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Abstract

Travel demand for the Metropolitan region Rotterdam - The Hague is predicted using a novel tool chain. Non-classical tools are
required to cope with the situation where parking supply is reduced, hubs for trip chaining are made operational and people start
to use Maa$ including new mobility concepts. An activity based travel plan predictor is combined with a dedicated access-egress
model and assignment models. Because the activity based model and access-egress model simulate individuals, they can deal with
mode switches at hubs while considering constraints with respect to vehicle ownership, mode availability in the tour, locations
where vehicles should be returned and mode availability. Parking capacities, hub and new mobility concepts are included in the
assignment models to generated level-of-service matrices that are input to the other models. The tool chain setup, the methods
applied, the datasets used and first results are discussed. The new integrated activity based approach proved to be better suited to
model impacts of parking, hubs and new mobility concepts than the standard aggregated modelling approach. The results for the
base year look promising because they closely resemble observed schedules and the elasticities are within the recommended ranges
mentioned in literature.
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1. Introduction
1.1. Objective - Context

The study described in this paper aims to investigate how to take parking (P), trip chaining (Tc) via hubs and new
mobility concepts (Nm) (collectively referred to as P-Tc-Nm) into account in operational travel models for densely
populated regions of realistic size. The purpose of such models is to provide decision support to municipal and regional
authorities.

Aggregate models for travel demand fail to account for P-Tc-Nm in an accurate manner because microscopic
interaction effects are omitted. P-Tc-Nm severely affect decisions leading to individual daily travel plans while the
structure of such plans cannot be captured. This is because the aggregation takes place without detailed knowledge of
travel plans.Therefore, we introduce an activity-based model in the tool chain.

Parking availability and cost are considered both at the home and remote side of the trips.

The share of multimodal trips consisting of multiple non-walk components continues to increase. Widespread use
of smartphone based tools is a major facilitator. On the other hand, the feasibility of such trips depends on the supply,
on information about the supply but also on individual’s timing and coordination constraints. A daily schedule is
constrained by agreed cooperation periods (time slots) at given locations (meetings, children drop-off, pick-up, social
events, daily shopping). Aggregate models cannot easily account for such cooperation and are not sensitive to changes
in the cooperation constraints while exactly these are determined by P-Tc-Nm properties.

Additionally, several research projects !, > argue that hubs for mode change need to provide additional facilities [6].
The basic idea of multimodal hubs is that particular classes of activities (e.g. daily shopping, meeting) may become
embedded in a multimodal trip.

This paper focuses on an Activity Based integrated approach to model impacts of parking,hubs and new mobility
concepts.

1.2. Related work

Activity-based micro-simulation models (ABM) are more detailed and keep track of individuals considering all
aspects of an individual activity-travel. This includes for each agent in the synthetic population, the number of ac-
tivities to be performed and specific attributes of each activity: type, start time, duration, location and a transport
mode that is used to travel between two consecutive locations. Examples are Albatross [3], CEMDAP, FEATH-
ERS[5], SimMobility, TASHA. However, these ABMs can only predict activity-travel schedules and require an as-
signment model (usually dynamic) for defining routes of travel and executing the predicted schedules. Literature
reported several examples of such comprehensive integration of demand and supply models e.g. SimMobility[2] for
Singapore, CEMDAP-MATSim [4] for Tel-Aviv (Israel) and for Berlin (Germany) [15, 16], ABM-DTALite[12] for
Washington-Baltimore region (USA), FEATHERS-MATSIim[1] for Bologna (Italy), ADAPTS-DTA[11] for Chicago
(USA), TASHA-MATSIm[9] for Toronto (Canada), to prove the point that such integration is practical and helpful in
analyzing impacts of emerging policies. There are a range of policy scenarios analyzed using above integrated models
e.g. land-use change and parking facility scenarios, autonomous mobility on demand, dynamic fare pricing in public
transport, improvement in public transport networks. Additionally, in some efforts these models are further integrated
with emission and air dispersion models to assess the impacts of transport policies on air quality.

Development of detailed integrated models requires huge efforts, however, at the same time they provide flexibility
to produce results for each agent at a very fine spatio-temporal scale. Therefore, assessments of policies and scenarios
not only provide understanding of first order effects but also second and third order effects [4, 2, 9]. To this end, this
paper also aims to develop a similar model for a part of The Netherlands to analyze scenarios in relation to parking
infrastructure and transport hubs considering new modes for travel.

! https://www.mobipunt.be
2 https://www.vlaanderen.be
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1.3. Process workflow

Figure 1 shows the workflow of the integrated model presented in this paper. First a synthetic population is created
using a population generator. The synthetic population is input to the activity based model FEATHERS which gen-
erates activity schedules for all people within the synthetic population. The Access and Egress mode model refines
these schedules by adding access and egress modes to the main modes predicted by FEATHERS. The resulting sched-
ules are aggregated to OD-matrices for each mode and assigned to a network using assignment models for the main
mode categories. FEATHERS and the Access and Egress mode model also use Level-Of-Service (LOS) matrices and
land use data as an input. The LOS-matrices are generated by a classical four-step traffic and transport model for the
Metropolitan Region Rotterdam - the Hague (V-MRDH) that is used in the case study of this paper. The advantage of
using the LOS-matrices generated by the V-MRDH model instead of the LOS-matrices generated by the assignment
models of our integrated modelling approach is that it avoids the need to estimate/calibrate the OD-matrices based on
traffic counts and to apply a growth factor method, because the V-MRDH model has been extensively calibrated and
validated. The LOS-matrices are the end result of an iterative process where there is an equilibrium between demand
and supply and the assignment results match the traffic counts. Of course, a more advanced model set-up where the
LOS-matrices generated by the assignment models are used as in an input to FEATHERS and the Access and Egress
mode model (dotted arrows) could be used as well, but is outside the scope of this paper.

Section 2 describes the four sub-models of the integrated modelling approach and explains how parking, hubs
and new mobility concepts are modelled in each of the sub-models. Section 3 describes the case study results for
a base year including the input data, model results and validation results. Section 4 describes the conclusions and
recommendations for future research.

LOS V-MRDH + hubs

Land use data

Population Access and Egress
Feathers
generator mode model

Synthetic population

Fig. 1. Integrated modelling tools

2. Integrated activity-based travel demand and assignment model
2.1. Details about population generation

We use the well-known method of Iterative Proportional Fitting (IPF) (e.g. [8]) to generate a population. The
population contains the following characteristics: person id, zone id, household id, gender, roots, age class, household
composition, number of children, household income, payed work, education, student, life style, driving license, car
availability, fuel type of cars, and bike ownership (no bike, normal bike, e-bike)

Since this paper contains a case study for the Netherlands, microdata from Statistics Netherlands (CBS), a Dutch
national travel survey OViN, data from the national vehicle registrations (RDW) and data of the V-MRDH model are
used as input. The microdata from CBS contains personal characteristics of individuals. Because of privacy regula-
tions this data cannot be used on an individual level. The data has been aggregated to the zonal level of the model
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in the secured environment of CBS, exported and disaggregated again outside the CBS environment using IPF in
combination with aggregated cross tables on a regional and national level.

To determine car ownership in future years when for instance new parking policies reduce the number of available
parking places, a regression model has been estimated to determine the relationship between car ownership, personal
characteristics like age, gender etc. and the number of parking places. To model the impact of hubs, no additions to
the synthetic population were needed. To model the impact of new mobility concepts attributes have been added to
the population that indicate whether or not somebody has a subscription to shared microl5km/h, shared micro25km/h
and/or shared cars. Mode category definitions are found in Table 1. These attributes constitute scenario input.

2.2. Details about the activity-based travel demand generator (FEATHERS)

2.2.1. Principle of operation

FEATHERS starts from a synthetic population and predicts a schedule (daily travel plan) for each individual. A
schedule is a sequence of episodes that together exactly cover the simulated period (a single day). Each episode
consists of exactly one trip followed by an activity. The main predicted attributes are: (i) activity type, start time,
location and duration and (ii) the main travel mode for the trip. The main loop executed for each individual is detailed
in Algorithm 1. Sampling is from discrete choice models (see Section 2.2.2).

Algorithm 1 FEATHERS main loop to predict the daily activity plan for an individual

1: function pETERMINEPISODE(epi,context) > ’epi’: identifies episode, ’context’: environment and partial schedule

2: actType « ... > If yet unknown, sample activity type from context dependent choice model
3: actLoc « ... > Activity location from context dependent choice model
4: tripMode « ... > Travel mode from context dependent choice model
5: actDur « ... > Activity Duration from context dependent choice model
6: return (actType, actLoc, tripMode, actDur)

7: context < ()

8: DAP « ...» Sample Daily Activity Pattern (this is a sequence of tours. Type of each primary activity is known.)
9: context.add(DAP)

10: for all epiType € {HOME,WORK,SCHOOL, OT HER} do
11: for all tour € DAP do

12: if tour.primActType() = epiType then

13: primAct < DETERMINEPISODE(context)

14: context.add(primAct)

15: for all st € {primAct.firstT ourPart(), primAct.secondT ourPart()} do

16: PAT2 « ... » Sample pattern for partial tour: Sequence of episode templates (no details known)
17: for all epi € PAT2 do

18: secAct < DETERMINEPISODE(e pi, context) > Fill in the details
19: context.add(secAct)

The spatial resolution for activity locations is at travel analysis zone (TAZ) level. The temporal resolution is one
minute. The predicted schedule is the result of a sequence of decisions as explained by Algorithm 1. Individuals
are considered to be independent. The outcome of each decision is sampled from the associated discrete choice
model (explained in Section 2.2.2). The result of a decision can be used as an input for a successor decision. Due
to the sampling, inconsistent schedules can be generated. These are rejected and a new schedule is generated for the
individual. The number of predicted schedules exceeds the population size by less than 5%.

2.2.2. Estimation of Discrete choice models

Observed schedules collected by OViN are used for choice model estimation by Biogeme. There are in total 28
sub-models estimated in an hierarchical manner by following an approach similar to other discrete choice model based
ABMs [7, 2]. The DAP model at the top generates the number of tours an individual performs in a day for each type of
activity. The model contains 50 alternatives in total and has a coverage of around 96% of the observed data. All models
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Table 1. Mode categories used to integrate new options.

Name Speed [km/h] Weight Space [pcu] Passenger capacity Example

Micro5 <5 < car <0.25 <1 walk

Microl5 € [5,20) < car € [0.25,0.50) <1 bike

Micro25 € [20,30) < car € [0.25,0.50) <1 e-bike

Private vehicle: drive alone > 30 > car > 0.50 €[L,8] car

Private vehicle: passenger > 30 > car €[0.25,0.50) €[1,8] car passenger, taxi
Shared ride on demand > 30 > car <0.25 € [1,8] demand responsive transit
Shared ride traditional > 30 > car <0.25 > 8 public transport

except the location models can be trained in an efficient way. The models for location choice are huge due to (i) the
large number of TAZ, (ii) the large number of attributes for each TAZ and (iii) the large number of level-of-service
(LOS) quantities involved. The number of lookups in the LOS matrices required to compute logsums was too large to
be executed in the available time frame. Hence, for each OD-pair, the travel time and travel cost (weighted over the
time periods of the day) of private vehicle and shared ride traditional modes are used in location choice models as
a proxy to represent accessibility instead of logsums from transport mode choice model. Apart from other attributes,
parking infrastructure availability (free and paid) and parking tariffs which are averaged over TAZ are included in the
models where they have been found significant and with the right signs.

To model new mobility concepts we introduce a categorization of 7 main mode categories in the mode choice
models for primary and secondary activities in the tour. The mode categories differ in speed {< 5, [5, 20), [20, 30), >
30}km/h, weight {< car, > car}, vehicle space per person in passenger car equivalents (pcu) {< 0.25,[0.25,0.5], > 0.5}
and passenger capacities {< 1, [1, 8], > 8}. As aresult, there are 4-2-3-3 = 72 combinations of which 65 combinations
are infeasible. Most of the traditional travel modes as well as new mobility modes fit into these 7 remaining categories.
An advantage of using mode categories instead of single modes is that new modes can easily be added to the model
as long as they fit within one of the seven categories. The 7 categories with their characteristics are listed in Table 1.

Predictions about new modes are based on the following assumptions: (i) the preference for mode categories derived
from the observed data continue to apply when new modes are added to categories and (ii) whenever a shared mode
is available to a traveller, it will be chosen. The categories Microl5, micro25, private vehicle: drive alone and private
vehicle: passenger are split into two categories shared and non-shared to model the concept of vehicle sharing.

2.2.3. Tool properties

FEATHERS consists of a generic part and a project specific library of choice models. Algorithm 1 belongs to the
generic part. Sampling actions in lines 2 to 5 may involve multiple MNL models.

Parts involving heavy computations are written in C. Parts related to model training are written in python3 because
integration in Biogeme is required. Specifications for utility functions do appear in both. Therefore, a code generator
has been developed so that the models are specified exactly once and both C and python3 code are generated from a
single source to guarantee consistency. Model coefficients delivered by Biogeme are integrated automatically.

The schedule prediction problem is embarrassingly parallel. The number of concurrent instances is limited by
the huge memory requirement. Runs were executed by 6 processes in parallel. A prediction for 3.6M individuals
completes in slightly less than 10.25 hours (i.e. predicting 100 schedules per second).

2.3. Details about access and egress mode model

The Access and Egress mode model takes the schedules that are generated by FEATHERS as input and refines
these schedules by adding access and egress modes. For instance, even if a car is used as a main mode, one always
has to walk to the car and walk from a parking space to a destination. In total there are 7 x 7 x 7 = 343 multimodal
mode combinations of which we selected 32 feasible combinations. The main modes micro5, microl5 or micro25
always have micro5 as access and egress mode resulting in 1 multimodal combination per main mode. The main
modes private vehicle: drive alone and Private vehicle: drive alone always have micro5 as access or egress mode. If
mirco5 is used as access mode, micro5, microl5, micro25, shared ride on demand and shared ride traditional can
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be used as egress mode and the other way around resulting in 9 multimodal combinations per main mode. The main
mode shared ride on demand always has micro5 as access or egress mode and can use micro5, microl5, micro25 and
shared ride traditional at the other trip end resulting in 7 multimodal combinations. Finally, the main mode shared
traditional can use micro5 and microl5 as access or egress mode resulting in 4 multimodal combinations.

The mode switches take place at hubs. A hub is a place where travelers change their travel mode within a trip, i.e.,
travelers use a mode to travel from an origin to a hub and then switch to another travel mode to continue their journey.
Besides the 'normal’ public transport stations, 48 hubs are included in the model for the case study area that can be
’switched on’ or ’switched off” depending on the scenario. The 48 locations match the current park and ride locations,
but other locations could be added as well. The availability of shared vehicles for each hub is also scenario input.

The utility for each multimodal mode combination is computed based on the utility functions and parameters from
FEATHERS. That is the utility of a multimodal mode combination consists of a mode specific constant of the main
mode and socio-demographic attributes like age, gender, driving license, car availability, household income, household
composition, education level and activity type. The utilities for the parking search time, travel time, operational cost,
start-up cost, parking cost are summed over the access, main and egress mode using the parameters for time and costs
that have been estimated in FEATHERS for the access, main and egress modes. For combination with shared ride
traditional as mode, a slightly different approach has been used, because the LOS for these combinations could only
be generated for the entire multimodal trip at once instead of separately for the access, main and egress mode. For
this reason, the total trip times and cost are used and they are multiplied with the time and cost parameter of shared
ride traditional. The travel time and travel cost differ for private and shared vehicles. For the main modes Micro15,
Micro25, private vehicle: drive alone and private vehicle: passenger it is assumed that a person uses the shared
alternative when he/she has subscription of shared services even if he/she also owns a private vehicle. Furthermore,
a multimodal mode combination will consist of two transfers, from access mode to main mode and from main mode
to egress mode. Hence, the utility contribution of the hub transfer time is summed over these two transfers. When a
private mode (e.g. car) is chosen as main mode the transfer time is assumed to be 5 minutes per transfer and when
shared ride traditional is used as main mode the transfer time is assumed to be 8 minutes. In addition, two normally
distributed error terms with zero mean and appropriately chosen variance are included. The first term is specific to
the mode and traveler. It models the personal preference with respect to a mode, and is not resampled whenever the
same mode/traveler combination is regarded for a different trip (both within a tour or across multiple tours), so as to
enforce consistency. The second term is not only specific to the mode and traveler, but also to the actual trip. This
term models any other random effects, and is resampled also when the same mode/traveler combination is considered
for a different trip.

After the utilities for each trip have been calculated a set of feasible multimodal mode combinations for each trip
in a tour is generated for each person. In this step constraints with respect to vehicle ownership, mode availability in
the tour, mode availability at origin and destination and locations where vehicles should be returned are considered as
explained in more detail in [14]. When a person has a subscription for one or more shared services some constraints
are relaxed. Eventually, the multimodal mode chain having the highest utility will be selected.

A more elaborate description of the access and egress mode model can be found in [13].

2.4. Details about assignment models

The generated schedules resulting from the access and egress mode model are assigned to the network to simulate
route choices made and resulting traffic delays. We use a static macroscopic traffic assignment model, and therefore
the individual activity schedules need to be aggregated to Origin-Destination matrices, for each time period, for each
of the mode categories. Additionally, multimodal trips are split into separate trips, e.g. a trip from origin to destination
via a hub is split into one trip from origin to hub, and one trip from hub to destination.

Before assigning the OD-matrices to the network, the network and basic assignment methods are adjusted to
incorporate the P-Tc-Nm. First, special parking links are added to connect the zones, as shown in Figure 2, based on
[10]. The parking links have a capacity equal to the parking capacity in that zone, and also incorporate increasing
parking search time. Walking links between the zone and the parking link are added as well as walking links between
the zones, to represent both walking from the parking spot to the destination and walking to a zone further away if
the available parking capacity is too small to accommodate all traffic. In this paper, there are several types of parking
capacity considered, including parking at private terrain, free parking and paid parking. For each of the parking types
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a parking link is added to the network. In the assignment phase, the different purposes of the trips (work, home,
business, etc.) define which parking capacity can be used.

.. Z
" Connector tO,@. ,,,,,, Walking link
parking link i to zone

i
§ib
=S
.év I 90 Zone 2
Connector to / Walking link
"""" parking link ""tb"z'dh'é""""*

Fig. 2. Parking and walking links to model parking capacity and searching time in traffic assignment

Trip chaining is incorporated by computing the optimal hub for each trip chain of modalities, that is, a hub for a
microl5-private vehicle trip, a hub for a private vehicle-micro25 trip, etc. The hubs are selected based on the minimal
total travel time for both parts of the trip. Additionally, constraints are set on the maximum distance traveled, such as a
maximum microl5 distance of 4 km and a maximum micro25 distance of 7 km. The computed hubs are incorporated
in the access and egress mode model.

The new modalities are assigned to the network using existing traffic assignment algorithms with minor adjust-
ments. The micro5 OD-matrix is not assigned to the network since it is not assumed to be of importance. The microl5
and micro25 matrices are assigned to the bicycle network using three All-Or-Nothing assignments where one third
of the travelers chooses the path with the shortest travel time, one third the path with the shortest distances and one
third chooses the path in which both the travel time and distance are minimized.The private vehicles and shared on
demand modes are assigned to the car network in a multi-user class Volume Averaging assignment where different
user classes are used to account for the different types of parking capacity. Using a private vehicle as passenger is not
assigned to the network - it is assumed that those vehicles are already assigned to the network as a driver. The shared
ride traditional mode trips are assigned using a public transport assignment.

3. Case Metropolitan Region Rotterdam - The Hague

3.1. Data

The considered area (The Netherlands) was subdivided into 7011 TAZ using fine granularity for the study area
and a coarse one for the influence area. As a consequence, each LOS matrix consists of approx 50M cells. LOS is
specified for 3 periods (morning peak, evening peak, remainder of the day) 11 travel modes (7 existing, 4 new ones)
and 3 LOS quantities (distance, duration, cost) resulting in 99 matrices. LOS values are kept as a short int to save
memory. The set of matrices uses 11.2 GB of core memory. Internal units (hm, 0.1 min, 0.1 €) are chosen so that the
available numerical range is optimally used.

The land use dataset specifies TAZ the size of the zone, the level of urbanization, the number of inhabitants, the
number of jobs per sector, the number of education places, the number of bars and restaurants, the number of stores,
the number of private terrain, free and paid parking spaces and the average parking rate.

Observed one-day travel plans were taken from the OViN recurrent household travel survey in the Netherlands.
Interactive GIS-based improvement was applied: PC4 based locations have been mapped to MRDH zones taking into
account the relative geometrical overlap and the travel purpose specific attraction (e.g. size of schools). Each observed
travel mode was mapped to one of the 7 mode categories.



Luk Knapen et al. / Procedia Computer Science 184 (2021) 428—437 435

Travel demand was predicted by FEATHERS predictions for 3.6M individuals living in the Metropolitan Region
Rotterdam-The Hague.

3.2. Results

Distributions for trip length, activity duration, mode shares etc closely reflect the corresponding distributions for
the observed data for the base year. The traffic flows predicted by the activity-based model approximate reality better
than the standard aggregated V-MRDH model before calibration of the models (synthetic model results).

To assess the quality of the model and base year predictions, elasticity values are computed and compared with
the values recommended in the Dutch national model (GroeiModel). These values are produced by 10% increasing
the travel times and cost for private vehicle and share ride traditional separately and then running the FEATHERS
simulations. Direct elasticity values computed for person km travel for private vehicle and shared ride traditional
modes and are reported in Table 2. The values obtained are within the recommended ranges. Activity type specific
elasticities were also computed for person km travel and they were also found in line with the recommended ranges.
Further assessment of the base year model results was made by comparing average number of car-based trips (private

Table 2. Results for transport modes direct elasticities

Transport Mode Obtained values Recommended values

(Travel time) (Travel cost) (Travel time) (Travel cost)
Private Vehicle: Driver -0.51 -0.40 -0.30 to -0.70 -0.20 to -0.50
Shared ride traditional -0.75 -0.59 -0.6 to -1.3 (Bus/tram/metro) -0.60 to -1.20

-0.5 to -0.7 (train)

vehicle: driver and passenger) per person generated in the morning peak, evening peak and rest of the day within study
area. The values obtained from FEATHERS schedules for the 3 time periods are 0.197, 0.183 and 0.963. Similar,
values are obtained from V-MRDH model and the values are 0.156, 0.202 and 0.974. Comparison of these values
indicate that they are consistent with V-MRDH.

3.2.1. Results Access and Egress mode model

For the base year only multimodal combinations with shared ride traditional have been considered. The results
are shown in Table 3. The three columns on the left contain the results from the access and egress mode model and
the three columns on the right contain the results from the V-MRDH model. The results show that the modal split of
the Access and Egress mode model matches the modalsplit of the V-MRDH model quite good. A comparison with
travel survey data from OViN cannot be made because bike (mircol5) as access and/or egress mode is known to be
underrepresented in this survey.

Table 3. Results Access and Egress mode model.

Access and Egress model V-MRDH model
Morning peak Off peak Evening peak Morning peak Off peak Evening peak
micro5 Shared ride traditional micro5 54% 53% 57% 51% 42% 58%
micro5 Shared ride traditional microl5 12% 22% 34% 7% 23% 26%
microl5 Shared ride traditional micro5 30% 23% 5% 35% 31% 9%
microl5 Shared ride traditional microl5 4% 2% 5% 7% 4% 6%

3.2.2. Results traffic assignment

The generated schedules have been assigned to the V-MRDH 2.6 networks of car, bicycle and public transport.
The trip lengths of the synthetic ABM assignment and the V-MRDH calibrated outputs are shown in Figure 3. It can
be seen that the trip length distributions are in general quite similar. However, for the short distance trips the ABM
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overestimates car and public transport trips and underestimates bike trips compared to the calibrated V-MRDH results.
Additionally, a comparison has been made between the vehicle delay hours and vehicle kms driven between each of

Car - Morning peak Bicycle - Morning peak Public transport - Morning peak
60000 300000 25000

250000 20000

40000 200000
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31 51 6 81 91 1 3 5 7 9 113 15 17 19 2 31

il dingon
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m ABM assignment V-MRDH B ABM assignment V-MRDH B ABM assignment V-MRDH

Fig. 3. Trip lengths distribution in km for car, bicycle and public transport compared to calibrated V-MRDH-results, for the morning peak time
period

the two simulations. Results are shown in Table 4. In general numbers correspond, which indicates that the ABM is
producing output in line with the observed schedules. It is interesting to note that in the ABM the computed delay is a
bit lower than in the V-MRDH model whereas the vehicle kilometers driven are more or less equal or higher. This can
be improved in a calibration step. To simulate limited parking capacity and according search and/or additional walking

Table 4. Results traffic assignment

ABM assignment model V-MRDH model

Morning peak Evening peak Morning peak Evening peak
Vehicle delay hours 54070 h 48161 h 57305 h 64450 h
Vehicle kms driven 66.9 million 66.2 million 64.0 million 66.0 million

time, parking links were introduced in the traffic assignment. This leads to 25% of the cars parked in a different zone
then their destination due to a shortage of parking capacity in the morning peak, as is shown in Table 5. In only 20 to
25 of the zones the capacity of parking lots has been exceeded, showing that the introduction of parking links indeed
works. By running additional iterations of the model chain, this number can be further decreased.

Table 5. Results parking link usage in traffic assignment

Usage of paid parking Cars parked in a different zone Capacity exceeded Average occupancy parking lot
Morning peak 99079 25% 20 (of 7786 zones) 6%
Evening peak 149953 9% 25 (of 7786 zones) 9%

4. Conclusion and future work

The new integrated activity based approach proved to be better suited to model impacts of parking, hubs and new
mobility concepts than the standard aggregated modelling approach, because: (i) The microsimulation activity based
approach can consider mode availability and interaction effects on an individual level, which allows for detailed MaaS
scenario experiments. (ii) The Access and Egress mode model can model mode switches of individuals at hubs and
can consider constraints with respect to vehicle ownership, mode availability in the tour, locations where vehicles
should be returned and mode availability. (iii) The inclusion of hubs and parking links in the assignment model makes
it possible to generate LOS-matrices that include travel time and cost for travelling via hubs and parking search and
walking time. These LOS-matrices are input to the activity based model and Access and Egress mode model.
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The results generated by the synthetic model for the base year look promising because they closely resemble
observed schedules and the elasticities are within the recommended ranges mentioned in literature. Moreover, a com-
parison with the calibrated results of the V-MRDH model shows a reasonable fit, which can be further improved by
calibration of the model.

The research presented in this paper is part of an ongoing project called Urban Tools Next II in which also model
runs will be done for: (i) a reference case in 2030, (ii) a 2030 situation with reduced private and public parking spaces
and (iii) a 2030 case where 50% of the people use shared modes. These model runs might result in new insights that
can be used to further improve the model and base year results.

The next step will include methodological improvements to model parking (with focus on parking cost which is a
property of an activity sequence and not of a trip). Finally, effects of Covid on travel behaviour (tele-work, avoidance
of PT) need attention.
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