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Abstract
Parameter estimation is often considered as a post selection problem, i.e. the parameters of interest are often estimated
based on “the best” model. However, this approach does not take into account that “the best” model was selected
from a set of possible models. Ignoring this uncertainty may lead to bias in estimation. In this paper, we present a
Bayesian variable selection (BVS) approach for model averaging which would address the model uncertainty. Although
averaging would be preferred approach, BVS can be used as well for model selection if the interest is to select one
among the set of candidate models. The performance of Bayesian variable selection is compared with the information
criterion based model averaging on real longitudinal data and through simulations study.

KEYWORDS
Clustering, Bayesian Modeling, Model selection, Multimodal Inference, Bayesian Variable Selection, Information
criteria.

1. Introduction

In situations where the underlying goal of model selection is parameter estimation or prediction and/or no single
model is overwhelmingly supported by the data, inferences and estimation can be made from several, even all,
plausible models under consideration using model averaging techniques. Parameter estimates or predictions ob-
tained by model averaging are advocated since they reduce model selection bias and account for model selection
uncertainty (Draper 1995, Hoeting et al. 1999, Burnham and Anderson 2003, Johnson and Omland 2004, Claeskens
and Hjort 2008, Lin et al. 2012).

The model averaging approach to incorporate model uncertainty into estimation and inferences relies on
weighting model-specific parameter estimates with the posterior probability of the corresponding model. Various
strategies have been suggested both under the frequentist (Burnham and Anderson 2003, Claeskens and Hjort
2008, Lin et al. 2012) as well as under the Bayesian paradigm (George and McCulloch 1993, Carlin and Chib
1995, Kuo and Mallick 1998). In the frequentist framework, the posterior model probabilities are estimated based
on the Akaike information criterion (AIC, Akaike 1974) or the Bayesian information criterion (BIC, Schwarz
1978). Other information criterion, such as the Watanabe–Akaike information criterion (WBIC, Watanabe 2013),
approximations to the marginal likelihood can also be used. In the Bayesian context, Bayesain variable selection
(BVS) approaches that combine variable (model) selection with estimation of the unknown model parameters
based on a spike and slab prior were proposed by George and McCulloch (1993), Carlin and Chib (1995), Kuo and
Mallick (1998). Within the BVS, a variable indicator that allow for exclusion of possible predictors is introduced
into the model. The resulting model averaged parameter estimates are a by-product of the variable selection
procedure. In this paper we will investigate the Bayesian variable selection approach of Kuo and Mallick (1998)
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extensively studied by Kasim et al. (2012) and Otava et al. (2014, 2017) in the context of order-restricted dose
response modelling.

The current paper has two main objectives. The first is to illustrate the usage of Bayesian variable selection
method for parameter estimation in longitudinal count data setting while taking in to account model uncertainty.
The performance of the BVS method is compared with alternative methods based on information criteria in both
real life case studies and simulation study. The second objective is to investigate the effect of prior specification
for the model specific parameters on the performance of the BVS method.

For completeness, we will address the use of BVS as model selection tool. We present a simulation study
in which the performance of the BVS model is compared with other model selection procedures based on the
AIC, BIC and deviance information criterion (DIC, Spiegelhalter et al. 2002). All methods for model selection are
applied for the case study as well.

This manuscript is organized as follows. The Anopheles mosquito count data set used to illustrate the method-
ology presented in this paper is described in Section 2. The methodological background for both the information
criteria (IC) based methods and the BVS method is summarized in Section 3. The two approaches are applied to
the Anopheles mosquito count data set in Section 4 and the results are evaluated. A large scale simulation study,
conducted to compare the performance of the IC based methods with the BVS method is presented in Section 5.
Finally, the findings are summarized and discussed in Section 6.

2. Case Study

Indoor resting Anopheles mosquitoes count data presented by Degefa et al. (2015) is used for illustration of the
BVS method and for the comparison between the BVS and the information IC based model averaging approaches.
The authors conducted a longitudinal entomological and parasitological study in Jimma town, Southwest Ethiopia
to investigate the impact of resettlement on malaria incidence and transmission intensity. For a complete discussion
about the study area and setting we refer to Degefa et al. (2015). Briefly, data were collected from two groups of
villages where the first group (at risk) are villages from resettlement area that are recently inhabited which are
believed to be prone to an increase in malaria transmission due to ecological transformation (i.e., suitable mosquito
breeding sites created as a result of the resettlement) and the second group (control) are villages from the centre
of the town which has been inhabited for long time. The data is displayed in Figure 1.

For the entomological study, adult Anopheles mosquitoes resting inside human habitations were collected
monthly (June, 2013 - November, 2013) from 20 selected houses per village using pyrethrum spray catches (PSCs).
The outcome of interest is the number of female Anopheles mosquitoes observed in the selected household at each
observation time. The research question is whether or not the ecological transformation increases female Anopheles
mosquito abundance. That is, do households from the resettled area have a higher mosquito count as compared
to non-resettled area?

3. Methodology

Model-building for generalized linear models and their extensions involves choosing the independent variables,
the link function, the variance function and the distribution of the response variable (McCulloch and Neuhaus,
2005). Each possible combination of independent variables (i.e., predictors), link function and variance function
corresponds to a different model. In this paper, we consider the case where the model uncertainty is related to
variable selection and therefore the models considered differ only in the form of the linear predictor. Accounting
for the other sources of model uncertainty such as distributional assumption, the choice of the link function and
variance function are beyond the scope of this paper.

The variable selection problem arises when there is an unknown subset of the proposed predictors for which
the corresponding parameters equal to zero. Thus, this subset of predictors should not be included in the model.
Within the frequentist modelling framework, many methods have been proposed for the selection of suitable
predictors including those that sequentially delete or add predictors using the change in mean squared error
(forward, backward, and stepwise procedures, Hocking 1976) and those based on information criterion such as BIC
(Schwarz, 1978) and AIC (Akaike, 1974). Within the hierarchical Bayesian modelling framework, the deviance
information criterion (DIC) was proposed by Spiegelhalter et al. (2002) for variable selection. For both approaches,
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Figure 1. Female Anopheles mosquito count data. Household specific (top left), average profile (top right), his-
togram of total Anopheles mosquito count data (bottom) for at risk and control villages, Jimma town, South west
Ethiopia (June to November 2013).

the estimation and inference of the unknown parameters of the final model is done after the variable selection and
therefore the uncertainty due to the number of models fitted in the first stage is ignored. In this paper, we focus
on a different approach, the Bayesian variable selection approach. Within this approach, the posterior probability
that a single variable should be included in a model (the posterior inclusion probability) can be estimated and the
estimation of individual contribution of the predictors can be done by averaging the parameter estimates obtained
across several models. In Section 3.1, we briefly discuss the main concepts behind the BVS approach while in
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Section 3.2 we formulate a BVS model for the Anopheles mosquitoes count data. Section 3.3 is devoted to model
selection procedure based on information criteria.

3.1. Bayesian Variable Selection: An Introduction

3.1.1. Formulation for a Bayesian Variable Selection Model

The Bayesian variable selection (BVS) method allows us to formulate one model for a set of candidate
models. Several Bayesian variable selection methods that combine variable selection and estimation through the
use variable selection priors, i.e. spike and slab priors, have been developed in the last three decades (Miller, 2002).
This approach was first proposed by Mitchell and Beauchamp (1988) for BVS with normal linear regression models
where the spike and slab distribution for a parameter in the model is defined as a mixture of a point mass at 0
and a diffuse uniform distribution elsewhere. An alternative spike and slab procedure in which the subset selection
is derived from a prior of a hierarchical normal mixture model were proposed by George and McCulloch (1993).
Their methods, however, require to choose the tuning factors that specify the two variances in the normal mixture
models in the first stage of the hierarchical prior. In this paper, we focus on the prior specification proposed by
Kuo and Mallick (1998) which is based on a binary indicator variable embedded into the model’s mean structure
that determines whether the unknown parameter belongs to the slab or spike part of the prior.

Let Yij be a longitudinal outcome of interest for the ith subject at time j. We further assume that E(Yij) = λij ,
and we formulate a generalized linear mixed effects model (Molenberghs and Verbeke 2005) for Yij so that g(λij) =

ηij = Σp
k=0βkXik + ΣQ

q=0biqZiq where, g is a known link function, β0, . . . , βp are the unknown fixed parameters and
bi0, . . . , biQ are subject specific random effects. Our aim is to select a subset of covariates from X1, . . . , Xp that
will be included in the model. Let γk be an indicator variable, k = 1, . . . , p such that γk = 1 if predictor Xk, is
included in the model and γk = 0 otherwise and let θk = γkβk. Then, for a random intercept model (for brevity,
we will simply write bi0 as bi), the linear predictor is given by

ηij = β0 +

p∑
k=1

γkβkXik + bi = β0 +

p∑
k=1

θkXik + bi, (1)

where bi is a normal distributed random intercept, bi ∼ N(0, σ2b ), used to account for a possible correlation among
the observations of the same subject (Molenberghs and Verbeke 2005). Note that we assumed all the competing
models to include an intercept term β0.

For a set of p covariates there is a set of 2p candidates model M1, . . . ,M2p determined by the configuration of
the vector γ = (γ1, . . . , γp). The variable selection component within the model formulated in (1) entails estimat-
ing γ1, . . . , γp while the parameter estimation component (accounting for model uncertainty) entails estimating
θ1, . . . , θp. This can be done using MCMC simulation successively sampling from the joint posterior distribution
of γk and θk.

Kuo and Mallick (1998) assumed that the indicators, γk, and the parameters under selection, βk, are indepen-
dent a priori, P (γk, βk) = P (γk)P (βk). The usual approach is to assume βk, k = 1, . . . , p are chosen independently,
each with a normal prior N(µβk

, σ2βk
). The choice of µβk

and σ2βk
reflects our prior belief about the mean and

variance of βk in the full model with all γk = 1. Kuo and Mallick (1998) treat σ2βk
as fixed and given a moderately

large constant value. Specifically, they suggest choosing a value in the range [1/2, 4] for σβk
. For a cross-sectional

linear regression case, Geweke (1996) assumed σ2βk
as fixed and set its value to be equal to the changes of yi divided

by the changes of Xik for each k. On the other hand, O’Hara and Sillanpää (2009) recommend to treat σ2βk
as

random rather than fixed and to place a hyperprior distribution, such as a

σ−2βk
∼ Γ(a, b) or σβk

∼ U(a, b).

O’Hara and Sillanpää (2009) advocate that hierarchical variance will pull the posteriors for the βk’s towards the
right part of the parameter space, so that when γk = 0, βk will be sampled from close to the correct part of the
parameter space, and will greatly improve mixing. The inclusion parameters γk are assumed to follow a Bernoulli
distribution, that is

γk ∼ B(πk).
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The probability πk is called the inclusion probability and it reflects the preference for including the kth predictor
in the model and it is assumed (Scott et al., 2010) that

πk ∼ U(0, 1).

3.1.2. Posterior Model Probability

A MCMC simulation is used to estimate the model and, as mentioned above, variable (and model) selection is
done based on the configuration of γ. The posterior mean of γk, obtained through MCMC simulation, represents
the posterior inclusion probability of βk in the model (O’Hara and Sillanpää, 2009). Furthermore, the computation
of the posterior model probability for each of the candidate models is achieved by defining an appropriate trans-
formation function on the indicators γk that uniquely identify all the possible models (Ntzoufras, 2011; Kasim
et al., 2012; Otava et al., 2014),

G = 1 +

p∑
k=1

γk2
(k−1). (2)

Denoting the candidate models by gr, r = 0, ..., R, R = 2p−1, the posterior probability of G = r+1 defines uniquely
the posterior probability of a specific model gr, P (gr|Data), and it can be estimated by taking the proportion of
times model gr is selected over the total number of visited models during the MCMC simulation,

P̂ (gr|Data) =
1

L

L∑
`=1

I(g` = gr), (3)

where g` is the model visited in iteration ` of the Markov chain, I() is an indicator function which equal to 1 if
g` = gr and zero otherwise and L is the total number of MCMC iterations.

3.1.3. Model Averaged Estimates

One characteristic of the BVS approach is the ability to provide a model averaged parameter estimate as
part of the MCMC simulation. The posterior mean of the parameter θk from the MCMC simulation is a model
averaged estimate, weighted by the posterior probabilities of the models, i.e. θk = 1/L

∑L
`=1 θ̂

`
k, where in each

iteration `, one model gr is considered and estimate θ̂`k is obtained. In other words, each model contributes to the
final estimate of the parameters to the extent determined by the posterior probability of that model being the
true underlying model.

3.2. Model Formulation for Anopheles Mosquitoes Count Data

3.2.1. Hierarchical Bayesian Model

Let Yij be the mosquitoes count for the ith household at the jth time point, i = 1, . . . , 40 and j = 1, . . . , 6.
We considered a hierarchical generalized linear mixed effects model. For the first stage of the model, we assume a
Poisson likelihood for the count data, that is, Yij |bi ∼ Poisson(λij) with linear predictor given by

ηij = log(λij) = β1 + β2Ii + (β3 + β4Ii)tij + bi, (4)

where β = (β1, β2, β3, β4)
′ is the parameter vector of the “fixed effects”, and the random effect bi is a household

specific parameter which captures a possible correlation among the observations from the same household over
time, and Ii is an indicator variable which takes value 1 for a household from “at risk” (resettled area) village and
0 for a household from a control village. Hence, the linear predictor is given by

ηij =

{
(β1 + β2) + (β3 + β4)tij + bi if at risk,
β1 + β3tij + bi if control.
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We denote the model formulated in (4) by g3. The following priors and hyperpriors are assumed for the unknown
parameters of the model:

β` ∼ N(0, τ−1β`
), τβ`

∼ Γ(1, 1), ` = 1, ..., 4,

bi ∼ N(0, τ−1b ), τb ∼ Γ(10−3, 10−3).

(5)

3.2.2. Bayesian Variable Selection Model

We considered four competing models for which the mean structures are presented in Table 1. Model g3 is the
full model discussed in the previous section. Model g0 (the null model) assumes that both village types share the
same mean structure (i.e., identical intercept and slope), model g1 assumes identical slopes but different intercept
and model g2 assumes that both village types shares the same intercept but differ in their time trend.

Table 1. Configuration of γ, G and the mean structure of all models.

Model mean structure γ G

g0 ηij =

{
β1 + β3tij if at risk,
β1 + β3tij if control.

(0,0) 1

g1 ηij =

{
(β1 + β2) + β3tij if at risk,
β1 + β3tij if control.

(1,0) 2

g3 ηij =

{
β1 + (β3 + β4)tij if at risk,
β1 + β3tij if control.

(0,1) 3

g3 ηij =

{
(β1 + β2) + (β3 + β4)tij if at risk,
β1 + β3tij if control.

(1,1) 4

Next, we formulate a BVS model that allows us to select between the competing models. The linear predictor
for the model is given by

ηij = log(λij) = β1 + γ1β2Ii + (β3 + γ2β4Ii)tij + bi. (6)

Let γ = (γ1, γ2) be an indicator vector, for which the the configuration of γ, defines uniquely one of the four
possible model presented in Table 1,

γ =


(0, 0), neither β2 nor β4 are included in the model, g0,
(1, 0), only β2 is included in the model, g1,
(0, 1), only β4 is included in the model, g2,
(1, 1), both β2 and β4 are included in the model, g3.

(7)

To complete the specification of the BVS model, we specify the same priors and hyperpriors defined in Equation
(5) for β`, ` = 1, ..., 4, bi and for the inclusion parameters we assume

γm ∼ Bernoulli(πm),

πm ∼ U(0, 1), m = 1, 2. (8)

Alternatively, a Beta(a, b) prior can be assumed for πm, where the value of a and b are determined by the available
prior information regarding the candidate models (see section 7 of the supplementary appendix).

For a given configuration of γ, both the transformation function G given in (2) and the model posterior
probability can be calculated. For example, the posterior probability of the null model (see Table 1) is given by

P (γ = (0, 0)|Data) = P (G = 1|Data) = P (g0|Data).

6



The posterior probability of the other models can be calculated in the same way. Note that the inclusion prob-
abilities of β2 and β4 are P (γ1 = 1) and P (γ2 = 1), respectively. The posterior means for the parameter vector
β will be weighted by posterior probabilities and summed to obtain the model averaged estimate as described in
Section 3.1.3.

3.3. Information Criteria Based Model Averaging

In the previous section, the posterior model probability was estimated using the distribution of the inclusion
parameters γ over the MCMC simulation. Alternatively, one can fit all candidate models and calculate the model
posterior probability using model averaging techniques. Burnham and Anderson (2003) addresses the problem
of accounting model uncertainty through an information criteria (IC) approach. Let g0, . . . , gR be the collection
of all candidate models and let ICr denote an information criterion associated with the rth model. Our aim is
to calculate the posterior probability for each candidate model. The marginal likelihood of rth model can be
approximated by (Burnham and Anderson, 2003; Whitney and Ryan, 2009),

P (Data|gr) = exp(−1

2
∆ICr), (9)

where ∆ICr = ICr − ICmin, with ICmin = minr=0,...,RICr. Assuming equal prior probabilities for all models,
P (gr) = 1/R, we get

P (gr|Data) =
exp(−1

2∆ICr)∑R
`=0 exp(−

1
2∆IC`)

. (10)

Different information criteria can be used to calculate the posterior model probability in Equation (10). For
example, Whitney and Ryan (2009) used the BIC while Lin et al. (2012) and Otava et al. (2017) used both AIC
and BIC. Within the hierarchical Bayesian framework, the DIC (Spiegelhalter et al., 2002) can be used.

If model selection is of primary interest, one can select the model for which P (gr|Data) is maximal which
is equivalent to selection of the model with the smallest IC. However, relaying on a single “best” model is often
unsatisfactory because “the best” model is often highly variable. Alternatively, one can weight the parameter
estimates obtained from each of candidate models by their corresponding posterior model probabilities, P (gr|Data).
The model averaged estimate for a parameter of interest, say θ, can be obtained by (Burnham and Anderson 2003,
Claeskens and Hjort 2008)

θ̂ =

R∑
r=0

P (gr|Data)θ̂r, (11)

and the unconditional standard error given by

ˆV ar(θ̂) =

[
R∑
r=0

P (gr|Data)

√
ˆV ar(θ̂r|gr) + (θ̂r − θ̂)2

]2
, (12)

where, θ̂ denotes a model averaged estimate of θ and θ̂r is the estimate of θ obtained from model gr. The (1−α)100%

unconditional confidence interval is then given by the endpoints θ̂ ± Z1−α/2ŝe(θ̂), where ŝe(θ̂) =

√
ˆV ar(θ̂). This

type of model averaging is applicable for prediction problems or in cases where a particular parameter (e.g., β1
and β3 in the hierarchical model (4) for the Anopheles mosquitoes count data) occurs in all the models in the set.
For the parameters βk associated with predictor variable Xk that appear only in some of the R possible models,

the model averaged estimator, denoted by β̂k, is given by (Burnham and Anderson, 2003)

β̂k =

∑R
r=0 P (gr|Data)Ik(gr)β̂k,r∑R
r=0 P (gr|Data)Ik(gr)

, (13)
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where,

Ik(gr) =

{
1, if predictor Xk in the model gr,
0, otherwise.

Here, β̂k,r is the estimate of βk based on model gr. Burnham and Anderson (2003) termed this estimate a “natural
average” as it only averages βk over models where the unknown βk parameter appears. Note that, the equivalent for
the BVS model of Ik(gr) is the inclusion parameters γk. However, in contrast with Ik(gr), the inclusion parameters
in BVS are consider latent random variables which are estimated within the MCMC simulation and for which
the posterior probability can be estimated according to (3). The main drawback of the approach discussed in the
section is the necessity to fit all candidate models in order to compute the model posterior probabilities.

4. Application to Anopheles Mosquito Count Data

The four models discussed in Section 3.2.2 were fitted to the Anopheles mosquito count data and for each one of
the models, the posterior probability were calculated using AICc (Sugiura, 1978), BIC, and DIC. The BVS model
was fitted as well. For the Bayesian models, the R - package runjags (Denwood, 2016) and the JAGS software
(Plummer et al., 2003) were used to fit the models. Three chains of 60,000 iterations, from which the first 30,000
were considered as the burn-in period and no thinning, were used to estimate the posterior model probabilities
and posterior means for the unknown parameters. Model diagnostics, presented in Section 2 of the supplementary
appendix of the paper, indicate convergence of the parameter of interest. To calculate the AICc and BIC, each of
the competing mixed effect models were fitted using the R - package lme4 (Bates et al., 2015).

4.1. Model Posterior Probabilities

0.00

0.25

0.50

0.75

g0 g1 g2 g3

Modelname

M
o

d
e

lp
ro

b

Method

AICcWt

BICWt

BVS

DICWt

1 2 3 4 5 6

0
2

4
6

8

Month

m
e
a
n
 m

o
s
q
u
it
o
 c

o
u
n
t

Village Type and Method

Control_g1 

 AtRisk_g1

control_BVS

 Atrisk_BVS

Figure 2. The Anopheles mosquito count data. Left panel: Posterior model probability for g0, g1, g2, and g3 com-
puted using AICc, BIC, DIC, and BVS method. Right panel: Sample means, posterior means of the BVS model,
and model g1 for the two groups.

The left panel of Figure 2 shows the posterior model probability of the set of candidate models computed using
all approaches mentioned above. Clearly, model g1 is selected as “the best” model for the data by the BVS, AICc
and BIC approaches with PBV S(g1|Data) = 0.82, PAICc(g1|Data) = 0.65, and PBIC(g1|Data) = 0.59, respectively.
The model posterior probabilities obtained using the DIC supports equally two models, model g1 and model g0,
with PDIC(g1|Data) = 0.37 and PDIC(g0|Data) = 0.37, respectively. The right panel of Figure 2 shows the data,
posterior means obtained for the BVS model and the posterior means for g1. For the BVS model, at each MCMC
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iteration one of the 4 candidate models are fitted to the data and the posterior mean is the average across all
iterations. Due to the fact that the other competing models to g1 have relatively small model posterior probabilities
and the prediction is done conditional on the random effect, the effect of model averaging is not clearly visible in
the figure.

4.2. Posterior Means for the Unknown Parameters

Table 2, presents the model averaged parameter estimates and their corresponding unconditional standard errors
and confidence/credible intervals computed using the approaches described in Section 3. Parameter estimates,
conditional standard errors and conditional credible interval obtained for model g1 are presented for comparison
as well. Figure 3 visualizes the result presented in Table 2. Depending on the parameter of interest, difference in
the approaches on the point estimate, standard errors and confidence/credible intervals are observed. For example,
the model averaged point estimates of the IC based approaches (except the AICc) for β1 are about 17% larger
than the estimate from BVS, the unconditional standard errors of the IC based approaches for β1 are 12% - 37%
larger than the BVS standard error, the model averaged point estimate of the IC based approaches for β2 (the
parameter under selection) are 10% - 19% larger than the estimate from BVS, and the unconditional confidence
intervals of the IC based approaches for β1 and β4 are wider than credible intervals of BVS.

Table 2. Model averaged parameter estimates for the Anopheles mosquito count data for AICc, BIC, DIC, BVS,
and model g1 that was estimated within the hierarchical Bayesian modelling framework. Note that lme4 doesn’t
provide standard errors of variance components.

Model parameters

β1 β2 β3 β4 σb

Method Mean SD LCL UCL Mean SD LCL UCL Mean SD LCL UCL Mean SD LCL UCL Mean SD LCL UCL

AICcWt∗ 0.77 0.26 0.26 1.29 0.81 0.31 0.21 1.41 -0.26 0.04 -0.33 -0.19 -0.02 0.06 -0.14 0.10 0.85
BICWt∗ 0.89 0.32 0.27 1.51 0.79 0.30 0.21 1.37 -0.27 0.03 -0.32 -0.21 0.00 0.07 -0.13 0.13 0.87
DICWt 0.89 0.28 0.33 1.44 0.75 0.31 0.15 1.35 -0.26 0.04 -0.33 -0.19 0.00 0.06 -0.13 0.13 0.93 0.14 0.66 1.21

BVS 0.76 0.24 0.29 1.25 0.68 0.33 0.00 1.21 -0.26 0.03 -0.32 -0.20 0.00 0.02 -0.04 0.02 0.90 0.14 0.65 1.17
g1 0.73 0.23 0.28 1.17 0.73 0.30 0.16 1.34 -0.26 0.03 -0.32 -0.21 0.90 0.13 0.65 1.16
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Figure 3. Model averaged parameter estimates for the unknown parameters with their 95% confidence/credible
intervals. The parameter estimates with 95% credible intervals obtained from “the best” model (g1) are presented
as well.

In this Section, we assume a linear trend over time for the mean structure which leads to 4 possible models.
A comparison of the BVS and IC based approaches using an unstructured mean instead is presented in Section 3
of the Supplementary appendix of this manuscript. Note that using an unstructured mean implies that 64 models
should be fitted if the posterior model probabilities are calculated based on IC while only one model is fitted if the
BVS model is used. Further, we illustrated the application of BVS approach for the random intercept and slope
model and compare the results with the random intercept model reported in this section (see Section 4 of the
supplementary material). Comparison of the two models indicates that, in general, the simpler model, the random
intercept model should be preferred. Both models indicate that model g1 has the best goodness of fit to the data.

5. Simulation Study

5.1. Simulation Setting

A simulation study was conducted in order to compare the performance of the BVS model with IC based methods
using a longitudinal data with six time points in which 20 subjects were measured from two groups: half of the
subjects were assumed to belong to each of the group. Data were generated according to the model

Yij ∼ Poission(λij), i = 1, . . . , 20, j = 1, . . . , 6.

Similar to the model specified in Equation (4), we assume a log-link function and the following linear predictor

log(λij) = (β1 + β2zi) + (β3 + β4zi)tij + bi.

Here, zi is an indicator variable that take the value of 1 for the first group and zero for the second group. The
random intercept is assumed to follow a normal distribution, bi ∼ N(0, σ2b ). Two values for the standard deviation
were used, σb = 0.1, 1 corresponding to weak and strong intra-cluster correlation, respectively. Three set of true
values, shown in Table 3, were used for the regression coefficients to generate the data. The resulting linear
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predictor are shown in Figure S6 of the supplementary appendix for the manuscript. We vary the true value of the
parameters under selection, β2 and β4, in order to study the behaviour of selection of ‘weak (setting 1)’, ‘moderate
(setting 2)’ and ‘strong (setting 3)’ regressors relative to the noise. In total, 500 data sets were generated for

Table 3. True values for the regression parameters used for data generation.

Model β1 β2 β3 β4

Setting 1 g0 2 0 -0.5 0
g1 2 0.2 -0.5 0
g2 2 0 -0.5 -0.75
g3 2 0.2 -0.5 -0.75

Setting 2 g0 2 0 -0.5 0
g1 2 -2 -0.5 0
g2 2 0 -0.5 -0.5
g3 2 -2 -0.5 -0.5

Setting 3 g0 2 0 -0.5 0
g1 2 2 -0.5 0
g2 2 0 -0.5 -1
g3 2 2 -0.5 -1

3× 4× 2 combinations of setting, model and σb, respectively.

For each simulated data sets, the posterior model probabilities, P(gr|Data), were computed according to the
BVS, AICc, BIC and DIC methods. For the IC based methods, including the DIC approach, model averaged
parameter estimates and confidence intervals were calculated according to Equation (13) and the formulation
specified in Section 3.3, respectively. For the BVS model, the model average is the posterior mean obtained for
the model (with the corresponding credible interval). The methods were evaluated based on three criteria: mean
square error and achieved confidence interval coverage, and the correct identification of the true underlying model.

A second simulation study was conducted in order to explore the dependency of the posterior model probability
on the specification of priors for the regression coefficients. Note that, in our BVS model formulation for Anopheles
mosquito count data model (See Section 3.2.1) we assume the unknown parameters β` are drawn from N(0, σ2β`

),

where, σ2β`
is a variance parameter to be estimated. Our aim is to investigate the impact of assuming that the

variance, σ2β`
, is a fixed parameter compared with the setting in which a hyperprior is specified for σ−2β`

. For the first

setting it was assumed that σ2β`
= 0.1, 0.2, . . . , 10 while for the second setting it was assumed an inverse-gamma

distribution for the variance parameter,

σ−2β`
∼ Γ(α, α),

with α = 0.001, 0.01, 0.1, and, 1.

We extended the above simulation study for n = 40. The simulation setting and result are discussed in details
in Section 8 of the supplementary appendix.

5.2. Simulation Results

5.2.1. Model Selection

We first evaluate the performance of the different approaches discussed in terms of their correct selection rate
of the true data generating model. The results are presented in Figure 4 and Figure 5. Figure 4 shows the posterior
model probability obtained for the true data generating model and Figure 5 shows the correct selection rate of the
true model. Per simulation, the first is estimated by (3) for the BVS model and by (10) for the IC and averaged
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across the 500 simulations and the second estimated by

π̂(gr) =
1

500

500∑
s=1

I(gs = gr), (14)

where gs is the model with the highest posterior model probability (“best” model) for the sth simulated data and
I() is an indicator function which equal to 1 if gs = gr and zero otherwise (note that gr is the true model used to
generate the data).

Since the competing models g0−g2 arise depending on whether β2 and/or β4 are excluded from the full model
g3, as expected, the correct selection of the true underlying model is highly dependent on the magnitude of these
two parameters relative to noise. For strong effect size (i.e., setting 3 with β2 = 2 and/or β4 = −1) all approaches
performs well, particularly in selecting the complex model (model g3). As shown in Figure 4, for σb = 0.1, the
mean posterior model probability for model g3 is equal to one for all approaches (i.e., all approaches select model
g3 100% of the time as “the best” model) when the data is generated from model g3. In setting 2, we used a strong
intercept term (β2 = −2) with a weak slope term (β4 = −0.5). For this setting, the BIC method outperform the
other methods when the data are generated using models g0, g1 and g2 while failing to select the most complicated
model. When the data are generated under g3 both Bayesian methods outperform the AIC and BIC approaches
(for both σb = 0.1 and 1). In setting 1, we used a weak intercept term (β2 = 0.2) with a moderate slope term
(β4 = −0.75) and all approaches show poor performance in detecting models which include these parameters
(model g1 and g3). Exact values for the results presented in Figure 4 and 5 are presented in Section 5 of the
supplementary appendix for the manuscript.
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Figure 4. Mean posterior model probability for the true underlying model averaged over 500 simulations.
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Figure 5. The proportion of times the true underlying model was selected as “best” model according to value of
posterior probability over 500 simulations.

The results for the simulation setting with n = 40 indicate the same patterns. Further results are presented in
Section 8 of the supplementary appendix. A simulation study for random intercept and slope model was conducted
as well. The results of the simulation study lead, in general, for the same conclusions as reported in this section. An
elaborate discussion about the simulation setting and result is presented in detail in Section 9 of the supplementary
appendix.

5.2.2. Estimation - Model Averaging

Figure 8 - 6 shows the parameter estimates, standard error (SD), achieved confidence/credible interval coverage
and associated mean squared error (MSE) of the parameters estimates for the simulation study using true values
from setting 1 - 3. Overall, all approaches lead to a similar model averaged parameter estimates and comparable
confidence/credible interval coverage. Compared to the IC based approaches, BVS leads to more precise (lower
standard error and lower mean squared error) parameter estimates for all settings and data generating models.
In particular, the standard error and mean squared error estimate for β2 obtained from BVS is consistently lower
than the estimates obtained from the IC based approaches. Exact values for the results presented in Figure 8 - 6
are presented in Section 5 of the supplementary appendix for the manuscript.
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Figure 6. Results of simulation study for Setting 1 for 500 simulations. Top to bottom: model averaged parameter
estimate, standard error of parameter estimates, 95% CI coverage, and mean squared error, respectively.
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Figure 7. Results of simulation study for Setting 2 for 500 simulations. Top to bottom: model averaged parameter
estimate, standard error of parameter estimates, 95% CI coverage, and mean squared error, respectively.
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Figure 8. Results of simulation study for Setting 3 for 500 simulations. Top to bottom: model averaged parameter
estimate, standard error of parameter estimates, 95% CI coverage, and mean squared error, respectively.

5.2.3. Prior Specification for the Regression Coefficients

In this section, we evaluate the dependence of the posterior model probability computed using BVS on the
variance of the prior distribution of the unknown parameters. The results of the simulation study are shown in
Figure 9. When we treat σ2β`

as a fixed value the resulting posterior model probability from BVS is dependent on
the constant value assumed for σβ`

. For model g0 - g2, assuming a higher value for σβ`
leads to a higher posterior
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model probability for true data generating model and the result is comparable to the one where a hyper-prior is
assumed for σ2β`

. Conversely, assuming large values for σβ`
leads to wrong selection of the true model when the

true data generating model is model g3. When we treat σ−2β`
as a random effect coming from a Γ(α, α) distribution,

the resulting posterior model probability is robust against the choice of α value.
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Figure 9. Dependency of posterior model probability on the prior specification for unknown parameters under
selection by the true models. Left panels: β` ∼ N(0, σ2β`

) and σβ`
is fixed as described in Section 5.1. Right panels:

β` ∼ N(0, σ2β`
) and σ−2β`

∼ Γ(α, α)]. Red line: g0, green line: g1, blue line: g2, and pink line: g3.

6. Discussion

The manuscript discusses the Bayesian variable selection method for the model averaging in context of longitudinal
study. It demonstrates its performance using real world data and simulation study. A comparison with alternative
methods based on information criteria (IC) using AICc, BIC, and DIC was conducted using both a real data
set and simulation study. The performance of all approaches was comparable, nevertheless, BVS leads to more
precise (lower standard error and lower mean squared error) parameter estimate for regression coefficients under
all settings.

The advantage of BVS compared to the aforementioned IC based methods is its unified framework for model
averaging and model selection. While posterior model probabilities or inclusion probabilities can be used as a
model selection tool, the final parameter estimates returned from the MCMC simulation are weighted average of
model-specific estimates according to the posterior model probabilities. Similarly, the model averaged estimates
which takes model uncertainty into account can be obtained for IC methods by averaging model-specific estimates
according to the appropriate model weights. However, computation become cumbersome and sometimes impossible
as fitting each candidate models separately is required to compute the model averaged estimates, unconditional
standard errors and unconditional confidence intervals.

In addition, the BVS approach has several advantages including (1) subjective prior can be applied if available,
(2) additional functions of parameters can be easily computed from MCMC chains, and (3) model convergence is
not an issue for complex models compared to the frequentist approach.

The magnitude of the true regression coefficient under selection was found to be an important factor for a
correct model selection. All approaches perform well when the magnitude of the true regression coefficient under
selection is large relative to noise. On the other hand, when the magnitude of the true regression coefficients
under selection are small relative to noise, the AICc and BIC approaches failed to detect the true model when the
true underlying model contained these parameters. Relatively, the BVS approach performs well in such situations.
Regarding the model averaged parameter estimation, all approaches lead to similar result, except the difficulties
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one faces in obtaining these results using the IC based approaches. Our simulation study also highlights the
importance of assuming a prior distribution for the hierarchical variance parameter rather than treating it as a
fixed value in BVS model formulation.

In this paper, we only considered the application of BVS on the mean structure, i.e., for the “fixed effect”
components of the model. The BVS approach can be extended to selection of random effect components as well
(see for example, Yang et al., 2020). Further, we assumed independence between the regression coefficients in our
prior specification. The BVS model presented in this paper can be extended to situation where the predictors are
correlated by considering priors that take in to account possible dependence among regression coefficients (Griffin
et al., 2017).
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