
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Fractal analysis of planar nilpotent singularities and numerical applications

Peer-reviewed author version

Horvat Dmitrovic, Lana; HUZAK, Renato; Vlah, Domagoj & Županovic´, Vesna

(2021) Fractal analysis of planar nilpotent singularities and numerical applications.

In: JOURNAL OF DIFFERENTIAL EQUATIONS,  293, p. 1-22.

DOI: 10.1016/j.jde.2021.05.015

Handle: http://hdl.handle.net/1942/34091



Fractal analysis of planar nilpotent

singularities and numerical applications

Lana Horvat Dmitrović1, Renato Huzak2,
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Abstract

The goal of our work is to give a complete fractal classification of
planar analytic nilpotent singularities. For the classification, we use the
notion of box dimension of (two-dimensional) orbits on separatrices gen-
erated by the unit time map. We also show how the box dimension of the
one-dimensional orbit generated by the Poincaré map, defined on the char-
acteristic curve near the nilpotent center/focus, reveals an upper bound
for the number of limit cycles near the singularity. We introduce sim-
ple formulas for numerical calculation of the box dimension of one- and
two-dimensional orbits and apply them to nilpotent singularities.
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map, characteristic curve, numerical methods

Mathematical Subject Classification (2020): 34C07, 37C45, 37G10,
37M20

Address: 1, 3 and 4: University of Zagreb, Faculty of Electrical Engineering
and Computing, Department of Applied Mathematics, Unska 3, 10000 Zagreb,
Croatia

2: Hasselt University, Campus Diepenbeek, Agoralaan Gebouw D, 3590
Diepenbeek, Belgium

1



Nilpotent singularities 1

1 Introduction

The connection between discrete and continuous dynamical systems has played
an important role in bifurcation theory. One of the most commonly used connec-
tions is the connection via Poincaré map near the focus, limit cycle, homoclinic
or heteroclinic loops and other polycycles. In [3], authors study the germs of
diffeomorphisms in the plane by embedding them in the germ of an appropriate
flow. The problem of embedding the diffeomorphism in the flow is solved by
showing that a C0 or Cr diffeomorphism is conjugated to the unit-time map
of a flow of appropriate vector field. The reason for studying diffeomorphisms
with this method is that the study of planar vector fields is generally easier than
the study of planar diffeomorphisms. The unit-time map approach is also used
to treat strong resonance cases in planar discrete dynamical systems (see e.g.
[11]).

With our paper we pursue a twofold goal. Firstly, we give a complete frac-
tal classification of analytic nilpotent singularities in a two-dimensional setting
(the linear part of a nilpotent singularity is conjugated with y ∂

∂x ). Our fractal
analysis is based on the notion of the box dimension of orbits generated by the
unit-time map which tend to the (nilpotent) singularity along separatrices. On
the other hand, we numerically compute the box dimension of (two-dimensional)
orbits along separatrices and of their (one-dimensional) projections.

In [2] one finds all possible phase portraits of planar analytic nilpotent sin-
gularities (see also Theorem 1). One typically divides the nilpotent singularities
into three cases (Hamiltonian like case, singular like case and mixed case) and
blows up the singularity, where the chosen blow-up formula is depending on the
case. Then one finds the type of singularity and detects all possible separa-
trices by means of the blown-up vector field (for more details see Section 2.1).
As mentioned above, our focus is on the fractal analysis of the unit-time map
along the separatrices (see Section 2), except for the center/focus type which
has no separatrices and where we have to deal with the fractal analysis of the
Poincaré map defined on the so-called characteristic curve (see Section 3). Note
that in the C∞-setting the same fractal analysis is also possible, except for the
center/focus type and the nilpotent singularities with the multiplicity equal to
∞ (see Remark 1). In this paper, the multiplicity of a nilpotent singularity is
denoted by m.

One of our motivations is that in some cases we can read the cyclicity (i.e.
the maximum number of limit cycles) of a nilpotent singularity from the box
dimension (see Section 3). We also note that in discrete dynamical systems
the box dimension of orbits near a fixed point at the bifurcation point jumps
from the trivial value (zero) to the corresponding value associated with the
multiplicity of the fixed point and the type of bifurcation. In this way, the box
dimension indicates the multiplicity, i.e. the maximum number of singularities
that can bifurcate from the fixed point. Bifurcations of discrete systems related
to the change of the box dimension of an orbit were studied in [7, 8, 13]. In the
case of continuous systems, Hopf-Takens bifurcations have been studied using
the box dimension of spiral trajectories of normal forms and of orbits generated
by the Poincaré map in [20, 22]. According to [7, 8], the change in box dimension
can be seen in the unit-time map of one-dimensional or planar semi-hyperbolic
continuous systems. The remaining cases in the (continuous) planar setting are
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nilpotent and more degenerate singularities. In our paper we concentrate on
the fractal analysis of the nilpotent singularities.

In [12] there is a new method to study the cyclicity of the nilpotent focus by
means of a generalised polar coordinate transformation. The Poincaré successor
function and the Lyapunov constants give the upper bound for the number of
limit cycles. In [6] it has been proved that the upper bound for the cyclicity of
the nilpotent focus is directly related to the first non-zero Lyapunov constant of
the projection on the x-axis of the Poincaré map defined on the characteristic
curve.

In our work we connect the result from [6] with the box dimension of any orbit
of the Poincaré map on the characteristic curve and obtain a simple sufficient
condition (expressed in terms of the box dimension) for the upper bound for
the cyclicity of the nilpotent focus.

Since the box dimension is defined for bounded sets, we investigate sequences
(orbits) of points that have a limit at singular point (origin). So we are interested
in the trajectories that contain the origin. Sometimes we deal with the box
dimension of a map instead of an orbit (e.g. the box dimension of the unit-time
map, etc.) It is equal to the box dimension of any orbit (on a fixed separatrix)
generated by the map. The box dimension will be independent of the selected
orbit (for more details see Section 2.3).

The box dimension was defined using the leading term of asymptotic ex-
pansion of the volume of the ε-neighborhood of a set. Considering some other
terms, more properties of the considered dynamical system can be obtained.
Normal forms of parabolic diffeomorphisms were considered in [15, 16] using
the fractal approach. Formal embeddings of Dulac maps in flows of vector fields
in the one-dimensional case were investigated in [14]. More about applications
of fractal dimensions in dynamical systems can be found in [21].

Now we recall the concept of the box dimension. For further details see for
example [5, 19]. Let A ⊂ RN be bounded. The ε-neighborhood of A is defined
by Aε = {y ∈ RN : d(y,A) ≤ ε}. Let s ≥ 0. The lower and upper s-dimensional
Minkowski contents of A are defined by

Ms
∗(A) := lim inf

ε→0

|Aε|
εN−s

, M∗s(A) := lim sup
ε→0

|Aε|
εN−s

where |Aε| is the Lebesgue measure of Aε. Then the lower and upper box di-
mension are given by

dimBA = inf{s ≥ 0 :Ms
∗(A) = 0}, dimBA = inf{s ≥ 0 :M∗s(A) = 0}.

If dimBA = dimBA we denote it by dimB A. If Ψ : A ⊂ RN → RM is a Lipschitz
map, then

dimBΨ(A) ≤ dimBA, dimBΨ(A) ≤ dimBA.

We say that Ψ : A ⊂ RN → RM is a bi-Lipschitz map if there exist positive
constants a1 and a2 such that

a1 ‖x− y‖ ≤ ‖Ψ(x)−Ψ(y)‖ ≤ a2 ‖x− y‖ ,

for every x, y ∈ A. If Ψ is a bi-Lipschitz map, then

dimBA = dimBΨ(A), dimBA = dimBΨ(A).
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We say that two sequences (xk)k≥1 and (yk)k≥1 of positive real numbers
are comparable and write xk ' yk as k → ∞ if a1 ≤ xk/yk ≤ a2 for some
a1, a2 > 0 and all k ≥ 1. Analogously, two positive functions f, g : (0, r) → R
are comparable and we write f(x) ' g(x) as x→ 0 if f(x)/g(x) ∈ [a1, a2] for x
small enough. If |Aε| ' εs as ε→ 0, then dimB A = N − s.

In Section 2 we concentrate on the fractal analysis of the unit-time map in
the vicinity of nilpotent singularities with separatrices. We also prove a general
result about the box dimension of two-dimensional (and higher dimensional) dis-
crete dynamical systems. Section 3 is dedicated to the nilpotent focus. Theorem
4 shows how the upper bound for cyclicity can be found from the box dimension
of the Poincaré map on the characteristic curve. In Section 4 the fractal analysis
of Bogdanov-Takens bifurcations is given. In Section 5 we numerically calculate
the box dimension of orbits on the separatrices.

2 Fractal analysis of nilpotent singularities and
the unit-time map

2.1 Nilpotent singularities and separatrices

First we recall the well-known theorem about the classification of analytic nilpo-
tent singularities for planar vector fields (see [2]).

Theorem 1. [2] (Nilpotent Singular Points) Let (0, 0) be a singular point
of the vector field given by

ẋ = y +H1(x, y),

ẏ = H2(x, y), (1)

where H1 and H2 are analytic functions in a neighborhood of the point (0, 0)
and j1H1(0, 0) = j1H2(0, 0) = 0. Let y = f(x) be the characteristic curve of
(1), i.e. the solution of the equation y + H1(x, y) = 0 in a neighborhood of the
point (0, 0) and consider F (x) = H2(x, f(x)) and G(x) = (∂H1

∂x + ∂H2

∂y )(x, f(x)).
Then the following holds:
(1) If F (x) ≡ G(x) ≡ 0, then (1) has the curve of singularities y = f(x) passing
through the origin (see Figure 1(a)).
(2) If F (x) ≡ 0 and G(x) = bxn + o(xn) for n ∈ N, n ≥ 1, b 6= 0, then (1) has
the curve of singularities y = f(x) passing through the origin (Figure 1(b1) or
(b2)).
(3) If G(x) ≡ 0 and F (x) = axm + o(xm) for m ∈ N, m ≥ 2, a 6= 0, then
(i) If m is odd and a > 0, then the origin is a saddle (Figure 1(d)); and if a < 0,
then it is a center or a focus (Figure 1(h1)–(i));
(ii) If m is even, then the origin is a cusp (Figure 1(c)).
(4) If F (x) = axm + o(xm) and G(x) = bxn + o(xn), m,n ∈ N, m ≥ 2, n ≥ 1,
a 6= 0, b 6= 0, then we have:
(i) If m is even, and
(i1) m < 2n+ 1, then the origin is a cusp (Figure 1(c));
(i2) m > 2n+ 1, then the origin is a saddle-node (Figure 1(e1) or (e2)).
(ii) If m is odd and a > 0, then the origin is a saddle (Figure 1(d)).
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(iii) If m is odd, a < 0 and
(iii1) Either m < 2n+ 1, or m = 2n+ 1 and b2 + 4a(n+ 1) < 0, then the origin
is a center or a focus (Figure 1(h1)–(i));
(iii2) n is odd and either m > 2n + 1, or m = 2n + 1 and b2 + 4a(n + 1) ≥ 0,
then the phase portrait of the origin consists of one hyperbolic and one elliptic
sector (Figure 1(g));
(iii3) n is even and m > 2n+ 1 or m = 2n+ 1 and b2 + 4a(n+ 1) ≥ 0, then the
origin is a node (repelling if b > 0 and attracting if b < 0). See Figure 1(f1) or
(f2).

(a) (b1) (b2) (c)

(d) (e1) (e2) (f1)

(f2) (g) (h1) (h2)

(i)

Figure 1: Phase portraits of nilpotent singularities with indication of separatri-
ces, colored blue.

For the sake of readability, we list the results of Theorem 1 in Table 1.
To prove Theorem 1, system (1) near the origin first has to be brought into
a normal form (4) (i.e. (5)) for C∞-conjugacy. Then one can easily blow up
the origin in the normal form coordinates. One distinguishes between three
cases: Hamiltonian like case (m < 2n+ 1), singular like case (m > 2n+ 1) and
mixed case (m = 2n + 1). In each of these cases a quasihomogeneous blow-up
has been used to desingularize the system near the origin. When m < 2n + 1

(including n = ∞) and m is odd (resp. even), one uses (x, y) = (ux̄, u
m+1

2 ȳ)
(resp. (x, y) = (u2x̄, um+1ȳ)). If m > 2n+ 1 (including m =∞) or m = 2n+ 1,
then the blow-up is given by (x, y) = (ux̄, un+1ȳ). For each case the system
has been studied in different charts (x̄ = ±1, ȳ = ±1) and one ends up with
the types of nilpotent singularities listed in Table 1. It suffices to deal with the
charts x̄ = ±1 (one finds no extra singularities in the charts ȳ = ±1). For more
details see Section 3.4 in [2].

The main advantage of the above blow-up is that in the blow-up coordinates
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(after division by some uα) one has hyperbolic and semi-hyperbolic singularities
the dynamics of which can be easily studied using the stable/unstable and center
manifold theorem, etc. This way one detects all possible separatrices which are
given in Table 1 (in the blow-down (x, y)-coordinates). The separatrices are
invariant and contain the origin and our goal is to study the box dimension
of the orbits on the separatrices generated by the unit-time map and tending
to the origin. We give a complete fractal classification for analytic nilpotent
singularities (for more details about the fractal classification of C∞-nilpotent
singularities see Remark 1).

In Hamiltonian like case (including n = ∞) saddle and cusp have each two
separatrices with the leading order m+1

2 , generated by hyperbolic saddles ȳ 6= 0
in the charts x̄ = ±1. Note that the center/focus type has no separatrices (its
fractal analysis is given in Section 3 using a different approach). In singular like
case with m < ∞ each type has two separatrices with different leading orders.
The separatrix of order n + 1 originates from a hyperbolic saddle at ȳ 6= 0
detected in the charts x̄ = ±1 while a separatrix with the leading order m− n
comes from a semi-hyperbolic singularity ȳ = 0 in the same charts with {u = 0}
as the stable/unstable manifold and a center manifold transverse to it (in fact the
separatrix comes from a center manifold ȳ = ρ(u) with um−2n−1 as the leading
term in ρ). The case m = ∞ has one separatrix with order n + 1, as above,
and a curve of singularities (the existence of the curve of singularities follows
from the analyticity of (1)). For example, the system {ẋ = y, ẏ = −xy} has the
separatrix y = − 1

2x
2 containing the origin and the curve of singularities {y = 0}.

The fractal analysis of a perturbation of such system can be found in [1] (one uses
singular perturbation theory). In mixed case one has two separatrices of leading
order n+ 1 (both of them come from hyperbolic singularities ȳ 6= 0) except for
the case with ∆ = 0 where one deals with a separatrix of order n+1 coming from
a semi-hyperbolic singularity at ȳ 6= 0 in x̄ = ±1 with stable/unstable manifold
transverse to {u = 0}. The center/focus has no separatrices (see Section 3).
When m = n = ∞, one has a curve of singularities and no separatrices (a
typical example is {ẋ = y, ẏ = 0}.) Here, one uses again the analyticity of (1).
See [2].

We point out that each separatrix has the form y = αxγ + o(xγ) with α 6= 0
and γ ∈]1,m[ (when we need smoothness property of the o(xγ)-term, we mention
it explicitly).

Remark 1. If system (1) is (C∞-) smooth, then we can use the same normal
form (4) for C∞-conjugacy and the same blow-up as before (see Section 3.4 in
[2]). We end up with the same fractal classification as in the analytic case as
long as m is kept finite and the singularity is not of center/focus type. When
m = ∞, we don’t know the type of nilpotent singularity (not necessarily non-
isolated singularity like in the analytic case) but nevertheless we can give a
partial fractal analysis. More precisely, when m =∞ and n is finite, we detect
a separatrix of order n+1 in the chart x̄ = ±1 as given in Table 1 with the same
box dimensions. The center behavior ȳ = ρ(u) at semi-hyperbolic singularity
ȳ = 0 in the same charts is flat. We therefore cannot find the dynamics and the
box dimension along center manifolds. We don’t treat the case m = n = ∞ in
the C∞ setting. We also don’t treat the center/focus type.

In Section 2.2 we find the Taylor expansion of the unit-time map at the
origin working with (5). In Section 2.3 we give a complete fractal study of



Nilpotent singularities 6

m ≥ 2, n ≥ 1 a, b 6= 0 type separatrices box dim.

Hamiltonian
case

m < 2n + 1

m odd
a > 0 saddle y = ±

√
2a
m+1

x
m+1

2 + . . . (m−1
m+1

, m−1
m+1

, m−1
2m

)

a < 0 center/focus – –

m even
a > 0 cusp y = ±

√
2a
m+1

x
m+1

2 + . . . , x > 0 (m−1
m+1

, m−1
m+1

, m−1
2m

)

a < 0 cusp y = ±
√
−2a
m+1

(−x)
m+1

2 + . . . , x < 0 (m−1
m+1

, m−1
m+1

, m−1
2m

)

Singular
case

m > 2n + 1

m odd
a > 0 saddle
a < 0

n odd elliptic y = b
n+1

xn+1 + . . . ( n
n+1

, n
n+1

, n
2n+1

)

a < 0
n even node y = − a

b
xm−n + . . .

(m−n−1
m−n , m−n−1

m−n ,

m−n−1
2m−2n−1

)

m even – saddle-node

m = ∞ – curve of sing. y = b
n+1

xn+1 + . . . ( n
n+1

, n
n+1

, n
2n+1

)

Mixed case

m = 2n + 1

– a > 0 saddle

n odd a < 0,∆ ≥ 0 elliptic y = b±
√

∆
2(n+1)

xn+1 + . . . ( n
n+1

, n
n+1

, n
2n+1

)

n even a < 0,∆ ≥ 0 node
– a < 0,∆ < 0 center/focus – –

m = n = ∞ – – curve of sing. – –

Table 1: The classification of analytic nilpotent singularities w.r.t. the box
dimension of the unit-time map of the normal form (5) of (1) for C∞-conjugacy,
along separatrices of (5). Each vector in the last column has three components.
The first component is the box dimension of (any) two dimensional orbit S on
separatrix generated by the unit-time map in forward or backward time. The
second (resp. third) component is the box dimension of the one-dimensional
orbit A (resp. B) consisting of the x-components (resp. y-components) of S.
The box dimensions come from Theorem 2. We write ∆ = b2 + 4a(n+ 1). The
Hamiltonian like case includes n =∞.

(analytic) nilpotent singularities (5) (excluding center/focus) using the box di-
mension approach. The results obtained in Section 2.3 (see Theorem 2) are
given in the last column of Table 1. For each separatrix, we find the vector
(dimB S,dimB A,dimB B) where S is a two-dimensional orbit on the separatrix
generated by the unit-time map of (5) and where A and B are projections onto
the x-axis and y-axis respectively. The box dimension of S (resp. A and B)
is computed in two-dimensional (resp. one-dimensional) ambient space. It will
be clear from Section 2.3 that the above box dimensions are well-defined, i.e.
independent of the initial point of S on the fixed separatrix.

Since a C∞-coordinate change is a bi-Lipschitz map, the box dimension of
orbits on a separatrix is preserved under C∞-conjugacy (i.e. (5) and (1) have
the same box dimension along the separatrices).

To find the box dimensions (i.e., to prove Theorem 2 in Section 2.3) it is
natural to distinguish between the three cases explained above. As we pass
through different regions in the (m,n)-space we see that the leading property
of the terms axm and bxny, along separatrices, changes. When m < 2n+ 1, the
term axm is dominant and when m > 2n + 1 the term bxn becomes dominant
(γ = m− n is an exception). On the line m = 2n+ 1, the terms have the same
order along the separatrices. In the proof of Theorem 2 we see that only the
first term in the expansion of the separatrices (the term is given in Table 1) is
sufficient to conclude about the box dimensions.

Note that, for a fixed nilpotent singularity, two separatrices (if they exist)
with the same order but different coefficients in front of the leading term have
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the same box dimension. Note also that we have the following properties of the
box dimensions from Table 1: dimB A > dimB B and dimB S = dimB A. The
former follows from the fact that γ > 1 for all separatrices and that the box
dimension measures the density of a sequence (the bigger the box dimension of
the sequence, the higher the density of the sequence). The y-projection tends
faster to 0 than the x-projection and its density is therefore lower. The latter is
then a simple consequence of Lemma 2. We conclude this section by pointing
out that in the singular like case the box dimensions attached to γ = n + 1
are smaller than the box dimensions attached to γ = m − n. This follows
from the fact that a separatrix with γ = m − n is a center manifold in the
blow-up coordinates (i.e. the hyperbolicity is lost). As a consequence of this,
the convergence to the origin of the unit-time map orbits is slower, and the
box dimension is therefore bigger (see e.g. [4] for more details). This is the
reason why the computation of the box dimension of orbits on separatrices with
γ = m− n may be more difficult from the numerical point of view (see Section
5).

2.2 Unit-time map of nilpotent singularities

We consider a continuous dynamical system

ẋ = F(x) (2)

where x ∈ RN , F : RN → RN . The simplest way of getting a discrete dynamical
system from the continuous one is by using flow for fixed t, φt(x). Namely, we
fix t0 > 0 and we consider the system which is generated by the iteration of
the map φt0 (map with displacement t0 along the trajectory of (2)). If we take
t0 = 1, we get the unit-time map φ1(x) and we can study the discrete dynamical
system generated by the unit-time map

x 7→ φ1(x). (3)

Suppose x0 = 0 is a singularity of (2). Then F can be written as

F(x) = Ax + F(2)(x) + F(3)(x) + . . . , x ∈ RN ,

where A = DF(0) and F(k) is a polynomial vector function of order k with

F
(k)
i (x) =

∑
j1+...+jn=k

bi,j1,...,jnx
j1
1 x

j2
2 . . . xjnn .

Our goal is to find the Taylor expansion of φt(x) near x0 = 0 by using the
process of Picard iterations (see e.g. [11]). Namely, let x(1)(t) = eAtx be a
solution of linear equation ẋ = Ax with the initial value x, and define

x(k+1)(t) = eAtx +

∫ t

0

eA(t−τ)
(
F(2)(x(k)(τ)) + . . .+ F(k+1)(x(k)(τ))

)
dτ.

It can be easily seen that the (k+1)-iteration does not change the terms of order
l ≤ k. By the substitution t = 1 in x(k)(t) we get the (exact) Taylor expansion
of the unit-time map (3) up to the terms of order ≤ k

φ1(x) = eAx + g(2)(x) + . . .+ g(k)(x) + . . . ,
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where g(i) are polynomial vector functions of a form as functions F(i).
In this section we compute the Taylor expansion of the unit-time map of

normal form (5) of (1) at (x, y) = (0, 0). Following Section 3.4 in [2] we have
the following normal form of (1) for C∞-conjugacy:

ẋ = y

ẏ = F (x) + yG(x) + y2H(x, y), (4)

where F , G and H are C∞-functions, j1F (0) = G(0) = j∞H(0, 0) = 0. We
write F (x) = axm + o(xm) and G(x) = bxn + o(xn) with a 6= 0, b 6= 0, m ≥ 2
and n ≥ 1. In the case j∞F (0) = 0 (resp. j∞G(0) = 0) we take m = ∞ (resp.
n =∞). System (4) can be written as

ẋ = y

ẏ = axm + bxny + y2H(x, y) +O(xm+1) + yO(xn+1). (5)

Remark 2. We point out that there exists an analytic coordinate change bring-
ing (1) near the origin to (4) with some analytic functions F and G and H ≡ 0
(see [17]). Since in our paper the analytic normal form (with H ≡ 0) does not
simplify the computations, we prefer to work with the smooth normal form (5).

Using the Picard iterations we prove the following lemma about the Taylor
expansion of the unit-time map of (5) depending on the region in the (m,n)-
space.

Lemma 1. (The unit-time map)
Let the origin be a nilpotent singularity of the system (5). Then the following
holds for the orbit {(xk, yk)}k∈N with the initial point (x0, y0) generated by the
unit-time map of (5):

1. If m < n+ 1, then

xk+1 = xk + yk +
a

2
xm
k + ac11x

m−1
k yk + . . . + ac1mym

k + h.o.t.

yk+1 = yk + axm
k + ad11x

m−1
k yk + . . . + ad1mym

k + h.o.t.; (6)

with constants c1i = c1i(m), d1i = d1i(m).

2. If m = n+ 1, then

xk+1 = xk + yk +
a

2
xm
k + c21x

m−1
k yk + . . . + c2,m−1xky

m−1
k + c2,mym

k + h.o.t.

yk+1 = yk + axm
k + d21x

m−1
k yk + . . . + d2mym

k + h.o.t.; (7)

with constants c2i = c2i(m, a, b), d2i = d2i(m, a, b).

3. If m > n+ 1, then

xk+1 = xk + yk +
b

2
xn
kyk + bc31x

n−1
k y2

k + . . . + bc3,n−1xky
n
k +

byn+1
k

n + 2
+ h.o.t.

yk+1 = yk + bxn
kyk + bd31x

n−1
k y2

k + . . . + bd3,n−1xky
n
k +

byn+1
k

n + 1

+ · · · + axm
k + . . . ; (8)

with constants c3i = c3i(n), d3i = d3i(n), i = 1, . . . , n−1 where the xik-terms
occur in the above expansion only if i ≥ m.
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Proof. In the case m ≤ n+ 1, by using the Picard iterations we find the Taylor
expansion of the unit-time map up to terms of order m. If m < n + 1 (resp.
m = n + 1), the terms of order m in (6) (resp. (7)) are generated by the term
axm (resp. axm + bxny) in (5). When m > n + 1 we easily get the Taylor
expansion up to terms of order n+ 1 (the terms of order n+ 1 are generated by
the term bxny in (5)) and compute the coefficient in front of xm.

Remark 3. Note that the case where m = ∞ (resp. n = ∞) is included in
Lemma 1.3 (resp. Lemma 1.1). The case where m = n = ∞ occurs in Theo-
rem 1(1) and the fractal analysis of the corresponding (non-isolated) nilpotent
singularity is not needed, as explained in Section 2.1.

2.3 The box dimension of orbits on separatrices

In this section we prove a result for the box dimension of the unit-time map of
(5) on a (fixed) separatrix introduced in Section 2.1. We define it as the box
dimension of any orbit on the separatrix generated by the unit-time map and
tending to the origin (see Theorem 2). This box dimension is well-defined, i.e.
independent of the chosen orbit, or equivalently, of the initial point (x0, y0) on
the separatrix. This will follow directly from Lemma 2 and the fact that the box
dimension of one-dimensional discrete orbit is independent of the initial point
(see e.g. Theorem 1 in [4] or Theorem 1 in [13]). First we prove the following
lemma about the box dimension of two-dimensional sequences.

Lemma 2. (Box dimension of two-dimensional discrete orbit)
Let A = {xk}k∈N and B = {yk}k∈N be two decreasing sequences which tend to 0
with initial points x0 and y0 and with the properties xk − xk+1 ' xαk , for α > 1

and yk − yk+1 ' yβk , for β > 1, as k → ∞. Moreover, let (xk − xk+1)k∈N and
(yk − yk+1)k∈N be monotonically nonincreasing. Let S = {(xk, yk)}k∈N be the
orbit defined using A and B. If α ≥ β (resp. α < β), then dimB S = dimB A =
1− 1

α (resp. dimB S = dimB B = 1− 1
β ).

Proof. Since α, β > 1, Theorem 1 in [4] implies that dimB A = 1− 1
α , dimB B =

1 − 1
β , xk ' k−

1
α−1 and yk ' k−

1
β−1 as k → ∞. In the rest of the proof we

assume that α ≥ β (the case where α < β can be proved in a similar way). We
have

a1k
− α
α−1 ≤ xk − xk+1 ≤ a2k

− α
α−1 and b1k

− β
β−1 ≤ yk − yk+1 ≤ b2k−

β
β−1 ,

for all k ≥ 1, with some positive constants a1, a2, b1 and b2. From here we
conclude that

yk − yk+1 ≤
b2
a1
k

α
α−1−

β
β−1 (xk − xk+1) ≤ b2

a1
(xk − xk+1), (9)

for all k ≥ 1, where in the last inequality we used α ≥ β. From (9) it can be
easily seen that

yk − yk+l ≤
b2
a1

(xk − xk+l), k, l ≥ 1. (10)

We now define the projection Ψ : S \ {(x0, y0)} → R onto the x-axis: Ψ(x, y) =
x. Note that Ψ(S \ {(x0, y0)}) = A \ {x0}. It is clear that |Ψ(xk, yk) −
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Ψ(xk+l, yk+l)| ≤ |xk − xk+l| + |yk − yk+l| with k, l ≥ 1. On the other hand,
using (10) we get

|Ψ(xk, yk)−Ψ(xk+l, yk+l)| = |xk − xk+l|

≥ 1

2
|xk − xk+l|+

a1

2b2
|yk − yk+l|

≥ L (|xk − xk+l|+ |yk − yk+l|)

with k, l ≥ 1 and L := min{ 1
2 ,

a1

2b2
} > 0. Thus, Ψ is a bi-Lipschitz function

and we therefore have dimB(S \ {(x0, y0)}) = dimB Ψ(S \ {(x0, y0)}) (see also
Section 1).

Remark 4. A similar result can be proved for higher dimensional orbits (in

Rp with a finite p). More precisely, if we assume that Ai = {x(i)
k }k∈N has the

properties given in Lemma 2 with αi > 1, for all i = 1, 2, . . . , p, and if αi0 ≥ αi
for some i0 and for all i = 1, 2, . . . , p, then we have dimB S = dimB Ai0 = 1− 1

αi0

where S = {(x(1)
k , x

(2)
k , . . . , x

(p)
k )}k∈N.

Theorem 2. (Box dimension near nilpotent singularity) Suppose that the
origin of (5) has a separatrix and that the orbit S = {(xk, yk)}k∈N of (x0, y0)
on the separatrix, generated by the unit-time map of (5), tends to the origin.
Then the box dimension of S, A = {xk}k∈N and B = {yk}k∈N exists and it
is independent of the initial point (x0, y0). Moreover, the values of dimB S,
dimB A and dimB B are equal to the ones given in Table 1.

Remark 5. Before we prove Theorem 2, we would like to stress that the same
fractal classification is true for “repelling” separatrices (thus, with the dynamics
pointing away from the origin), i.e. for a fixed (m,n) we end up with the same
box dimensions of backward orbits on the repelling separatrices (if they exist),
like in Table 1. Indeed, if we denote by φt the flow of (5) and if there exists
a repelling separatrix for a fixed (m,n), then the (backward) orbit on the sepa-
ratrix, with initial point (x0, y0) 6= (0, 0) and generated by φ−1, is equal to the
(forward) orbit with the same initial point and generated by the unit-time map
of (5), multiplied by −1. On the other hand, since the vector field (5), multiplied
by −1, is not of type (5), we apply the coordinate change x → −x and get a
system of the type (5), with the same (m,n) (a and b may have different sign).
The orbit in the new coordinates has the same properties like the old one: it
converges to the origin and is located on a separatrix with the same exponent in
the leading term. Now, it suffices to apply Theorem 2 to this orbit (note that
x→ −x is a bi-Lipschitz function).

Proof. We assume that the initial point (x0, y0) of the orbit S which tends to
the origin satisfies x0 > 0 (i.e. the coefficient in front of the leading term of the
separatrix is negative). The study of the case where x0 < 0 is analogous. We
denote by γ the order of the leading term in the expansion of the separatrices
given in Table 1. We have γ ∈]1,m[ for each separatrix. Looking at the x-
component of (6), (7) and (8) we have that xk − xk+1 ' xγk as k → ∞ after
substitution −yk ' xγk (for each separatrix in Table 1 on which orbits with
x0 > 0 tend to the origin). Following [4] we find that dimB A = 1 − 1

γ and

it is independent of the initial point x0. It is clear that {xk}k∈N satisfies the
assumptions of Lemma 2 (the same will be true for {yk}k∈N).
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To find dimB B, we have to distinguish between three cases (see Table 1):
Hamiltonian like case, singular like case and mixed case. At m = 2n + 1, the

leading property of the terms xmk and xnkyk changes, with xk ' (−yk)
1
γ as

k →∞.
Hamiltonian like case (m < 2n + 1). Here we have γ = m+1

2 . From the

y-component of (6), (7) and (8) follows that (−yk) − (−yk+1) ' (−yk)
m
γ as

k → ∞. Thus, the leading term in this case is xmk . Again, [4] implies that
dimB B = 1 − γ

m = m−1
2m and it is independent of y0 < 0. Using Lemma 2 we

have dimB S = dimB A = m−1
m+1 . Note that n =∞ is also included in this case.

Singular like case (m > 2n + 1). First, we take γ = n + 1. Using the y-
component in (8) we get (−yk) − (−yk+1) ' (−yk)

n
γ+1 as k → ∞ (xnkyk is the

leading term). Thus, dimB B = n
2n+1 and Lemma 2 gives dimB S = dimB A =

n
n+1 . This is also true for m =∞.

Now we take γ = m−n. A separatrix is the graph of y = f(x) = −abx
γ+h.o.t.

with a
b > 0. Note that axm+ bxny ≡ 0 for y = −abx

γ and our goal is to find the
order l (> m

γ ) of the leading term of the y-component in (5) after the substitution

x = f−1(y). Once we have the order l we conclude that dimB B = 1 − 1
l (see

Lemma 3). First, let us assume that the system (5) has the following form:
{ẋ = y, ẏ = axm + bxny}. Since the curve y = f(x) is invariant for (5), we

easily find that f(x) = −abx
γ + a2γ

b3 x
γ+m−2n+1 + h.o.t. and therefore

f−1(y) =

(
− b
a
y

) 1
m−n

+
a

b2

(
− b
a
y

)m−2n
m−n

+ h.o.t.

Using this we obtain the dynamics of (5) along the curve y = f(x) expressed in
terms of y:

ẏ =
a2(m− n)

b2

(
− b
a
y

) 2m−2n−1
m−n

+ h.o.t.

Thus, l = 2m−2n−1
m−n and dimB B = m−n−1

2m−2n−1 . If we deal with the general system
(5), we end up with the same conclusion. Indeed, if we denote the y-component
in (5) by X2(x, y), then the invariant curve y = f(x) satisfies

X2(x, f(x)) = f ′(x)f(x).

Thus, X2(x, f(x)) is of order 2m−2n−1 because f is of order m−n. Now, since
f−1 is of order 1

m−n , we have that X2(f−1(y), y) is of order l = 2m−2n−1
m−n (in−y).

The positive coefficient in front of (−y)l is as above equal to (m − n)(ab )
1

m−n .
This completes the proof in the singular like case.

Mixed case (m = 2n + 1). Here we have γ = n + 1. Using (8) we get

(−yk) − (−yk+1) ' (−yk)
2n+1
n+1 as k → ∞. Indeed, it suffices to notice that for

y = b±
√

∆
2(n+1)x

n+1 we have that

axm + bxny =
b2 ± b

√
∆ + 2a(n+ 1)

2(n+ 1)
x2n+1

with b2± b
√

∆ + 2a(n+ 1) 6= 0. Thus, dimB B = n
2n+1 and dimB S = dimB A =

n
n+1 .



Nilpotent singularities 12

Lemma 3. Consider a one-dimensional equation ẋ = αxεp (1 + g(xε)), where
α < 0, ε > 0, εp > 1 and g is a C1- function including in 0 with g(0) = 0. Then
dimB A = 1 − 1

εp where A is the orbit of x0 > 0 and x0 ∼ 0 generated by the
unit-time map of the equation.

Proof. Since the system is C1, the existence and uniqueness of solutions and
continuity with respect to initial conditions imply that the (unique) solution
ψ(t, x0), with ψ(0, x0) = x0, is a map of class C1. For any small x0 ≥ 0 and
t ≥ 0 kept in a compact set we have

ψ(t, x0) = x0 + α

∫ t

0

ψ(s, x0)εp (1 + g(ψ(s, x0)ε)) ds. (11)

Since x = 0 is a singularity of the differential equation, we have ψ(s, 0) ≡ 0, i.e.
ψ(s, x0) = O(x0). From (11) follows that ψ(t, x0) = x0 + O(xεp0 ). Substituting
this for ψ(s, x0) in (11) and taking t = 1 we get x0 − ψ(1, x0) ' xεp0 as x0 → 0
(note that α < 0). Following Theorem 1 from [4] we now obtain that dimB A =
1− 1

εp because εp > 1.

In the proof of Theorem 2 in the singular case we used Lemma 3 where
ε = 1

m−n , p = 2m− 2n− 1 and g is Cr with r ∈ N as large as we need using the
center manifold theorem (we also used the fact that y 7→ −y is a bi-Lipschitz
function).

3 Nilpotent focus

In this section we obtain the connection between the box dimension of an orbit
of the Poincaré map and the cyclicity of nilpotent focus. We use Theorem 1.7
from [6] and results from [7]. First, we recall Theorem 1.7 in [6] which gives an
upper bound for the cyclicity of the nilpotent focus.

We study small limit cycles near the origin in an analytic δ-family of planar
systems

ẋ = y +X(x, y, δ)

ẏ = Y (x, y, δ) (12)

with δ = (δ1, δ2, . . . , δl) ∈ D ⊂ Rl where D is a simply connected domain

and X,Y = O(|x, y|2) for all δ ∈ D. Let y = f(x, δ) be the characteristic
curve of (12) and define F (x, δ) = −Y (x, f(x, δ), δ) and G(x, δ) = −(∂X∂x +
∂Y
∂y )(x, f(x, δ), δ). We make the following assumptions about the functions F
and G for all δ ∈ D:

F (x, δ) =
∑

j≥2n−1

aj(δ)x
j , n ≥ 2, a2n−1(δ) > 0, and

G(x, δ) =
∑

j≥n−1

bj(δ)x
j , b2n−1(δ)− 4na2n−1(δ) < 0. (13)

Theorem 1 (see (3)(i) and (4)(iii1)) implies now that the system (12) has a center
or a focus at the origin for all δ ∈ D. The origin is thus a m-multiple singular
point with m = 2n− 1 for all δ ∈ D. Further, we define a Poincaré map of the
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system (12) on the characteristic curve y = f(x, δ). For each δ ∈ D and x0 6= 0,
|x0| small, consider the solution (x(t, x0, δ), y(t, x0, δ)) of the system (12) with
the initial condition (x(0), y(0)) = (x0, f(x0, δ)). Then there exists the unique
least positive number τ = τ(x0, δ) > 0 such that y(τ, x0, δ) = f(x(τ, x0, δ), δ)
and x0x(τ, x0, δ) > 0. We define the Poincaré map: P (x0, δ) := x(τ, x0, δ),
x0 6= 0 and P (0, δ) = 0. It should be clear that P is continuous in x0 = 0.
By Theorem 1.5 from [6] we have that there is an analytic function P̄ (x0, δ) in
x0 = 0 such that the partial derivative of P̄ w.r.t. x0 in (0, δ) is positive,

P̄ (x0, δ) = x0 +
∑
j≥1

vj(δ)x
j
0

for |x0| sufficiently small and such that P (x0, δ) = P̄ (x0, δ) for all x0 ≥ 0 small
(this equality is true for all |x0| small if n is odd). For more details see [6].

Theorem 3. ([6], Theorem 1.7) Let system (12) satisfy the conditions (13) for
all δ ∈ D. Write pn = (1 + (−1)n)/2.

(1) If there is an integer k ≥ 1 such that

k+1∑
j=1

|v2j−1+pn | > 0, ∀δ ∈ D,

then there exists a neighborhood U of the origin such that the system (12) has
at most k limit cycles in U for all δ ∈ D̄, where D̄ is any compact subset of D.

(2) If there is δ0 ∈ D such that v2k+1+pn(δ0) 6= 0, then for all δ ∈ D near δ0
system (12) has at most k limit cycles in a neighborhood of the origin.

Now we are able to state and prove the main result of this section.

Theorem 4. (Cyclicity of nilpotent focus and box dimension) Let system
(12) satisfy the conditions (13) for all δ ∈ D. Let Γ(δ0) be a spiral trajectory
of (12) near the origin for some δ0 ∈ D. Let P (x, δ0) be the Poincaré map
of (12) with δ = δ0 on the characteristic curve y = f(x, δ0). Suppose that
the sequence S(x1) = (xi)i≥1 defined by xi+1 = P (xi, δ0) (a stable focus) or
xi+1 = P−1(xi, δ0)(an unstable focus), with x1 > 0 small and fixed, has the box
dimension equal to 1 − 1

2k+1 with n odd or 1 − 1
2k+2 with n even where k ≥ 1

is an integer. Then for all δ ∈ D near δ0 the system (12) has at most k limit
cycles in a δ-uniform neighborhood of the origin.

Proof. We know that in both cases (n odd and even) the Poincaré map P (x, δ0)
is equal to P̄ (x, δ0) for x ≥ 0 where P̄ (x, δ0) is analytic in x = 0. Since
dimB S(x1) > 0, then we know that x = 0 is a nonhyperbolic fixed point
of P̄ and P̄ ′(0) = 1 (see e.g. [7]). When dimB S(x1) = 1 − 1

2k+1 (resp.

dimB S(x1) = 1− 1
2k+2 ), then we have P̄ (x, δ0) = x+v2k+1(δ0)x2k+1 +O(x2k+2)

with v2k+1(δ0) 6= 0 (resp. P̄ (x, δ0) = x + v2k+2(δ0)x2k+2 + O(x2k+3) with
v2k+2(δ0) 6= 0). This follows from Theorem 6 in [7]. In both cases we have thus
v2k+1+pn(δ0) 6= 0. The statement follows now from Theorem 3(2).

Remark 6. We attempted to numerically verify the box dimension results from
Theorem 4 in the same sense as done for Theorem 2, see Section 5. Unfortu-
nately, numerical calculation of sequence S from Theorem 4 involving Poincaré
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map is very slow, so we were unable to produce enough elements of the sequence
S to be able to numerically reliably calculate the box dimension of S in any
reasonable time and even on simplest systems (12). The convergence of numer-
ical methods (15), (16) and (17) for estimating the box dimension of a given
sequence is very slow. We hope further research might solve this issues.

4 Fractal analysis of Bogdanov-Takens bifurca-
tions

In this section we give a fractal analysis of singularities in Bogdanov-Takens
bifurcations, using Theorem 2 and the results obtained in [7, 8, 22]. The box
dimension jumps as we vary bifurcation parameters. It suffices to deal with the
following normal form for the Bogdanov-Takens bifurcations:

ẋ = y

ẏ = β1 + β2x+ x2 − xy, (14)

where β1,2 ∈ R are the bifurcation parameters. The bifurcation diagram of the
Bogdanov-Takens bifurcations is given in Figure 2 (for more details see [11]). We

Figure 2: Bifurcation diagram of Bogdanov-Takens bifurcations.

denote by H the negative part of the β2-axis and it represents the curve along
which a Hopf bifurcation occurs. For β1 = β2 = 0 we have a cusp at the origin
and we get dimB S = dimB A = 1/3 and dimB B = 1/4 on the separatrices
(see Theorem 2 or Table 1). For other (β1, β2)-values we use the results from
[7, 8, 22]. In region 1 there are no singularities. By passing through the curve
T− a saddle and a node appear, so it is a saddle-node bifurcation curve. On a
center manifold of the saddle-node singularity we have dimB S = dimB A = 1/2
and dimB B = 0 (see Figure 3 and [7, 8]). In the region 2 the node becomes
a focus, and crossing the curve H a limit cycle is born. The box dimension
of spiral trajectories along the Hopf bifurcation curve is 4/3 (see Figure 4 and
[22]). Passing through the curve P a saddle homoclinic bifurcation occurs, i.e.
a saddle-loop appears. In region 4 the saddle-loop is broken and there are two
singularities, a saddle and a node. If we continue the journey clockwise and
finally return to region 1, the saddle-node bifurcation occurs once more (see
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Figure 3: Curve T−, dimB S = 1/2 for discrete orbit generated by the unit-time
map on a center manifold of the saddle-node singularity.

Figure 4: Curve H, dimB S = 4/3 for spiral trajectory.

Figure 5). All such objects are unfolded in the cusp with dimB S = 1/3, for
β1 = β2 = 0. Notice that the box dimension is nontrivial when some local
bifurcation occurs. All hyperbolic singularities inside the regions have trivial
box dimensions. By the above analysis of the Bogdanov-Takens bifurcations we
show how box dimensions of the unit-time map are connected to the appropriate
bifurcations of continuous systems.

5 Numerical verification of box dimensions in
Table 1

This section is dedicated to the numerical calculation of the box dimensions
given in Table 1. In each case, we choose a system and numerically calculate
the vector (dimB S, dimB A,dimB B), which is attached to the separatrices of
this system. In the Hamiltonian case (resp. the singular case and the mixed
case) we take a cusp (resp. saddle-node and saddle). Of course, a similar
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Figure 5: Curve T+, dimB S = 1/2 for discrete orbit generated by the unit-time
map on a center manifold.

numerical analysis could be performed for other phase portraits in Table 1.
To find dimB A and dimB B, one has to develop numerical methods for

calculating the box dimension of one-dimensional (convergent and decreasing)
sequences. This was done in [1, 9, 10], where the cyclicity and bifurcations of
canard cycles in two-dimensional slow-fast systems were investigated using a so-
called box dimension approach (see Proposition 1 in Section 5.1). To estimate
dimB S (S is a two-dimensional orbit), we use the decomposition of S into tail
and nucleus (see e.g. [18]) and find two formulas for a numerical calculation of
dimB S, see Section 5.2. In Section 5.3 we estimate the box dimensions.

5.1 The box dimension of one-dimensional orbits

In the one-dimensional ambient space we have

Proposition 1. Let A = {xk}k∈N be a decreasing sequence which tends to 0
with an initial point x0 such that xk − xk+1 ' xαk as k → ∞, for α > 1, and
such that (xk − xk+1)k∈N is monotonically nonincreasing. Then dimBA = α−1

α
and we have that

dimBA = lim
k→∞

ln k

− ln(xk − xk+1)
, (15)

dimBA = lim
k→∞

1

1− ln xk
ln k

(16)

and

dimBA = lim
k→∞

(
1−

ln
(
k(xk − xk+1) + xk

)
ln
(xk−xk+1

2

) )
. (17)

Remark 7. Proposition 1 has been proved in [1]. The proof of Proposition 1 is

based on Theorem 1 in [4] which implies that dimBA = α−1
α and xk ' k−

1
α−1

as k →∞. Now, it can be easily seen that (15), (16) and (17) hold for α > 1.

Remark 8. A motivation for the formulas given in (15), (16) and (17) comes
from Section 3.4 in [18] where similar expressions have been used to (numer-
ically) compute the box dimension of the Cantor set. In (15) we deal with a
Cahen-type formula while (16) is related to the Borel rarefaction index of A.
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The formula in (17) follows from the decomposition of A into tail and nucleus
(see [18]).

5.2 The box dimension of two-dimensional orbits

To numerically estimate dimBS of a planar two-dimensional orbit S from The-
orem 2, we use the decomposition of S into tail and nucleus, like in (17). We
work with the following equivalent definition of the box dimension (see [5]):

dimBS = lim inf
ε→0+

(
2− ln |Sε|

ln ε

)
, dimBS = lim sup

ε→0+

(
2− ln |Sε|

ln ε

)
. (18)

We first define

εk =

√
(xk − xk+1)2 + (yk − yk+1)2

2
. (19)

Since S satisfies the assumptions in Lemma 2, we have that εk → 0 mono-
tonically. Contrary to the one-dimensional case, here it is not possible to get
the exact formula for the area of εk-neighborhood |Sεk |. Nonetheless reason-
ably close lower and upper bounds are possible. Since {xk}k∈N, {yk}k∈N and
{εk}k∈N are monotonically nonincreasing sequences tending to 0, a simple sepa-
ration between the tail and the nucleus part of Sεk is possible, see [18]. By St,εk
we denote the εk-neighborhood of the tail and by Sn,εk the εk-neighborhood
of the nucleus. From Sεk = St,εk ∪ Sn,εk and St,εk ∩ Sn,εk = ∅ follows that
|Sεk | = |St,εk | + |Sn,εk |. As the length of the part of the separatrix from point
(xk+1, yk+1) to the origin is less or equal to xk+1 + yk+1, it is easy to see that

|St,εk | = k · ε2kπ, ε2kπ < |Sn,εk | < 2εk(xk+1 + yk+1) + ε2kπ.

It follows that

(k + 1)ε2kπ < |Sεk | < 2εk(xk+1 + yk+1) + (k + 1)ε2kπ. (20)

Finally, substituting (20) in (18) and using the fact that dimBS exists (see
Lemma 2) we get the lower bound on dimBS and the upper bound on dimBS,

dimBS ≥ lim
k→∞

(
2−

ln
(
(k + 1)ε2kπ

)
ln εk

)
, (21)

dimBS ≤ lim
k→∞

(
2−

ln
(
2εk(xk+1 + yk+1) + (k + 1)ε2kπ

)
ln εk

)
. (22)

Using the assumptions in Lemma 2, (19) and the property of xk and yk as
k → ∞ from Remark 7, it can be easily seen that the limits in (21) and (22)
exist and have the same value (1− 1

α if α ≥ β and 1− 1
β if α < β). This implies

Proposition 2. Let S = {(xk, yk)}k∈N satisfy the assumptions in Lemma 2.
Then we have

dimBS = lim
k→∞

(
2−

ln
(
(k + 1)ε2kπ

)
ln εk

)
(23)

and

dimBS = lim
k→∞

(
2−

ln
(
2εk(xk+1 + yk+1) + (k + 1)ε2kπ

)
ln εk

)
. (24)
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Remark 9. The box dimension of S is trivially bounded by the same limits in
(21) and (22).

Similar two-dimensional generalizations are not possible for methods (15)
and (16), so for the estimation of the box dimension of a two-dimensional se-
quence we use only our generalization of (17).

5.3 The estimation of the box dimensions

The goal of this section is to numerically compute the relevant box dimensions
for the cusp in Hamiltonian case, the saddle-node in singular case and the saddle
in mixed case (see Tables 2 and 3). This provides a numerical validation of
results from Theorem 2, given in Table 1.

5.3.1 The Hamiltonian case (cusp)

We proceed by setting β1 = β2 = 0 in (14) and get the system

ẋ = y

ẏ = x2 − xy. (25)

The first step is to numerically solve the system (25) for the initial condition
(x0, y0) taken on the separatrix

y = −
√

2

3
x

3
2 + · · · , x > 0,

tending to the origin and given in Table 1. By numerically solving the sys-
tem (25) we mean computing a finite number K of elements in the orbit S =
{(xk, yk)}k∈N generated by the unit-time map of (25), which we denote by
S′ = {(xk, yk)}1≤k≤K . We numerically estimate box dimensions dimBA and
dimBB of A = {xk}k∈N and B = {yk}k∈N from Theorem 2 using formulas (15),
(16) and (17) in Proposition 1. We also estimate dimBS from Theorem 2 using
formulas (23) and (24) in Proposition 2.

5.3.2 The singular case (saddle-node)

Here we take n = 1, m = 4, a = 1 and b = 1 in (5) and get the system

ẋ = y

ẏ = x4 + xy, (26)

which is solved numerically in the same sense as the system (25). The initial
condition is taken on a separatrix y = 1

2x
2 + · · · or y = −x3 + · · · , given in

Table 1. As before, box dimensions dimBA, dimBB and dimBS from Theorem
2 are estimated.

5.3.3 The mixed case (saddle)

Similarly as in the previous section, we take n = 1, m = 2n+ 1 = 3, a = 1 and
b = 1 in (5) and solve numerically the resulting system
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ẋ = y

ẏ = x3 + xy, (27)

as before. Again, we take the initial condition on the separatrix y = x2 + · · ·
from Table 1 and estimate dimBA, dimBB and dimBS.

5.3.4 Implementation details

All numerical calculations are implemented using Wolfram Mathematica 12.0.
See https://github.com/FRABDYN/NilpotentSingularities where our code
is available for download. We use the automatic numerical precision control
mechanisms, built in Mathematica software, so all numerical calculations can
be regarded as interval calculations. For numerically solving system (25) we use
Mathematica “NDSolve” function together with an increased numerical preci-
sion above the standard floating point machine precision.

The precision in Mathematica is the effective number of digits of precision
of the number x considered, given by expression − log10(e/x), where e is the
absolute uncertainty in x. The precision is increased to 75 decimal places, which
is carefully chosen as a compromise between the computation runtime and the
final precision in the numerically estimated box dimension. More precisely,
Mathematica function “NDSolve” is used to produce a numerical solution that
is guaranteed to be correct to at least 75 decimal places.

An increased precision is essential for our calculations where we managed to
use values of K over 1065 for all cases except for separatrix y = −x3 + · · · from
the singular case. For such big K, values xK and xK−1, and also values yK and
yK−1, are very close. For instance in expression (19) the precision is reduced to
less than 10 decimal places, which happens because of the subtraction of close
numbers represented with finite decimal places in the computer. For separatrix
y = −x3 + · · · from the singular case due to slow convergence we used much
smaller K ≈ 5 · 109, where precision of only 20 decimal places is sufficient.

Notice that we don’t have to explicitly compute all elements in finite orbit
S′, which would actually not be possible. What we do is explicitly compute
numerical solution of systems (25), (26) and (27) in terms of Mathematicas
“InterpolatingFunction” object, which is a piecewise polynomial interpolation
that guaranties the sought numerical precision. Then we evaluate this piecewise
polynomial, for integer values of time K and K − 1, effectively getting points
(xK , yK) and (xK−1, yK−1) from orbit S. Only these two points, together with
K, are used to estimate the limit in formulas (15), (16), (17), (21), (22).

Another numerical finesse is to compute finite orbit S′ in the reversed di-
rection, that is, to start numerical system integration for an initial condition
near the origin and to reverse the direction of the orbit on a separatrix so that
it tends away of the origin. This is achieved by multiplying the right hand
side of systems (25), (26) and (27) by a constant −1, which is equivalent to
reversing the direction of time in the system integration, see Remark 5. The
system integration is stopped when the orbit exits the circle of radius 1. The
advantage of this approach with reversed orbit computation is that we achieve
much greater numerical stability of “NDSolve”. This detail proved to be crucial
for an efficient numerical solution.

https://github.com/FRABDYN/NilpotentSingularities
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5.3.5 Numerical results

Numerical results are given in Table 2 and consist of a numerical estimation of
dimBA and dimBB, using all three methods (15), (16) and (17) from Proposition
1. Also, in Table 3, a numerical estimation of the box dimension dimBS is
given, using the two methods from Proposition 2. Results are given for all three
considered cases. Note that the separatrix y = −x3 + · · · from the singular case
produces the biggest error due to the slow convergence of associated orbits (as
explained in Section 2.1, the separatrix comes from a center direction where the
hyperbolicity is lost).

Numerical estimates using method
System and separatrix Box dim. Theory value (15) (16) (17)
cusp (25), dimBA 1/3 0.335177 0.334661 0.337103

y = −
√

2
3
x

3
2 + · · · dimBB 1/4 0.251496 0.251036 0.252842

saddle-node (26), dimBA 1/2 0.501155 0.501155 0.504610
y = 1

2
x2 + · · · dimBB 1/3 0.334361 0.333846 0.336286

saddle-node (26), dimBA 2/3 0.646604 0.659842 0.684735
y = −x3 + · · · dimBB 2/5 0.325211 0.392689 0.502074
saddle (27), dimBA 1/2 0.500000 0.500000 0.503449
y = x2 + · · · dimBB 1/3 0.333846 0.333333 0.335769

Table 2: Numerically computed estimates for box dimensions dimBA and
dimBB, using all three methods from Proposition 1.

Num. est. using (21) and (22)
System and separatrix Box dim. Theory value Lower estimate Upper estimate
cusp (25),

y = −
√

2
3
x

3
2 + · · · dimBS 1/3 0.337205 0.338300

saddle-node (26),
y = 1

2
x2 + · · · dimBS 1/2 0.503807 0.506537

saddle-node (26),
y = −x3 + · · · dimBS 2/3 0.666374 0.702302

saddle (27),
y = x2 + · · · dimBS 1/2 0.502648 0.505373

Table 3: Numerically computed estimates for box dimension dimBS using the
methods from Proposition 2.
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[1] V. Crnković, R. Huzak, and D. Vlah. Fractal dimensions and two-
dimensional slow-fast systems (submitted). 2020.

[2] F. Dumortier, J. Llibre, and J. Artés. Qualitative theory of planar differ-
ential systems. Universitext. Springer-Verlag, Berlin, 2006.



Nilpotent singularities 21

[3] F. Dumortier, P. R. Rodrigues, and R. Roussarie. Germs of diffeomor-
phisms in the plane, volume 902 of Lecture Notes in Mathematics. Springer-
Verlag, Berlin-New York, 1981.
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