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Abstract-The general “success-breeds-success” (SBS) principle as introduced in a previous paper 
extends the classical SBS principle in that the allocation of items over sources is determined by a 
more general rule than in the classical case. In this article we study the time evolution of the 
total number of sources, the average number of items per source and the number of sources with 
n items at time t, in the general SBS framework. Conditional as well as absolute expectations are 
calculated. Moreover, we investigate if and when these processes are martingales, supermartingales 
or submartingales. Stability results for the stochastic processes are obtained in the sense that we 
are able to determine when these processes converge. The article also studies the evolution of the 
expected average number of items per source. 
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1. INTRODUCTION 

In [l] we introduced a general “success-breeds-success” (SBS) principle extending the classical and 

well-known SBS-principle as described in [2-5] and others. Such a process generates information 

production processes (IPPs), i.e., generalized bibliographies, of sources producing items (e.g., 

authors writing articles, or journals publishing papers). For more information on IPPs the reader 

is referred to [6-91. 

This general SBS-principle is determined ss follows. An IPP is regulated by a parameter t E No, 

At every step (t --+ t + 1) an item enters the system. Note that the parameter t denotes time as 

well as the number of items in the system. The introduction of a new item at time t + 1 leads to 

the following alternatives: 

(i) source creation: with a probability o(t) ~]0,1[ this item is produced by a new source, i.e., 

a source that was not active or did not exist up to time t; 

(ii) pure SBS: if the new item is produced by an already existing source (which occurs with 

a probability equal to 1 - o(t)), there is a chance z(t,n) that this item is produced by a 

source that has already n items (n 5 t, n E WO). Of course, 

2 z(t,n) = 1. 

*Permanent address. 
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In [l] the general SBS-principle has been studied in terms of the average probability, denoted as 

E(P(t, n)) that at time t, a source has n E Nc items. The exact study of E(P(t, n)) as a function 

of n or t is very difficult; even in the classical case only approximate results are known. Using 

a so-called quasi-steady-state assumption we were able to generate several well-known frequency 

distributions as the outcome of an SBS-scheme based on (i) and (ii) [l]. 

This article studies the processes T(t) (the number of sources at time t), p(t) (the average 

number of items per source at time t) and, for every n E No, the processes Xt(n) (the number of 

sources with n items at time t) for the general SBS-principle. Without any approximation, only 

exact probabilistic arguments and formulae are presented. 

In the next section the first basic probability space (0, F, P) is constructed, and on this proba- 

bility space the processes T(t) and p(t) are defined as stochastic processes (or adapted sequences). 

For the terminology and notation taken from probability theory, the reader is referred to [lo-121. 

The third section characterizes (super), (sub)martingale properties of T(t) and p(t). Such 

properties provide important information on the expected increase from time t to time t + 1, 

and possibly also about the limit distributions T,(t) and pa(t). Convergence theorems about 

(super), (sub)martingales play a prominent role in these derivations [ll]. 

In the fourth section we study a formula describing E(p(t + 1)) as a function of E(p(t)). 

Further, a necessary and sufficient condition is derived in order to have an increasing sequence 

(E(p(t)))teNJo. 
The last section constructs the probability space (a’, C, P’) on which the processes X,(n) act 

(one for each n E NO). This probability space is a refinement of the first one, (R, F, P). Then 

the (super), (sub)martingale properties of (Xt(n)hE~, are characterized and limit theorems are 

obtained. These are stability properties for the behavior of every Xt(n), for t large (n E No 

fixed). Note that nowhere assumptions on x(t, n) are made. 

SBS does not only occur in IPPs (in informetrics). Also in linguistics and computer science, 

SBS is important. We refer to [13,14] for applications of this (in the form of Zipf’s law) in the 

estimation of program length and in speech recognition. We refer also to [9] for an application 

to storage and text retrieval in a computer. 

2. THE STOCHASTIC PROCESSES T(t) AND p(t) 

Since both T(t), the number of sources at time t, and p(t), the average number of items per 

source at time t, are solely determined by the allocation of items to old and new sources-and not 

by which (old) source is active-these processes are determined by a(t), and not by the z(t,n) 

(cf. condition (ii) in the definition of the general SBS-principle). 

Hence, at each step (t --+ t + l), the situation at time t switched over to one of two possible 

situations at time t + 1: either the new item is produced by a new source (which happens with a 

probability equal to a(t)), or the new item is produced by an old source (which happens with a 

probability equal to 1 - a(t)). Hence, this process can be illustrated by a dyadic tree (Figure 1). 

Of course, the root of this tree consists of one source producing one item at time 1. Note further 

that in this article we assume that items are allocated to exactly one source; the more general 

situation where an item can be allocated to several sources will be dealt with in a follow-up 

paper [15]. 

In Figure 1, 0 denotes a new source, and 1 denotes an old source. For t > 1, we will denote by 

(&, F,, Pt) the elementary probability space where Rt = (0, l}, P,(O) = a(t), P,(l) = 1 - a(t) 

and Ft is the a-algebra, i.e., the set of measurable sets, (4, {0}, {l}, R,}. For t = 1, fit = {0}, 

P,(O) = 1, and Ft = (4, (0)). Define then (0, F, P) as the product probability space of the 

spaces (R,, F,, P,), t E No (see [16, Chapter VII]). 

T(t) and p(t) act on R as follows: T(t)(w) denotes the number of sources in the IPP LJ at 

time t; similarly, p(t)(w) denotes the number of items per source in the IPP w at time t. 
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Figure 1. The basic SBS-principle as a dyadic tree. 

Next, we define a new u-algebra at the level t, denoted as Gt. This new a-algebra is generated 

by the sets Proj,‘(z), where x is any element of (0, l}t and where 

Proj, : R --+ {0, l}t : (cJzc~)~~N~ --+ z = (x1,. . . , xt) 

denotes the projection on the first t coordinates. Since both T(t) and p(t) are clearly determined 

by the level t in the above dyadic tree (e.g., the sequence w = 0, 0, 1,O followed by any sequence 

of zeros and ones, determines T(4)(w) = 3, and ~(4)(w) = 4/3, where we have used the fact that 

p(t) = t/T(t)), they are both Gt-measurable. 

The stochastic processes we will study first are (Z’(t), G~)~QQ~ and (p(t), Gt)tE~o, Since T(t) and 

p*.(t) are Gt-measurable (in fact, T(t) and p(t) are measurable with respect to (w.r.t.) {T(t) = i}, 

i = l,... , t), these processes are adapted sequences in the sense of [lo]. This is the exact 

framework in which the number of sources and the average number of items per source can be 

studied as a function of time, using the general SBS-principle. We will denote by XA the indicator 

function of A c Cl: 

1 

0, if w does not belong to A, 
XA = 

1, if w belongs to A. 

Then obviously, for every t E No and every w E 0, 

I = & iX(T(t)=i) (4, and (1) 
i=l 

t t 
dt)CW) = 1 iX{T(t)=i)(W) = &. 

i=l 

The stochastic processes (T(t), Gt) and (p(t), Gt) denote the totality of possible evolutions in 

time that can take place for T(t) and p(t). 

So far we have treated a(t) as a deterministic probability, depending on t. Now we will introduce 

a further generalization: a(t) also will be considered as a Gt-adapted stochastic process (a(t), Gt). 

Considering a(t) as a stochastic process means that this sequence depends on time, but also on 
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the actual situation w E R. This is logical from a practical point of view. Symbolically, 

a(t)(w) = =& 44 i)X(T(t)=i)(w) = 46 T(t)). 
i=l 

(3) 

NOTE. The above processes, described by Figure 1, are analogous, but not the same, to the time 

evolution of a gambler’s fortune, symbolized by tossing a coin and betting on heads or tails. 

Finally, we recall the definitions of a martingale, a submartingale and a supermartingale (see, 

e.g., [lO,ll]). 

DEFINITIONS. Let (X,, Gt)tE~a be a stochastic process. For every t E No, EGtXt+l denotes the 

conditional expectation of X,+1 w.r.6 Gt, i.e., the unique function such that 

s 
EGtXtfl dP = 

s 
Xt dP, 

A A 

for every A E Gt. 

We say that (Xt, Gt)tE~l~ is a martingale if 

EG”X,+l = Xt, P-a.e., 

for every t E No. “P-a.e.” means “P-almost everywhere”, i.e., the above equality is true except 

on a measurable set A for which P(A) = 0. When the equality sign is replaced by 2 we have 

the definition of a submartingale. When this sign is replaced by < we have a supermartingale. 

The classical interpretation of these definitions in gambling theory is of the evolution of the 

gambler’s fortune Xt over time t. In case of a martingale, this game is fair in the sense that the 

gambler can expect to keep his capital after gambling. In case of a submartingale, the gambler 

is expected to win; casinos will not allow this: at least to cover their expenses, the games are 

usually supermartingales in which case the gambler is expected to lose. 

3. PROPERTIES OF THE ADAPTED SEQUENCES 

(T(t), G)ta+i, AND MC Gt)m, 

3.1. Properties of (T(t), Gt)tENo 

LEMMA 1. T(l)=landforeveryt=2,3,... 

E@‘(t)) = E(T(t - 1)) + E(a(t - l)), 
t-1 

E(T(t)) = 1 + c E(cY(~)). 
i=l 

PROOF. T(1) = 1 is clear. Let then t > 2. We have that 

E(T(t)) = 2 iP(T(t) = i) = 2 2 iPiT = i 1 T(t - 1) = j)P(T(t - 1) = j), 
i=l i=l j=l 

by the principle of total chance. Due to the item-source allocation in this csse we have 

E(T(t)) = ei[P(T(t)) = i 1 T(t - I) = i)P(z’(t - 1) = i) 

(4 

(5) 

i=l 

+ P(T(t) = i ( qt - 1) - i - l)P(T(t - 1) = i - l)] 

t-1 

= c i[(l - a(t - 1, i))P(T(t - 1) = i) + cY(t - 1, i - l)P(T(t - 1) = i - l)] 
i=2 

+ (1 - cr(t - 1, l))P(T(t - 1) = 1) + ta(t - 1, t - l)P(T@ - 1) = t - 1) 
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(by definition (3)) 

t-1 

= Ci[(l - a(t - 1, i))P(T@ - 1) = i)] + 2 icr(t - l,i - l)P(T(t - 1) = i - 1) 
i=l i=2 

t-1 t-1 

= c i[(l - a(t - 1, i))P(T(t - 1) = i)] + C(i f l)a(t - 1, i)P(T@ - 1) = i) 

i=l i=l 

Hence, 

t-1 t-1 

= c iP(T@ - 1) = i) + c a(t - 1, i)P(T(t - 1) = i). 
i=l i=l 

E(T(t)) = E(T(t - 1)) + E(a(t - 1)). 

Now, (5) follows, by recursion. I 

PROPOSITION 1. The adapted sequence (T(t),Gt)tEWo is a submartingale. It is L1-bounded if 
and only if 

~E(a(i)) < m, (6) 
i=l 

in which case there exists T, E L’(R, F, P) such that limt,, T(t) = T,, P-a.e. (i.e., except on 

a set of P-measure zero). 

PROOF. By (l), for every t E No, 

t 

T(t) = c k{T(t)=i}. 

i=l 

By definition of the general SBS-principle, 

EG”T(t + 1) = &a(t)(i + 1) + (1 - a(t))i)X{T(t)=i) = k(Q(t) + i)X{T(t)=i) 2 T(t)* 
i=l i=l 

Hence (T(t), Gt)tENo is a submartingale. 
The L1-boundedness requires that 

sup E(T(t)) = sup 
s 

T(t) < co. 
EN0 tEN0 n 

The previous lemma shows that this is true if and only if condition (6) holds. Now, invoke the 
submartingale convergence theorem of Doob (see, e.g., [ll]), yielding in case of (6), an integrable 
function T, E L’(R, F, P) such that limtdoo T(t) = T,, P-a.e. I 

NOTE. The above proposition is very important since it gives a sufficient condition (6) to end 
up with a finite number of sources T,, when t -+ CQ, no matter what the outcome of our process 

is. This result is much stronger than the result that suptEN E(T(t)) < co; here one can have 
situations where a stable T, does not exist. The submartingale property, however, protects us 
against such events. 

3.2. Properties of (p(t), Gt)tEN 

We first investigate when (p(t), Gt)tENo is a (super), (sub)martingale. 

PROPOSITION 2. The adapted sequence (h(t), Gt&No is a martingale if and only if 

T(t) + 1 
4) = t+l’ (7) 
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It is a supermartingale if and only if 

It is a submartingale if and only if 
T(t) + 1 

This condition boils down to 
2 

a(t) I - 
t+1’ 

in case a(t) is constant in w E R (i.e., if cr(t) only depends on t but a(t) is not a random variable). 

In case of (8), there exists an integrable poo E L’(dt, F, P) such that limt__ p(t) = pDc), P-a.e., 

and furthermore, 

EG”(CLco) 5 At), 

for every t E NJ. 

PROOF. By (2) 

t+l t + 1 
p(t + 1) = c iX{T(t+l)=i}. 

i=l 

Hence, 

@p(t + 1) = (t + 1) -& (9 + $-g X{T(t)=i} 

i=l 

=(t+l) Jg+&) 
( 

2 P(t)7 

if and only if (by (2)), 

(10) 

(and the same for the equality and the other inequality signs). 

In case a(t) is constant on R, this condition is equivalent with 

2 
a(t) 5 - 

t+1’ 

In case of a super-martingale, we invoke the supermartingale theorem for positive processes 

(see [ll]) saying that there exists a function pm E L’(R, F, P) such that 

P-a.e., 

and one has that EC”&,) 5 p(t), for all t E No. 

So whenever 
T(t) + 1 

a(t) 2 ___ 
T+l ’ 

we have a stable result for the average number of items per source in the sense that, for any 

evolution of the stochastic process, we end up with finite averages. Note that, since 0 < a(t) < 1, 

(10) implies 
t+1 t+1 

T(t) -I- 1 
< EGLp(t + 1) < 

T(t)’ 

an obvious result. The number (T(t) + l)/(t + 1) is a turning point for the IPP. It determines 

whether the conditional average will increase. In the next section, we will study the same problem 

for the absolute expectation E(p(t)). 
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Note that (10) gives the following relation: 

t+1 
EGtp(t + 1) = -+q 

1 + T(t) - a(t) 

T(t) + 1 . 

Concerning the process p(t) itself, we have the following trivial result. 

PROPOSITION 3. For every t E No, 

1 
p(t + 1) I P(t) + -’ 

T(t + 1) 

PROOF. By definition, 

t 
p(t + 1) = g+) = ____ 

1 1 

T(t + 1) + T(t + 1) - 
~ < p(t) + - 

T(t + 1) ’ 

since T(t $ 1) 2 T(t), obviously. 

4. PROPERTIES OF &u(t)) 

99 

(11) 

I 

4.1. The Case of a Constant cx 

Since we can draw special conclusions in the case of a constant (Y (i.e., constant w.r.t. t as well 

as w-hence the classical SBS case), these are presented in a special subsection. 

PROPOSITION 4. If (u E 10, 1[ is constant, then 

1 - (1 - a)” 
m4t)) = QI Y 

for t E N. 

PROOF. We will denote 1 - (Y by p. Formula (2) implies 

t t 
EC/-t(t)) = c ;P(T(t) = i). 

i=l 

But 

P(T(t) = i) = 

since Q ~]0,1[ is a constant (and since T(1) = 1). Hence, 

l+(t)) = 2 5 (: 1;) ca-lpt-i. 
i=l 

Using that 

yields 

q/J(t)) = 2 (I) CPpt-i = $ $ (I) c2p-i = ; ((a + p)” - p”> ) 
i=l 2=1 

(12) 

(13) 

E@(t)) = J+. 
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COROLLARY 5. If cy E [0, 1[ is a constant, then E(p(t)) increases strictly. 

PROOF. This follows readily from (12) for a E 10, l[ and is trivial for CY = 0. 

COROLLARY 6. lig$f p(t) E L’. 

PROOF. Since (12) iiplies that 

$&WG)) = $ 

we have 

sup JW(t)) < co* 
EN0 

Invoke Fatou’s lemma now (see, e.g., [10,16]), to yield that 

liE$f p(t) E L1. I 

This result is a (partial) stability result for the process p(t) for large t (partial because of the 

occurrence of lim inf; it is not clear when this lim inf is actually a limit). 

We now come to the calculation of E(p(t)) for general a as in (3). 

4.2. General Case 

PROPOSITION 7. For every t E No, E(p(1)) = 1 and for t 2 2, 

EMt)) = W(t - 1)) + E (&) -tE( cr(t-l) 
zyt - l)(T(t - 1) + 1) 

), (14) 

t-1 

E(p(t)) = 1 + c E 
j=l 

(15) 

PROOF. E(p(1)) = 1 is clear. Let then t L 2. 

+. t 
E&(t)) = c ;P(T(t) = if 

t t 
= +> 7, ;P(T(t) = i 1 T(t - 1) = j)P(T(t - 1) = j) , 

i=l $=I j=l 

by the principle of total chance. Due to the way items are assigned to sources in the general SBS 

principle, we have 

t t 
E(p(t)) = C $P(T(t) = i 1 T(t - 1) = i)P(T(t - 1) = i) 

i=l 

+ P(T(t) = i 1 T(t - 1) = i - l)P(T(t - 1) = i - 1)] 

t-1 

= c $1 - a(t - l,i))P(T(t - 1) = i) + cu(t - 1,i - l)P(T(t - 1) = i - l)] 

i=2 

+ t(1 - a(t - 1, l))P(T(t - 1) = 1) + a(t - 1, t - l)P(T(t - 1) = t - 1) 

t-1 

= c ;P(T(t - 1) = i) - 2 $t - 1, i)P(T(t - 1) = i) 
i=l i=l 

t t 
+ C $t - 1, i - l)P(T(t - 1) = i - 1) 

i=2 

= --&E(p(t - 1)) + t -g ia(t - 1, i)P(T(t - 1) = i) 
[ i=l 

t-1 

+C.’ -ff(t - l,i)P(T(t - 1) = i) 
i=l t+l I 
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= &E(p(t. - 1)) -t -cYy(t - 1, i)qqt - 1) = i) 1 = E(p(t - 1)) + E (&)-tE( a(t-1) 
T(t - l)(T(t - 1) + 1) ), 

which is (14). Applying (14) recursively yields (15) ( using that E(p(l)) = E(1) = 1). I 

COROLLARY 8. For every t E No, 

-Wt + 1)) > EMt)), 
if and only if < E P/T(t)) 

t+1 * (16) 

If a(t) is constant in w E 0, then this condition boils down to 

E (l/T(t)) 
a(t) < (t + 1)E (l/T(t)(T(t) + 1)). (17) 

PROOF. Apply (14) for t replaced by t + 1. I 

NOTE. This result is in accordance with Corollary 5. Indeed, if Q is constant (in t and w), then 
by Proposition 4, 

E W’(t)) t 
(t + l)E (l/T(t)(T(t) i- 1)) = al - Pt %& - P) > 01’ 

This can be seen from (13) and the fact that 

E &j = 2 ;P(T(t) = i), ( > i=l 

( 1 

E T(t)(T(t) + 1) > 
= g &W(t) = 9. 

NOTE. Corollary 8 above gives a general answer to the problem of the evolution of E(p(t)) over 
time t. This answers a problem raised in [l?] where it was found, experimentally, some evolutions 
of p(t) over time t (in the more restricted SBS as described in the introduction), and asked for 

an explanation. 

NOTE. Equation (14) yields (divide by t) 

E(g)) =E(&) -E(T(t-$&+1))) 

and after recursion (and using E(l/T(l)) = 1) 

1 
t-1 

ET(t)= ( > a(j) l-GE T(j)(T(j)+1) . 
j=l ( ) 

Hence, multiplying by t, 

t-1 

EMt)) = t - t c E T(jjc;;; + 1) . 

j=l > (18) 

PROBLEM. Determine a condition (in terms of a) under which 

sup EM)) < 00. 
tENo 

If this condition is compatible with (9), then we have the a.e. convergence of the submartingale 
(as we have already proved in case (p(t), Gt)tE~o is a supermartingale). 
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5. THE STOCHASTIC PROCESSES (Xt(n)& FOR ALL n E NO 

To characterize Xt(n) (the number of sources with n items at time t), we need the full definition 

of SBS now ((i) and (ii) of Section l-for T(t) and p(t), only (i) was needed). In the same way 

R was constructed in Section 2, we now have at any step t -+ t + 1 a division into many parts 

(according to what is happening to the (t + l)st item, it belongs to a new source or is added to 

a source with n items (n = 1,. . . , t)). This generalization, along the lines of the construction of 

(s2, F, P), leads us to the probability space (C?, C, P’), a refinement of the former one. Indeed, 

now (CY, C, P’) is the product space of the spaces fit = a set of t + 1 points on which every 

singleton is measurable and with probability of the singletons a(t), respectively, (1 - a(t)) z(t, n) 

(n = l,..., t). By construction, Xt(n) is C-measurable, but more is true; as in Section 2, since 

X,(n) depends only on t’ = 1, . . . , t, we have that Xt(n) is &-measurable for every n E Ne and 

t > n, where Ct is the a-algebra generated by the sets Proj,’ x, where x E Proj,(R’) arbitrarily 

(again Proj, denotes the projection of Sz’ onto the first t coordinates). 

We have the following result. 

PROPOSITION 9. For any n, t E Nc we have for rz= 1 

-@(X,+1(1)) = X,(l) + (Y(t) - x(t, l)(l - a(t)), 

forn=2,...,t 

-@(&+1(n)) = X,(n) + (1 - a(t))(x(t,n - 1) - z(t,n)), PO) 

and for n = t + 1 

EC’ (Xt+i(t + 1)) = (1 - a(t))x(t, t). (21) 

PROOF. By the definition of SBS we have, for n = 1, 

@(X,+1(1)) = a(t)(Xt(l) + 1) + (1 - a(t))((Xt(l) - l)z(t, 1) + (1 - z(t, l))X,(l)) 

= Xt(1) + a(t) - x(t, l)(l - a(t)), 

and,forn=2 ,..., t, 

@“(X,+1(4) = 4t)&(n) + (1 - a(t)) 

x [x(&n)(X,(n) - 1) +x(t,n-1)(&(n) + 1) + (1 - x(t,n) - x(&n-l))Xt(n)] 

= Xt(n) + (1 - a(t))(x(t, 72 - 1) - x:(t, n)). 

For n = t + 1, one has clearly (21). I 

NOTE. One can take cr(t) as a random variable as in the previous sections (cf. formula (3)), but 

one can take it even more general: a random variable with respect to the Et, i.e., a(t) is &- 

measurable (i.e., depends on the variation in the X,(n)). The same is true for random variables 

z(t,n), t L n; 72 E No. 

COROLLARY 10. For any 72 E NO, n L 2, the process (Xt(n),Ct& is a supermartingale, 
(respectively, submaxtingale, or a martingale) if and only if 

x(t, n - 1) I x(t, n), (22) 

for every t > 72, (respectively, 2, or =). For 72 = 1, the process (X,(l), Ct)te~~ is a supermartin- 
gale, (respectively, a submartingale, or a martingale) if and only if 

a(t) 5 
x(t, 1) 

1 + x(t, 1) 

(respectively, 2 or =). 

(23) 
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PROOF. For n 2 2, the condition 

EC”(Xt+l(n)) 6 K(n), 

for all t 2 n is equivalent with (22) and for n = 1, 

if and only if 

c.r(t) < x(t, I)(1 - a(t)), 

for all t E No, and hence, equivalently, (23). 

The convergence properties of (super), (sub)martingales (cf. [ll]) give us the following impor- 

tant stability result. 

PROPOSITION 11. 

1. Let 

a(t) 5 
46 1) 

1 + x(t, 1) ’ 

for all t E No or 

a(t) = (1 - a(t))x(G 1) + cp(% 

where cp 2 0 is such that 

M 

Cl 
p(t)(w) dP’(w) < 00. 

i+l i-2’ 

Then there exists an integrable function X,(l) E L’(O’, C, P’) such that 

p_&(l) = xX4), PI-a.e. 

In case (24) is valid, we also have that 

@(X,(l)) < Xt(l), 

for all t E No. 

2. For every n 2 2, let 

x(k n - 1) 1. x:(6 n), 

for all t 2 n or 

(1 - a(t))(x(k n - 1) - x(6 n))) = &(t), 

where 4, 2 0 is such that 

co 

Cl $n(t)bJ) dP’(w) < 00. 
t=1 n’ 

Then there exists an integrable function X,(n) E L1(R’, C, P’) such that 

,IlEXt(n) = X,(n), P'-a.e. 

In case (28) is valid, we also have that 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

-@“(-L(n)) I -G(n), 

for all t 2 72. 

(31) 
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PROOF. Conditions (24) and (28) imply (by Corollary 10) that the processes (X,(~L),Q)~~~ 

(n E N) are positive supermartingales. Hence, using [ll], we have the asserted convergence and 

corresponding inequalities (27) and (31). 

Condition (25) shows that 

a(t) 2 
x(4 1) 

1 + x(t, 1) ’ 

and hence, (-J&(l), ‘&)tmo is a submartingale, by Corollary 10. But (25) and (19) imply 

J,, Xt+1(l)(w) @(w) - s,, X&)(w) WJ) = s,, V(t)(w) Ww), 

so that, by (26), 

sup 
s 

XJl)(w) W(w) < co. 
EPlo R’ 

This, together with the fact that (X,(~),&)~EW~ is a submartingale again shows the asserted 

convergence (the inequality (27) is not valid here) (Doob’s theorem, see [ll]). 

The same arguments, using (28),(20),(29) and (30) now show the same for the processes 

(Xt(n), Ct)tzn for all n E NO. I 

NOTE. Note that (24) and (25) combine to the single condition 

and (28) and (29) to 

(1 - Q(t))(x(t, n - 1) - x(t, n)) I &(t). (33) 

These conditions are very clear restrictions on cr (for (32)) and the x(t, n) (for (33)) in order to 

have stable distributions X,(n), t 2 n for large t. 
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