% of experiments. If those scenarios are unlikely to happen, it may be better to
exclude them.

Wang et al. [40] study the design of rail–road networks with fuzzy demand, cost
and transit time uncertainty. The considered costs are hub construction costs, transport
costs and trans-shipment costs. A hub-and-spoke network is designed with the following
decisions: (1) determine the locations of intermodal hubs and (2) assign spokes to hubs. The
weighted expected costs and the maximum time requirement are minimised in a biobjective
optimisation formulation. A MILP is formulated which is solved with a memetic algorithm.
The experiments are performed on a realistic dataset with 81 nodes. Compared to the
deterministic model, the fuzzy model leads to better results.
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Abbassi et al. [41] propose robust models for the intermodal terminal location problem.
The study considers a road and maritime network where the location of ports must be
determined. A deterministic case is compared against three models with each a different
type of uncertainty, namely terminal operating costs, terminal capacities and transportation
costs. Similarly to Meraklı and Yaman [37], the objective is to minimise the cost of the worst
case scenario. Direct shipments are allowed. The share of direct unimodal shipments is
slightly higher in instances with uncertainty at the terminals.

3.2. Solution Methods

Hub location problems are NP-hard, which means that finding an optimal solution
is not always viable. The only studies that exclusively opt for an exact solution method
are Karimi et al. [39], which uses an exact solver on a MILP, and Meraklı and Yaman [37],
which compares their proposed Benders decomposition algorithms against a mixed inte-
ger programming formulation with a 10 h time limit. The mixed integer programming
formulation can solve instances with up to 50 nodes within the time limit, compared to
200 node instances with the Benders decomposition algorithms. Ishfaq and Sox [36] use a
nonlinear mixed integer solver for problems of up to five cities, but the high computational
times render this method infeasible for larger problems. These larger problems are solved
with a tabu search metaheuristic. To benchmark the heuristic performance, the results are
compared against lower bounds that are obtained with a partial linear relaxation of one of
the subproblems. The heuristic obtains solutions in less than one minute for problems of
up to 15 cities and has an average optimality gap of 0.12%.

Due to the poor performance of exact solution methods, Sim et al. [35] also opt for
a heuristic approach to solve the stochastic p-centre problem. They test three different
heuristics: a radial heuristic based on the one from Dyer and Frieze [43], a randomised
greedy local-search heuristic proposed by Teitz and Bart [44], and a combination of both in
which the result from the radial heuristic serves as the initial solution for the Teitz–Bart
heuristic. On average, the combined heuristics result in the lowest optimality gap and
lower run times than the Teitz–Bart heuristic in the instances treated by Sim et al. [35].
Abbassi et al. [41] propose two solution methods: a simulated annealing metaheuristic and
a hybrid approach in which the result of the metaheuristic serves as an initial solution for
an exact method. Both approaches are compared against an exact method and the hybrid
method leads to lower optimality gaps.

Fotuhi and Huynh [38] propose a genetic algorithm combined with column generation
to obtain near-optimal solutions. The genetic algorithm is used to determine strategic
decisions and flows are assigned with column generation. Wang et al. [40] use a memetic
algorithm, which combines a genetic algorithm with two local search methods.

4. Tactical Decisions

Decisions at the tactical planning level involve allocating the resources optimally on
a given network. These decisions consist of determining on which routes services are
offered and the scheduling of those services, as well as routing freight [24]. SteadieSeifi
et al. [13] identify two recurrent groups of models on tactical planning: Service Network
Design (SND) and Network Flow Planning (NFP). NFP determines how to route orders
within a given service network, whereas SND decides what services to offer to route orders.
SND problems require two types of decisions. First, the service network is designed by
deciding which services to offer and their frequency. Then, freight is routed through the
selected services. The networks are typically modelled as a set of nodes that are connected
with arcs. The orders have an origin and destination node. For every arc, a fixed cost is
incurred if it is used in SND problems. These are the design costs for offering services on
those arcs. Flow costs are variable and depend on the amount of freight routed through
every arc. The objective of basic SND problems is to minimise the total cost, which is
equal to the sum of the design and flow costs. NFP problems are similar to SND problems
but exclude the design step. An example of a service network is shown in Figure 3. For
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more information on tactical planning, we refer to Wieberneit [45] and Elbert et al. [27].
Wieberneit [45] provides a literature review on SND which does not limit its scope to
multimodal and stochastic problems. The review of Elbert et al. [27] focusses on tactical
studies in a multimodal setting and also includes deterministic problems.

Figure 3. Example of a service network.

4.1. Planning Problems

At the tactical level, uncertainties related to demand, transit times, capacity and costs
are studied. However, the studied types of uncertainty differ between NFP and SND
problems. Demand uncertainty is the most studied type of uncertainty for SND problems
because the networks are usually set up in advance for longer periods of time. Therefore,
complete demand information is not available yet. In contrast, stochastic demand is rarely
studied in NFP problems since it is often assumed that demand is already known before
routes are determined. Transit times and capacity are the most studied uncertainties for
NFP, but are rarely included in studies on SND. Capacity uncertainty is modelled by
lowering the capacities of links, nodes and intermodal terminals following disruptions. For
severe disruptions such as disasters, capacities can also be set to zero. Only one study on
SND considers capacity uncertainty, since the other studies assume that once a service is
scheduled, it will never fail. One study on SND accounts for cost uncertainty by treating
transport costs per arc as random variables within an interval [46].

Due to capacity restrictions and disruptions, it may be impossible to deliver all orders
in time. A recurrent solution to deal with this problem is to impose a penalty cost for orders
which cannot be delivered in time. These orders can either be delivered with a delay or
handled by a subcontractor at the price of the penalty cost [19,47]. Both options can be
used simultaneously if a delay leads to a missed transfer [48].

Although the objective of tactical planning problems is often to minimise costs, multi-
objective optimisations are also used. Other elements in the objective function can include
total transport time and emissions [19,49]. Demir et al. [19] minimise costs, time and
greenhouse gas emissions by assigning different weights to each objective. The authors
find that when only emissions are minimised, penalty costs and transportation costs are
very high. Trucks must wait for electric trains, which have insufficient capacity to transport
all loads at once. As an alternative, Sun et al. [47] include emissions in their objective
function by adding emission costs. A different objective which does not include costs at
all is to maximise the fraction of demand that can be satisfied following a disaster [12,14].
The remainder of this section is divided between studies on SND (Section 4.1.1) and NFP
(Section 4.1.2).

4.1.1. Service Network Design

Studies on service network design with uncertainty are listed in Table 3.
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Table 3. Studies on Service Network Design (SND) with uncertainty.

Authors (Year) Reference Modes Transit Times Demand Capacity Costs Late Deliveries Solution Method 1 Uncertainty
Mitigation

Andersen and
Christiansen

(2009)
[50] Rail x

Penalty for
delivery time

variability
E: Solver Scenario

generation

Lium et al. (2009) [51] Unspecified x Ad hoc capacity
increase E Scenario

generation

Hoff et al. (2010) [52] Unspecified x Ad hoc capacity
increase A: Metaheuristic Scenario

generation

Crainic et al.
(2011) [53] Unspecified x Ad hoc capacity

increase
A: Tabu-search
metaheuristic

Scenario
generation,

recourse

Puettmann and
Stadtler (2010) [54] Road, ship x Not allowed E: Solver Collaboration

Bai et al. (2014) [55] Unspecified x Ad hoc capacity
increase, rerouting E: Solver Rerouting

Meng et al. (2015) [56] Barge, rail, road x Ad hoc capacity
increase A: SAA, matheuristic Recourse

Demir et al. (2016) [19] Barge, rail, road x x Penalty cost A: SAA, solver Recourse

Yang et al. (2016) [46] Air, rail, road x x Travel time in
objective

A: Simulated
annealing

metaheuristic

Scenario
generation

Hrušovský et al.
(2018) [57] Barge, rail, road x Ad hoc capacity

increase
A: Simulation–
optimisation

Scenario
generation

Zhao et al. (2018) [48] Rail, ship x Penalty and
nonfulfilment cost A: Genetic algorithm Scenario

generation

Zhao et al. (2018) [58] Rail, Ship x x Penalty cost
A: SAA, ant colony

optimisation
metaheuristic

Recourse

Layeb et al. (2018) [59] Barge, rail, road x x Penalty cost A: Simulation–
optimisation

Scenario
generation

Sun et al. (2018) [60] Rail, road x Not applicable E: Solver Scenario
generation

1 E: Exact method, A: Approximation.
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Andersen and Christiansen [50] study travel time uncertainty in the European freight
train network connecting Scandinavia with Italy. The proposed model supports strategic
investment decisions in infrastructure for new railway lines and also models tactical
scheduling decisions. Although infrastructure investments are required, these are not
incorporated in the study, making it more of a tactical problem. Freight trains experience
many delays in Germany due to congestion and lower priority than passenger trains,
whereas truck transport through Switzerland and Austria is restricted leading to high travel
times. The study assesses potential benefits on service quality of using the Polcorridor, a
rail corridor through Poland. As a result of different track gauges between Poland and
Czechia, two distinct locomotive fleets are needed as well as extra handling for container
transfers. The required decisions are the selection of routes, train schedules and the
number of stops at intermediate terminals. The fixed costs for the scheduled trains and
used services are included. The variable costs are included for unit flows, repositioning
moves, transport time based on the value of time and a penalty for the variability of the
transport time. The last two costs are to include service quality in the objective. Demand
varies but schedules must remain identical over all time periods. A trade-off needs to
be made between excess capacity and lost revenue. Profits are maximised and solutions
are obtained with a commercial solver. Fewer deliveries are performed when service
quality is considered, because deliveries with high transport time or variability are rejected.
Moreover, routes with less variability are chosen despite being longer and more expensive
to operate.

Lium et al. [51] study demand stochasticity in service network design. A deterministic
model is compared with a stochastic one. Both models include time-windows as a hard
constraint, meaning orders must be delivered on time. The authors conclude that using
deterministic formulations for stochastic models causes extra costs. Moreover, stochastic
models generate solutions with more consolidation possibilities. As a result, the orders can
be consolidated faster if the demand is lower than expected. Regarding demand correlation,
as long as demand is not perfectly positively correlated, consolidation could be possible.
The more negatively correlated, the higher the potential consolidation opportunities. For
the same reason, hub-and-spoke networks are favoured over other network structures
when dealing with stochasticity. Hoff et al. [52] study a realistically sized service network
design problem in which demand becomes known gradually over time. The objective is to
minimise the sum of service costs and the expected cost of sudden changes. Their model is
based on the one from Lium et al. [51] but a metaheuristic is proposed instead of an exact
solution method, which makes it possible to solve larger problem instances.

Crainic et al. [53], Bai et al. [55], Meng et al. [56] and Zhao et al. [58] develop two-stage
stochastic programming formulations for the SND problem with stochastic demand. The
services are selected in the first stage while demand is unknown. The demand materialises
in the second stage, which is where routing decisions are made. Such an approach appears
as “recourse” in Table 3. If insufficient capacity is available in the second stage, the excess
demand can be outsourced at a higher cost.

Bai et al. [55] extend the study of Lium et al. [51] by considering rerouting to mitigate
the costs of stochastic demand. Similarly to Lium et al. [51] and Hoff et al. [52], a scenario
tree is used to account for stochasticity. Hard time constraints are kept and it is assumed
that excess demand can be outsourced to an external network. In the first stage, the sum of
the network setup costs and expected additional costs due to uncertainty are minimised.
In the second stage, the optimal flow distribution between the network obtained in the first
stage and the external network is generated. The vehicles are also switched between arcs
in the model with rerouting. The second stage takes place once the disruption becomes
known. As such, the study combines tactical with operational decisions. The stochastic
SND model with rerouting is compared against the deterministic and stochastic models
in Lium et al. [51]. The results indicate that including rerouting leads to larger cost
reductions for correlated demand and requires fewer orders to be outsourced compared to
the other models. A drawback of the proposed model is the high computational time. For
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large instances, the stochastic model without rerouting finds better solutions faster. Both
stochastic models lead to the highest savings over the deterministic model when demand
is correlated and highly uncertain. The total costs are lowest for all models when demand
is clustered in space and time.

The two-stage model proposed by Zhao et al. [58] performs scheduling decisions in
the first stage and routing decisions in the second stage. The model accounts for both
stochastic demand and transit times. It is applied on a realistic network with 17 railway
stations and three ports, of which two are rail–ship transfer hubs. The results indicate an
increase in costs and decrease in punctuality as transit time variability increases.

Zhao et al. [48] study sea–rail intermodal container routing with stochastic travel and
transfer times. The objective is to minimise total costs, which are composed of: (1) transport
costs which depend on the mode and container quantity; (2) transfer costs for loading
and unloading containers as well as changing modes; (3) inventory costs for containers
waiting to be picked up in transfer hubs or at destination ports; (4) late delivery penalty
costs which are proportional to the delay time; and (5) nonfulfilment penalty costs if delays
lead to missed transfers. Lower limits on the probabilities of late arrivals at transfer hubs
and deliveries are imposed, making it a chance-constrained stochastic problem. The model
is applied on a realistically sized network between China and Singapore. The authors find
that higher variability leads to higher total costs and more late deliveries. Compared to
the deterministic case, routes are chosen with larger time buffers between mode changes
to prevent missed transfers. The results of a sensitivity analysis indicate that it is always
beneficial to have high on-time arrival probabilities at transfer hubs so as not to miss the
next mode. In contrast, higher limits for on-time delivery probabilities lead to higher
costs as variability increases, because the costs required to maintain the same service level
outweigh penalty costs.

Meng et al. [56] investigate the amount of train, truck and barge capacity to procure
under stochastic demand. The study is performed in the context of car manufacturers
which need to ship cars between factories or to storage centres. Train and barge services
have a limited capacity and fixed weekly schedules, whereas an unlimited number of
trucks is available. The probability function of the demand is known and at the start of
each week the demand becomes known. The amounts of train and barge capacity to book
are determined for each week in the first stage. In the second stage, it is assumed that
the demand of the whole week is known and cars are assigned to the services that were
selected in the first stage. If the booked capacity is insufficient, the excess cars are shipped
by truck. A case study is performed on a realistic Chinese network with 19 nodes, 17 train
routes and 8 barge routes. The results indicate that only accounting for the expected value
of demand leads to higher costs.

In their literature review on intermodal transport, Macharis and Bontekoning [23]
conclude that the research focused on multiple decision makers is very limited, even
though coordination is required for large networks. One such study from Puettmann
and Stadtler [54] presents a cooperation scheme between an intermodal operator and two
carriers, one for first-mile and one for last-mile drayage operations. Without cooperation,
the different parties have no knowledge of the other parties’ capacities, costs and existing
orders. In the studied cooperation method the, cost proposals are iteratively exchanged
between the carriers and the intermodal operator. Due to long travel times for the long-haul,
it is assumed that demand at the destination is not known yet at the departure time. The
study estimates the effects of this demand uncertainty on cooperation. Performance is eval-
uated against the optimal situation, which is characterised by a fully centralised decision
maker. With the proposed cooperation scheme, optimality gaps between 4% and 7% are
obtained. This is a reduction of 65% to 75% compared to the optimality gaps of up to 20%
in scenarios without cooperation. Compared to a deterministic setting, cooperative savings
are only slightly lower with uncertain demand and decrease as uncertainty increases.

Differently from previous tactical studies with stochastic demand, Demir et al. [19]
and Hrušovský et al. [57] include costs, total delivery times and emissions in the objective
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function. Both studies consider stochastic transit times, while Demir et al. [19] is one of the
few studies which combines stochastic demand and transit times. The authors consider a
network with road, rail and inland waterway transport. Demir et al. [19] experiment on a
dataset with 10 terminals connected by 32 services. To account for stochasticity, the sample
average approximation (SAA) approach is used to obtain a deterministic problem. The
results indicate that rail and barge modes have a higher share in a deterministic setting
compared to a stochastic one. This is caused by the stricter departure times of those modes
as opposed to trucks that do not have fixed schedules. If a larger weight is given to delivery
times in the objective function, the share of trucks also increases because they are faster.

Hrušovský et al. [57] assume departure times of rail and barge services are fixed, but
travel times vary. A simulation optimisation approach is proposed in which solutions
obtained from deterministic optimisation are used as input for the simulation step. Uncer-
tainty is only considered in the simulation step where the performance of the deterministic
solutions are evaluated over multiple scenarios. Experiments are conducted on the same
instances as in Demir et al. [19]. The authors conclude that the SAA approach is much
more sensitive to the instance size than the simulation–optimisation approach. Therefore,
simulation–optimisation is better suited at solving large instances.

Similarly to Hrušovský et al. [57], Layeb et al. [59] apply a simulation–optimisation
approach. However, both stochastic demand and travel times are included. The model
is validated with a deterministic real-world case study from Demir et al. [19] using road,
rail and inland waterway transport. It is modelled with Arena software and solved
with Optquest. The simulation–optimisation model reaches 90% on time and in full
deliveries. As demand and travel time distributions are skewed with fat tails, lognormal
distributions are used for demand and railway travel times. For travel times, it is assumed
that congestion occurs with a given probability of 20%. In case of congestion, the average
travel times are assumed to be 20% longer. The main finding is that only the mean
and variance of demand and transit times are not sufficient to set up reliable schedules,
especially when empirical data displays skewness. The results indicate that ignoring
stochasticity will lead to significantly higher costs, even when demand variability is low.
This differs from Bai et al. [55], who found that costs are only slightly higher without
accounting for stochasticity if demand variability is low.

Yang et al. [46] study how to plan intermodal hub-and-spoke networks with cost
and travel time uncertainty. They present a MIP model which optimises both expected
costs and maximum travel time. The network is uncapacitated and includes road, rail
and air transport for long-haul transport between hubs. First and last mile deliveries are
always performed by trucks. It is assumed that all hubs are directly connected to each
other and shipments must pass through at least one hub. The required decisions are to
select services and route freight on those services. The results indicate a trade-off between
cost and maximum transport time. As the maximum travel time increases, air and truck
transport decrease in favour of the cheaper but slower rail transport.

Sun et al. [60] examine the effect of rail capacity uncertainty on intermodal routing
decisions. Trains follow a fixed schedule, whereas trucks are flexible and uncapacitated.
Rail capacity constraints are modelled as fuzzy chance constraints, which are integrated
in a MILP. A linear reformulation is performed on this MILP such that it can be solved
with exact solution methods. This model is applied on a real large-scale Chinese rail–road
intermodal network with 40 terminals and 118 arcs. The authors conclude that there is
a trade-off between reliability and costs, because minimising costs results in infeasible
decisions. The decisions are infeasible if the actual capacity is lower than what is required.
All the test results lead to infeasible decisions when capacity uncertainty is not considered.

4.1.2. Network Flow Planning

Table 4 lists studies on network flow planning with the types of uncertainty and
solution methods. Minimising costs during disruptions is the main objective of almost
all studies on NFP. Li et al. [61] perform a multiobjective optimisation of an intermodal
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routing problem with cost and transit time uncertainty while accounting for risks. They
identify three major objectives in the previous literature, namely costs, time and reliability,
where reliability is measured by lost and damaged goods. Only the first two objectives are
considered in their study. For each of these objectives, weighted subobjectives are added
to account for risks. For the cost objective, these are to minimise the mean and standard
deviation of the total cost and maximise the probability that the total cost of each selected
route is within an acceptable threshold. The included costs are transport costs, transfer
costs, holding costs and drayage costs. The subobjectives related to time are to minimise
the mean and standard deviation of delivery times and maximise the probability of arriving
within specified time-windows for just-in-time deliveries. The included transport modes
are truck, train and barge. Different priorities are assigned to the objectives with an Analytic
Hierarchy Process. The results indicate that the inventory costs are low at less than 3.7%.
Despite accounting for only 2.7% of the total delivery time, transfers make up around
22.5% of total costs. The authors conclude that the share of barge transport is highest when
delivery time windows are long because of the lower cost and speed compared to other
transport modes.

In addition to costs, Huang et al. [49] also minimise delays in their multiobjective
optimisation problem. It is assumed that several carriers are involved in intermodal
transport and successively handle goods. When a link becomes disrupted, its capacity is
set to zero. The duration of this disruption is then estimated. No adjustments are needed if
the duration is lower than the tolerance of the next carrier. If readjustments are needed,
routes with the smallest deviation are chosen. Deviations are measured as the weighted
sum of proportional changes in time and cost compared to the original route, with weights
chosen depending on preferences. The total costs are the sum of the transport and transfer
costs. The network is modelled as a state space which is solved with a depth-first search
strategy. The method is applied on a small theoretical network, but no comparison is given
with a cost minimisation objective.

Meng et al. [62] study liner ship fleet planning with stochastic demand. The objective
is to determine the number and types of ships in the fleet and then assign them to routes
such that profits are maximised. The routes must be decided under stochastic demand. It
is possible to charter additional ships or charter out owned ships in case of overcapacity.
The experiments are performed on eight ship routes operated by a global liner container
shipping company and 36 ports. The results indicate that higher demand variability leads
to higher costs.

Chen and Miller-Hooks [12] and Miller-Hooks et al. [14] consider disasters in an
intermodal network, which are modelled by reducing arc capacities and increasing their
transit time. On top of routing decisions, recovery actions can be used to mitigate the
impact of disruptions. Miller-Hooks et al. [14] consider a given budget to allocate between
pre- and postdisaster actions to maximise resilience, whereas Chen and Miller-Hooks [12]
only consider postdisaster actions. Predisaster actions are performed before disasters occur
and mitigate their impact. Examples include additional fire stations and retrofitting bridges
to enhance their durability. Postdisaster actions are performed after a disaster. The objective
is to maximise resilience, which the authors define as the fraction of demand that can be
satisfied postdisaster. The authors conclude that postdisaster actions are more effective
than predisaster actions and combining both is the most effective. Larger mitigations
are obtained at the same cost with predisaster actions but low probabilities of individual
scenarios render it inefficient to invest in them.
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Table 4. Studies on Network Flow Planning (NFP) with uncertainty.

Authors (Year) Reference Modes Transit Times Demand Capacity Late Deliveries Solution Method 1 Uncertainty
Mitigation

Li et al. (2004) [61] Barge, rail, road x Cost and time in
objective function E Scenario

generation

Huang et al. (2011) [49] Rail, road, ship x No penalty cost E: Depth-first search Rerouting

Meng et al. (2012) [62] Ship x Excess demand is
lost

A: SAA, Lagrangian
relaxation

Scenario
generation

Chen and
Miller-Hooks

(2012)
[12] Barge, rail, road x x Minimum service

level

E: Benders
decomposition,

column generation

Scenario
generation

Miller-Hooks et al.
(2012) [14] Unspecified x x Not applicable E: L-shaped method Scenario

generation

Li et al. (2015) [26] Barge, rail, road x x Penalty cost E: Linear
programming

Receding horizon
approach

Uddin and Huynh
(2016) [17] Rail, road x No delivery and

penalty cost A: SAA, solver Scenario
generation

Sun et al. (2018) [47] Rail, road x x Not allowed E: Solver Scenario
generation

Uddin and Huynh
(2019) [18] Rail, road x No delivery and

penalty cost E: Solver Scenario
generation

1 E: Exact method, A: Approximation.
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Li et al. [26] study a dynamic intermodal network with both demand and transit time
uncertainty. The scope only encompasses long-haul transport between deep-sea terminals
and inland terminals. Rail, road, barge and deep-sea transport are considered. Barges
and trains operate under fixed schedules and transfer times at terminals are included.
A receding horizon control approach is used, which means optimisation is applied to
determine which actions should be taken, but only the ones of the current time period are
implemented. The optimisation is performed at each time period with estimates based
on the latest information. The authors assume decisions are taken by a single decision
maker with access to current vehicle locations at all times. The objective is to determine
container flows on each outgoing link of each node at each time step such that total costs
are minimised. These costs include transport costs, transfer costs, storage costs and penalty
costs for unfulfilled demand at the end of the planning horizon. The receding horizon
intermodal container flow control (RIFC) model is applied on an intermodal connection
from Rotterdam to Venlo over a time period of 24 h with one hour steps. A longer prediction
horizon leads to better solutions up to a certain point, after which solutions stabilise. This
comes at the cost of higher computation time. Variations in demand have no significant
impact on the average computation time of the RIFC model. Higher demand increases the
proportion of freight shipped on trains and barges because of capacity limitations for trucks.
As the optimisations are based on estimated data, a sensitivity analysis is performed on
the proportion of erroneous predictions. This reveals that the RIFC model is very robust
to prediction errors, although the assumption was made that predictions within a given
horizon are completely accurate.

In a study by Uddin and Huynh [17], the effects of disruptions on an intermodal
network are investigated. This is done with a stochastic mixed-integer program in which
total costs are minimised. Only the transfer costs at intermodal terminals, the transport
costs and thepenalty costs for unsatisfied demand are considered. The model is applied on
a small-scale theoretical network and on a large-scale real-life network in the US, which
only includes freight transport on major highways and railroads. These networks consist
of nodes, links and intermodal terminals where goods are transferred between the nodes.
The types of examined disruption scenarios are: (1) link disruptions where several links
have their capacity reduced by 50%; (2) node disruptions where all links connected to the
disrupted node have capacity reductions of 80%; and (3) intermodal terminal disruptions
with capacity reductions of 80%. For the theoretical network, node disruptions lead to the
highest costs, closely followed by link disruptions. The total costs for terminal disruptions
resulted in less than two thirds the cost of the other disruption types. This is explained
by the network layout, which favours road transport, causing low terminal utilisation. In
the large-scale network under link or node disruptions, most freight should be shipped by
a combination of road and rail because of the lower rail costs and a robust network with
sufficient excess capacity. With terminal disruptions, the majority of the freight is shipped
by trucks at a slightly higher total cost.

Uddin and Huynh [18] extend their previous model by including multiple commodi-
ties, which have different transport and transfer costs, and stochastic capacity. In the event
of disruptions, the capacity uncertainty is increased. Tests are performed with different
required confidence levels. The results indicate that more uncertainty and higher confi-
dence levels lead to higher costs. The total costs are the highest in the scenario where all
terminals are disrupted, in which case all freight must be shipped by trucks. In case of
lower required confidence levels with link and node disruptions, most freight is shipped by
intermodal rail transport. For high required confidence levels, most freight is shipped by
trucks because they can more easily find another route. The authors conclude that trucks
should be used if reliability must be maximised, whereas intermodal rail transport should
be used to minimise costs.

Sun et al. [47] include uncertain road travel times and rail capacity in their intermodal
routing problem. The number of trucks is not restricted, but their transit times are uncertain
because of traffic congestion. Trains do not suffer from congestion, but have a limited
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capacity. The included costs are the transport costs the, loading and unloading costs, the
inventory costs for early deliveries, the penalty costs for delayed deliveries and the CO2
emission costs. In contrast to Zhao et al. [48], the loading and unloading times are omitted
because they are low. Moreover, the CO2 emission costs are considered and a second
model is proposed with biobjective optimisation of total costs and emissions, in which
different weights are assigned to the objectives. A fuzzy chance constraint is added such
that the probability of insufficient rail capacity remains lower than a given upper limit. The
model is applied on a real-life network with major Chinese cities. The conclusion regarding
emission costs is that current values are too low to have an impact. Including emissions
directly in the objective function is more effective and can lead to 0.94% higher costs for a
decrease in emissions of 3.90%, after which costs start increasing at a much higher rate. As
is the case in Zhao et al. [48], higher reliability leads to higher costs.

4.2. Solution Methods

SND problems are NP-hard and, combined with the complexity of additional character-
istics and the large sizes of real cases, exact solution methods are not always viable [24,63].
Exact solution methods are still used on small instances or with a time limit. Andersen and
Christiansen [50] solve their MILP with a commercial solver. Lium et al. [51], Puettmann
and Stadtler [54] and Bai et al. [55] use an exact method to solve their models, but only
small instances are solved optimally. Lium et al. [51] and Bai et al. [55] also include time
limits. Sun et al. [47] propose linear reformulations of their nonlinear model such that it
can be solved with exact solution methods. The model is applied on a realistically sized
network, but the number of orders is kept low due to the high computational complexity.

Hoff et al. [52] developed a metaheuristic to solve large service network design
models in which demand becomes known gradually over time. Crainic et al. [53] propose
a progressive hedging-based metaheuristic that decomposes the stochastic problem into
deterministic scenarios, which can then be solved with exact methods.

Li et al. [61] solve their model with a kth shortest-path algorithm from Shier [64].
Li et al. [26] compare their linear program against an often used all-or-nothing (AON)
approach, which is based on a greedy algorithm and assigns all demand to the least-
cost route. Although it requires little computational time, the shortcomings of this AON
approach are that it requires sufficient capacity and disregards congestion, potentially
caused by the carriers’ own fleet. The results confirm that the AON approach finds a
solution much faster, but at 10% to 25% higher cost in the tested instances.

The SAA method is applied by Meng et al. [56] on their two-stage stochastic pro-
gramming model to obtain a deterministic problem. A metaheuristic solves the resulting
deterministic problem with a dual decomposition algorithm and Lagrangian relaxation,
which is similar to the decomposition approach from Crainic et al. [27,53]. Due to the
high complexity and realistic network size, Zhao et al. [58] solve their two-stage chance-
constrained stochastic programming with a hybrid heuristic which combines SAA and
ant colony optimisation. A stopping criterion is set at a number of iterations based on the
sample size. Zhao et al. [48] also use a hybrid heuristic and consider a realistically sized
network. The heuristic combines a shortest path and genetic algorithm.

Yang et al. [46] solve their MIP model with a simulated annealing metaheuristic. On a
small theoretical network with three hubs and 10 nodes, their metaheuristic obtains the
optimal solutions faster than a commercial IP solver which uses branch and bound. The
simulated annealing metaheuristic is compared against a genetic algorithm on a larger
dataset with 50 to 100 nodes, which it also outperforms. The stochastic MIP in Uddin
and Huynh [17] is solved with a SAA method, in which the expected objective value is
estimated by taking random samples [65]. This is done for both the small theoretical and
real-life networks. In the extension of this study, Uddin and Huynh [18] use an exact solver
for their stochastic MIP.

Hrušovský et al. [57] and Layeb et al. [59] are the only studies to use simulation–
optimisation. Hrušovský et al. [57] found that this approach is not as sensitive to the
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instance size and is able to solve large problems. Layeb et al. [59] conclude that it is able to
obtain good solutions of more than 90% on time and in full deliveries within an hour.

5. Operational Decisions
5.1. Planning Problems

Operational problems consider partly the same issues as tactical problems, although
with a different time horizon. Whereas tactical problems concern medium-term planning,
operational problems focus on short-term planning. Medium-term schedules and routing
decisions may be done at the tactical level, while adjustments are made at the operational
level. Operational problems can be categorised into two main types: (1) real-time planning
or replanning and (2) resource management. The first type includes scheduling and
routing decisions based on real-time information such as new order arrivals, cancellations
or disruptions. The second planning problem covers the allocation or repositioning of
resources. These resources may be containers or vehicles.

5.1.1. Replanning

Table 5 provides an overview of the literature on replanning problems. The uncertain-
ties studied in replanning problems are capacity, demand, travel times, departure times
and order cancellations.

Table 5. Studies on replanning with uncertainty.

Authors (Year) Reference Transport
Modes Transit Times Demand Capacity Other Solution

Method 1
Uncertainty
Mitigation

Bock (2010) [66] Road x x A:
Metaheuristic Rerouting

Burgholzer
et al. (2013) [67] Barge, rail,

road x x A: Simulation Rerouting

Escudero et al.
(2013) [68] Unspecified x A: Genetic

algorithm Rerouting

van Riessen
et al. (2015) [69] Barge, rail,

road

departure
times and

cancellations

E: Linear
programming Rerouting

Sun and
Schonfeld

(2016)
[70] Unspecified x A: Direct

search
Holding
decisions

Rivera and
Mes (2017) [71] Barge, road x

A:
Approximate

dynamic
programming

Replanning

Rivera and
Mes (2017) [72] Road x x A:

Matheuristic Replanning

Qu et al.
(2019) [25] Barge, rail,

road x x E: Solver Replanning

1 E: Exact method, A: Approximation.

Bock [66] provides a dynamic model to route freight which includes vehicle break-
downs, traffic congestion and street blockages as possible disturbance scenarios. Transport
orders are assumed to arrive dynamically. Vehicle breakdowns are modelled by setting
the route time to infinity. The planning is continuously updated, so a distinction is made
between decisions that can still be changed and those that are fixed. These decisions are
stored in two different plans: a relevant plan that contains fixed decisions and a theoretical
plan that contains decisions which can still be changed in future periods. Both plans are
updated in a rolling-horizon, where a new theoretical plan is generated based on the most
recent information. As such, a static problem is considered during each planning period. If
the theoretical plan outperforms the relevant plan for the next horizon, the theoretical plan
becomes the relevant plan in the next period. Anticipation horizons of 90 s provide the best
results for the instances used by Bock [66]. At longer anticipation horizons, capacities are
almost completely used. Although this leads to better static solutions, they are also more
vulnerable to disruptions due to a lack of buffer capacity.
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Burgholzer et al. [67] study a real-life intermodal network in a microsimulation model
which includes decisions taken by real-life participants. The arrival rates are stochastic
and the routes are replanned in the event of disruptions, which are simulated by reducing
capacity on links. Transport units (such as containers) have three options in case of
disruptions: (1) stay on the disrupted link (take a free trace or wait until the disruption is
over in case of 100% capacity reduction); (2) take an alternative link with the same transport
mode; (3) switch to another transport mode. The objective is to minimise travel time. A
case study is performed on parts of the Austrian road, rail and inland waterways network
with a total of 110 links. The results indicate that road and rail transport are preferred over
inland waterways in case of disruptions.

van Riessen et al. [69] study intermodal container transport with three types of distur-
bances: services which arrive or depart too early, too late or are cancelled. The network
operator has a predetermined number of long-term barge and rail slots at fixed costs. Per-
formance measures are defined as impact and relevance. Impact measures the extra cost as
a result of disturbances, while relevance measures the difference between a fully updated
and locally updated plan. In a fully updated plan, the whole schedule is reoptimized,
compared to the locally updated plan in which only containers scheduled on the disturbed
service are rescheduled. The schedules are made up to one week in advance and can be
changed until six to nine hours before departure of a service. The model cannot solve
disturbances beyond that point. The authors conclude that full updates only result in small
cost reductions compared to local updates. Moreover, full updates are costly to implement
even though the cost of reassigning containers was disregarded in this study.

Sun and Schonfeld [70] explore holding decisions with correlated vehicle arrivals at
intermodal terminals. The main vehicles that perform long-haul transport visit multiple
nodes. At the visited nodes, the containers from the feeder vehicles must be loaded onto
the main vehicles and the containers that are delivered by the main vehicles are carried
away by receiver vehicles. If a feeder vehicle is delayed, it is decided whether the main
vehicle should depart or wait. Waiting leads to higher holding costs and runs the risk of
arriving late at future terminals, whereas a missed-transfer cost is incurred when leaving.
Containers that are left behind are picked up by the next service. Decisions are updated
each time new information is available. Vehicle arrivals are assumed to be correlated due
to effects such as adverse weather conditions. The authors conclude that the expected cost
is not affected by correlations, but the variance is.

Rivera and Mes [71] study a periodical freight selection problem. Demand is stochastic
and estimated with simulation. Freight can be transported with a single high-capacity
transport mode or an unlimited number of trucks. The transport modes must be decided
for new orders and this freight selection plan is updated each day. It can be considered as
both a resource management and real-time planning problem. Cost reductions of up to
25% are obtained compared to single period optimisation.

Rivera and Mes [72] model drayage operations for synchromodal transport as a MILP,
which is solved with a metaheuristic. In addition to a pickup-and-delivery problem with
time-windows, empty and loaded containers are assigned to terminals. The schedules are
updated dynamically as new information arrives. In static instances with clustered demand,
the proposed solution method results in lower costs than a construction heuristic. For
random demand, there are no significant differences. In dynamic instances, the proposed
metaheuristic performs better for both clustered and random demand.

Escudero et al. [68] present a dynamic approach to solve daily drayage operations
under transit time uncertainty. In contrast to Rivera and Mes [72], the real-time locations
of the vehicles are considered, which requires constant monitoring. New solutions are
generated each time an unexpected event happens or at fixed time intervals. Vehicles
already on their way to a location are only reassigned to another location if the expected
savings are above 10%. Operational cost reductions of up to 30% are achieved. Both this
study and van Riessen et al. [69] assume that rescheduling leads to added costs. The
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model is applied on instances with clustered and random locations. Compared to static
approaches, the dynamic approaches have the largest savings when locations are random.

Qu et al. [25] provide a model to reroute flows and reschedule services. The considered
uncertainties are transit times, shipment release times and service break-downs. Major
disruptions are not included. Sudden breakdowns lead to capacity reductions, as opposed
to Bock [66]. Once an uncertain event occurs, complete information is assumed and
replanning starts. New shipments are not accepted during replanning and unaffected
decisions made before uncertain events are fixed. Similar to Bock [66], a static problem is
solved at the replanning stage.

5.1.2. Resource Management

The literature on resource management is listed in Table 6 with the types of uncertainty
and solution methods. Stochastic demand is the most studied uncertainty in resource
management. Topaloglu and Powell [73] study this problem in the context of managing
a fleet with different types of business jets. In an extension of Topaloglu and Powell [73],
Topaloglu [74] presents a dynamic model for empty railcar repositioning with random load
arrivals, random travel times and multiple vehicle types. It is solved with an approximation
algorithm. The objective is to maximise profits.

Table 6. Studies on resource management with uncertainty.

Authors (Year) Reference Problem Type Transport
Modes Transit Times Demand Other Solution

Method 1
Uncertainty
Mitigation

Lam et al.
(2007) [75]

empty
container

repositioning
Ship x

A:
Approximate

dynamic
programming

Scenario
generation

Topaloglu
(2007) [74] empty vehicle

repositioning Rail x x

A:
Approximate

dynamic
programming

Replanning

Di Francesco
et al. (2013) [76]

empty
container

repositioning
Ship hub failures

E: Stochastic
integer

programming
Scenario

generation

van Riessen
et al. (2016) [77] container

allocation
Barge, rail,

road x A: Heuristic Machine
learning

1 E: Exact method, A: Approximation.

Lam et al. [75] use an approximate dynamic programming approach for the empty
container repositioning problem with stochastic demand. Besides owned containers, addi-
tional ones can be leased per port per period and there is no limit on the maximum number
available for lease. The proposed method results in less than half the costs compared to a
heuristic that sends empty containers back to their region of origin whenever sufficient
capacity is available.

Di Francesco et al. [76] study empty container repositioning under partial and com-
plete port disruptions. Under partial disruptions, ships cannot berth, preventing loading
and unloading. Containers can still be stored, sent out and received from land. Under
complete disruptions, containers cannot be handled at all. Although these disruptions can
be seen as capacity reductions, their consequences are much larger than those of capacity
uncertainty studied in the literature on replanning.

van Riessen et al. [77] develop a method to create decision trees to support real-time
container transport planning with stochastic order arrivals. When an order arrives to
transport a container, the container is immediately allocated to a service (e.g., truck or train)
by a decision tree. The decision trees are obtained with a machine learning technique that
is trained using historical demand data. This method is compared to a first come, first
serve approach that assigns orders to the earliest available service and a greedy approach
for which incoming orders are assigned to the cheapest feasible service at their arrival. In
80% of cases, the decision tree outperforms the other approaches. As the decision trees in
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this study are based on historical data, they lead to better solutions when demand follows
the same historical patterns.

5.2. Solution Methods

The addition of real-time information renders operational problems much more com-
plex to solve. Moreover, fast algorithms are needed due to the short planning horizon. In
contrast to studies on tactical problems, exact solution methods are rare in operational
studies and only used on small instances. Qu et al. [25] model their problem as a MILP
and consider a small test instance with six terminals, which is solved within seconds in
CPLEX. van Riessen et al. [69] apply linear programming on an instance with ten terminals.
Stochastic integer programming is used by Di Francesco et al. [76] on a network with
five ports.

Metaheuristics are used by Bock [66], Escudero et al. [68] and van Riessen et al. [77]
to generate decision trees. Escudero et al. [68] propose a genetic algorithm. Rivera and
Mes [72] use a metaheuristic. The test instances from Bock [66] contain five hubs, between
210 and 399 depots and 57,100 routes. Escudero et al. [68] and Rivera and Mes [72] applied
their heuristic on Solomon instances [78]. Sun and Schonfeld [70] apply a direct search
method on small instances.

Lam et al. [75], Topaloglu [74] and Rivera and Mes [71] employ approximate dynamic
programming. Lam et al. [75] conclude that methods yielding good results for small
instances may not be extendable to larger instances. Topaloglu [74] concludes that linear
approximations generally lead to poor solutions but have low run times, while piecewise-
linear approximations are preferable in most situations.

6. Discussion and Future Research Directions

The previous sections reviewed the existing literature on intermodal and synchro-
modal transport planning with uncertainties, with each section focusing on a specific
planning level. The current section presents a discussion of the most relevant findings of
this study.

The review shows that there is a growing interest in studying the issue of uncertainty
in inter- and synchromodal transport planning (e.g., more than half of the reviewed studies
were published from 2015 onwards). Yet, it is clear that this topic still offers plenty of
research challenges.

One of the objectives of this review was to identify the types of uncertainty already
considered in the literature, which are listed by planning level in Table 1. The most studied
types of uncertainty among all planning levels are stochastic demand and stochastic transit
times. However, large differences are observed between planning levels. Only a few studies
include hub failures and cost uncertainty, so more research could be done on those topics.
Uncertain departure times and cancellations are included in a single study on operational
planning, but might not have a significant impact on long-term planning. The need for
more research attention on the issue of uncertainty is also clearly demonstrated by the fact
that the number of studies that combine several types of uncertainty is still very limited.
This is especially true for studies that combine more than two types of uncertainty.

Uncertainty is scarcely studied at the strategic level, which contains the fewest studies
out of all planning levels. At this level, stochastic demand is the most studied, followed by
stochastic transit times, costs and finally uncertain hub capacity and failures. Uncertain
vehicle capacities are not studied at the strategic level, which could be a future research
opportunity. Stochastic demand and transit times are jointly studied, as well as stochastic
demand and hub failures. However, stochastic transit times and hub failures are not jointly
studied. The optimal number of hubs is lower when including stochastic transit times if
time-windows are strict, because more freight is delivered by faster direct shipping [36].
Meanwhile, it is optimal to have sufficient excess capacity in the case of hub failures,
which might lead to more hubs [38]. Considering these opposite results, it would be
interesting to research both uncertainty types simultaneously. Capacity utilisation can
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be increased by allowing orders to be split [39], which was shown to lower capacity
requirements in a study that included stochastic demand. A research opportunity would
be to investigate the possible interactions between splitable orders and uncertainties other
than stochastic demand.

At the tactical level, the following insights are learned on the impact of uncertainty:

• To mitigate the effect of stochastic transit times, routes with lower transit time vari-
ability are chosen [50] and larger time buffers between successive departures are
established [48].

• A measure against stochastic demand is to design service networks with increased
consolidation opportunities [51,55].

• The share of road transport is higher when considering stochastic demand, transit
times or capacity compared to a deterministic setting.

A clear difference is seen in types of uncertainty between SND and NFP problems.
Most studies on SND include stochastic demand, whereas it is only included by a few
studies on NFP. The opposite is true for capacity uncertainty, where only one study on
SND assumes that the actual capacity can differ from the scheduled capacity, compared
to six studies on NFP. This is because most studies on SND assume that service networks
are determined in advance when demand is not known yet. In contrast, most studies on
NFP assume demand is known before the planning starts. This distinction is not present
for stochastic transit times. A future research opportunity would be to investigate vehicle
capacity uncertainty in SND problems.

Differences in studied uncertainties between problem types are also observed at the
operational level. An equal number of studies on replanning include stochastic transit
times and demand, as opposed to studies on resource management where a greater focus
is placed on stochastic demand. Research on capacity uncertainty in operational planning
is scarce, with two studies on replanning and none on resource management. There are
noticeably fewer studies on operational planning than tactical planning. In the case of
replanning, a possible explanation is that it is only performed after the arrival of new
information, at which point a deterministic problem could be considered. A measure
against stochastic transit times and demand at the operational level is to include buffer
capacity [66]. Similarly to the tactical level, road transport has a higher share when
accounting for uncertainty [67].

Studies that integrate multiple planning levels are very limited. For instance, there are
no studies that combine strategic decisions and tactical or operational decisions. At the
tactical level, studies on SND with two-stage models could be regarded as a combination
of tactical and operational decisions. Designing the service network in the first stage is
a tactical decision made for several periods, whereas the short-term recovery actions in
the second stage correspond to operational decisions. However, only one of these studies
updates routes in the second stage [55]. In the other two-stage models, it is assumed
that all excess demand is outsourced at a fixed cost. It would be interesting to further
investigate the benefits of accounting for short-term recovery actions when making longer
term decisions.

An ongoing challenge is to find efficient solution methods for large problem instances.
Even though the planning problems are computationally difficult to solve, exact solution
methods are frequently used in combination with small theoretical instances. Although
valuable insights can be learned from these smaller instances, the solution methods are
rarely suited to solve realistically sized problems. Different metaheuristics have been
proposed that solve planning problems significantly faster than exact methods. An oppor-
tunity is to further research metaheuristics and to experiment on larger instances, which
might lead to larger differences in computational time between algorithms. This could
reveal which algorithms are better suited to solve real-sized problems, which is espe-
cially important for operational decisions with short planning horizons. Algorithms that
can solve real-time transport planning problems are also a prerequisite of synchromodal
transport [22].



Sustainability 2021, 13, 3980 22 of 25

Based on the current literature, it is not possible to determine the most efficient
algorithm for each specific problem. Regarding metaheuristics, tabu-search, simulated
annealing, genetic algorithms and ant-colony optimisation have been proposed, but a
comparison between these methods is missing. Simulation–optimisation also showed
promising results when applied on SND problems. The lack of a reference problem
complicates the comparison between solution methods, since each study considers a
different variant. Using benchmark data would also make it easier to identify more efficient
solution methods. For the time being, most studies use their own datasets. It would be
valuable to compare different solution methods, for instance in a meta-analysis, to gain
insight into the most efficient one in specific situations.
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