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Abstract
We consider a model for the flow of two immiscible flu-
ids in a two-dimensional thin strip of varying width.
This represents an idealization of a pore in a porous
medium. The interface separating the fluids forms a
freely moving interface in contact with the wall and
is driven by the fluid flow and surface tension. The
contact-line model incorporates Navier-slip boundary
conditions and a dynamic and possibly hysteretic con-
tact angle law. We assume a scale separation between
the typical width and the length of the thin strip. Based
on asymptotic expansions, we derive effectivemodels for
the two-phase flow. These models form a system of dif-
ferential algebraic equations for the interface position
and the total flux. The result is Darcy-type equations for
the flow, combined with a capillary pressure–saturation
relationship involving dynamic effects. Finally, we pro-
vide some numerical examples to show the effect of
a varying wall width, of the viscosity ratio, of the slip
boundary condition as well as of having a dynamic con-
tact angle law.
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1 INTRODUCTION

Many industrial and environmental processes, such as oil recovery, geological CO2 sequestration,
or groundwater pollution, strongly depend on the flow in the respective porous medium. In all
these applications, it is necessary to describe the flow of all involved fluid phases at a macroscopic
scale to allow for efficient simulations in large domains. In particular, the complex pore structure
and the exact distribution of fluids are simplified into a representation by averaged quantities
such as the porosity and saturation. The relations between these macroscopic quantities must
be expressed with the help of effective parameters, which should combine all pore-scale effects.
However, in many state-of-the-art models these parameters are postulated and not derived from
a pore-scale model.
One of the earliest models for themacroscale flow in a porousmediumwas proposed by Darcy.1

Based on column experiments for fully saturated, single-phase flow in a porous medium, a pro-
portionality between the pressure gradient and the velocity was observed, involving themedium’s
permeability as proportionality factor. Subsequently, further experiments by Richards2 and by
Morrow and Harris3 extended the theory to unsaturated and two-phase flow in porous media,
respectively. The resulting flowmodels still includeDarcy’s law, with a then saturation-dependent
permeability. However, they additionally involved the phase-pressure difference, also known as
the capillary pressure, which appears due to surface tension between the phases.
Based on experiments at equilibrium conditions, nonlinear, but monotonic capillary pressure–

saturation functions have been used for decades. However, already Morrow and Harris3 showed
that this relation also depends on the process—imbibition or drainage. Besides this hysteresis, fur-
ther dynamic effects were reported in many experiments,4–8 leading to a variety of nonmonotonic
curves which cannot be combined into a simple capillary pressure–saturation function.
To overcome the mismatch between the experimental results and the mathematical models,

several extensions of the capillary pressure–saturation relation have been proposed. Typically,
dynamic effects and hysteresis are directly expressed in terms of spatial or temporal derivatives
of the saturation leading to different capillary pressure models, for example, Refs. 9–12; for an
overview, see Ref. 13. Alternatively, the interfacial area was introduced as an additional state vari-
able leading to a capillary pressure–saturation-interfacial area relationship that implicitly models
the dynamic and hysteretic effects via the change in interfacial area.14,15 Other hysteresis mod-
els are based on the concept of percolating/nonpercolating phases.16–18 These extended models
are able to reproduce nonmonotonic phenomena such as saturation overshoot and fingering as
shown in Refs. 19–21 by qualitative analysis using a traveling wave approach and in Refs. 22–27 by
numerical simulations.
However, all models discussed above are considering the so-called Darcy scale, and thus

describe the average behavior of the liquid phases disregarding the detailed pore structure and
processes at the pore scale. It is crucial to understand the dependence of the effective parameters
on the underlying pore structure. At the pore scale, the mathematical model can incorporate the
detailed physical processes, but it is posed in the entire pore space, which is extremely complex,
and needs to account for all interfaces between phases. Resolving the whole complicated pore
space of realistic scenarios in direct numerical simulations is infeasible, so that further simplifi-
cations are necessary to link the properties of the different scales.
To approach this task, there exist a large variety of analytical upscaling techniques, see Ref. 28

for an overview. The volume averaging method has been used to derive effective equations for
quantities at the level of a representative elementary volume, while restricting the form of con-
stitutive equations using the second law of thermodynamics at the Darcy scale. This method has
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86 LUNOWA et al.

been successfully applied to single-phase and two-phase flow in porousmedia inRefs. 29–31.How-
ever, the technique does only provide explicit expressions for the effective parameters in the con-
stitutive equations via closure problems, when additional assumptions are made. Alternatively,
the homogenization method is a (matched) asymptotic expansion approach for typically periodic
systems, where there is a clear scale separation. The idea is to approximate the problem involving
a small parameter 𝜀 (e.g., the ratio of an average pore diameter to a Darcy-scale length) by the limit
problem and its solution as 𝜀 → 0. For an introduction to this method, wemention Ref. 32 and the
references therein.Many results for flow in porousmedia have been obtained by homogenization,
see, for example, Refs. 33–39 leading either to explicit expressions or to so-called cell problems for
the effective parameters. In both cases, knowledge of the underlying pore structure allows for the
explicit computation of the effective parameters. Therefore, we apply the homogenizationmethod
to explicitly derive effective relations.
Here we consider a simplified geometry, namely, the flow through a single, long, and thin pore

as a representative for the porous medium. Despite the very simplistic representation, the upscal-
ing of thin-strip models typically leads to Darcy-scale models with the same structure as well-
recognized Darcy-scale models in general porous media (see, e.g., Refs. 37–40). In addition, using
a single pore allows for the explicit derivation of closed-form expressions for the upscaled quan-
tities. We assume that the pore is filled by two incompressible and immiscible fluid phases. The
interface separating the two fluids is traversal to the flow direction. Themathematical model con-
sists of conservation laws for mass and momentum in time-dependent domains representing the
fluids. Assuming a horizontal setting, we disregard gravity effects. The evolution of the interface
separating the domains is not known a priori, but depends on the velocities of the fluids and on
the surface tension between the fluids. Hence, the development of the boundary of the domains
must be accounted for, and we have a free boundary problem.
While the fluid domains are assumed to be layered in Refs. 37–40, such that the fluid–fluid

interface does not come into contact with the solid wall, we here consider the case when the
interface is in contact with the pore walls. This requires a contact angle model, which is allowed
to be dynamic or even hysteretic. In particular, this also implies that each fluid is only present
either at the inlet or at the outlet. Note that the plug flow scenario considered in Ref. 40 has a
similar fluid distribution, but the authors assume a fixed interface shape and a residual thin film,
which yields dynamics that are very different from those generated by a variable interface with
moving contact line. Furthermore, we allow for a slowly varying solid wall instead of a constant-
width strip or tube used in Refs. 37–40.
Based on the discussed pore-scale model, we derive upscaled (Darcy-scale) models for two-

phase or unsaturated single-phase flow in a porous medium under reasonable assumptions on
the underlying physics. We follow the ideas in Refs. 37–39, where asymmetric expansions and
transversal averaging is applied to obtain a macroscale model based on the simple, layered pore.
We complement this with volume averages to account for the different geometry and fluid dis-
tribution. A similar strategy has been used to show that the upscaled models significantly differ
for different flow regimes assuming stationary fluid–fluid interface shapes in Ref. 40, and in Ref.
39 when assuming a layered, parallel flow regime. In general, the thin-strip approach allows the
derivation of explicit relations between the averaged quantities, while various additional features
and processes can be easily incorporated (see, e.g., Refs. 39, 41–43).
This paper is organized as follows. In Section 2, we formulate the mathematical model for two-

phase flow with evolving interface in a thin strip, which is then rescaled to obtain a nondimen-
sional formulation. Next, we formally derive in Section 3 the effectivemodels in the bulk domains
and close to the interfacewhen the ratio between thewidth and length of the thin strip approaches
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LUNOWA et al. 87

F IGURE 1 Sketch of the half thin strip Ω̂ filled by two fluids with interface Γ̂(𝑡) at time 𝑡

zero. These models form a system of differential algebraic equations for the interface position and
the total flux. Based on the derived models, we discuss averaged and effective quantities and their
relations in Section 4. In particular, there holds a Darcy-type equation for the flow and a capil-
lary pressure–saturation relationship involving dynamic effects. Finally, Section 5 provides some
numerical examples showing the behavior of the effective models for a constant as well as a vary-
ing wall width. The effect of the viscosity ratio, of the slip length, and of having a dynamic contact
angle law is discussed in detail.

2 MATHEMATICALMODEL

We consider a two-dimensional thin strip of length 𝐿 > 0, which is axisymmetric at Γ̂sym ∶=

[0, 𝐿] × {0}. Let �̂� ∶ [0, 𝐿] → (0,∞) be a given smooth function (which is bounded away from
zero), that describes the wall Γ̂w ∶= {�̂� ∈ (0, 𝐿) × (0,∞) | �̂�2 = �̂�(�̂�1)}. Here and in the following,
the subscripts ⋅1 and ⋅2 denote the components of a vector. Then the domain of interest is Ω̂ ∶=

{�̂� ∈ (0, 𝐿) × (0,∞) | �̂�2 < �̂�(�̂�1)}. At each time 𝑡 ∈ [0,∞), the domain is partitioned into two sub-
domains Ω̂I(𝑡) and Ω̂II(𝑡), which represent the parts occupied by the two fluids; one at the inlet
boundary Γ̂in ∶= {0} × [0, �̂�(0)] and the other at the outflow boundary Γ̂out ∶= {𝐿} × [0, �̂�(𝐿)].
Figure 1 illustrates the geometry.
We consider the particular case when the two fluids are separated by an axisymmetric fluid–

fluid interface Γ̂(𝑡) ∶= 𝜕Ω̂I(𝑡) ∩ 𝜕Ω̂II(𝑡), which is in contact with the solid wall Γ̂w. This interface
has an a priori unknown location and shape, and therefore appears as a free boundary in the
mathematical model. It is parameterized by �̂� ∶ [0,∞) × [0, 1] → Ω̂, such that Γ̂(𝑡) = {�̂�(𝑡, 𝑠) | 𝑠 ∈
[0, 1]}. The parameterization starts at the symmetry boundary and ends at the wall, that is,

�̂�2(𝑡, 0) = 0, �̂�2(𝑡, 1) = �̂�(�̂�1(𝑡, 1)). (1)

The point �̂�∗(𝑡) ∶= �̂�(𝑡, 1) is the so-called contact point.
At all boundaries of Ω̂, the outward normal and tangential unit vectors are denoted 𝒏 and 𝒕

with an index specifying the part of the boundary, for example, 𝒏sym for the normal vector at the
symmetry boundary Γ̂sym. At the fluid–fluid interface Γ̂(𝑡), the normal unit vector pointing from
Ω̂I(𝑡) into Ω̂II(𝑡) is denoted by 𝒏Γ, while the tangential unit vector is 𝒕Γ. Therefore, these vectors
are given by

𝒕Γ =
𝜕𝑠�̂�|𝜕𝑠�̂�| = 1√

(𝜕𝑠�̂�1)2 + (𝜕𝑠�̂�2)2
𝜕𝑠�̂� 𝒏Γ =

𝜕𝑠𝒕Γ|𝜕𝑠𝒕Γ| = 1√
(𝜕𝑠�̂�1)2 + (𝜕𝑠�̂�2)2

(
𝜕𝑠�̂�2
−𝜕𝑠�̂�1

)
,
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88 LUNOWA et al.

TABLE 1 Summary of all parameters (top), dimensionless numbers (center), and dimensional and
dimensionless quantities and their respective scaling (bottom)

Parameter Symbol Dim.-less Number Symbol Value
Length of the thin strip 𝐿 Scale ratio 𝜀 �̂�(0)∕𝐿

Characteristic velocity 𝑈 Density ratio R 𝜌II∕𝜌I

Density of fluid𝑚 𝜌𝑚 Viscosity ratio M 𝜇II∕𝜇I

Viscosity of fluid𝑚 𝜇𝑚 Reynolds number Re 𝜌I𝑈𝐿∕𝜇I

Surface tension coefficient 𝜎 Capillary number Ca 𝜇I𝑈∕𝜎

Eff. capillary number Ca Ca∕𝜀

Quantity Dimensional Dim.-less Scaling

Inner
expan-
sion Scaling

Position �̂� 𝒙 [𝐿, 𝜀𝐿] 𝑿 [𝜀𝐿, 𝜀𝐿]
Time 𝑡 𝑡 [𝐿∕𝑈] 𝑡 [𝐿∕𝑈]
Velocity of fluid𝑚 �̂�𝑚 𝒖𝑚 [𝑈] 𝑼𝑚 [𝑈]
Pressure of fluid𝑚 �̂�𝑚 𝑝𝑚 [𝜇I𝑈∕(𝜀2𝐿)] 𝑃𝑚 [𝜇I𝑈∕(𝜀2𝐿)]
Interface parameterization �̂� 𝜸 [𝐿, 𝜀𝐿] 𝒀 [𝜀𝐿, 𝜀𝐿]
Interface curvature �̂� 𝜅 [1∕𝐿] 𝐾 [1∕𝐿]
Slip length �̂� 𝜆 [𝜀𝐿] 𝜆 [𝜀𝐿]
Wall function (width) �̂� 𝑤 [𝜀𝐿] 𝑤 [𝜀𝐿]
Contact angle law 𝜃 𝜃 [1] 𝜃 [1]

𝒕w = −
1√

1 + (𝜕�̂�1�̂�)
2

(
1

𝜕�̂�1�̂�

)
𝒏w =

1√
1 + (𝜕�̂�1�̂�)

2

(
−𝜕�̂�1�̂�

1

)
,

𝒕sym =

(
1

0

)
𝒏sym =

(
0

−1

)
,

𝒕in =

(
0

−1

)
𝒏in =

(
−1

0

)
,

𝒕out =

(
0

1

)
𝒏out =

(
1

0

)
.

In each subdomain Ω̂𝑚(𝑡),𝑚 ∈ {I, II}, we assume that the flow ismodeled by the incompressible
Navier–Stokes equations, which are written in dimensional form

𝜌𝑚
(
𝜕𝑡�̂�𝑚 + (�̂�𝑚 ⋅ ∇̂)�̂�𝑚

)
+ ∇̂�̂�𝑚 = 𝜇𝑚Δ̂�̂�𝑚 in Ω̂𝑚(𝑡), (2)

∇̂ ⋅ �̂�𝑚 = 0 in Ω̂𝑚(𝑡), (3)

where �̂�𝑚(𝑡, �̂�) and �̂�𝑚(𝑡, �̂�) are the velocity and pressure of fluid 𝑚. The parameters 𝜌𝑚 and 𝜇𝑚
denote the density and the dynamic viscosity of the fluid (Table 1 provides an overview of all
parameters and quantities).
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LUNOWA et al. 89

The symmetry conditions at Γ̂sym,𝑚(̂𝑡) ∶= Γ̂sym ∩ 𝜕Ω̂𝑚(̂𝑡) are

�̂�𝑚 ⋅ 𝒏sym = 0, 𝒕sym ⋅
(
∇̂�̂�𝑚𝒏sym

)
= 0 on Γ̂sym,𝑚(̂𝑡), (4)

∇̂𝑝𝑚 ⋅ 𝒏sym = 0 on Γ̂sym,𝑚(̂𝑡), (5)

𝒏Γ ⋅ 𝒏sym = 0 at 𝑠 = 0. (6)

The walls Γ̂w,𝑚(̂𝑡) ∶= Γ̂w ∩ 𝜕Ω̂𝑚(̂𝑡) in contact with fluid 𝑚 ∈ {I, II} are assumed impermeable,
such that there is no fluid flow in normal direction, that is,

�̂�𝑚 ⋅ 𝒏w = 0 on Γ̂w,𝑚(̂𝑡). (7)

Traditionally, this is complemented with the no-slip condition �̂�𝑚 ⋅ 𝒕w = 0 under the assumption
that the fluid adheres to the wall. However, the no-slip condition leads to a singularity in the pres-
sure and in the shear stress at the contact point �̂�∗(𝑡) between wall Γ̂w and interface Γ̂(𝑡).44–46 To
overcome this issue, several alternative boundary conditions have been proposed for use close to
the contact point (or contact line in three dimensions), see Refs. 47–49 and the references therein.
Here, we consider the Navier-slip condition

𝒕w ⋅
(
�̂�𝑚 + 2𝜆�̂�(�̂�𝑚)𝒏w

)
= 0 on Γ̂w,𝑚(̂𝑡), (8)

where �̂�(�̂�) ∶= (∇̂�̂� + (∇̂�̂�)𝑇)∕2 denotes the symmetric strain and �̂� is the slip length. This con-
dition has been proposed originally byHuh and Scriven44 to resolve the contact-line problem, and
has been frequently used.50–55 Often, the Navier-slip condition is only applied close to the contact
point. In this case, a variable slip length �̂�(�̂�1) is adopted, decaying rapidly to zero away from the
contact point �̂�∗(𝑡) (see, e.g., Refs. 53, 56–58). This seems justified by molecular dynamics simula-
tions showing that the no-slip boundary condition is only violated in a small region (up to some
nm) around the contact point.59–63 In addition, surface wettability and roughness strongly affect
the slip behavior (see, e.g., Refs. 64–67 for a mathematical analysis).

Remark 1. To be general, we will consider two cases here: a constant slip length �̂� on the whole
wall Γ̂w, or a varying slip length �̂�(𝑡, �̂�1) = �̂�𝑒 exp(−𝑐|�̂�1 − �̂�∗1(𝑡)|) which decreases exponentially
away from the contact point �̂�∗(𝑡). Note that the overall dynamics of the two-phase system will
be independent of the latter, local slip condition, and especially of the exact form used; only the
flow field close to the interface will be affected (see Section 3). This is in accordance with the
results in Refs. 46, 54. Furthermore, note that we consider for simplicity the same slip length �̂� for
both fluids, although they could in principle differ. It is possible to extend the analysis below to
incorporate fluid-dependent slip lengths.

At the contact point �̂�∗(𝑡), the contact angle 𝜃 between thewall Γ̂w(𝑡) and the fluid interface Γ̂(𝑡)
must be prescribed. Minimization of the total surface energy yields the well-known Young’s rela-
tion 𝜎I − 𝜎II = 𝜎 cos 𝜃𝑠, where 𝜎I and 𝜎II denote the surface tension coefficients between the solid
and the two fluids, and 𝜎 the interfacial tension between the two fluids. The angle 𝜃𝑠 is called the
static contact angle andmeasured from the side of fluid II, as shown in Figure 1. Experiments per-
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90 LUNOWA et al.

formedunder dynamic conditions showa dynamic behavior of the contact angle. This is expressed
as an apparent contact angle 𝜃, and has a major influence on the overall flow dynamics.68 In gen-
eral, observations show increasing advancing angles, but decreasing receding angles, when the
contact-line velocity 𝑈 increases.46,69 The 𝜃–𝑈 relation is essentially monotonic.
There are mainly two models to describe this phenomenon: the hydrodynamic theory and the

molecular kinetic theory (for detailed reviews, see Refs. 48, 68, 70). The hydrodynamic theory
emphasizes on dissipation due to viscous flowwithin the wedge of liquid near themoving contact
line. The region close to the contact point is analyzed based on asymptotic expansions.46,50,52,57,71,72
For two-phase flow, this yields the well-known Cox law 𝑔(𝜃) = 𝑔(𝜃𝑠) + 𝐶𝜇𝑈∕𝜎 for the dynamic
contact angle 𝜃, where𝑈 denotes the contact-line velocity, the constant 𝐶 depends on the specific
slip model, and 𝑔 is an analytically derived function, which can be approximated by 𝑔(𝜃) ≈ 𝜃3
for small angles.57 The other approach is the molecular kinetic theory, where the dissipation is
described due to the dynamic friction associated with the moving contact line. This yields the
relation 𝑈 = 𝐶1 sinh(𝐶2𝜎(cos 𝜃𝑠 − cos 𝜃)) with the constants 𝐶1 and 𝐶2 depending on molec-
ular properties.69,73,74 After linearization for small differences in the angles, one obtains 𝑈 =

𝐶𝜎(cos 𝜃𝑠 − cos 𝜃) for some constant 𝐶.68
As for the slip length, the contact angle is strongly affected by surfacewettability and roughness.

In Refs. 68, 70, the resulting effects are made responsible for contact angle hysteresis, that is,
that static contact angles can be achieved in the whole range 𝜃𝑟 < 𝜃𝑠 < 𝜃𝑎, where 𝜃𝑎, 𝜃𝑟 denote
the advancing and receding contact angles, respectively. Summarizing all the above results, we
assume the contact angle 𝜃 to depend on the velocity −𝜕𝑡�̂�∗(𝑡) ⋅ 𝒕w of the contact point parallel to
the wall. Recall that �̂�∗ = �̂�|𝑠=1, so this contact angle condition is expressed as

cos(𝜃(−𝜕𝑡�̂� ⋅ 𝒕w|�̂�1=�̂�1 )) = 𝒕Γ ⋅ 𝒕w||�̂�1=�̂�1 at 𝑠 = 1, (9)

where 𝜃 ∶ ℝ → (0, 𝜋) is a given dynamic contact angle model. Note that any dynamic contact
angle model that satisfies assumption (A5) can be used. Specific relations for hysteretic 𝜃 and
their effect on the behavior will be discussed in Subsection 3.4. Furthermore, to account for het-
erogeneities, the following analysis can be straightforwardly extended to the casewhen the contact
angle also depends on the position �̂�∗1 (𝑡) of the contact point.
At the interface Γ̂(𝑡), there holds continuity of the velocity and of the tangential stress, while

the jump in the normal stress is caused by the surface tension

�̂�I = �̂�II on Γ̂(𝑡), (10)

− (�̂�I − �̂�II)𝒏Γ + 2
(
𝜇ID̂(�̂�I) − 𝜇IID̂(�̂�II)

)
𝒏Γ = 𝜎�̂�𝒏Γ on Γ̂(𝑡), (11)

where 𝜅 = det(𝜕𝑠𝜸, 𝜕
2
𝑠 𝜸)∕|𝜕𝑠𝜸|3 is the local mean curvature of the interface. Note that this curva-

ture generalizes to ∇̂ ⋅ 𝒏Γ for three-dimensional domains. The interface moves according to the
normal velocity of the fluids,

𝜕�̂�𝜸 ⋅ 𝒏Γ = �̂�I ⋅ 𝒏Γ on Γ̂(̂𝑡). (12)

At the inlet boundary Γ̂in, either the pressure �̂�in or the velocity �̂� in is given, namely, either

�̂�I = �̂�in, �̂�I ⋅ 𝒕in = 0 or �̂�I = �̂�in on Γ̂in, (13)
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LUNOWA et al. 91

while an outflow boundary condition is applied at Γ̂out (corresponding to �̂�out = 0)

�̂�II = 0, �̂�II ⋅ 𝒕out = 0 on Γ̂out. (14)

The problem is closed by the initial conditions �̂�|𝑡=0 = �̂�0 for the position of the interface Γ̂(0)
and �̂�𝑚|𝑡=0 = �̂�𝑚,0 for the velocity in Ω̂𝑚(0). In the following, we will omit the initial conditions
and implicitly require them tomatch the asymptotic solutions in Section 3 to avoid possible initial
layer solutions for small times.

2.1 Dimensionless formulation

To quantify the importance of the different terms of the model, we rewrite the equations in a
dimensionless form. As we consider a single, thin pore, we introduce the small parameter 𝜀 =
�̂�(0)∕𝐿 ≪ 1which characterizes the ratio of the typical width to the length of the thin strip. Note
that in a general porous medium, 𝜀 would reflect the ratio of the size of a pore to the length scale
of a representative elementary volume. With this, we rescale the governing equations using the
dimensionless quantities(Table 1)

𝑥1 ∶=
�̂�1
𝐿
, 𝑥2 ∶=

�̂�2
�̂�(0)

=
�̂�2
𝜀𝐿
, 𝑡 ∶=

𝑡𝑈

𝐿
, 𝜆𝜀 ∶=

�̂�

�̂�(0)
=

�̂�

𝜀𝐿
,

𝛾𝜀1(𝑡, 𝑠) ∶=
�̂�1(𝑡, 𝑠)

𝐿
, 𝛾𝜀2(𝑡, 𝑠) ∶=

�̂�2(𝑡, 𝑠)

�̂�(0)
=
�̂�2(𝑡, 𝑠)

𝜀𝐿
, 𝑤𝜀(𝑥1) ∶=

�̂�(�̂�1)

�̂�(0)
=
�̂�(�̂�1)

𝜀𝐿
,

𝜃𝜀(𝑢) ∶= 𝜃(𝑢𝑈), 𝒖𝜀𝑚(𝑡, 𝒙) ∶=
�̂�𝑚(𝑡, �̂�)

𝑈
, 𝑝𝜀𝑚(𝑡, 𝒙) ∶=

�̂�𝑚(𝑡, �̂�)𝜀
2𝐿

𝜇I𝑈
,

where 𝑈 > 0 denotes a characteristic velocity. In particular, the pressure reference 𝜇I𝑈∕(𝜀2𝐿) is
chosen such that pressure and viscous stress terms in Equation (2) are balanced. For moderate
Reynolds number, this choice ensures laminar flow driven by the pressure gradients, which is
crucial for the validity of Darcy’s law on the Darcy scale. Note that the coordinates 𝑥1 and 𝑥2 are
scaled differently to obtain a domain of order 1, (𝜀0). Hence, the nondimensional differential
operators are

∇𝜀 =

(
𝜕𝑥1

𝜀−1𝜕𝑥2

)
, Δ𝜀 = 𝜕2𝑥1 + 𝜀

−2𝜕2𝑥2 ,

and the divergence changes accordingly. The nondimensional domains and boundaries become

Γ𝜀(𝑡) = {𝜸𝜀(𝑡, 𝑠) | 𝑠 ∈ [0, 1]}, Ω𝜀 = {𝒙 ∈ (0, 1) × (0,∞) | 𝑥2 < 𝑤𝜀(𝑥1)},
Γ𝜀in = {0} × [0, 1],  ∶= {𝑂 ⊂ Ω𝜀 ⧵ Γ𝜀(𝑡) | 𝑂 ∪ Γ𝜀in is connected},

Ω𝜀I(𝑡) =
⋃
𝑂∈

𝑂, Ω𝜀II(𝑡) = Ω𝜀 ⧵ (Γ𝜀(𝑡) ∪ Ω𝜀I(𝑡)), Γ𝜀out = {1} × [0, 𝑤𝜀(1)],

Γ𝜀sym,𝑚(𝑡) = {𝒙 ∈ 𝜕Ω𝜀𝑚(𝑡) | 𝑥2 = 0}, Γ𝜀w,𝑚(𝑡) = {𝒙 ∈ 𝜕Ω𝜀𝑚(𝑡) | 𝑥2 = 𝑤𝜀(𝑥1)}.
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92 LUNOWA et al.

After the rescaling of Equations (1–14), the dimensionless equations read

𝜀2Re
(
𝜕𝑡𝒖

𝜀
I + (𝒖

𝜀
I ⋅ ∇

𝜀)𝒖𝜀I
)
+ ∇𝜀𝑝𝜀I = 𝜀2Δ𝜀𝒖𝜀I in Ω𝜀I(𝑡), (15)

𝜀2RRe
(
𝜕𝑡𝒖

𝜀
II + (𝒖

𝜀
II ⋅ ∇

𝜀)𝒖𝜀II
)
+ ∇𝜀𝑝𝜀II = M𝜀2Δ𝜀𝒖𝜀II in Ω𝜀II(𝑡), (16)

∇𝜀 ⋅ 𝒖𝜀𝑚 = 0 in Ω𝜀𝑚(𝑡), (17)

𝒖𝜀𝑚 ⋅ 𝒏sym = 0, 𝒕sym ⋅
(
∇𝜀𝒖𝜀𝑚𝒏sym

)
= 0 on Γ𝜀sym,𝑚(𝑡), (18)

∇𝜀𝑝𝜀𝑚 ⋅ 𝒏sym = 0, on Γ𝜀sym,𝑚(𝑡), (19)

either 𝑝𝜀I = 𝑝𝜀in, 𝒖𝜀I ⋅ 𝒕in = 0, or 𝒖𝜀I = 𝒖𝜀in on Γ𝜀in, (20)

𝑝𝜀II = 0, 𝒖𝜀II ⋅ 𝒕out = 0 on Γ𝜀out, (21)

𝒕𝜀w ⋅ (𝒖
𝜀
𝑚 + 2𝜀𝜆

𝜀D𝜀(𝒖𝜀𝑚)𝒏
𝜀
w) = 0, 𝒖𝜀𝑚 ⋅ 𝒏

𝜀
w = 0 on Γ𝜀w,𝑚(𝑡), (22)

𝜕𝑡

(
𝛾𝜀1
𝜀𝛾𝜀2

)
⋅ 𝒏𝜀Γ = 𝒖𝜀I ⋅ 𝒏

𝜀
Γ, 𝒖𝜀I = 𝒖𝜀II on Γ𝜀(𝑡), (23)

−(𝑝𝜀I − 𝑝
𝜀
II)𝒏

𝜀
Γ + 2𝜀

2
(
D𝜀(𝒖𝜀I) −MD𝜀(𝒖𝜀II)

)
𝒏𝜀Γ =

𝜀2

Ca𝜅
𝜀𝒏𝜀Γ on Γ𝜀(𝑡), (24)

𝒏𝜀Γ ⋅ 𝒏sym = 0 at 𝑠 = 0, (25)

cos(𝜃𝜀(−𝜕𝑡𝜸
𝜀 ⋅ 𝒕𝜀w|𝑥1=𝛾𝜀1)) = 𝒕𝜀Γ ⋅ 𝒕

𝜀
w||𝑥1=𝛾𝜀1 at 𝑠 = 1, (26)

for𝑚 ∈ {I, II}, where the dimensionless numbers R,M, Re, and Ca are given in Table 1. The nondi-
mensional strain is given by𝐃𝜀(𝒖𝜀) = (∇𝜀𝒖𝜀+ (∇𝜀𝒖𝜀)𝑇)∕2 and the transformed normal and tangen-
tial vectors are

𝒕𝜀w = −
1√

1 + 𝜀2(𝜕𝑥1𝑤
𝜀)2

(
1

𝜀𝜕𝑥1𝑤
𝜀

)
, 𝒏𝜀w =

1√
1 + 𝜀2(𝜕𝑥1𝑤

𝜀)2

(
−𝜀𝜕𝑥1𝑤

𝜀

1

)
,

𝒕𝜀Γ =
1√

(𝜕𝑠𝛾
𝜀
1)
2 + 𝜀2(𝜕𝑠𝛾

𝜀
2)
2

(
𝜕𝑠𝛾

𝜀
1

𝜀𝜕𝑠𝛾
𝜀
2

)
, 𝒏𝜀Γ =

1√
(𝜕𝑠𝛾

𝜀
1)
2 + 𝜀2(𝜕𝑠𝛾

𝜀
2)
2

(
𝜀𝜕𝑠𝛾

𝜀
2

−𝜕𝑠𝛾
𝜀
1

)
.
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LUNOWA et al. 93

Furthermore, the nondimensional curvature is given by

𝜅𝜀 =
𝜀 det(𝜕𝑠𝜸

𝜀, 𝜕2𝑠 𝜸
𝜀)(

(𝜕𝑠𝛾
𝜀
1)
2 + 𝜀2(𝜕𝑠𝛾

𝜀
2)
2
)3∕2 = 𝜀

(
𝜕𝑠𝛾

𝜀
1𝜕
2
𝑠 𝛾

𝜀
2 − 𝜕𝑠𝛾

𝜀
2𝜕
2
𝑠 𝛾

𝜀
1

)
(
(𝜕𝑠𝛾

𝜀
1)
2 + 𝜀2(𝜕𝑠𝛾

𝜀
2)
2
)3∕2 .

Remark 2. Integrating Equation (17) for 𝑚 = I over 𝑉𝑎 = {𝒙 ∈ Ω𝜀I(𝑡) | 𝑥1 < 𝑎} for any 𝑎 <
min𝑠∈[0,1] 𝛾

𝜀
1(𝑡, 𝑠) yields by the Gauss theorem and the boundary conditions Equations (18–22)

0 = ∫
𝑉𝑎

∇𝜀 ⋅ 𝒖𝜀I𝑑𝒙 = ∫
𝜕𝑉𝑎

𝒖𝜀I ⋅ 𝒏𝑑𝑠 = ∫
𝑤𝜀(𝑎)

0

𝑢𝜀I,1
||𝑥1=𝑎𝑑𝑥2 − ∫

1

0

𝑢𝜀I,1
||𝑥1=0𝑑𝑥2.

Denoting the total flux into the half strip by 𝑞𝜀(𝑡, 0) ∶= ∫ 1

0
𝑢𝜀I,1(𝑡, 𝒙)|𝑥1=0𝑑𝑥2, we obtain that for

all 𝑎 < min𝑠∈[0,1] 𝛾𝜀1(𝑡, 𝑠) the total flux 𝑞
𝜀(𝑡, 𝑎) ∶= ∫ 𝑤𝜀(𝑎)

0
𝑢𝜀I,1|𝑥1=𝑎𝑑𝑥2 = 𝑞𝜀(𝑡, 0). Analogously, inte-

grating Equation (17) for 𝑚 = I over Ω𝜀I(𝑡) and for 𝑚 = II over 𝑉𝑎 = {𝒙 ∈ Ω𝜀II | 𝑥1 < 𝑎} for any
𝑎 > max𝑠∈[0,1] 𝛾

𝜀
1(𝑡, 𝑠) yields by the Gauss theorem, the boundary conditions, Equations (18–22),

and the continuity of velocity at the interface, Equation (23), that

0 = ∫
Ω𝜀I

∇𝜀 ⋅ 𝒖𝜀I𝑑𝒙 + ∫
𝑉𝑎

∇𝜀 ⋅ 𝒖𝜀II𝑑𝒙 = −𝑞𝜀(𝑡, 0) + ∫
𝑤𝜀(𝑎)

0

𝑢𝜀II,1
||𝑥1=𝑎𝑑𝑥2,

that is, the total flux 𝑞(𝑡, 𝑎) ∶= ∫ 𝑤𝜀(𝑎)

0
𝑢𝜀II,1|𝑥1=𝑎𝑑𝑥2 = 𝑞𝜀(𝑡, 0) for all 𝑎 > max𝑠∈[0,1] 𝛾𝜀1(𝑡, 𝑠). Within

the interval [min𝑠∈[0,1] 𝛾𝜀1(𝑡, 𝑠),max𝑠∈[0,1] 𝛾
𝜀
1(𝑡, 𝑠)], the same calculation shows that the sum of the

two fluxes over the respective parts of the domain equals the total flux 𝑞𝜀(𝑡, 0). This means that the
total flux is independent of 𝑥1, so wewill simply use 𝑞𝜀(𝑡) in this result for the subsequent analysis.

3 ASYMPTOTIC EXPANSIONS

In this section, we derive the formal solution for the two-phase flow system Equations (15-26)
in the asymptotic limit as 𝜀 → 0, that is, the behavior in the limit when the thin strip becomes
infinitely thin. We start with the solution in the bulk domains Ω𝜀𝑚(𝑡), 𝑚 ∈ {I, II}, away from the
interface Γ𝜀(𝑡), where either fluid I or II is present, respectively. In the subsequent section, we
show that these bulk solutions are connected via a boundary layer solution in the vicinity of Γ𝜀(𝑡).
Altogether, the solution is of Hagen–Poiseuille type in the bulk coupled by a dynamic Young–
Laplace law at the interface, such that the interface position and the total flux are given by differ-
ential algebraic equations. Furthermore, we show that the solution for vanishing viscosity ratio
M→ 0matches the asymptotic limit for unsaturated one-phase flow. Finally, a reformulation for
hysteretic contact angle models is discussed.
For the following analysis, we use an asymptotic expansion techniquewith respect to 𝜀 to derive

effectivemodels. All variables are assumed to be smooth and to depend regularly on 𝜀 startingwith
the leading order (𝜀0). We apply the homogenization ansatz

𝒖𝜀𝑚(𝑡, 𝒙) = 𝒖0𝑚(𝑡, 𝒙) + 𝜀𝒖
1
𝑚(𝑡, 𝒙) + (𝜀2),
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94 LUNOWA et al.

𝑝𝜀𝑚(𝑡, 𝒙) = 𝑝0𝑚(𝑡, 𝒙) + 𝜀𝑝
1
𝑚(𝑡, 𝒙) + (𝜀2),

𝜸𝜀(𝑡, 𝑠) = 𝜸0(𝑡, 𝑠) + 𝜀𝜸1(𝑡, 𝑠) + (𝜀2)
for 𝑚 ∈ {I, II}. Inserting the asymptotic expansions into the two-phase flow equations Equations
(15–26) and equating terms of the same order in 𝜀, we will obtain the asymptotic equations and
solutions in the limit as 𝜀 → 0. To this end, we need some assumptions on the parameters of the
model.

(A1) The Reynolds number Re and its product with the density ratio R are uniformly bounded
for all 0 < 𝜀 ≪ 1, that is, there exists𝐶 ∈ (0,∞) such that Re ≤ 𝐶 and RRe ≤ 𝐶 independent
of 𝜀. In other words, Re = (𝜀0) or Re = o(𝜀0), and RRe = (𝜀0) or RRe = o(𝜀0).

(A2) The viscosity ratio M of the fluids is of order 1, M = (𝜀0).
(A3) According to Remark 1, the slip length 𝜆𝜀 has the form

𝜆𝜀(𝑡, 𝑥1) = 𝜆0 + 𝜆𝑒 exp

(
−
|𝑥1 − 𝑥∗1(𝑡)|

𝜀

)
for given constants 𝜆0, 𝜆𝑒 ≥ 0 that are independent of 𝜀. Moreover, there holds either 𝜆𝑒 = 0,
or 𝜆0 = 0. Note that the latter represents the case of rapidly decaying slip away from the
interface, so that 𝜆𝜀 has the expansion 𝜆𝜀(𝑡, 𝑥1) = (𝜀𝑁) for arbitrary 𝑁 ∈ ℕ as long as 𝑥1 −
𝑥∗1(𝑡) ≫ 𝜀.

(A4) The wall function 𝑤𝜀 has a uniform expansion

𝑤𝜀(𝑥1) = 𝑤0(𝑥1) + 𝜀𝑤
1(𝑥1) + (𝜀2),

where 𝑤𝜀, 𝑤0 ∶ [0, 1] → (0,∞) are continuously differentiable (and thus bounded away
from zero). Moreover, there holds 𝑤0(0) = 1 and 𝜕𝑥1𝑤

0(0) = 𝜕𝑥1𝑤
0(1) = 0.

(A5) The contact angle relation 𝜃𝜀 has a uniform expansion

𝜃𝜀(𝑢) = 𝜃0(𝑢) + 𝜀𝜃1(𝑢) + (𝜀2),
where 𝜃0 ∶ ℝ → (0, 𝜋) is Lipschitz-continuous.

(A6) If the velocity boundary condition 𝒖𝜀I = 𝒖𝜀in is used at the inlet Γ
𝜀
in, the velocity is given by

𝒖𝜀in(𝑡, 𝒙) =

(
3𝑞(𝑡)

(1+2𝜆0)−𝑥2
2

6𝜆0+2
+ (𝜀)

(𝜀2)
)
,

where 𝑞 ∶ [0,∞) → ℝ is a continuous function independent of 𝜀.

As will be seen below, (A1) ensures that the flow remains laminar. Furthermore, (A2) restricts
the discussion tomoderately viscous liquids.WhileM≫ 1would result in a highly viscous second
fluid which gets immobile as 𝜀 → 0, we will discuss the case M≪ 1 of a extremely mobile fluid
such as air (compared to water or oil) separately in Subsection 3.3. The asymptotic expansions
stated in (A4) and (A5) are crucial for the derivation. As discussed in Section 2, slip is necessary to
allow the movement of the contact point. Hence, (A3) requires a simple expression of the slip at
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LUNOWA et al. 95

the pore walls close to the interface to avoid technical complexity, while allowing for the typical
no-slip condition at the pore walls away from the interface (𝜆0 = 0). The case of global slip con-
ditions (𝜆0 > 0) generalizes this to applications where the slip length is of the same order as the
diameter, for example, in nanofluidic devices or for fluids with low viscosity. The assumption of a
horizontal wall at the inlet and at the outlet (𝜕𝑥1𝑤

0(0) = 𝜕𝑥1𝑤
0(1) = 0) in (A4) is used to exclude

possible boundary-layer effects caused by nonmatching boundary conditions. The inlet velocity
in (A6) is then the Hagen–Poiseuille profile incorporating the Navier-slip condition. Assumptions
(A4) and (A6) can be relaxed if the boundary conditions at Γ𝜀in and Γ

𝜀
out, Equations (20–21), are

replaced appropriately, or if the resulting boundary layer matches the asymptotic solution of the
following analysis. We observe that (A4) rules out the possibility that the pore has walls with
rapidly oscillatory characteristics (so-called “rough walls”). Such walls can be characterized by
a function 𝑤𝜀(𝑥1) = 𝑤0(𝑥1) + 𝜀𝑤

1(𝑥1∕𝜀) + (𝜀). Clearly, this would strongly affect the shape and
position of the interface. A naive extension of the following results would yield unphysical oscil-
lations of the interface, so that we restrict the discussion to slowly varying walls.
Note that the normal and tangential vectors𝒏𝜀Γ, 𝒕

𝜀
Γ,𝒏

𝜀
w, and 𝒕𝜀w depend on 𝜸𝜀and𝑤𝜀, respectively,

such that these can be expanded, for example,

𝒏𝜀w =

(
0

1

)
− 𝜀

(
𝜕𝑥1𝑤

0

0

)
+ (𝜀2), (27)

𝒏𝜀Γ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
0

−sign(𝜕𝑠𝛾
0
1)

)
+ 𝜀

1|𝜕𝑠𝛾01|
(
𝜕𝑠𝛾

0
2

−𝜕𝑠𝛾
1
1

)
+ (𝜀2) for 𝜕𝑠𝛾01 ≠ 0,

1√
(𝜕𝑠𝛾

1
1
)2+(𝜕𝑠𝛾

0
2
)2

(
𝜕𝑠𝛾

0
2

−𝜕𝑠𝛾
1
1

)
+ 𝜀

1√
(𝜕𝑠𝛾

1
1
)2+(𝜕𝑠𝛾

0
2
)2

(
𝜕𝑠𝛾

1
2

−𝜕𝑠𝛾
2
1

)
+𝜀

𝜕𝑠𝛾
1
1
𝜕𝑠𝛾

2
1
+𝜕𝑠𝛾

0
2
𝜕𝑠𝛾

1
2

((𝜕𝑠𝛾
1
1
)2+(𝜕𝑠𝛾

0
2
)2)3∕2

(
−𝜕𝑠𝛾

0
2

𝜕𝑠𝛾
1
1

)
+ (𝜀2) otherwise.

(28)

In particular, the direction of the normal vector 𝒏𝜀Γ depends on 𝜕𝑠𝛾
0
1 . If 𝜕𝑠𝛾

0
1 ≠ 0 for some

𝑠 ∈ [0, 1], the interface Γ𝜀(𝑡) is largely deformed over a region that has a width (𝜀0), namely,
𝐼 = [min𝑠∈[0,1] 𝛾

𝜀
1,max𝑠∈[0,1] 𝛾

𝜀
1] with |𝐼| = (𝜀0). Therefore, there are both fluids present along a

transversal segment at any 𝑥1 ∈ 𝐼, and complicated interface dynamics occur in the limit 𝜀 → 0.
On the other hand, if 𝜕𝑠𝛾01 ≡ 0, only small deformationswith |𝐼| = (𝜀) are possible, andwe obtain
asymptotically a sharp transition from fluid I to fluid II at 𝛾01 .

3.1 Flow in the bulk domains

First, we consider the flow in the bulk domains Ω𝜀𝑚,𝑚 ∈ {I, II}, and solve the resulting equations
away from the interface. Inserting the homogenization ansatz into Equations (15–22) using (A1)–
(A6) and a Taylor expansion around 𝑥2 = 𝑤0(𝑥1) for Equation (22), one obtains

(𝜀) = 𝜕𝑥1𝑝
0
I − 𝜕

2
𝑥2
𝑢0I,1 in Ω𝜀I(𝑡), (29)
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96 LUNOWA et al.

(𝜀0) = 𝜀−1𝜕𝑥2𝑝
0
I in Ω𝜀I(𝑡), (30)

(𝜀) = 𝜕𝑥1𝑝
0
II −M𝜕2𝑥2𝑢

0
II,1 in Ω𝜀II(𝑡), (31)

(𝜀0) = 𝜀−1𝜕𝑥2𝑝
0
II in Ω𝜀II(𝑡), (32)

(𝜀) = 𝜀−1𝜕𝑥2𝑢
0
𝑚,2 +

(
𝜕𝑥1𝑢

0
𝑚,1 + 𝜕𝑥2𝑢

1
𝑚,2

)
in Ω𝜀𝑚(𝑡), (33)

(𝜀2) = 𝑢0𝑚,2 + 𝜀𝑢
1
𝑚,2, (𝜀) = 𝜕𝑥2𝑢

0
𝑚,1 at 𝑥2 = 0, (34)

(𝜀) = 𝜕𝑥2𝑝
0
𝑚 at 𝑥2 = 0, (35)

(𝜀) = 𝑝0I − 𝑝
0
in, (𝜀2) = 𝑢0I,2 + 𝜀𝑢

1
I,2 or (36)

(𝜀2) = 𝒖0I − 𝒖
0
in + 𝜀

(
𝒖1I − 𝒖

1
in
)

at 𝑥1 = 0, (37)

(𝜀) = 𝑝0II, (𝜀2) = 𝑢0II,2 + 𝜀𝑢
1
II,2 at 𝑥1 = 1, (38)

(𝜀) = 𝑢0𝑚,1 + 𝜆
0𝜕𝑥2𝑢

0
𝑚,1 at 𝑥2 = 𝑤0(𝑥1), (39)

(𝜀2) = 𝑢0𝑚,2 + 𝜀
(
𝑢1𝑚,2 + 𝑤

1𝜕𝑥2𝑢
0
𝑚,2 − 𝑢

0
𝑚,1𝜕𝑥1𝑤

0
)

at 𝑥2 = 𝑤0(𝑥1). (40)

Note that either Equation (36) or Equation (37) holds, depending on the choice of the boundary
condition at the inlet Γ𝜀in.
Since we are interested in the flow behavior away from the interface Γ𝜀(𝑡), we define

𝐺I(𝑡) ∶= min
𝑠∈[0,1]

𝛾01(𝑠, 𝑡), 𝐺II(𝑡) ∶= max
𝑠∈[0,1]

𝛾01(𝑠, 𝑡),

and investigate the problem for 𝑥1 < 𝐺I(𝑡) in fluid I and for 𝑥1 > 𝐺II(𝑡) in fluid II, respectively.
In leading order, one obtains 𝜕𝑥2𝑢

0
𝑚,2 = 0 in Ω𝜀𝑚(𝑡) for both 𝑚 ∈ {I, II} by the mass conservation

Equation (33). The symmetry and wall boundary conditions, Equations (34,40), lead to

𝑢0𝑚,2 = 0for𝑚 = I, 𝑥1 < 𝐺I(𝑡), and for𝑚 = II, 𝑥1 > 𝐺II(𝑡),

which agrees with Equations (36-38), the in- and outflow boundary conditions. The second com-
ponent of themomentum equation (30) of fluid I yields in leading order 𝜕𝑥2𝑝

0
I = 0 inΩ𝜀I(𝑡), which

is in agreement with the symmetry condition, Equation (35). We conclude

𝑝0I = 𝑝0I (𝑡, 𝑥1) for 𝑥1 < 𝐺I(𝑡).

Analogously, the second component of the momentum equation (32) of fluid II leads to 𝜕𝑥2𝑝
0
II = 0

in Ω𝜀II(𝑡) (in agreement with the symmetry condition, Equation (35)), and thus

𝑝0II = 𝑝0II(𝑡, 𝑥1) for 𝑥1 > 𝐺II(𝑡).
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LUNOWA et al. 97

From the first component of the momentum equation (29) of fluid I one obtains

𝜕𝑥1𝑝
0
I = 𝜕2𝑥2𝑢

0
I,1 in Ω𝜀I(𝑡).

Integrating twice over 𝑥2 using the symmetry and wall boundary conditions, Equations (34,39),
this leads to

𝑢0I,1(𝑡, 𝒙) =
𝑥22 − 𝑤

0(𝑥1)(2𝜆
0 + 𝑤0(𝑥1))

2
𝜕𝑥1𝑝

0
I (𝑡, 𝑥1) for 𝑥1 < 𝐺I(𝑡). (41)

In a similar fashion, one obtains for fluid II by Equations (31,34,39)

𝑢0II,1(𝑡, 𝒙) =
𝑥22 − 𝑤

0(𝑥1)(2𝜆
0 + 𝑤0(𝑥1))

2M 𝜕𝑥1𝑝
0
II(𝑡, 𝑥1) for 𝑥1>𝐺II(𝑡). (42)

Integrating Equations (41–42) over 𝑥2 ∈ [0, 𝑤0(𝑥1)] for any 𝑥1 < 𝐺I and 𝑥1 > 𝐺II, respectively, and
using Remark 2 yields

𝑞(𝑡) = ∫
𝑤0(𝑎)

0

𝑢0I,1(𝑡, 𝒙)|𝑥1=𝑎𝑑𝑥2 = −
(𝑤0(𝑥1))

2(3𝜆0 + 𝑤0(𝑥1))

3
𝜕𝑥1𝑝

0
I (𝑡, 𝑥1), (43)

𝑞(𝑡) = ∫
𝑤0(𝑎)

0

𝑢0II,1(𝑡, 𝒙)|𝑥1=𝑎𝑑𝑥2 = −
(𝑤0(𝑥1))

2(3𝜆0 + 𝑤0(𝑥1))

3M 𝜕𝑥1𝑝
0
II(𝑡, 𝑥1), (44)

where 𝑞(𝑡) ∶= ∫ 1

0
𝑢0I,1(𝑡, 𝒙)𝑑𝑥2. Note that 𝑞 is independent of 𝑥1, and it is equivalent to the one in

(A6) if Equation (37) is given. Otherwise, 𝑞 is unknown andmust be found in the further solution
process. Solving the above equations for 𝑝0𝑚, with the outflow boundary condition, Equation (38),
we obtain

𝑝0I (𝑡, 𝒙) = 𝑝0in(𝑡) − 𝑞(𝑡)∫
𝑥1

0

3

(𝑤0(𝜉))2(3𝜆0 + 𝑤0(𝜉))
𝑑𝜉 for 𝑥1 < 𝐺I(𝑡), (45)

𝑝0II(𝑡, 𝒙) = 𝑞(𝑡)∫
1

𝑥1

3M
(𝑤0(𝜉))2(3𝜆0 + 𝑤0(𝜉))

𝑑𝜉 for 𝑥1>𝐺II(𝑡). (46)

Here, the inlet pressure 𝑝0in(𝑡) is either given by the inlet boundary condition, Equation (36), or
has to be found in the further solution process. Note that since the inlet boundary condition is
either Equation (36) or Equation (37), this means that either 𝑞 or 𝑝0in is given, while the other still
must be determined. Inserting Equations (45–46) into Equations (41–42) yields

𝑢0I,1(𝑡, 𝒙) = 3𝑞(𝑡)
𝑤0(𝑥1)(2𝜆

0 + 𝑤0(𝑥1)) − 𝑥
2
2

2(𝑤0(𝑥1))2(3𝜆0 + 𝑤0(𝑥1))
for 𝑥1 < 𝐺I(𝑡), (47)
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98 LUNOWA et al.

𝑢0II,1(𝑡, 𝒙) = 3𝑞(𝑡)
𝑤0(𝑥1)(2𝜆

0 + 𝑤0(𝑥1)) − 𝑥
2
2

2(𝑤0(𝑥1))2(3𝜆0 + 𝑤0(𝑥1))
for 𝑥1>𝐺II(𝑡). (48)

Using Equations (47–48) in themass conservation Equation (33), the first-order equations become

𝜕𝑥2𝑢
1
𝑚,2 = 𝑞(𝑡)

(
1

2(3𝜆0+𝑤0(𝑥1))2
+

1

(𝑤0(𝑥1))2
−

9(2𝜆0+𝑤0(𝑥1))𝑥
2
2

2(𝑤0(𝑥1))3(3𝜆0+𝑤0(𝑥1))2

)
𝜕𝑥1𝑤

0(𝑥1),

for𝑚 ∈ {I, II}. Integration over 𝑥2 using the symmetry condition, Equation (34), yields

𝑢1I,2(𝑡, 𝒙) = 𝑞(𝑡)

(
𝑥2

2(3𝜆0 + 𝑤0(𝑥1))2
+

𝑥2
(𝑤0(𝑥1))2

−
3(2𝜆0 + 𝑤0(𝑥1))𝑥

3
2

2(𝑤0(𝑥1))3(3𝜆0 + 𝑤0(𝑥1))2

)
𝜕𝑥1𝑤

0(𝑥1) for 𝑥1 < 𝐺I(𝑡),

𝑢1II,2(𝑡, 𝒙) = 𝑞(𝑡)

(
𝑥2

2(3𝜆0 + 𝑤0(𝑥1))2
+

𝑥2
(𝑤0(𝑥1))2

−
3(2𝜆0 + 𝑤0(𝑥1))𝑥

3
2

2(𝑤0(𝑥1))3(3𝜆0 + 𝑤0(𝑥1))2

)
𝜕𝑥1𝑤

0(𝑥1) for 𝑥1 > 𝐺II(𝑡),

which is in agreement with the boundary conditions, Equations (36-38,40).
Summarizing, we obtain the following solution in the bulk domains. There holds

𝒖𝜀I(𝑡, 𝒙) = 𝑞(𝑡)

⎛⎜⎜⎜⎜⎝
3
𝑤0(𝑥1)(2𝜆

0+𝑤0(𝑥1))−𝑥
2
2

2(𝑤0(𝑥1))2(3𝜆0+𝑤0(𝑥1))
+ (𝜀)

𝜀

(
𝑥2

2(3𝜆0+𝑤0(𝑥1))2
+

𝑥2

(𝑤0(𝑥1))2
−

3(2𝜆0+𝑤0(𝑥1))𝑥
3
2

2(𝑤0(𝑥1))3(3𝜆0+𝑤0(𝑥1))2

)
𝜕𝑥1𝑤

0(𝑥1) + (𝜀2)

⎞⎟⎟⎟⎟⎠
, (49)

𝑝𝜀I(𝑡, 𝒙) = 𝑝0in(𝑡) − 𝑞(𝑡)∫
𝑥1

0

3

(𝑤0(𝜉))2(3𝜆0 + 𝑤0(𝜉))
𝑑𝜉 + (𝜀) (50)

for 𝑥1 < 𝐺I(𝑡), while for 𝑥1 > 𝐺II(𝑡) one gets

𝒖𝜀II(𝑡, 𝒙) = 𝑞(𝑡)

⎛⎜⎜⎜⎜⎝
3
𝑤0(𝑥1)(2𝜆

0+𝑤0(𝑥1))−𝑥
2
2

2(𝑤0(𝑥1))2(3𝜆0+𝑤0(𝑥1))
+ (𝜀)

𝜀

(
𝑥2

2(3𝜆0+𝑤0(𝑥1))2
+

𝑥2

(𝑤0(𝑥1))2
−

3(2𝜆0+𝑤0(𝑥1))𝑥
3
2

2(𝑤0(𝑥1))3(3𝜆0+𝑤0(𝑥1))2

)
𝜕𝑥1𝑤

0(𝑥1) + (𝜀2)

⎞⎟⎟⎟⎟⎠
, (51)

𝑝𝜀II(𝑡, 𝒙) = 𝑞(𝑡)∫
1

𝑥1

3M
(𝑤0(𝜉))2(3𝜆0 + 𝑤0(𝜉))

𝑑𝜉 + (𝜀). (52)

This means that the solution in the bulk domains is of Hagen–Poiseuille type. Depending on the
chosen inlet boundary condition, Equation (36) or Equation (37), either the inlet pressure 𝑝0in or
the total flux 𝑞 is given. The other coefficient will be determined in the following subsection via
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LUNOWA et al. 99

the coupling at the interface Γ𝜀(𝑡). For upscaled models, we emphasize that the total flux 𝑞 is
independent of the position 𝑥1 and that the pressures 𝑝0𝑚,𝑚 ∈ {I, II}, depend linearly on 𝑞 with a
coefficient that only depends on the geometry (𝑤0), the viscosity ratio M, and the slip length 𝜆0.

3.2 Interface with small deformations

We continue the analysis for the interface region around Γ𝜀(𝑡). We first show that the bulk solu-
tions are not compatible with the interface conditions Equations (23–26). However, introduction
of a suitable scaling allows to find the asymptotic solution in the boundary layer around the inter-
face Γ𝜀(𝑡), which connects the bulk domain solutions. In addition to (A1)–(A6), we make the fol-
lowing assumptions:

(A7) The leading order interface position in 𝑥1 is constant, that is, 𝜕𝑠𝛾01 ≡ 0.
(A8) The capillary number is given by Ca = 𝜀𝛼Ca for some 𝛼 ∈ ℕ0. Here, Ca denotes the effective

capillary number and is independent of 𝜀.

Note that (A7) means that the fluid–fluid interface Γ𝜀 has only small deformations, such that
𝐺I(𝑡) = 𝛾01(𝑡) = 𝐺II(𝑡). Furthermore, (A8) is used to distinguish whether interfacial tension is rel-
evant or even dominating the interface movement (see also Remark 3). In the alternative case of
a largely deformed interface (𝜕𝑠𝛾01 ≢ 0), both fluids are present along a transversal segment since
the interface is partly horizontal (cf. Equation (28)). This leads to complicated interface dynamics
and requires a detailed analysis of further boundary layers due to the symmetry and boundary
conditions Equations (25– 26), which yield 𝜕𝑠𝛾01(𝑡, 𝑠) = 0 for 𝑠 ∈ {0, 1}. However, this lies outside
the scope of this paper.
Inserting the homogenization ansatz into the kinematic interface condition, Equation (23),

gives

(𝜕𝑡𝛾
0
1 − 𝑢

0
I,1)𝜕𝑠𝛾

0
2 + 𝑢

0
I,2𝜕𝑠𝛾

1
1 = (𝜀).

Since 𝛾01 is constant in the parameter 𝑠, a nonsingular parameterization requires 𝜕𝑠𝛾
0
2 > 0. Insert-

ing the bulk solution Equation (49), where 𝑢0I,2 = 0, yields in leading order

𝜕𝑡𝛾
0
1 = 3𝑞

𝑤0(𝛾01)(2𝜆
0 + 𝑤0(𝛾01)) − (𝛾

0
2)
2

2(𝑤0(𝛾01))
2(3𝜆0 + 𝑤0(𝛾01))

,

which contradicts the assumption that 𝛾01 does not depend on 𝑠, except for the trivial case 𝑞(𝑡) = 0.
Therefore, we expect the existence of a boundary layer around the interface Γ𝜀(𝑡). Here, the idea
of the matched asymptotic expansion method is to find an asymptotic solution of the problem
in rescaled, so-called inner coordinates close to the interface (the boundary layer). This solution
must satisfy the interface conditions and match the previously derived, so-called outer solution
in the bulk regions given by Equations (49–52). The combination of inner and outer solutions
then solves the problem in the whole domain. For a detailed introduction to matched asymptotic
expansion method, we refer to Ref. 75.
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100 LUNOWA et al.

To resolve the boundary layer, we apply the inner scaling

𝑋1(𝑡, 𝑥1) ∶= (𝑥1 − 𝛾
0
1(𝑡))∕𝜀, 𝑋2 ∶= 𝑥2

and use the rescaled variables and domains (see also Table 1)

𝒀𝜀 ∶=

(
(𝛾𝜀1 − 𝛾

0
1)∕𝜀

𝛾𝜀2

)
, 𝑈𝜀

𝑚(𝑡, 𝑿) ∶= 𝒖𝜀𝑚(𝑡, 𝒙), 𝑃𝜀𝑚(𝑡, 𝑿) ∶= 𝑝𝜀𝑚(𝑡, 𝒙),

Ω𝜀𝑿(𝑡) ∶= {𝑿 ∈ ℝ2 | 0 < 𝑋2 < 𝑤𝜀(𝛾01(𝑡) + 𝜀𝑋1)}, Γ𝜀𝑿(𝑡) ∶= {𝒀𝜀(𝑡, 𝑠) | 𝑠 ∈ [0, 1]},
Ω𝜀𝑿,I(𝑡) ∶= {𝑿(𝑡, 𝒙) | 𝒙 ∈ Ω𝜀I}, Ω𝜀𝑿,II(𝑡) ∶= {𝑿(𝑡, 𝒙) | 𝒙 ∈ Ω𝜀II},

Γ𝜀𝑿,w,𝑚(𝑡) ∶= {𝑿 ∈ 𝜕Ω𝜀𝑿,𝑚(𝑡) | 𝑋2 = 𝑤𝜀(𝛾01(𝑡) + 𝜀𝑋1)}.

The matching conditions between inner expansion in terms of 𝑿 and outer expansion in terms of
𝒙 require the equivalence in the limit, that is, for any outer quantity 𝑎𝜀𝑚(𝑡, 𝒙)with inner expansion
𝐴𝜀𝑚(𝑡, 𝑿) there must hold lim𝑥1→𝛾

0
1
𝑎𝜀𝑚(𝑡, 𝒙) = lim𝑋1→(−1)𝑚∞ 𝐴

𝜀
𝑚(𝑡, 𝑿)|𝑋2=𝑥2 . With the rescaled

coordinates, Equations (15-19) and Equations (22–26) become

𝜀2Re
(
𝜀𝜕𝑡𝑈

𝜀
I − 𝜕𝑋1𝑈

𝜀
I𝜕𝑡𝛾

0
1 + (𝑈

𝜀
I ⋅ ∇𝑿)𝑈

𝜀
I

)
+ ∇𝑿𝑃

𝜀
I = 𝜀Δ𝑿𝑈

𝜀
I in Ω𝜀𝑿,I(𝑡), (53)

𝜀2RRe
(
𝜀𝜕𝑡𝑈

𝜀
II − 𝜕𝑋1𝑈

𝜀
II𝜕𝑡𝛾

0
1 + (𝑈

𝜀
II ⋅ ∇𝑿)𝑈

𝜀
II

)
+ ∇𝑿𝑃

𝜀
II = M𝜀Δ𝑿𝑈

𝜀
II in Ω𝜀𝑿,II(𝑡), (54)

∇𝑿 ⋅ 𝑈
𝜀
𝑚 = 0 in Ω𝜀𝑿,𝑚(𝑡), (55)

𝑈𝜀
𝑚 ⋅ 𝒏sym = 0, 𝒕sym ⋅ ∇𝑿𝑈

𝜀
𝑚𝒏sym = 0 at 𝑋2 = 0, (56)

∇𝑿𝑃
𝜀
𝑚 ⋅ 𝒏sym = 0, at 𝑋2 = 0, (57)

𝑻𝜀w ⋅ (𝑈
𝜀
𝑚 + 2𝜆

𝜀D𝑿(𝑈
𝜀
𝑚)𝑵

𝜀
w) = 0, 𝑈𝜀

𝑚 ⋅ 𝑵
𝜀
w = 0 on Γ𝜀𝑿,w,𝑚(𝑡), (58)

𝜕𝑡𝛾
0
1𝑁

𝜀
Γ,1 + 𝜀𝜕𝑡𝒀

𝜀 ⋅ 𝑵𝜀
Γ = 𝑈𝜀

I ⋅ 𝑵
𝜀
Γ, 𝑈𝜀

I = 𝑈𝜀
II on Γ𝜀𝑿(𝑡), (59)

−(𝑃𝜀I − 𝑃
𝜀
II)𝑵

𝜀
Γ + 2𝜀

(
D𝑿(𝑈

𝜀
I) −MD𝑿(𝑈

𝜀
II)
)
𝑵𝜀
Γ =

𝜀2

Ca𝐾
𝜀𝑵𝜀

Γ on Γ𝜀𝑿(𝑡), (60)

𝑵𝜀
Γ ⋅ 𝒏sym = 0 at 𝑠 = 0, (61)

cos
(
𝜃𝜀
(
−𝜕𝑡(𝛾

0
1𝑇

𝜀
w,1 + 𝜀𝒀

𝜀 ⋅ 𝑻𝜀w)|𝑋1=𝑌𝜀1)) = 𝑻𝜀Γ ⋅ 𝑻
𝜀
w|𝑋1=𝑌𝜀1 at 𝑠 = 1. (62)

The transformed normal and tangential vectors are given by

𝑻𝜀w = 𝒕𝜀w|𝑥1=𝛾01+𝜀𝑋1 ,𝑵𝜀
w = 𝒏𝜀w|𝑥1=𝛾01+𝜀𝑋1 ,
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LUNOWA et al. 101

𝑻𝜀Γ =
1√

(𝜕𝑠𝑌
𝜀
1)
2 + (𝜕𝑠𝑌

𝜀
2)
2

𝜕𝑠𝒀
𝜀,𝑵𝜀

Γ =
1√

(𝜕𝑠𝑌
𝜀
1)
2 + (𝜕𝑠𝑌

𝜀
2)
2

(
𝜕𝑠𝑌

𝜀
2

−𝜕𝑠𝑌
𝜀
1

)
,

and the rescaled curvature 𝐾𝜀 is

𝐾𝜀 =
𝜕𝑠𝑌

𝜀
1𝜕
2
𝑠 𝑌

𝜀
2 − 𝜕𝑠𝑌

𝜀
2𝜕
2
𝑠 𝑌

𝜀
1

𝜀
(
(𝜕𝑠𝑌

𝜀
1)
2 + (𝜕𝑠𝑌

𝜀
2)
2
)3∕2 .

Inserting the homogenization ansatz into Equations (53–62) using (A1)–(A5), (A7), (A8), and a
Taylor expansion around 𝑋2 = 𝑤0(𝛾01(𝑡)) for Equation (58), one obtains

(𝜀2) = ∇𝑿𝑃
0
I + 𝜀

(
∇𝑿𝑃

1
I − Δ𝑿𝑼

0
I

)
in Ω𝜀𝑿,I(𝑡), (63)

(𝜀2) = ∇𝑿𝑃
0
II + 𝜀

(
∇𝑿𝑃

1
II − MΔ𝑿𝑼

0
II

)
in Ω𝜀𝑿,II(𝑡), (64)

(𝜀) = ∇𝑿 ⋅ 𝑼
0
𝑚 in Ω𝜀𝑿,𝑚(𝑡), (65)

(𝜀) = 𝑈0
𝑚,2, (𝜀) = 𝜕𝑋2𝑈

0
𝑚,1 at 𝑋2 = 0, (66)

(𝜀2) = 𝜕𝑋2𝑃
0
𝑚 + 𝜀𝜕𝑋2𝑃

1
𝑚 at 𝑋2 = 0, (67)

(𝜀) = 𝑈0
𝑚,1 +

(
𝜆0 + 𝜆𝑒 exp(−|𝑋1|)) (𝜕𝑋2𝑈0

𝑚,1 + 𝜕𝑋1𝑈
0
𝑚,2

)
at 𝑋2 = 𝑤0(𝛾01(𝑡)), (68)

(𝜀) = 𝑈0
𝑚,2 at 𝑋2 = 𝑤0(𝛾01(𝑡)), (69)

(𝜀) = (
𝜕𝑡𝛾

0
1 − 𝑈

0
I,1

)
𝜕𝑠𝑌

0
2 + 𝑈

0
I,2𝜕𝑠𝑌

0
1 on Γ𝜀𝑿(𝑡), (70)

(𝜀) = 𝑼0
I −𝑼

0
II on Γ𝜀𝑿(𝑡), (71)

(𝜀min(1,2−𝛼)) = (𝑃0I − 𝑃
0
II) +

𝜀1−𝛼

Ca

𝜕𝑠𝑌
0
1𝜕

2
𝑠 𝑌

0
2 − 𝜕𝑠𝑌

0
2𝜕

2
𝑠 𝑌

0
1(

(𝜕𝑠𝑌
0
1)
2 + (𝜕𝑠𝑌

0
2)
2
)3∕2 on Γ𝜀𝑿(𝑡), (72)

(𝜀) = 𝜕𝑠𝒀
0 ⋅

(
D𝑿(𝑼

0
I ) −MD𝑿(𝑼

0
II)
)( 𝜕𝑠𝑌

0
2

−𝜕𝑠𝑌
0
1

)
on Γ𝜀𝑿(𝑡), (73)

(𝜀) = 𝜕𝑠𝑌
0
1 at 𝑠 = 0, (74)

(𝜀) = 𝜕𝑠𝑌
0
1√

(𝜕𝑠𝑌
0
1)
2 + (𝜕𝑠𝑌

0
2)
2

+ cos(𝜃0(𝜕𝑡𝛾
0
1)) at 𝑠 = 1. (75)

The leading order terms in the momentum equations (63–64) yield ∇𝑿𝑃0𝑚 = 𝟎 in Ω𝜀𝑿,𝑚(𝑡) for
𝑚 ∈ {I, II}. This is in agreement with the symmetry condition, Equation (67). By matching with
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102 LUNOWA et al.

the outer solution we obtain

𝑃0𝑚(𝑡, 𝑿) = 𝑝0𝑚(𝑡, 𝛾
0
1(𝑡)) for all 𝑿 ∈ Ω𝜀𝑿,𝑚(𝑡). (76)

Remark 3. Recall that we assume Ca = 𝜀𝛼Ca for some 𝛼 ∈ ℕ0. Considering Equation (72), one
must distinguish the cases 𝛼 < 1, 𝛼 = 1, and 𝛼 > 1. For 𝛼 < 1, the interface tension force is negli-
gible in leading order, such that the pressures 𝑃0I and 𝑃

0
II are equal. Formally, this allows to deter-

mine the leading order solution of the outer bulk-flow problem. However, this also means that
the interface Γ𝜀𝑿(𝑡) is not stabilized by surface tension, but part of the first-order solution, such
that we cannot guarantee solvability. Furthermore, one might expect the occurrence of topolog-
ical changes due to, for example, formation of bubbles, thin films, and so forth, which are not
part of this model. In the case 𝛼 > 1, the interfacial tension force is dominating Equation (72),
so that the leading order curvature 𝐾0 of the interface is zero. Due to the boundary conditions,
Equations (74–75), this can only happen if the leading order contact angle 𝜃0(𝜕𝑡𝛾01) is 𝜋∕2 for any
𝛾01(𝑡), that is, for a constant contact angle model for perfectly mixed-wet materials. Even worse,
due to Equation (76), the leading order solution of the outer bulk-flow problem then depends on
the first-order solution, such that we cannot assure the solvability in this case either. We there-
fore consider in what follows only the case 𝛼 = 1. Then the pressure difference is balanced by the
surface tension force in Equation (72). This leads to a solution for the outer bulk-flow problem as
well as for the interface shape.

In the regime 𝛼 = 1, plugging the constant pressures from Equation (76) into the interfacial
force balance equation (72) yields a constant leading-order curvature 𝐾0 given by

𝐾0 =
𝜕𝑠𝑌

0
2𝜕

2
𝑠 𝑌

0
1 − 𝜕𝑠𝑌

0
1𝜕

2
𝑠 𝑌

0
2(

(𝜕𝑠𝑌
0
1)
2 + (𝜕𝑠𝑌

0
2)
2
)3∕2 = Ca(𝑝0II − 𝑝

0
I )|𝑥1=𝛾01 . (77)

Therefore, the interface is a circular arc. By the contact-angle equation (75), one obtains

𝐾0 = −
cos(𝜃0(𝜕𝑡𝛾

0
1))

𝑤0(𝛾01)
. (78)

Combining Equations (77) and (78) and plugging the result into the bulk pressure solutions given
in Equations (50, 52) leads to

𝑝0in − 𝑞

(
∫

𝛾0
1

0

3

(𝑤0(𝑥1))2(3𝜆0 + 𝑤0(𝑥1))
𝑑𝑥1 + ∫

1

𝛾0
1

3M
(𝑤0(𝑥1))2(3𝜆0 + 𝑤0(𝑥1))

𝑑𝑥1

)
(79)

=
cos(𝜃0(𝜕𝑡𝛾

0
1))

Ca𝑤0(𝛾01)
.
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LUNOWA et al. 103

Due to the constant curvature in Equation (78) and the symmetry condition, Equation (74), the
leading order interface Γ0𝑿(𝑡) ∶= {𝒀0(𝑡, 𝑠) | 𝑠 ∈ [0, 1]} is given (up to a reparameterization) by

𝒀0(𝑡, 𝑠) =

⎧⎪⎪⎨⎪⎪⎩
𝑤0(𝛾0

1
)

cos(𝜃0(𝜕𝑡𝛾
0
1
))

⎛⎜⎜⎝
cos

(
(
𝜋

2
− 𝜃0(𝜕𝑡𝛾

0
1))𝑠

)
− sin

(
𝜃0(𝜕𝑡𝛾

0
1)
)

sin
(
(
𝜋

2
− 𝜃0(𝜕𝑡𝛾

0
1))𝑠

) ⎞⎟⎟⎠ for 𝜃0 ≠ 𝜋∕2,

𝑤0(𝛾01(𝑡))

(
0

𝑠

)
for 𝜃0 = 𝜋∕2.

Analogously to Remark 2, by the mass conservation Equation (17), the interface velocity Equa-
tion (59), and the outer velocity solution given in Equation (49), we obtain

0 = ∫
Ω𝜀I

∇𝜀 ⋅ 𝒖𝜀I𝑑𝒙 = ∫
Γ𝜀
𝒖𝜀I ⋅ 𝒏

𝜀
Γ𝑑𝑙 − ∫

1

0

𝑢𝜀I,1
||𝑥1=0𝑑𝑥1

= ∫
Γ𝜀
𝜕𝑡𝛾

0
1𝑁

𝜀
Γ,1 + 𝜀𝜕𝑡𝒀

𝜀 ⋅ 𝑵𝜀
Γ𝑑𝑙 − 𝑞 + (𝜀) = ∫

1

0

𝜕𝑡𝛾
0
1𝜕𝑠𝑌

𝜀
w2𝑑𝑠 − 𝑞 + (𝜀)

= 𝜕𝑡𝛾
0
1𝑤

0(𝛾01) − 𝑞 + (𝜀).
Therefore, the leading order position 𝛾01 of the interface fulfils

𝜕𝑡𝛾
0
1(𝑡) =

𝑞(𝑡)

𝑤0(𝛾01(𝑡))
. (80)

To find the solution for 𝒖0𝑚, 𝑝0𝑚 (𝑚 ∈ {I, II}), which is given by Equations (49–52), one has to
determine 𝛾01, 𝑞, and 𝑝

0
in. The derivation depends on the chosen inlet boundary condition. For a

given inlet velocity 𝒖𝜀I = 𝒖𝜀in at Γ
𝜀
in, the value of 𝑞 is known. Plugging 𝑞 into Equation (80) and

solving for 𝛾01 yields

𝛾01(𝑡) =−1

(
(𝛾01|𝑡=0) + ∫

𝑡

0

𝑞(𝜏)𝑑𝜏

)
,

where (𝜉) ∶= ∫ 𝜉

0
𝑤0(𝑥1)𝑑𝑥1. Note that  ′ = 𝑤0 > 0 by (A4), such that the inverse function

−1 is well-defined. Finally, 𝑝0in can be found by Equation (79).
For a given inlet pressure 𝑝𝜀I = 𝑝𝜀in at Γ

𝜀
in, the value of 𝑝

0
in is known. Then, the differential alge-

braic system of Equations (79–80) has index 1 and can be solved for 𝑞 and 𝛾01 . Inserting Equation
(80) into Equation (79) and applying the implicit function theorem to find 𝑞 depending on 𝛾01 , a
sufficient condition for solvability is

sin

(
𝜃0

(
𝑞

𝑤0(𝛾01)

))
(𝜃0)′

(
𝑞

𝑤0(𝛾01)

)
≠ Ca(𝑤0(𝛾01))

2

(
∫

𝛾01

0

3

(𝑤0(𝑥1))2(3𝜆0 + 𝑤0(𝑥1))
𝑑𝑥1+∫

1

𝛾01

3M

(𝑤0(𝑥1))2(3𝜆0 + 𝑤0(𝑥1))
𝑑𝑥1

)
,

where (𝜃0)′ denotes the derivative of 𝜃0. Note that the right-hand side is always positive, so that
any contact angle model which fulfils (𝜃0)′ ≤ 0 yields solvable differential algebraic equations.

 14679590, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12376 by U
niversiteit H

asselt, W
iley O

nline L
ibrary on [15/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



104 LUNOWA et al.

Furthermore, from Equations (63-71,73), the velocity close to the interface is given by two cou-
pled Stokes problems. More precisely, these problems are defined in the domains

Ω0𝑿,I(𝑡) = {𝑿 ∈ ℝ × (0, 𝑤0(𝛾01(𝑡))) | ∃𝑠 ∈ [0, 1] ∶ 𝑋1 < 𝑌01(𝑡, 𝑠) ∧ 𝑋2 = 𝑌02(𝑡, 𝑠)},

Ω0𝑿,II(𝑡) = {𝑿 ∈ ℝ × (0, 𝑤0(𝛾01(𝑡))) | ∃𝑠 ∈ [0, 1] ∶ 𝑋1 > 𝑌01(𝑡, 𝑠) ∧ 𝑋2 = 𝑌02(𝑡, 𝑠)}.

With this, the two problems are (𝑚 ∈ {I, II})

0 = ∇𝑿𝑃
1
I − Δ𝑿𝑼

0
I in Ω0𝑿,I(𝑡), (81)

0 = ∇𝑿𝑃
1
II − MΔ𝑿𝑼

0
II in Ω0𝑿,II(𝑡), (82)

0 = ∇𝑿 ⋅ 𝑼
0
𝑚 in Ω0𝑿,𝑚(𝑡), (83)

0 = 𝑈0
𝑚,2, 0 = 𝜕𝑋2𝑈

0
𝑚,1, 0 = 𝜕𝑋2𝑃

1
𝑚 at 𝑋2 = 0, (84)

0 = 𝑈0
𝑚,1 +

(
𝜆0 + 𝜆𝑒 exp(−|𝑋1|))𝜕𝑋2𝑈0

𝑚,1, 0 = 𝑈0
𝑚,2 at 𝑋2 = 𝑤0(𝛾01(𝑡)), (85)

0 =
(
𝜕𝑡𝛾

0
1 − 𝑈

0
I,1

)
𝜕𝑠𝑌

0
2 + 𝑈

0
I,2𝜕𝑠𝑌

0
1 on Γ0𝑿(𝑡), (86)

0 = 𝑼0
I −𝑼

0
II on Γ0𝑿(𝑡), (87)

0 = 𝜕𝑠𝒀
0 ⋅

(
D𝑿(𝑼

0
I ) −MD𝑿(𝑼

0
II)
)( 𝜕𝑠𝑌

0
2

−𝜕𝑠𝑌
0
1

)
on Γ0𝑿(𝑡), (88)

𝟎 = lim
𝑋1→−∞

𝑼0
I − 𝒖

0
I |𝑥1=𝛾01,𝑥2=𝑋2 , (89)

𝟎 = lim
𝑋1→∞

𝑼0
II − 𝒖

0
II|𝑥1=𝛾01,𝑥2=𝑋2 . (90)

3.3 Unsaturated flow limit

In (A2), we assumed the viscosity ratioM = (𝜀0). Here,we investigate the casewhen the viscosity
of fluid II is much smaller than that of fluid I, like in a system consisting of water and air. Hence,
we replace (A2) by:

(A9) The viscosity ratio satisfies𝑀 = (𝜀𝛽) for some 𝛽 ≥ 1.

Following the same steps as in the previous subsections, we obtain amodel which only includes
the flow of fluid I, while the flow of fluid II can be omitted. In other words, the upscaled model is
an unsaturated flow in the thin strip. Furthermore, the effective solution for fluid I will coincide
with the one obtained when letting𝑀 → 0 in Equations (49, 50, 79, 80) derived previously.
To this end, we use the same asymptotic expansions and (A1), (A3)–(A8), and (A9) instead of

(A2). For fluid I, we obtain again Equations (29,30,33-35,39,40) and work with either Equation
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LUNOWA et al. 105

(36) or Equation (37) as inlet condition. Therefore, the solution for fluid I is again given by Equa-
tions (49, 50), where 𝑝0in and 𝑞 are given by the interface region and the inlet condition.
For fluid II, the leading order mass balance equations become

(𝜀) = 𝜕𝑥1𝑝
0
II in Ω𝜀II(𝑡), (91)

(𝜀0) = 𝜀−1𝜕𝑥2𝑝
0
II in Ω𝜀II(𝑡). (92)

Together with the leading order outflow condition (𝜀) = 𝑝0II at 𝑥1 = 1, we conclude that
𝑝0II(𝑡, 𝒙) = 0 inΩ𝜀II(𝑡). Rescaling the interface region as in Subsection 3.2 and taking (A7) and (A8)
into account, the leading order equations for fluid I are again Equations (63,65-69). Since 𝑝0II ≡ 0,
the interface conditions are Equations (68-70,74), as well as

(𝜀min(1,2−𝛼)) = 𝑃0I +
𝜀1−𝛼

Ca

𝜕𝑠𝑌
0
1𝜕

2
𝑠 𝑌

0
2 − 𝜕𝑠𝑌

0
2𝜕

2
𝑠 𝑌

0
1(

(𝜕𝑠𝑌
0
1)
2 + (𝜕𝑠𝑌

0
2)
2
)3∕2 on Γ𝜀𝑿(𝑡), (93)

(𝜀) = 𝜕𝑠𝒀
0 ⋅D𝑿(𝑼

0
I )

(
𝜕𝑠𝑌

0
2

−𝜕𝑠𝑌
0
1

)
on Γ𝜀𝑿(𝑡). (94)

In the regime 𝛼 = 1, this yields a constant leading-order curvature, implying

𝑝0in − 𝑞 ∫
𝛾0
1

0

3

(𝑤0(𝑥1))2(3𝜆0 + 𝑤0(𝑥1))
𝑑𝑥1 =

cos(𝜃0(𝜕𝑡𝛾
0
1))

Ca𝑤0(𝛾01)
, (95)

𝜕𝑡𝛾
0
1(𝑡) =

𝑞(𝑡)

𝑤0(𝛾01(𝑡))
. (96)

3.4 Hysteretic contact angle model

The previous analysis requires that the dynamic contact angle relation is continuous, as expressed
in (A5). However, experiments suggest the occurrence of contact angle hysteresis. For example,
the reviews68,70 discuss this as a result of surface wettability and roughness. This means that static
contact angles are not unique, but can vary due to pinning. Here, we allow that the contact angle
relation 𝜃𝜀 involves a multivalued graph if the velocity of the contact line is zero. To still obtain
a well-defined contact angle law, we reformulate the respective condition under the following
assumption, which replaces (A5).

(A10) Restricted to ℝ ⧵ {0}, 𝜃𝜀 is a Lipschitz-continuous and strictly monotonic function into
(0, 𝜋). For a zero velocity, it can take any values as follow:

𝜃𝜀(0)∈

{
[ lim𝑢↗0 𝜃

𝜀(𝑢), lim𝑢↘0 𝜃
𝜀(𝑢)] if 𝜃𝜀is increasing,

[ lim𝑢↘0 𝜃
𝜀(𝑢), lim𝑢↗0 𝜃

𝜀(𝑢)] otherwise.
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106 LUNOWA et al.

Using the monotonicity of 𝜃𝜀, one can invert the relation with respect to the velocity. For this,
let 𝜁𝜀 ∶= (cos(𝜃𝜀))−1 be the inverse of cos 𝜃𝜀. By (A10), 𝜁𝜀 is well-defined and Lipschitz-continuous.
As before, we assume that 𝜁𝜀 depends regularly on 𝜀.

(A11) 𝜁𝜀 has a uniform expansion

𝜁𝜀(𝑎) = 𝜁0(𝑎) + 𝜀𝜁1(𝑎) + (𝜀2),
where 𝜁0 ∶ (−1, 1) → ℝ is Lipschitz-continuous.

With this, we study the Navier–Stokes system for two-phase flow Equations (15–25), but replace
Equation (26) by the following, inverted contact angle condition:

𝜁𝜀
(
𝒕𝜀Γ
||𝑠=1 ⋅ 𝒕𝜀w||𝑥1=𝛾𝜀1) = 𝜕𝑡𝛾

𝜀
1. (97)

Since the analysis in Subsection 3.1 is independent of the interface region, and in particular does
not use (A5) or the nonhysteretic contact angle equation (26), the derived bulk solutions given by
Equations (49–52) remain unchanged.
Using (A1)–(A4), (A6)–(A8), and (A11) instead of (A5), we repeat the analysis close to the inter-

face Γ𝜀(𝑡) from Subsection 3.2. Following the same steps, we obtain a circular interface with con-
stant curvature 𝐾0, which is then implicitly given by

𝜕𝑡𝛾
0
1 = 𝜁0

(
𝑤0(𝛾01)𝐾

0
)
.

Combining this, the pressure Equation (77), and the outer pressure solution Equations (50, 52),
one obtains

𝜕𝑡𝛾
0
1 = 𝜁0

(
𝑤0(𝛾01)Ca

(
𝑝0in − qJ(𝛾01)

))
, (98)

where

𝐽(𝛾01) ∶= ∫
𝛾0
1

0

3

(𝑤0(𝑥1))2(3𝜆0 + 𝑤0(𝑥1))
𝑑𝑥1 + ∫

1

𝛾0
1

3M
(𝑤0(𝑥1))2(3𝜆0 + 𝑤0(𝑥1))

𝑑𝑥1.

Together with Equation (80), this forms a differential algebraic system of two equations for the
two unknowns 𝛾01 and either 𝑝

0
in or 𝑞. Furthermore, the Stokes problem for finding the velocity

close to the interface remains unchanged as well.
The solution process depends again on the chosen inlet boundary condition, analogously to

the discussion in Subsection 3.2. As before, it is sufficient to obtain 𝛾01 , 𝑝
0
in, and 𝑞, since these

are the unknown coefficients for the bulk solutions 𝒖0𝑚 and 𝑝0𝑚 (𝑚 ∈ {I, II}) given by Equations
(49–52). For an inlet velocity boundary condition 𝒖𝜀I = 𝒖𝜀in (at Γ

𝜀
in), the value of 𝑞 is given. Hence,

plugging this into Equation (80) yields 𝛾01 , and thus one can solve Equation (98) for 𝑝
0
in. However,

the solution of the inlet pressure 𝑝0in is not unique if the contact angle relation 𝜃
𝜀 is multivalued

at velocity 𝑢 = 0. On the other hand, for an inlet pressure condition 𝑝𝜀I = 𝑝𝜀in, the value of 𝑝
0
in

is known. Then, the differential algebraic system of Equations (80,98) has index 1 and can be
solved for 𝑞 and 𝛾01 . Inserting Equation (80) into Equation (98) and applying the implicit function
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LUNOWA et al. 107

theorem to find 𝑞 depending on 𝛾01, a sufficient condition for solvability is

(𝜁0)′
(
𝑤0(𝛾01)Ca

(
𝑝in0 − qJ(𝛾01)

)) ≠ 1

Ca(𝑤0(𝛾01))2𝐽(𝛾
0
1)
.

4 AVERAGEDMODELS AND EFFECTIVE QUANTITIES

Based on the asymptotic solution for pressures and velocities, we continue with the study of
averaged models and effective quantities. First, we show that a local, one-dimensional version
of Darcy’s law holds for the transversally averaged pressures and velocities. In the second part,
we derive effective quantities based on volume averages. The main result is a capillary pressure–
saturation relationship involving dynamic effects.
In the following, we are only interested in the leading order relations. To simplify the notation,

we therefore drop the indices (⋅)𝜀 and (⋅)0, and neglect higher-order terms. Hence, all following
equations should be understood as up to terms of order 𝜀.

4.1 Transversal average: Darcy’s law

In the following, we derive the transversal average of the quantities to demonstrate that the one-
dimensional description of the thin strip yields a local version of Darcy’s law. To this end, recall
that the total flux (in the half strip) 𝑞(𝑡) is independent of 𝑥1 as discussed in Remark 2. The
transversally averaged velocity in 𝑥1-direction is therefore given by

𝑢(𝑡, 𝑥1) ∶=

{
(𝑤(𝑥1))

−1 ∫ 𝑤(𝑥1)

0
𝑢1,I(𝑡, 𝒙)𝑑𝑥2 for 𝑥1 < 𝛾1(𝑡),

(𝑤(𝑥1))
−1 ∫ 𝑤(𝑥1)

0
𝑢1,II(𝑡, 𝒙)𝑑𝑥2 for 𝑥1 > 𝛾1(𝑡),

=
𝑞(𝑡)

𝑤(𝑥1)
.

Since the pressures 𝑝I and 𝑝II are independent of 𝑥2, we obtain for the transversally averaged
pressures

𝑝I(𝑡, 𝑥1) ∶= (𝑤(𝑥1))
−1 ∫

𝑤(𝑥1)

0

𝑝I(𝑡, 𝒙)𝑑𝑥2

= 𝑝in(𝑡) − 𝑞(𝑡)∫
𝑥1

0

3

(𝑤(𝜉))2(3𝜆 + 𝑤(𝜉))
𝑑𝜉 for 𝑥1 < 𝛾1(𝑡),

𝑝II(𝑡, 𝑥1) ∶= (𝑤(𝑥1))
−1 ∫

𝑤(𝑥1)

0

𝑝II(𝑡, 𝒙)𝑑𝑥2

= 𝑞(𝑡)∫
1

𝑥1

3M
(𝑤(𝜉))2(3𝜆 + 𝑤(𝜉))

𝑑𝜉 for 𝑥1 > 𝛾1(𝑡).
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108 LUNOWA et al.

F IGURE 2 The local permeability 𝐾I has a quadratic dependence on the width 𝑤 and increases for
increasing slip length 𝜆

This means that the transversally averaged pressures satisfy a Darcy-type law

𝑢(𝑡, 𝑥1) = −𝐾𝑚(𝑥1)𝜕𝑥1𝑝𝑚(𝑡, 𝑥1)

for𝑚 ∈ {I, II}, where the local permeabilities are given by

𝐾I(𝑥1) ∶=
1

3
𝑤(𝑥1)(3𝜆 + 𝑤(𝑥1)),

𝐾II(𝑥1) ∶=
1

3M𝑤(𝑥1)(3𝜆 + 𝑤(𝑥1)).

These permeabilities depend only on the local width 𝑤 of the thin strip, on the slip length 𝜆, and
on the viscosity ratio M of the fluids (Figure 2). Note that this resembles the typical relation 𝑢 =
𝑑2

12
𝜕𝑥1𝑝 for single-phase flow in a thin strip of diameter 𝑑 = 2𝑤. Also note that the permeabilities

are nondimensional due to the chosen scaling of the 𝑥2 coordinate by �̂�(0) and the reference
viscosity 𝜇I.

4.2 Effective quantities: Dynamic capillary pressure

To obtain effective quantities such as the saturation and the intrinsically averaged pressures, we
use volume averages.With these, we obtain a capillary pressure–saturation relationship involving
dynamic effects. In line with classical volume averaging theory,30,31 we define the volume average⟨𝑎𝑚⟩ of a quantity 𝑎𝑚 defined in Ω𝑚,𝑚 ∈ {I, II}, to be

⟨𝑎𝑚⟩ ∶= ∫
Ω𝑚

𝑎𝑚𝑑𝒙

∫
Ω
𝑑𝒙

,

while the intrinsic average is

⟨𝑎𝑚⟩𝑚 ∶=
∫
Ω𝑚

𝑎𝑚𝑑𝒙

∫
Ω𝑚

𝑑𝒙
.
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LUNOWA et al. 109

The volume of the domain ΩI is given by

∫
ΩI

𝑑𝒙 = ∫
𝛾1

0

𝑤(𝑥1)𝑑𝑥1 =(𝛾1).

Analogously, we have ∫
Ω
𝑑𝒙 =(1) and ∫

ΩII
𝑑𝒙 =(1) −(𝛾1). Therefore, the saturation of

fluid I is in leading order given by

𝑆(𝑡) ∶= ⟨1ΩI(𝑡)⟩ = ∫
ΩI(𝑡)

𝑑𝒙

∫
Ω
𝑑𝒙

=
(𝛾1(𝑡))

(1)
. (99)

Note that we only consider the case when both phases are present, so that 𝛾1(𝑡) ∈ (0, 1) and 𝑆 ∈
(0, 1). For simplicity, we define the function

Ψ(𝑆) ∶=
1

𝑤(−1((1)𝑆))
, (100)

which represents the reciprocal of the local width depending on the saturation 𝑆 and on the geom-
etry of the thin strip. Note that the system of Equations (79–80) can be rewritten in terms of the
saturation as

𝑝in − 𝑞(1)

(
∫

𝑆

0

3(Ψ(𝜉))3

3𝜆 + (Ψ(𝜉))−1
𝑑𝜉 + ∫

1

𝑆

3M(Ψ(𝜉))3

3𝜆 + (Ψ(𝜉))−1
𝑑𝜉

)

=
cos(𝜃((1)Ψ(𝑆)𝜕𝑡𝑆))

Ca
Ψ(𝑆),

𝜕𝑡𝑆 =
𝑞

(1)
.

However, this reformulation is less practical, since the function Ψ typically is not a closed-
form expression.
Using Equation (50), the intrinsically averaged pressure of fluid I is

⟨𝑝I⟩I = 1

(𝛾1) ∫
𝛾1

0

𝑤(𝑥1)

(
𝑝in − 𝑞 ∫

𝑥1

0

3

(𝑤(𝜉))2(3𝜆 + 𝑤(𝜉))
𝑑𝜉

)
𝑑𝑥1,

which can be rewritten after integration by parts as

⟨𝑝I⟩I = 𝑝I|𝑥1=𝛾1 + 3𝑞

(𝛾1) ∫
𝛾1

0

(𝑥1)

(𝑤(𝑥1))2(3𝜆 + 𝑤(𝑥1))
𝑑𝑥1. (101)

Analogously, Equation (52) yields the intrinsically averaged pressure of fluid II to be

⟨𝑝II⟩II = 𝑝II|𝑥1=𝛾1 − 3M𝑞

(1) −(𝛾1) ∫
1

𝛾1

(1) −(𝑥1)

(𝑤(𝑥1))2(3𝜆 + 𝑤(𝑥1))
𝑑𝑥1. (102)
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110 LUNOWA et al.

Using Equation (79), the difference of the intrinsically averaged pressures, in the following called
phase-pressure difference, is given by

⟨𝑝I⟩I − ⟨𝑝II⟩II = cos(𝜃(𝜕𝑡𝛾1))

Ca𝑤(𝛾1)
+ 3𝑞

(
1

(𝛾1) ∫
𝛾1

0

(𝑥1)

(𝑤(𝑥1))2(3𝜆 + 𝑤(𝑥1))
𝑑𝑥1 +

M

(1) −(𝛾1) ∫
1

𝛾1

(1) −(𝑥1)

(𝑤(𝑥1))2(3𝜆 + 𝑤(𝑥1))
𝑑𝑥1

)
.

(103)

Using Equations (80,99,100), this difference can be expressed in the form

⟨𝑝I⟩I − ⟨𝑝II⟩II = 𝑝𝑐,loc(𝑆, 𝜕𝑡𝑆) + 𝜏(𝑆)𝜕𝑡𝑆. (104)

The first term on the right denotes the local capillary pressure 𝑝𝑐,loc ∶= (𝑝I − 𝑝II)|𝑥1=𝛾1 given by
𝑝𝑐,loc(𝑆, 𝜕𝑡𝑆) =

cos(𝜃((1)Ψ(𝑆)𝜕𝑡𝑆))

Ca
Ψ(𝑆). (105)

The second term in Equation (104) can be interpreted as a dynamic capillarity due to the viscous
drag. In particular, its coefficient is

𝜏(𝑆) =
3((1))2

𝑆 ∫
𝑆

0

𝜉(Ψ(𝜉))3

3𝜆 + (Ψ(𝜉))−1
𝑑𝜉 +

3((1))2M
1 − 𝑆 ∫

1

𝑆

(1 − 𝜉)(Ψ(𝜉))3

3𝜆 + (Ψ(𝜉))−1
𝑑𝜉, (106)

which depends on the slip length 𝜆, the viscosity ratioM, and thewall function𝑤. Note that under
static conditions, when 𝑞 ≪ 1, we have 𝑝in ≈ ⟨𝑝I⟩I − ⟨𝑝II⟩II = 𝑝𝑐,loc, such that the measurement
of the inlet pressure yields (static) capillary pressure–saturation relation, but under the dynamic
conditions studied here, these quantities can considerably differ. This one must be aware of when
performing experiments.
The local capillary pressure 𝑝𝑐,loc depends reciprocally on the effective capillary number Ca

and on the local width 𝑤(−1((1)𝑆)) = 1∕Ψ(𝑆) of the thin strip. In case of a dynamic contact
angle model of the form cos(𝜃(𝑢)) = cos(𝜃𝑠) + 𝜂Ca𝑢, the molecular kinetic theory in Refs. 68, 69,
Equation (105) yields

𝑝MKT
𝑐,loc (𝑆, 𝜕𝑡𝑆) =

cos(𝜃𝑠)

Ca
Ψ(𝑆) + 𝜂(1)(Ψ(𝑆))2𝜕𝑡𝑆. (107)

The static and dynamic effects are decoupled in this case. The first term models the static (local)
capillary pressure, while the second term is a dynamic contribution.
In case of a constant contact angle 𝜃 ≡ 𝜃𝑠 ∈ (0, 𝜋), Equation (105) yields the local capillary pres-

sure

𝑝const
𝑐,loc (𝑆) =

cos(𝜃𝑠)

Ca
Ψ(𝑆).

With 𝑙(𝑡) ∶= ∫
Γ𝑿(𝑡)

𝑑𝑠 being the length of the circular interface Γ𝑿(𝑡) at time 𝑡, the local capillary
pressure becomes

𝑝const
𝑐,loc (𝑙) =

𝜋

2
− 𝜃𝑠

Ca 𝑙
.
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LUNOWA et al. 111

TABLE 2 Standard parameters for the thin strip of constant width

Parameter Symbol Value
Capillary number Ca 1/2
Contact angle 𝜃 𝜋/3
Slip length 𝜆 1/6
Viscosity ratio M 1
Initial interface position 𝛾1|𝑡=0 0
Inlet pressure 𝑝in 3

Observe that 𝑙(𝑡) can be assimilated to the interfacial area concept considered in Refs. 14, 15. Note
that for a dynamic contact angle, there is no simple closed-form expression of the local capillary
pressure as a function of the interface length (nor of its derivatives).

5 NUMERICAL EXPERIMENTS

To illustrate the theoretical findings, we depict some numerical examples in this section. We start
with a thin strip of constantwidth, and afterward consider a constricted “pore throat”with varying
width. After a short discussion of the boundary conditions, we consider the resulting effective
quantities. In particular, we study the effect of the slip length and the viscosity ratio and discuss
the effect of a dynamic and a hysteretic contact angle model for both geometries.
We have implemented the numerical solutions using MATLAB R© R2020a.76 The source

code is openly available under the CC-BY license in GitHub at https://github.com/s-lunowa/
AsymptoticThinStripMCLSolver.77

5.1 Thin strip of constant width

First we consider a simple case, which is a thin strip of constant width𝑤𝜀 ≡ 1, and study the veloc-
ity and pressure distribution of the two phases as well as the movement of the interface. After a
short discussion of the effect of different inlet boundary conditions, we will consider the effect of
different parameter choices in the following subsections—the slip length in Subsection 5.1.1, the
viscosity ratio in Subsection 5.1.2, and dynamic and hysteretic contact angle models in Subsec-
tions 5.1.3 and 5.1.4, respectively. Except for the varying parameter mentioned in each subsection,
all the other ones are fixed, as given in Table 2. In particular, the contact angle model considered
when discussing the other parameters is constant, that is, the contact angle is static and fluid I
is nonwetting.
For this geometry, the solution given in Equations (49–52) for the bulk domains becomes

𝒖I(𝑡, 𝒙) =

(
3𝑞(𝑡)

2𝜆+1−𝑥2
2

6𝜆+2

0

)
, 𝑝I(𝑡, 𝒙) = 𝑝in(𝑡) − 𝑞(𝑡)

3𝑥1
3𝜆 + 1

, for 𝑥1 < 𝛾1(𝑡), (108)

𝒖II(𝑡, 𝒙) =

(
3𝑞(𝑡)

2𝜆+1−𝑥2
2

6𝜆+2

0

)
, 𝑝II(𝑡, 𝒙) = 𝑞(𝑡)

3M(1 − 𝑥1)
3𝜆 + 1

, for 𝑥1 > 𝛾1(𝑡). (109)
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112 LUNOWA et al.

F IGURE 3 Velocity profile in the thin strip with constant width (𝜆 = 1∕6)

F IGURE 4 Pressure
distribution over length 𝑥1 at
various times in the thin strip of
constant width for viscosity ratio
M = 0.5. The solution depends on
the inlet boundary condition and
shows a more dynamic behavior
in case (b) than in case (a)

This means that the velocity profiles are of Hagen–Poiseuille type (Figure 3). The pressures
decrease linearly inside the bulk phases due to the viscous forces. Furthermore, the interface sys-
tem of Equations (79,80) simplifies into

𝑝in(𝑡) − 𝑞(𝑡)
3𝛾1(𝑡) + 3M(1 − 𝛾1(𝑡))

3𝜆 + 1
=
cos(𝜃(𝑞(𝑡)))

Ca
, 𝜕𝑡𝛾1(𝑡) = 𝑞(𝑡). (110)

The actual size of the quantities and the movement of the interface depend on the inlet bound-
ary conditions, on the effective capillary number, on the slip length, on the viscosity ratio, and
on the contact angle model. Here, we shortly discuss the qualitatively different cases with respect
to the inlet boundary conditions and the viscosity ratio, when all other parameters are given by
Table 2 for simplicity.

(a) When the inlet velocity is fixed, for example, 𝑢in,1 = 4∕3 − 𝑥22 , one obtains 𝑞(𝑡) = 1 and thus
the constant (in time) velocities 𝑢𝑚,1 = 4∕3 − 𝑥22 for 𝑚 ∈ {I, II}, so that the interface moves
linearly, 𝛾1(𝑡) = 𝑡. The pressures are then given by

𝑝I(𝑡, 𝒙) = 1 + 2M + 2(1 −M)𝑡 − 2𝑥1, 𝑝II(𝑡, 𝒙) = 2M(1 − 𝑥1).

For M ≠ 1, the pressure of fluid I is time-dependent, as depicted in Figure 4, while both pres-
sures are constant in time for M = 1.

(b) When the inlet pressure is fixed, for example, 𝑝in = 3, the flow of both fluids is time-
dependent. For a viscosity ratio M < 1, one obtains the solution

𝑝I(𝑡, 𝒙) = 3 −
2(1 −M)𝑥1√
M2 + 2(1 −M)𝑡

, 𝑝II(𝑡, 𝒙) =
2M(1 −M)(1 − 𝑥1)√
M2 + 2(1 −M)𝑡

,

𝑢𝑚,1(𝑡, 𝒙) =
(1 −M)

(
4

3
− 𝑥22

)
√
M2 + 2(1 −M)𝑡

, 𝛾1(𝑡) =

√
M2 + 2(1 −M)𝑡 −M

1 −M ,
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LUNOWA et al. 113

for𝑚 ∈ {I, II}, shown in Figure 4. Analogous behavior can be observed when M > 1. Only for
M = 1, both pressures are constant in time, like in (a).

From these examples, we observe a more dynamic behavior when the inlet pressure is given,
which corresponds also to the typical setting for capillary pressure experiments. Thus, we restrict
the following discussion to the case of given pressure boundary condition at the inlet.
Due to the constant width, the effective quantities have rather simple algebraic expressions.

The saturation 𝑆 coincides with the interface position, that is, 𝑆 = 𝛾1. The local permeabilities are
constant and given by

𝐾I ≡ 1 + 3𝜆

3
, 𝐾II ≡ 1 + 3𝜆

3M . (111)

The local capillary pressure, the dynamic coefficient and the phase-pressure difference are

𝑝𝑐,loc(𝑆, 𝜕𝑡𝑆) =
cos 𝜃(𝜕𝑡𝑆)

Ca
, (112)

𝜏(𝑆) = 3
𝑆 +M(1 − 𝑆)

6𝜆 + 2
, (113)

⟨𝑝I⟩I − ⟨𝑝II⟩II = 𝑝in + 𝑝𝑐,loc(𝑆, 𝜕𝑡𝑆)

2
. (114)

As direct consequence of the constant contact angle in Table 2, we obtain a constant local capil-
lary pressure 𝑝𝑐,loc ≡ 1 by Equation (112) and a constant phase-pressure difference ⟨𝑝I⟩I − ⟨𝑝II⟩II ≡
2 by Equation (114). Changing the static contact angle 𝜃 ≡ 𝜃𝑠 ∈ (0, 𝜋) or the capillary number Ca
influences the size of the local capillary pressure and the size of the phase-pressure difference in
a straightforward way, while the behavior of the other quantities remains qualitatively the same.
For simplicity, we do not discuss their detailed effects. Note that 𝑝𝑐,loc and ⟨𝑝I⟩I − ⟨𝑝II⟩II do not
depend on the slip length nor on the viscosity ratio. Hence, we only consider their behavior for
dynamic and hysteretic contact angle models. Meanwhile, the dynamic coefficient depends on
the slip length and the viscosity ratio, which is relevant in case of a inlet velocity condition.

5.1.1 Effect of the slip length

First, we consider the effect of the slip length 𝜆 while using all other parameters as above. The
velocity at the wall is given by

𝑢𝑚,1||𝑥2=1 = 𝑞
3𝜆

3𝜆 + 1
for𝑚 ∈ {I, II}.

It is zero for 𝜆 = 0, increases for an increasing slip length, and approaches 𝑞 for 𝜆 → ∞, which
corresponds to a total slip (Figure 5). This is a result of the decreased friction of the fluid at the
wall for an increased slip length. In addition, this leads to a smaller dynamic coefficient 𝜏, com-
pare Equation (113) and Figure 5. For constant inlet pressure, the decrease of the pressure gradi-
ents in Equations (108,109) for an increased slip length 𝜆 are compensated by a larger total flux
𝑞, and thus a faster movement of the interface position 𝛾1 (Figure 5). The local permeabilities 𝐾I,

 14679590, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12376 by U
niversiteit H

asselt, W
iley O

nline L
ibrary on [15/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



114 LUNOWA et al.

F IGURE 5 For an increasing slip length 𝜆, the velocity ratio 𝑢rel = 𝑢𝑚,1|𝑥2=1∕𝑞 at the wall increases (left),
while the dynamic parameter 𝜏 decreases (center). The interface position 𝛾1 moves faster for an increasing slip
length 𝜆 (right)

F IGURE 6 For increasing viscosity ratio M, the dynamic parameter 𝜏 increases (left), while the interface
position 𝛾1 moves slower (right)

𝐾II show a similar behavior. Observe that since 𝑤 ≡ 1, these only depend on the slip length. As
follows from Equation (111) (cf. Figure 2), they increase linearly with 𝜆.

5.1.2 Effect of the viscosity ratio

Next, we continue the investigation for various viscosity ratios M. Since the viscous force
in fluid II is proportional to the viscosity ratio M, the total flux 𝑞 decreases when the vis-
cosity ratio M increases (cf. Equation (110)). In particular, the interface position 𝛾1 moves
faster when the thin strip is mainly filled by the less viscous fluid (Figure 6). Further-
more, we observe that the solutions converge for M→ 0 toward solution of the simplified,
unsaturated flow model as discussed in Subsection 3.3. Note that we use 𝛾1|𝑡=0 = 10−3 when
M = 0 to avoid the degeneration of the interface system in Equation (110).
The dynamic coefficient 𝜏 becomes larger for small saturations 𝑆, if the viscosity ratio is large

(M > 1), and vice versa for M < 1 due to Equation (113), and shown in Figure 6. Note that one
can observe even in this extremely simplified setting that the dynamic coefficient is saturation-
dependent, except for fluids with the same viscosity (M = 1). In addition, the dynamic coefficient
is monotonic in the saturation 𝑆 for any viscosity ratio.

5.1.3 Effect of a dynamic contact angle

Now,we consider the effect of a dynamic contact anglemodel. Aswe expect the similar qualitative
behavior for different dynamic contact angle models, we restrict the discussion to the model

𝜃(𝑢) = arccos(max(min(cos(𝜃𝑠) + 𝜂Ca𝑢, 1), −1)), (115)
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LUNOWA et al. 115

F IGURE 7 The local capillary pressure 𝑝𝑐,loc increases for increasing dynamic contact angle coefficient 𝜂
(left). Hence, the movement of the interface position 𝛾1 slows down (right)

which is the linearized molecular kinetic theory model (for small velocities) from Refs. 47,55
68,69,73,74 restricted to the possible range [0, 𝜋]. Here, the parameter 𝜂 ≥ 0 models the effective
friction at the contact point leading to a dynamic contact angle. For comparability, we fix the
static contact angle 𝜃𝑠 = 𝜋∕3 and all the other parameters as in Table 2. Note that for any 𝜂 ≥ 0,
the differential algebraic system inEquation (110) has a unique solution, since cosine ismonotonic
decreasing on [0, 𝜋].
In contrast to the previous examples, the dynamic contact angle model does not affect the

dynamic coefficient 𝜏, but has an impact on the local capillary pressure 𝑝𝑐,loc and the phase-
pressure difference ⟨𝑝I⟩I − ⟨𝑝II⟩II. Recall that the local capillary pressure is given in this case by
Equation (107). In particular, its dynamic part is proportional to the parameter 𝜂. Hence, the inter-
face position 𝛾1 moves slower when the parameter 𝜂 increases (Figure 7). Note that the total flux
𝑞 is constant, so that 𝛾1 is linear in time. Since M = 1, the local capillary pressure and the phase-
pressure difference are constant over 𝑆, so that we only show the dependence on 𝜂 in Figure 7.

5.1.4 Effect of a hysteretic contact angle

Finally, we consider the effect of a hysteretic contact angle model and compare it to the static
and dynamic ones. As before we use the dynamic contact angle model in Equation (115) with
static contact angle 𝜃𝑠 = 𝜋∕3. For the hysteretic contact angle model, the advancing and receding
contact angles (with respect to fluid I) are chosen 𝜃𝑎 = 𝜋∕4 and 𝜃𝑟 = 5𝜋∕12, respectively. Together
with the same dynamic contact angle model away from 𝑢 = 0, this yields

𝜁(𝑎) =

⎧⎪⎪⎨⎪⎪⎩

𝑎−cos(𝜃𝑟)

𝜂Ca
if 𝑎 < cos(𝜃𝑟),

𝑎−cos(𝜃𝑎)

𝜂Ca
if 𝑎 > cos(𝜃𝑎),

0 otherwise.

(116)

Recall that 𝜁 is the inverse of cos 𝜃. We consider a drainage and imbibition cycle by choosing the
time-dependent inlet pressure𝑝in(𝑡) = 3 − 𝑡, and stop the simulationswhen the interface position
returns to the inlet. The other parameters are taken from Table 2.
As in the dynamic case, we observe that the movement of the interface position 𝛾1 is slower

when the parameter 𝜂 is increased (Figure 8 (top)). While the total flux 𝑞 is linear for the static
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116 LUNOWA et al.

F IGURE 8 The total flux 𝑞 (top-left) is linear for the static and dynamic contact angle model, while being
zero for some time for the hysteretic model. The interface position 𝛾1 moves accordingly (top-right). In case of the
hysteretic model, it is at rest, when the local capillary pressure 𝑝𝑐,loc (bottom-left) lies in between the (static)
capillary pressures for drainage and imbibition, that is, 𝑝𝑐,loc is multivalued at the maximal reached saturation.
For the dynamic models, 𝑝𝑐,loc at the maximal saturation is exactly the static capillary pressure. The
phase-pressure difference ⟨𝑝I⟩I − ⟨𝑝II⟩II (bottom-right) shows the same qualitative behavior

and dynamic contact angle model, so that 𝛾1 is quadratic in time, the hysteretic model leads to a
constant interface positionwhen 𝜃𝑎 ≤ 𝜃 ≤ 𝜃𝑟. Therefore, the local capillary pressure 𝑝𝑐,loc and the
phase-pressure difference ⟨𝑝I⟩I − ⟨𝑝II⟩II at the maximal reached saturation is multivalued taking
all values between the (static) drainage and imbibition capillary pressures (Figure 8 (bottom)).
On the other hand, for the dynamic contact angle model, 𝑝𝑐,loc and ⟨𝑝I⟩I − ⟨𝑝II⟩II at the maximal
saturation are given by the static capillary pressure, since 𝜕𝑡𝑆 = 0. Furthermore, the hysteresis
leads to higher deviations from the static capillary pressure and thus a smallermaximal saturation.
Finally, note that 𝑝in is linear and reaches 𝑝const𝑐,loc at 𝑡 = 2 such that all curves with the dynamic
contact angle model are symmetric. Since 𝜃𝑎 and 𝜃𝑟 have the same distance from 𝜃𝑠, the same
holds in the hysteretic cases.

5.2 Constricted “pore throat”

Next, we consider a strip with varying width

𝑤(𝑥1) = 2∕3 + cos(2𝜋𝑥1)∕3,

which represents a constricted “pore throat.” As before, we shortly discuss the velocity and pres-
sure distribution of the two phases as well as the movement of the interface, before proceeding
with the detailed discussion of the effect of the slip length, of the viscosity ratio, and of a dynamic
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LUNOWA et al. 117

TABLE 3 Standard parameters for the case of varying width

Parameter Symbol Value
Capillary number Ca 1/2
Contact angle 𝜃 𝜋/3
Slip length 𝜆 1/6
Viscosity ratio M 1
Initial interface position 𝛾1|𝑡=0 0
Inlet pressure 𝑝in 12

F IGURE 9 Velocity profile in the
thin strip of varying width (𝜆 = 1∕6)

and a hysteretic contact angle model, varying each individually, while fixing all other parameters
as given in Table 3. Note that we choose a static contact angle such that fluid I is nonwetting.
While the overall trend is similar to the previous case with constant width, we additionally

observe here a strong impact of the geometry on the flow behavior and thus on the effective
quantities. In contrast to the constant-width case, the local capillary pressure 𝑝𝑐,loc now depends
on the saturation due to the constriction (Figure 11). Analogously, the phase-pressure difference⟨𝑝I⟩I − ⟨𝑝II⟩II varies in the saturation.
The solution in the bulk domains given by Equations (49–52) for this geometry then reads

𝑢𝑚,1(𝑡, 𝒙) = 9𝑞(𝑡)
(𝑐(𝑥1))

2 + 5𝑐(𝑥1) + 6 − 𝑥
2
2

(𝑐(𝑥1) + 2)2(2𝑐(𝑥1) + 7)
,

𝑢𝑚,2(𝑡, 𝒙) = 𝜀18𝜋𝑞(𝑡) sin(2𝜋𝑥1)

(
18(𝑐(𝑥1) + 3)𝑥

3
2

(𝑐(𝑥1) + 2)3(2𝑐(𝑥1) + 7)2
−
(2(𝑐(𝑥1))

2 + 12𝑐(𝑥1) + 19)𝑥2
(𝑐(𝑥1) + 2)2(2𝑐(𝑥1) + 7)2

)

for𝑚 ∈ {I, II}, where 𝑐(𝑥1) ∶= cos(2𝜋𝑥1), shown in Figure 9, while

𝑝I(𝑡, 𝒙) =
3

2 + 𝑐(𝛾1(𝑡))
+
9𝑞(𝑡) sin(2𝜋𝑥1)

𝜋(𝑐(𝑥1) + 2)
+

24𝑞(𝑡)

(
𝜋𝐻(0.5 − 𝑥1) − arctan

(√
5

3
tan(𝜋𝑥1)

))
𝜋
√
5

,

for 𝑥1 < 𝛾1(𝑡), and

𝑝II(𝑡, 𝒙) =
9𝑞(𝑡) sin(2𝜋𝑥1)

𝜋(𝑐(𝑥1) + 2)
+

24𝑞(𝑡)

(
𝜋𝐻(0.5 − 𝑥1) − arctan

(√
5

3
tan(𝜋𝑥1)

))
𝜋
√
5
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118 LUNOWA et al.

F IGURE 10 Pressure distribution over length 𝑥1 at various times (left) for fixed inlet velocity
𝑢in,1 = 4∕3 − 𝑥21 and interface position 𝛾1 over time 𝑡 (right) for fixed inlet velocity 𝑢in,1 = 4∕3 − 𝑥21 and fixed
pressure condition 𝑝in = 12 in the thin strip of varying width

for 𝑥1 > 𝛾1(𝑡), where 𝐻 denotes the Heaviside graph (Figure 10). The first velocity component is
higher where the width is reduced, while the second component adjusts to the changes in width
tomaintain the incompressibility (Figure 9). Note that the second velocity component is of order 𝜀
due to the different scaling. Accordingly, the pressure gradients depend on the local width and are
steeper around the constriction in the middle. This leads to the s-shaped pressure profiles instead
of the linear ones in the constant-width case.
For fixed inlet velocity 𝑢in,1 = 4∕3 − 𝑥22 , that is, for 𝑞 ≡ 1, the pressure solutions at several times

are depicted in Figure 10 together with the evolution of the interface position 𝛾1(𝑡), which is given
implicitly by 𝑡 = 2𝛾1(𝑡)∕3 + sin(2𝜋𝛾1(𝑡))∕(6𝜋). Note that the interface position 𝛾1 moves faster in
the vicinity of the constriction, since the average velocity 𝑢 = 𝑞∕𝑤 is higher around the constric-
tion (cf. Figure 9). Furthermore, the movement is very similar to the one obtained with constant
inlet pressure𝑝in ≡ 12. Hence,we restrict the following discussion to this inlet pressure condition.
Note that this larger inlet pressure is necessary to obtain a similar total flux as in the constant-
width case, since the width is reduced.
For this geometry, we still can derive relations for the effective quantities obtained in Subsec-

tion 4.2. We obtain for the saturation

𝑆 = 𝛾1 +
1

4𝜋
sin(2𝜋𝛾1), 𝜕𝑡𝑆 =

3

2
𝑞.

Since this function 𝑆(𝛾1) has no analytical inverse, there is no closed-form expression for the local
capillary pressure 𝑝𝑐,loc Equation (105) nor for the dynamic coefficient 𝜏 Equation (106). Their
numeric approximations are depicted in Figure 11. Both have a peak at 𝑆 = 0.5, where the inter-
face passes the position 𝑥1 = 0.5 with the smallest width. For the local capillary pressure, this
results from the reciprocal dependence on the local width, while the dynamic coefficient is sym-
metric due to the symmetric wall and the viscosity ratio M = 1. Note that the dynamic effects are
much stronger than in the constant-width setting due to the reduced width, which requires larger
pressure gradients to maintain the flow. Hence, we conclude that the wall shape has a significant
impact, especially on the dynamic effects.

5.2.1 Effect of the slip length

We begin the investigation for various slip lengths 𝜆. As in the previous, constant-width case, the
movement of the interface position 𝛾1 is faster when the slip length is increased. However, the
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LUNOWA et al. 119

F IGURE 11 The local capillarity pressure 𝑝𝑐,loc increases for saturations below 𝑆 = 0.5, and decreases
thereafter (left). The dynamic coefficient 𝜏 shows an analogous behavior (right). This is a result of the symmetric
constriction of the thin strip

F IGURE 1 2 The total flux 𝑞 is drastically reduced while the interface passes through the constriction due to
the larger capillary pressure (left). It increases when the slip length 𝜆 is increased, so that the movement of the
interface position 𝛾1 is faster (right)

total flux 𝑞 is drastically reduced while the interface passes through the constriction due to the
higher capillary pressure (Figure 12).
The dynamic coefficient 𝜏 is lower when the slip length increases as shown in Figure 13. In

contrast to the constant-width case, it is nonmonotonic in the saturation, and maximal around
𝑆 = 0.5, that is, when the interface passes through the constriction around 𝑥1 = 0.5. Note that the
combination of higher velocity with lower dynamic coefficient leads to almost no changes in the
phase-pressure difference ⟨𝑝I⟩I − ⟨𝑝II⟩II for all slip lengths (Figure 13).
5.2.2 Effect of the viscosity ratio

Next, we consider the effect of the viscosity ratio M. As in the previous, constant-wall case, the
total flux 𝑞 is smaller when the viscosity ratio M increases (Figure 14). Especially at early times
𝑡, one can observe large total fluxes 𝑞, when the viscosity ratio is very small (M ≤ 0.1), since the
strip is filled with the extremely mobile fluid II. On the other hand, the total flux is reduced while
the interface passes through the constriction, but this effect is very small compared to the effect
of viscosity for M < 1. As before, the solutions converge for M→ 0 toward the simplified, unsat-
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120 LUNOWA et al.

F IGURE 13 The dynamic coefficient 𝜏 decreases for increasing slip length 𝜆 (left). It is nonmonotonic in
the saturation. The resulting phase-pressure difference ⟨𝑝I⟩I − ⟨𝑝II⟩II is also nonmonotonic, but almost the same
for all slip lengths (right)

F IGURE 14 The total flux 𝑞 is high when the thin strip is mainly filled with the less viscous fluid (left). It is
smaller while the interface passes through the constriction. When the viscosity ratio M is increased, the interface
position 𝛾1 moves generally slower (right)

urated flow model as discussed in Subsection 3.3 (cf. Figure 14). Note that we use 𝛾1|𝑡=0 = 10−3

when M = 0 to avoid the degeneration of the interface system of Equations (79,80).
The dynamic coefficient 𝜏 becomes larger for small saturations 𝑆, if the viscosity ratio is larger

(M > 1), and vice versa for M < 1, as shown in Figure 15. The rapid change close to 𝑆 = 0.5 is due
to the strong influence of the region around 𝑥1 = 0.5, where the thin strip has its minimal width.
Note that for small viscosity ratio M ≤ 0.1 and saturation below 0.4, the dynamic coefficient is
almost zero. Furthermore, we observe here nonmonotonic behavior of the dynamic coefficient
𝜏 for every viscosity ratio, while it is monotonic in the constant-width case. This is due to the
interplay between the constricted geometry and the nonlinear dynamic effect given by Equation
(106). Finally, note that the combination of higher velocity with lower dynamic coefficient leads to
almost no changes in the phase-pressure difference ⟨𝑝I⟩I − ⟨𝑝II⟩II for all moderate viscosity ratios
(Figure 15). Only for a very small viscosity ratio M ≤ 0.1, the phase-pressure difference is slightly
lower for saturations between 0 and 0.5.

5.2.3 Effect of a dynamic contact angle

We consider the effect of a dynamic contact angle model. As for the constant-width case, we use
Equation (115) with 𝜃𝑠 = 𝜋∕3. The total flux 𝑞 is smaller when 𝜂 is increased (Figure 16). This
effect is amplified while the interface passes through the constriction.
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LUNOWA et al. 121

F IGURE 15 The dynamic parameter 𝜏 increases for increasing viscosity ratio M (left). It is nonmonotonic
in the saturation. The resulting phase-pressure difference ⟨𝑝I⟩I − ⟨𝑝II⟩II is also nonmonotonic, but almost the
same for all moderate viscosity ratios (right)

F IGURE 16 The total flux 𝑞 decreases for higher values of 𝜂, since the (dynamic) local capillary pressure
increases (left). Accordingly, the interface position 𝛾1 moves slower (right). Due to the constriction, the effect is
maximal for 𝛾1 = 0.5

Although the total flux is smaller, the local capillary pressure 𝑝𝑐,loc and the phase-pressure
difference ⟨𝑝I⟩I − ⟨𝑝II⟩II increase for increasing 𝜂 (Figure 17). Themaximum is attained at 𝑆 = 0.5,
when the interface passes the minimal width. There, the dynamic effect is also the highest. Note
that the curves for 𝜂 = 0.75 and 𝜂 = 1 partly coincide because the dynamic contact angle reaches
𝜋 in both cases. In a laboratory experiment, this could lead to instabilities and the formation of
bubbles or a thin residual film. However, that such behavior is beyond the scope of the model
presented here.

5.2.4 Effect of a hysteretic contact angle

Finally, we consider the effect of a hysteretic contact angle model and compare it to the static and
dynamic ones. As in the constant-width case, we use the dynamic contact anglemodel in Equation
(115) with 𝜃𝑠 = 𝜋∕3 and the hysteretic contact angle model in Equation (116) with 𝜃𝑎 = 𝜋∕4 and
𝜃𝑟 = 5𝜋∕12. We consider a drainage and imbibition cycle by choosing the time-dependent inlet
pressure 𝑝in(𝑡) = 9 − 4𝑡, and stop the simulations when the interface position returns to the inlet.
The other parameters are taken from Table 3.
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122 LUNOWA et al.

F IGURE 17 The local capillary pressure 𝑝𝑐,loc increases for increasing dynamic contact angle coefficient 𝜂
(left). It attains its maximum at 𝑆 = 0.5, when the interface passes the minimal width. The resulting
phase-pressure difference ⟨𝑝I⟩I − ⟨𝑝II⟩II shows the same behavior (right)

F IGURE 18 The total flux 𝑞 (top-left) decreases faster when the interface passes through the constriction.
In case of the hysteretic contact angle model, the interface position 𝛾1 (top-right) stops in the constriction when
the local capillary pressure 𝑝𝑐,loc (bottom-left) lies in between the (static) capillary pressures for drainage and
imbibition, whereas 𝑝𝑐,loc at the maximal saturation is exactly the static capillary pressure for the dynamic
models. The phase-pressure difference ⟨𝑝I⟩I − ⟨𝑝II⟩II (bottom-right) shows the same qualitative behavior
As before, the total flux 𝑞 decreases faster, when the interface passes through the constriction

(Figure 18 (top)). Note that the higher capillary pressure when passing the constriction counter-
acts the drainage, while it increases the imbibition speed. This results in a more negative velocity.
In case of the hysteretic contact angle model, the interface position 𝛾1 stops in the constriction,
while the pressure lies in between the (static) capillary pressures for drainage and imbibition, so
that the local capillary pressure𝑝𝑐,loc and the phase-pressure difference ⟨𝑝I⟩I − ⟨𝑝II⟩II aremultival-
ued at the maximal saturation. In contrast, the dynamic model yields a direct switching between
drainage and imbibition, when 𝑝𝑐,loc is exactly the static capillary pressure (at the maximal
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LUNOWA et al. 123

saturation) (Figure 18 (bottom)). Hence, hysteresis also leads to higher deviations from the static
capillary pressure and thus a smaller maximal saturation.

6 CONCLUSION

We have formally derived the asymptotic solution for the flow of two immiscible fluids in a
two-dimensional thin strip of varying width, where the fluid–fluid interface is treated as a free
boundary. The obtained effective models form a system of differential algebraic equations for the
interface position and the total flux, and are applicable to a wide range of viscosity ratiosM, of slip
lengths 𝜆, as well as contact angle models. The resulting effective relations are a Darcy-type equa-
tion for the local flow, and a capillary pressure–saturation relationship involving dynamic effects.
We have discussed the effects of a varying pore width, of the viscosity ratio, of the slip length as

well as of having a dynamic and a hysteretic contact angle law through numerical experiments.
In particular, the results for a varying pore width show that the geometry has a large influence on
the effective quantities and their behavior. While dynamic effects occur even for a static contact
angle model, hysteresis in the capillary pressure is only present when a hysteretic contact model
is used.
The presented models and effective relations can be generalized to asymmetric as well as tube-

like three-dimensional domains with heterogeneities in the contact angle. Furthermore, rough
walls of type 𝑤𝜀(𝑥1) = 𝑤(𝑥1) + 𝜀𝑤

1(𝑥1∕𝜀) + (𝜀) would strongly affect the shape and position of
the interface. This needs to be investigated in the future. In addition, it remains to validate the
effective models by a direct comparison with numerical simulations of the full model or with
experiments in single pores. Our future work will focus on the radial-symmetric case in three
dimensions including the effect of outer forces such as gravity. Such three-dimensional models
can be further used in pore-network models or for upscaling in a bundle-of-tubes model.
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