
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Descriptive complexity of deterministic polylogarithmic time and space

Peer-reviewed author version

Ferrarotti, Flavio; Gonzalez, Senen; Turull Torres, Jose Maria; VAN DEN BUSSCHE,

Jan & VIRTEMA, Jonni (2021) Descriptive complexity of deterministic polylogarithmic

time and space. In: JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 119 , p.

145 -163.

DOI: 10.1016/j.jcss.2021.02.003

Handle: http://hdl.handle.net/1942/34150

Descriptive Complexity of Deterministic
Polylogarithmic Time and SpaceI

Flavio Ferrarottia,∗, Senén Gonzáleza, José Maŕıa Turull Torresb, Jan Van den
Busschec, Jonni Virtemac

aSoftware Competence Center Hagenberg, Austria
bUniversidad Nacional de La Matanza, Argentina

cHasselt University, Belgium

Abstract

We propose logical characterizations of problems solvable in deterministic poly-

logarithmic time (PolylogTime) and polylogarithmic space (PolylogSpace). We

introduce a novel two-sorted logic that separates the elements of the input do-

main from the bit positions needed to address these elements. We prove that the

inflationary and partial fixed point variants of this logic capture PolylogTime

and PolylogSpace, respectively. In the course of proving that our logic indeed

captures PolylogTime on finite ordered structures, we introduce a variant of

random-access Turing machines that can access the relations and functions

of a structure directly. We investigate whether an explicit predicate for the

ordering of the domain is needed in our PolylogTime logic. Finally, we present

the open problem of finding an exact characterization of order-invariant queries

in PolylogTime.

IThe research reported in this paper results from the project Higher-Order Logics and
Structures supported by the Austrian Science Fund (FWF: [I2420-N31]) and the Research
Foundation Flanders (FWO:[G0G6516N]). It was further supported by the the Austrian
Ministry for Transport, Innovation and Technology, the Federal Ministry of Science, Research
and Economy, and the Province of Upper Austria in the frame of the COMET center SCCH.

∗Corresponding author
Email address: flavio.ferrarotti@scch.at (Flavio Ferrarotti)

Preprint submitted to Journal of Computer and System Sciences May 31, 2021

1. Introduction1

The research area known as Descriptive Complexity [1, 2, 3] relates computa-2

tional complexity to logic. For a complexity class of interest, one tries to come up3

with a natural logic such that a property of inputs can be expressed in the logic4

if and only if the problem of checking the property belongs to the complexity5

class. An exemplary result in this vein is that a family F of finite structures6

(over some fixed finite vocabulary) is definable in existential second-order logic7

(ESO) if and only if the membership problem for F belongs to NP [4]. If this is8

the case, we say that ESO captures NP. The complexity class P is captured, on9

ordered finite structures, by a fixed point logic: the extensions of first-order logic10

with least fixed points [5, 6].11

After these two seminal results many more capturing results have been12

developed, and the benefits of this enterprise have been well articulated by13

several authors in the references given earlier and others [7]. We just mention14

here the advantage of being able to specify properties of structures (e.g., data15

structures and databases) in a logical and declarative manner; at the same time16

we are guaranteed that our computational power is well delineated.17

The focus of the present paper is on computations taking deterministic18

polylogarithmic time, i.e., time proportional to (log n)k for some arbitrary but19

fixed k. Such computations are practically relevant and common on ordered20

structures. Well known examples are binary search in an array or search21

in a balanced search tree. Another natural example is the computation of22

f(x1, . . . , xr), where x1, . . . , xr are numbers taken from the input structure and23

f is a function computable in polynomial time when numbers are represented in24

binary.25

Computations with sublinear time complexity can be formalized in terms of26

Turing machines with random access to the input [3]. A family F of ordered27

finite structures over some fixed finite vocabulary belongs to the complexity28

class PolylogTime if F is decided by some polylogarithmic-time random-access29

Turing machine. In this paper we show that PolylogTime can be captured on30

2

finite ordered structures by a new logic called index logic.31

Index logic is a two-sorted logic whose semantics is only defined over finite32

ordered structures. Variables of the first sort range over the domain of the input33

structure, whereas variables of the second sort range over the initial segment of34

the natural numbers of length log(n), where n is the size of the domain of the35

input structure. Elements of the second sort can then be used to represent the bit36

positions needed to address the elements of the first sort. Index logic includes full37

fixed point logic on the second sort. Quantification over the first sort, however,38

is heavily restricted. Specifically, a variable of the first sort can only be bound39

using an address specified by a subformula that defines the positions of the bits40

of the address that are set to 1. This “indexing mechanism” lends index logic41

its name.42

In the course of proving our capturing result we introduce a new variant of43

random-access Turing machines called direct-access Turing machines. Random-44

access Turing machines read their inputs from a random-access tape in which45

input structures are encoded as binary strings. Direct-access machines do46

not require this encoding as they can access the different relations, functions47

and constants of the input structure directly. We show that both variants48

are equivalent in the sense that they lead to the same notion of PolylogTime.49

Direct-access Turing machines which compute directly on structures simplify the50

proofs of our main characterization theorems. The alternative of using random-51

access Turing machines results in much longer and cumbersome characterization52

proofs, mostly due to the complex logic formulae needed to model the machines53

random-access to the relevant parts of the binary encoded input. Note that in54

PolylogTime we cannot read the whole input as in Immerman and Vardi [5, 6]55

logical characterization of PTIME.56

A challenge was to develop a logic which enables the expression of PolylogTime57

problems in a relatively clean and natural way. The indexing mechanism in our58

logic is a key component to meet that challenge. The alternative of using fixed59

3

point operations and the BIT predicate1 –which was very successfully used by60

Immerman and others to characterize related sublinear complexity classes [3]–61

to address values of the first sort leads in this case to a rather awkward logic62

that makes it difficult to express even simple queries.63

We also devote attention to gaining a detailed understanding of the expres-64

sivity of index logic. In particular, we observe that order comparisons between65

quantified variables of the first sort can be expressed in terms of their addresses.66

In contrast, we show that this is not possible for constants of the first sort that67

are directly given by the structure. This implies that a variant of index logic68

without an explicit order predicate on the first sort does not capture PolylogTime69

on structures with constants.70

Finally, we introduce a variant of index logic with partial fixed point op-71

erators and show that it captures PolylogSpace. This result is analogous to72

the classical result regarding the descriptive complexity of PSPACE, which is73

captured over ordered structures by first-order logic with the addition of partial74

fixed point operators [8]. For consistency we define PolylogSpace using the75

model of direct-access Turing machines, i.e., the variant of the random-access76

Turing machines introduced in this paper. As with PolylogTime, both models77

of computation lead to the same notion of PolylogSpace. Moreover we show78

that in the case of PolylogSpace random-access to the input-tape can be re-79

placed with sequential-access without having any impact on the complexity80

class. Similar to PSPACE, the nondeterministic and deterministic PolylogSpace81

classes coincide. It is interesting to note that in addition to the problems in82

nondeterministic logarithmic space, there are well-known natural problems that83

belong to PolylogSpace (see related work below).84

A preliminary version of this paper was presented at the 26th International85

Workshop in Logic, Language, Information and Computation [9]. This is an86

extended improved version which, in addition to the full proofs of the results on87

deterministic polylogarithmic time reported in [9], also considers polylogarithmic88

1BIT(x, i) holds iff the i-th bit of x in binary is 1.

4

space and its descriptive characterization in terms of a variant of index logic.89

Related work. Many natural fixed point computations such as transitive closure90

converge after a polylogarithmic number of steps. This motivated the study of91

a fragment of fixed point logic with counting (FPC) that only allows polylog-92

arithmically many iterations of the fixed point operators (polylog-FPC). As93

shown in [10], on ordered structures polylog-FPC captures NC, i.e., the class94

of problems solvable in parallel polylogarithmic time. This holds even in the95

absence of counting, which on ordered structures can be simulated using fixed96

point operators. An old result in [11] directly implies that polylog-FPC is97

strictly weaker than FPC with regards to expressive power.98

It is well known that the (nondeterministic) logarithmic time hierarchy99

corresponds exactly to the set of first-order definable Boolean queries (see100

Theorem 5.30 in [3]). The relationship between uniform families of circuits within101

NC1 and nondeterministic random-access logarithmic time machines was studied102

in [12]. However, the study of the descriptive complexity of classes of problems103

decidable by deterministic formal models of computation in polylogarithmic104

time, i.e., the central topic of this paper, appears not to have been considered105

by previous works.106

On the other hand, nondeterministic polylogarithmic time complexity classes107

defined in terms of alternating random-access Turing machines and related108

families of circuits have received more attention [13, 14]. A theorem which is109

analogous to Fagin’s famous theorem [4] was recently proven for nondeterministic110

polylogarithmic time [14]. The logical characterization was obtained using111

a second-order logic with restricted second-order quantification ranging over112

relations of size at most polylogarithmic in the size of the structure and first-order113

universal quantification bounded to those relations. This latter work is closely114

related to the work on constant depth quasi-polynomial size AND/OR circuits115

and the corresponding restricted second-order logic in [13]. Both logics capture116

the full alternating polylogarithmic time hierarchy. However, the additional117

restriction in the first-order universal quantification in the second-order logic118

5

defined in [14] enables a one-to-one correspondence between the levels of the119

polylogarithmic time hierarchy and the prenex fragments of the logic; in the120

style of Stockmeyer’s result [15] on the polynomial-time hierarchy. Unlike the121

classical results of Fagin and Stockmeyer [4, 15], the results on the descriptive122

complexity of nondeterministic polylogarithmic time classes only hold over123

ordered structures.124

Up to the authors knowledge, little is known regarding the relationship of125

PolylogSpace with the main classical complexity classes (see [16] and [17]). Let L126

and NL denote deterministic and nondeterministic logarithmic space, respectively.127

Further, let Lj denote DSPACE[(dlog ne)j]. We do know however the following:128

(i) PolylogSpace 6= P, and it is unknown whether PolylogSpace ⊆ P.129

(ii) PolylogSpace 6= NP, and it is unknown whether PolylogSpace ⊆ NP.130

(iii) Obviously: L ⊆ NL ⊆ L2 ⊆ PolylogSpace ⊆ DTIME[2(dlogne)O(1)

], the131

latter class being known as quasi-polynomial time (QuasiP).132

(iv) For all i ≥ j ≥ 1, Lj uniform NCi ⊆ Li (see [18]); hence we have that133

PolylogSpace uniform NC ⊆ PolylogSpace.134

(v) For all i ≥ 1, let SCi be the class of all languages that are decidable by135

deterministic Turing machines whose space is bounded by O((log n)i) and136

whose time is simultaneously bounded by nO(1). Let SC (Steve’s Class) be137 ⋃
i∈N SCi (see [19]). It follows that SC ⊆ P ∩ PolylogSpace.138

Some interesting natural problems in PolylogSpace follow. From (iv) we get139

that division, exponentiation, iterated multiplication of integers [20] and integer140

matrix operations such as exponentiation, computation of the determinant, rank141

and the characteristic polynomial (see [21] and [22] for detailed algorithms in142

L2) are all in PolylogSpace. Other well-known problems in the class are k-143

colorability of graphs of bounded tree-width [23], primality, 3NF test, BCNF144

test for relational schemas of bounded tree-width [24, 25] and the circuit value145

problem of only EXOR gates [16]. Finally, in [26] an interesting family of146

6

problems is presented. It is shown there that for every k ≥ 1 there is an algebra147

(S; +, ·) over matrices such that the depth O(log n)k straight linear formula148

problem over M(S; +, ·) is NCk+1 complete under L reducibility. It then follows149

from (iv) that these problems are in DSPACE[(log n)k+1].150

2. Preliminaries151

In descriptive complexity it is a common practice to work only with relational152

structures since functions can be identified with their graphs. In a sublinear-time153

setting, however, this does not work. Indeed, let f be a function and denote154

its graph by f̃ . If we want to know the value of f(x) then we cannot spend155

the linear time required to find a y such that f̃(x, y) holds. We therefore work156

with structures containing functions as well as relations and constants. We157

write Rrii and fkii to denote relation and function symbols of arities ri and158

ki, respectively. Constant symbols are denoted by ci. A finite vocabulary is a159

finite set of relation, function, and constant symbols. A finite structure A of160

vocabulary σ = {Rr11 , . . . , R
rp
p , c1, . . . cq, f

k1
1 , . . . , fkss } is a tuple161

(A,RA
1 , . . . , R

A
p , c

A
1 , . . . c

A
q , f

A
1 , . . . , f

A
s)162

consisting of a finite domain A and interpretations for all relation, constant163

and function symbols in σ. An interpretation of a symbol Rrii is a relation164

RA
i ⊆ Ari , of a symbol ci is a value cAi ∈ A and of a symbol fkii is a function165

fAi : Aki → A. Throughout this paper ≤ will denote a binary relation symbol166

that is always interpreted as a linear order of the given finite structure. A finite167

ordered σ-structure A is a finite σ-structure, where the binary relation symbol168

≤ ∈ σ and ≤A is a linear order on A. In this paper, we consider only finite169

ordered structures. We emphasize that ≤A is always the prescribed linear order170

of the ordered structure A. Every finite ordered structure is isomorphic to one171

whose domain is an initial segment of the natural numbers. Thus, we assume172

that A = {0, 1, . . . , n− 1}, where n is the cardinality |A| of A.173

In this paper log n always refers to the binary logarithm of n, i.e., log2 n.174

We sometimes write logk n as a shorthand for (dlog ne)k. A tuple of elements175

7

(a1, . . . , ak) is frequently denoted as ā and ā[i] denotes the i-th element in it.176

Similarly, if s is a finite string then we denote by s[i] the i-th letter of this string.177

3. Deterministic polylogarithmic time178

The restriction to sublinear time yields that a (sequential) Turing machine179

does not have, in general, enough time to access the entire input. Therefore, loga-180

rithmic time complexity classes are usually studied using models of computation181

that have random-access to their input, i.e., that can access every input address182

directly. Hence, we adopt a Turing machine model that has a random-access183

read-only input; similar to the logarithmic-time Turing machine in [12].184

Our notion of a random-access Turing machine is that of a multi-tape Turing185

machine which consists of: (1) a finite set of states, (2) a read-only random access186

input-tape, (3) a sequential access address-tape and (4) one or more (but a fixed187

number of) sequential access work-tapes. All tapes are divided into cells, are188

equipped with a tape head which scans the cells and are right-end infinite. The189

tape heads of the sequential access address-tape and work-tapes can move left190

or right. Whenever a tape head is in the leftmost cell it is not allowed to move191

left. The address-tape alphabet only contains symbols 0, 1 and t (for blank).192

The position of the input-tape head is determined by the number i stored in193

binary between the leftmost cell and the first blank cell of the address-tape (if194

the leftmost cell is blank then i is considered to be 0) as follows: If i is strictly195

smaller than the length n of the input string then the input-tape head is in the196

(i+ 1)-th cell. Otherwise, if i ≥ n then the input-tape head is in the (n+ 1)-th197

cell scanning the special end-marker symbol /.198

Formally, a random-access Turing machine M with k work-tapes is a five-199

tuple (Q,Σ, δ, q0, F). Here Q is a finite set of states ; q0 ∈ Q is the initial state. Σ200

is a finite set of symbols (the alphabet of M). For simplicity, we fix Σ = {0, 1,t}.201

F ⊆ Q is the set of accepting final states. The transition function of M is of the202

form δ : Q× (Σ∪ {/})×Σk+1 → Q× (Σ×{←,→,−})k+1. We assume that the203

tape head directions (← for “left”, → for “right” and − for “stay”) are not in204

8

Q ∪ Σ.205

Intuitively, δ(q, a1, a2, . . . , ak+2) = (p, b2, D2, . . . , bk+2, Dk+2) means the fol-206

lowing: If M is in the state q, the input-tape head is scanning a1, the index-tape207

head is scanning a2 and for every i = 1, . . . , k the head of the i-th work-tape is208

scanning ai+2, then the next state is p, the index-tape head writes b2 and moves209

in the direction indicated by D2, and for every i = 1, . . . , k the head of the i-th210

work-tape writes bi+2 and moves in the direction indicated by Di+2. Situations211

in which the transition function is undefined indicate that the computation must212

stop. Observe that δ cannot change the contents of the input tape.213

A configuration of M on a fixed input w0 is a k + 2 tuple (q, i, w1, . . . , wk),214

where q is the current state of M , i ∈ Σ∗#Σ∗ represents the current contents215

of the index-tape cells and each wj ∈ Σ∗#Σ∗ represents the current contents216

of the j-th work-tape cells. We do not include the contents of the input-tape217

cells in the configuration since they cannot be changed. Further, the position of218

the input-tape head is uniquely determined by the contents of the index-tape219

cells. The symbol # (which we assume is not in Σ) marks the position of the220

corresponding tape head. By convention, the head scans the symbol immediately221

at the right of #. All symbols in the infinite tapes not appearing in their222

corresponding strings i, w0, . . . , wk are assumed to be the designated symbol for223

blank t.224

At the beginning of a computation all work-tapes are blank, except the225

input-tape that contains the input string and the index-tape that contains a 0226

(meaning that the input-tape head scans the first cell of the input-tape). Thus,227

the initial configuration of M is (q0,#0,#, . . . ,#). A computation is a (possibly228

infinite) sequence of configurations which starts with the initial configuration and229

for every two consecutive configurations the latter is obtained by applying the230

transition function of M to the former. If the transition function is not defined231

for the current configuration, then the machine stops and the configuration is232

called final. An input string is accepted if an accepting final configuration, i.e., a233

configuration with a state belonging to F , is reached. The input is rejected if a234

final configuration is reached and its state does not belongs to F .235

9

Example 1. Following a simple strategy, a random-access Turing machine M236

can compute the length n of its input as well as dlog ne in polylogarithmic time.237

In its initial step M checks whether the input-tape head scans the end-marker238

/. If it does, then the input string is the empty string and the computation is239

finished. Otherwise, M writes 1 in the first cell of its address tape and keeps240

writing 0’s in its subsequent cells right up until the input-tape head scans /. It241

then rewrites the last 0 back to the blank symbol t. At this point the resulting242

binary string in the index-tape is of length dlog ne. Next, M moves its address-243

tape head back to the first cell (i.e., to the only cell containing a 1 at this point).244

From here on, M repeatedly moves the index head one step to the right. Each245

time it checks whether the index-tape head scans a blank t or a 0. If t then M246

is done. If 0 then it writes a 1 and tests whether the input-tape head jumps to247

the cell with /; if that is the case then it rewrites a 0, otherwise it leaves the248

1. The binary number left on the index-tape at the end of this process is n− 1.249

Adding one in binary is now an easy task.250

The formal language accepted by a machine M , denoted L(M), is the set of251

strings accepted by M . We say that L(M) ∈ DTIME[f(n)] if M makes at most252

O(f(n)) steps before accepting or rejecting an input string of length n. We define253

the class of all formal languages decidable by (deterministic) random-access254

Turing machines in polylogarithmic time as follows:255

PolylogTime :=
⋃
k∈N

DTIME[logk n]256

It follows from Example 1 that a PolylogTime random-access Turing ma-257

chine can check any polynomial time numerical property of the binary number258

corresponding to the size of its input. For instance, it can check whether the259

length of its input is even by simply looking at the least-significant bit of that260

number.261

When we want to give a finite ordered structure as an input to a random-access262

Turing machine we encode it as a string adhering to the usual conventions in263

descriptive complexity theory [3]. Let σ = {Rr11 , . . . , R
rp
p , c1, . . . , cq, f

k1
1 , . . . , fkss }264

10

be a vocabulary and let A with A = {0, 1, . . ., n−1} be a finite ordered structure265

of vocabulary σ. Note that the order ≤A on A can be used to define an order266

for tuples of elements of A as well. Each relation RA
i ⊆ Ari of A is encoded as a267

binary string bin(RA
i) of length nri , where 1 in a given position m indicates that268

the m-th tuple of Ari is in RA
i . Likewise, each constant number cAj is encoded269

as a binary string bin(cAj) of length dlog ne.270

We also need to encode the functions of a structure. We view k-ary functions271

as consisting of dlog ne many k-ary relations, where the m-th relation indicates272

whether the m-th bit of the value of the function is 1. Thus, each function fAi is273

encoded as a binary string bin(fAi) of length dlog nenki .274

The encoding of the whole structure bin(A) is the concatenation of the binary275

strings encoding its relations, constants and functions. The length n̂ = |bin(A)|276

of this string is nr1 + · · ·+ nrp + qdlog ne+ dlog nenk1 + · · ·+ dlog nenks , where277

n = |A| denotes the size of the input structure A. Note that log n̂ ∈ O(dlog ne),278

and hence DTIME[logk n̂] = DTIME[logk n].279

4. Direct-access Turing machines280

In this section, we propose a new model of random-access Turing machines.281

In the standard model reviewed above the entire input structure is assumed282

to be encoded as one binary string. In our new variant the different relations283

and functions of the structure can be accessed directly. We then show that284

both variants are equivalent in the sense that they lead to the same notion of285

PolylogTime. The direct-access model also allow us to provide a less cumbersome286

proof of our main capturing result.287

Let σ = {≤} ∪ {Rr11 , . . . , R
rp
p , c1, . . . cq, f

k1
1 , . . . , fkss } be a finite vocabulary288

for ordered structures. A direct-access Turing machine that takes finite ordered289

σ-structures A as an input is a multitape Turing machine with r1 + · · ·+ rp +290

k1 + · · · + ks distinguished work-tapes (called address-tapes), s distinguished291

read-only (function) value-tapes, q + 1 distinguished read-only constant-tapes292

and one or more ordinary work-tapes.293

11

Let us define a transition function δl for each tape l separately. These294

transition functions take as an input the current state of the machine, the bit295

read by each of the heads of the machine and the answer (0 or 1) to the query296

(n1, . . . , nri) ∈ RA
i for each relation Ri ∈ σ. Here nj denotes the number written297

in binary in the jth distinguished tape of Ri. If one of the nj is too large298

and does not denote any domain element, we stipulate that the answer to the299

query (n1, . . . , nri) ∈ RA
i is 0. Note that we do not add the aforementioned300

construction for the order predicate ≤; the answer for the query (n1, n2) ∈ ≤A
301

can be computed directly from the binary representations n1 and n2.2302

Thus, with m the total number of tapes, the state transition function has303

the form304

δQ : Q× Σm × {0, 1}p → Q.305

If l corresponds to an address-tape or an ordinary work-tape then we have306

δl : Q× Σm × {0, 1}p → Σ× {←,→,−}.307

If l corresponds to one of the read-only tapes then we have308

δl : Q× Σm × {0, 1}p → {←,→,−}.309

Finally we update the contents of the function value-tapes. If l is the310

function value-tape for a function fi, then the content of the tape l is updated311

to fAi (n1, . . . nki) written in binary. Here nj denotes the number written in312

binary in the jth distinguished address-tape of fi after the execution of the313

above transition functions. If one of the nj is too large then the tape l is updated314

to contain only blanks. Note that the head of the tape remains in place; it was315

moved by δl already.316

In the initial configuration, read-only constant-tapes for the constant symbols317

c1, . . . , cq hold their values in A in binary. The address-tapes, value-tapes and318

ordinary work-tapes hold only blanks. One additional constant-tape (there319

2This design choice is purely esthetic and has no effect on the computational power of the

direct-access machines in general.

12

are q + 1 of them) holds the size n of the domain of A in binary. Notice320

that a direct-access Turing machine cannot otherwise determine the size of the321

domain of a structure over a relational vocabulary, i.e., a vocabulary that does322

not have function symbols. On the other hand, if the vocabulary contains a323

function symbol, then the direct-access Turing machine can adapt the algorithm324

of the random-access Turing machine in Example 1 to determine the size of the325

domain, by checking whether the function value-tape has been blanked, instead326

of checking whether the input-tape head scans the end-marker / (i.e., the address327

in the index-tape is beyond the end of the input-tape).328

The notions of an accepting and rejecting computation for direct-access329

machines, as well as the notion of deciding a class of structures, is defined in an330

analogous manner mirroring the definitions given in Section 3 for random-access331

machines.332

Remark 2. Direct-access Turing machines M can be also used to decide prop-333

erties of unordered structures. I this case, the unordered structure A is equipped334

with an arbitrary interpretation of the order predicate ≤, and the ordered expan-335

sion of A is given as an input to the direct-access Turing machine. Analogous336

to the way normal Turing machines work on unordered structures, the answer337

to whether M accepts the ordered expansion of A should be invariant on the338

interpretation of ≤.339

Theorem 3. A class of finite ordered structures C of some fixed vocabulary σ340

is decidable by a random-access Turing machine working in PolylogTime with341

respect to n̂, where n̂ is the size of the binary encoding of the input structure, iff342

C is decidable by a direct-access Turing machine in PolylogTime with respect to343

n, where n is the size of the domain of the input structure.344

Proof. We will first sketch how a random-access Turing machine Mr simulates a345

direct-access Turing machine Md on an input A. Let n denote the cardinality346

of A and n̂ the length of bin(A). We dedicate a work-tape of Mr to every tape347

of Md. In addition, for each relation R of arity r we add one extra tape that348

will always contain the answer to the query (n1, . . . , nr) ∈ RA. We also use349

13

additional work-tapes for convenience. We then encode the initial configuration350

of Md into the tapes of Mr:351

1. On the 0th constant tape, write n in binary.352

2. On each tape for a constant ci, write cAi in binary.353

3. For the answer-tapes of relations Ri, write the bit 0.354

For encoding the transitions of Md, we will in addition need two more constructs:355

a. Updating the answer-tapes of relations after each transition.356

b. Updating the answer-tapes of functions after each transition.357

We now need to verify that these procedures (3. is trivial) can be performed by358

Mr in polylogarithmic time with respect to n̂.359

Step 1. On a fixed vocabulary σ, we have n̂ = f(n) for some fixed function f360

of the form361

nr1 + · · ·+ nrp + qdlog ne+ dlog nenk1 + · · ·+ dlog nenks .362

We will find n by executing a binary search between the numbers 0 and n̂; note363

that checking whether a binary representation of a number is at most n̂ can be364

done by writing the representation to the index-tape and checking whether a365

bit or / is read from the input-tape. For each i between 0 and n̂, f(i) can be366

computed in polynomial time with respect to the length of n̂ in binary, and thus367

in polylogarithmic time with respect to n̂.368

Step 2. The binary representation of a constant cAi is written in the input-369

tape between g(n) and g(n) + dlog ne, where g is a fixed function of the form370

nr1 + · · ·+ nrp + (i− 1)dlog ne. The numbers n and g(n) are obtained as in case371

1. Then g(n) is written on the index tape and the next dlog ne bits of the input372

are copied to the tape corresponding to ci.373

Steps a. and b. These cases are are handled similar to each other and to374

the case 2. above. The main difference for b. is that the bits of the output are375

14

not in successive positions of the input, but the location of each bit needs to be376

calculated separately.377

We next sketch how a direct-access Turing machine Md simulates a random-378

access Turing machine Mr on an input A. First note that an approach similar379

to the converse direction does not work here as we do not have enough time to380

directly construct the initial configuration of Mr inside Md. For each work-tape381

of Mr, we dedicate a work-tape of Md. For the index-tape of Mr, we dedicate382

a work-tape of Md and call it the index-tape of Md. Moreover, we use some383

additional work-tapes for convenience. The idea of the simulation is that the384

dedicated work-tapes and the index-tape of Md copy exactly the behavior of the385

corresponding tapes of Mr. The additional work-tapes are used to calculate to386

which part of the input of Mr the index-tape refers to. After each transition387

of Mr this is checked so that the machine Md can update its address-tapes388

accordingly.389

Recall that given an input σ = {Rr11 , . . . , R
rp
p , c1, . . . cq, f

k1
1 , . . . , fkss } struc-390

ture A of cardinality n, the input of Mr is of length391

nr1 + · · ·+ nrp + qdlog ne+ dlog nenk1 + · · ·+ dlog nenks . (1)392

The number written in binary on the index-tape of Mr determines the position393

of the input that is read by Mr. From (1) we obtain fixed functions on n that394

we use in the simulation to check which part of the input is read when the395

index-tape holds a particular number. For example, if the index-tape holds396

nr1 + 1, we can calculate that the head of the input-tape of Mr reads the bit397

answering the query: is ~0 ∈ RA
2 . We can use an extra work-tape of Md to always398

store the bit that Mr is reading from its input. The rest of the simulation is399

straightforward.400

5. Index logic401

In this section, we introduce a novel logic called index logic, which over finite402

ordered structures captures PolylogTime. Our definition of index logic is inspired403

15

by the second-order logic in [13], where relation variables take values from the404

sub-domain {0, . . . , dlog ne − 1} (n being the size of the interpreting structure),405

as well as by the well known counting logics defined in [27].406

Given a vocabulary σ, for every ordered σ-structure A, we define a corre-407

sponding set of natural numbers Num(A) = {0, . . . , dlog ne − 1} where n = |A|.408

Note that Num(A) ⊆ A, since we assume that A is an initial segment of the409

natural numbers. This simplifies the definitions, but it is otherwise unnecessary.410

Also for technical reasons we work with structures with at least two elements in411

the domain. Otherwise, if A has just one element then Num(A) would be empty.412

Index logic is a two-sorted logic. Individual variables of the first sort v range413

over the domain A of A, while individual variables of the second sort n range414

over Num(A). We denote variables of sort v with x, y, z, . . ., possibly with a415

subindex such as x0, x1, x2, . . . , and variables of sort n with x, y, z, also possibly416

with a subindex. Relation variables, denoted with uppercase letters X,Y, Z, . . .,417

are always of sort n, and thus range over relations defined on Num(A).418

Definition 4 (Numerical and first-order terms). The only terms of sort n are419

the variables of sort n. For a vocabulary σ, the σ-terms t of sort v are generated420

by the following grammar:421

t ::= x | c | f(t, . . . , t),422

where x is a variable of sort v, c is a constant symbol in σ, and f is a function423

symbol in σ.424

Definition 5 (Syntax of index logic). Let σ be a vocabulary. The formulae of425

index logic IL(IFP) is generated by the following grammar:426

427

ϕ ::= x1 ≤ x2 | R(t1, . . . , tk) | X(x1, . . . , xk) | (ϕ ∧ ϕ) | ¬ϕ | [IFPx̄,Xϕ]ȳ |428

t = index{x : ϕ(x)} | ∃x(x = index{x : α(x)} ∧ ϕ) | ∃xϕ,429
430

where t, t1, . . . , tk are σ-terms of sort v, R is a relation symbol in σ, x, x1, . . . , xk431

are variables of sort n, and x̄ and ȳ are tuples of variables of sort n whose length432

16

coincides with the arity of the relation variable X. Moreover, α(x) is a formula433

where the variable x of sort v does not occur as a free variable.434

Since we work always on ordered structures the prescribed order predicate435

≤ is in σ, and t1 ≤ t2 is an atomic formula as well. We also use the standard436

shorthand formulae t1 = t2, x1 = x2, (ϕ∨ψ) and ∀yϕ with the obvious meanings.437

As can be inferred already from the definition of its syntax, index logic438

includes full inflationary fixed point logic on the n sort. The logic, on the439

other hand, is heavily restricted on its access to the elements of the domain440

via variables of sort v. Notice that existential quantification over the v sort is441

bounded by x = index{x : α(x)}. This informally means that x is equal to the442

element in the v sort (if it exists there) whose value written in binary has 1s only443

in those positions that appear in {x : α(x)}. Bounded universal quantification444

of the form ∀x(x = index{x : α(x)} → ϕ) would also be possible, but that is445

equivalent to ¬∃x(x = index{x : α(x)}) ∨ ∃x(x = index{x : α(x)} ∧ ϕ) and thus446

already expressible in index logic.447

A valuation is defined as usual for two-sorted logics. Thus, a valuation over448

a structure A is any total function val from the set of all variables of index logic449

to values satisfying the following constraints:450

• If x is a variable of sort v, then val(x) ∈ A.451

• If x is a variable of sort n, then val(x) ∈ Num(A).452

• If X is a relation variable with arity r, then val(X) ⊆ (Num(A))r.453

If χ is a variable and B a permissible value for that variable, we write454

val(B/χ) to denote the valuation that maps χ to B and agrees with val for all455

other variables. Valuations extend to terms and tuples of terms in the usual way.456

Fixed points are defined in the standard way (see, e.g., [28] and [29] for an457

in-depth presentation). Given an operator F : P(B)→ P(B), a set S ⊆ B is a458

fixed point of F if F (S) = S. A set S ⊆ B is the least fixed point of F if it is a459

fixed point and, for every other fixed point S′ of F , we have S ⊆ S′. We denote460

17

the least fixed point of F as lfp(F). The inflationary fixed point of F , denoted461

by ifp(F), is the union of all sets Si where S0 := ∅ and Si+1 := Si ∪ F (Si).462

Let ϕ(X, x̄) be a formula of vocabulary σ, where X is a relation variable463

of arity k and x̄ is a k-tuple of variables of sort n. Let A be a σ-structure464

and val a variable valuation. The formula ϕ(X, x̄) gives rise to an operator465

FA,val
ϕ,x̄,X : P((Num(A))k)→ P((Num(A))k) defined as follows:466

FA,val
ϕ,x̄,X (S) := {ā ∈ (Num(A))k | A, val(S/X, ā/x̄) |= ϕ(X, x̄)}.467

Definition 6. Let A be an ordered structure and val be a valuation over A.468

Recall that x, x, X and t (possibly with subindices) denote individual variables469

of sort v, individual variables of sort n, relation variables of sort n and terms of470

sort v, respectively. The formulae of IL(IFP) are interpreted as follows:471

• A, val |= x1 ≤ x2 iff val(x1) ≤ val(x2).472

• A, val |= R(t1, . . . , tk) iff (val(t1), . . . , val(tk)) ∈ RA.473

• A, val |= X(x1, . . . , xk) iff (val(x1), . . . , val(xk)) ∈ val(X).474

• A, val |= t = index{x : ϕ(x)} iff val(t) in binary is bmbm−1 · · · b0, where475

m = dlog |A|e − 1 and bj = 1 iff A, val(j/x) |= ϕ(x).476

• A, val |= [IFPx̄,Xϕ]ȳ iff val(ȳ) ∈ ifp(FA,val
ϕ,x̄,X).477

• A, val |= ¬ϕ iff A, val 6|= ϕ.478

• A, val |= ϕ ∧ ψ iff A, val |= ϕ and A, val |= ψ.479

• A, val |= ∃xϕ iff A, val(i/x) |= ϕ, for some i ∈ Num(A).480

• A, val |= ∃x(x = index{x : α(x)} ∧ ϕ) iff there exists i ∈ A such that481

A, val(i/x) |= x = index{x : α(x)} and A, val(i/x) |= ϕ.482

It immediately follows from the famous result by Gurevich and Shelah re-483

garding the equivalence between inflationary and least fixed points [30], that an484

equivalent index logic can be obtained if we (1) replace [IFPx̄,Xϕ]ȳ by [LFPx̄,Xϕ]ȳ485

18

in the formation rule for the fixed point operator in Definition 5, adding the486

restriction that every occurrence of X in ϕ is positive3, and (2) fix the interpre-487

tation A, val |= [LFPx̄,Xϕ]ȳ iff val(ȳ) ∈ lfp(FA,val
ϕ,x̄,X).488

The use of simultaneous fixed points allows one to iterate several formulae489

at once in a single fixed point operator. In what follows, we make use of the490

convenient tool of simultaneous fixed points, for their addition to our logics491

does not increase their expressive powers. Following the syntax and semantics492

proposed by Ebbinghaus and Flum [28], a version of index logic with simultane-493

ous inflationary fixed point operators can be obtained by replacing the clause494

corresponding to IFP in Definition 5 by the following:495

• If ȳ is tuple of variables of sort n, and, for m ≥ 0 and 0 ≤ i ≤ m, we have496

that x̄i is also a tuple of variables of sort n, Xi is a relation variable whose497

arity coincides with the length of x̄i, the lengths of ȳ and x̄0 are the same,498

and ϕi is a formula, then [S-IFPx̄0,X0,...,x̄m,Xmϕ0, . . . , ϕm]ȳ is an atomic499

formula.500

Semantics for the simultaneous fixed point operator is defined such that A, val |=501

[S-IFPx̄0,X0,...,x̄m,Xm
ϕ0, . . . , ϕm]ȳ iff val(ȳ) belongs to the first (here X0) compo-502

nent of the simultaneous inflationary fixed point.503

Thus, we can use index logic with the operators IFP, LFP, S-IFP or S-LFP504

interchangeably.505

In the next two subsections, we give two worked-out examples that illustrate506

the power of index logic. After that, the exact characterization of its expressive507

power is presented in Subsection 5.3.508

5.1. Finding the binary representation of a term509

Let t be a term of sort v. In this example, we construct an index logic formula510

that expresses the well-known bit predicate BIT(t, x). The predicate BIT(t, x)511

3This ensures that FA,val
ϕ,x̄,X is a monotonic function and that the least fixed point lfp(FA,val

ϕ,x̄,X)

exists.

19

states that the (val(x) + 1)-th bit of val(t) in binary is set to 1. Subsequently,512

the sentence t = index{x : BIT(t, x)} is valid over the class of all finite ordered513

structures.514

Informally, for a fixed term t, our implementation of BIT(t, x) works by515

iterating through the bit positions y from the most significant to the least516

significant. These bits are accumulated in a relation variable Z. For each y we517

set the corresponding bit on the condition that the resulting number does not518

exceed t. The set bits are collected in a relation variable Y .519

In the formal description of BIT(t, x) below, we use the following abbrevia-520

tions. We use M to denote the most significant bit position, i.e., M = dlog ne.521

Thus, formally, z = M abbreviates ∀z′ z′ ≤ z. Furthermore, for a unary re-522

lation variable Z, we use z = minZ with the obvious meaning. We also use523

abbreviations such as z = z′ − 1 with the obvious meaning.524

Now BIT(t, x) is a simultaneous fixed point [S-IFPy,Y,z,Z ϕY , ϕZ](x), where525

ϕZ := (Z = ∅ ∧ z = M) ∨ (Z 6= ∅ ∧ z = minZ − 1),526

ϕY := Z 6= ∅ ∧ y = minZ ∧ ∃x(x = index{z : Y (z) ∨ z = y} ∧ t ≥ x).527
528

5.2. Binary search in an array of key values529

To provide further insight on expressing properties with index logic, we530

develop an example showing how to express the useful procedure of binary531

search.532

We represent the data structure as an ordered structure A over the vocabulary533

consisting of a unary function K, a constant symbol N , a constant symbol T534

and a binary relation ≺. The domain of A is an initial segment of the natural535

numbers. The constant l := NA indicates the length of the array; the domain536

elements 0, 1, . . . , l − 1 represent the cells of the array. The remaining domain537

elements represent key values. Each array cell holds a key value; the assignment538

of key values to array cells is given by the function KA.539

The simplicity of the above abstraction gives rise to two peculiarities which,540

however, pose no problems. First, the array cells belong to the range of the541

20

function K. Thus array cells are allowed to play a double role as key values.542

Second, the function K is total. Thus it is also defined on the domain elements543

that do not correspond to array cells. We will simply ignore K on that part of544

the domain.545

We still need to discuss ≺ and T . We assume ≺A to be a total order used546

to compare key values. Note that ≺A can be different from the built-in order547

<A. For the binary search procedure to work the array needs to be sorted, i.e.,548

A must satisfy ∀x∀y
(
x < y < N →

(
K(x) � K(y)

))
. Finally, the constant549

t := TA is the test value.550

We want an index logic formula that determines whether the test value t is551

in the array. More formally, we want to express the following condition with an552

index logic formula.553

∃x(x < N ∧K(x) = T). (γ)554

We follow an approach which is close to the standard algorithm [31] for555

binary search:556

L := 0

R := N − 1

while L 6= R do

I := b(L+R)/2c

if K(I) � T then R := I − 1 else L := I

if K(L) = T return ‘found’ else return ‘not found’

We use a simultaneous fixed point with binary relation variables L and R,557

and a unary relation variable Z. Relation variables L and R encode integer558

values in binary and fulfill a similar role in the index logic formula than in559

the algorithm. More concretely, for each i ∈ Num(A), the value of the term560

index{x : L(i, x)} will be the value of the integer variable L before the (i+ 1)-th561

iteration of the while loop (and similarly for R). The auxiliary variable Z is562

used to keep track of the current iteration, starting with 0 and adding in each563

step the current iteration number to Z until a fixed point is reached, i.e., until564

Z = {0, . . . , dlog ne − 1}.565

21

We further use the the bit predicate from Section 5.1 and the following566

subformulae:567

• avg(X,Y, x) expressing that the bit x is set to 1 in the binary representation568

of b(x + y)/2c for x and y the numbers encoded in binary in X and Y ,569

respectively.570

• minusone(X, y) expressing that the bit y is set to 1 in the binary repre-571

sentation of x− 1 for x the number encoded in binary in X.572

Since the numeric n sort is only logarithmic in the size of the input structure,573

it follows from Immerman-Vardi theorem [5, 6] that any PolylogTime time574

decidable query is expressible as a formula in index logic over the n sort. The575

fact that each of the above queries is computable in PTIME on the size of the576

numeric sort, or equivalently, in PolylogTime in the size of the input structure,577

determines that the required subformulae exist.578

In the context in which we use avg(X,Y, x), the variables X and Y are579

taken to be L(z, .) and R(z, .), respectively. Thus we write avg ′(z, x) to denote580

the formula obtained by replacing in avg(X,Y, x) each occurrence of X(u) and581

Y (u) by L(z, u) and R(z, u), respectively. Likewise, we write minusone ′(z, u) to582

denote the formula obtained by replacing in minusone(X,u) each occurrence of583

X(u) by avg ′(z, u). We also write test(z) to denote the formula ∃e(e = index{x :584

avg ′(z, x)} ∧K(e) � T).585

Finally, the index logic formula expressing condition (γ) can be written as586

follows:587

∃x(x = index{l : ψ(l)} ∧K(x) = T)588

22

where589

ψ(l) := ∃s∀s′(s′ ≤ s ∧ [S-IFPz,x,L,z,x,R,z,Z ϕL, ϕR, ϕZ](s, l)),590

ϕZ := (Z = ∅ ∧ z = 0) ∨ (Z 6= ∅ ∧ z = maxZ + 1),591

ϕL := Z 6= ∅ ∧ z = maxZ + 1 ∧

∃z′(z′ = maxZ ∧ (test(z′)→ L(z′, x)) ∧ (¬test(z′)→ avg ′(z′, x))),

592

ϕR := (Z = ∅ ∧ z = 0 ∧ BIT(N − 1, x)) ∨ (Z 6= ∅ ∧ z = maxZ + 1 ∧

∃z′(z′ = maxZ ∧ (test(z′)→ minusone ′(z′, x)) ∧ (¬test(z′)→ R(z′, x)))).

593

594

5.3. The logical characterization theorem for PolylogTime595

We start by defining what it means for a logic to capture a complexity class596

over finite ordered structures.597

Definition 7. A logic L captures PolylogTime on the class of finite ordered598

structures iff the following holds:599

• For every L-sentence ϕ of a vocabulary σ, for finite ordered structures, the600

language {bin(A) | A |= ϕ, A is a finite ordered structure} is decidable601

by a random-access Turing machine in PolylogTime.602

• For every property P of (binary encodings of) finite ordered structures of603

vocabulary σ that can be decided by a random-access Turing machine in604

PolylogTime, there is a sentence ϕP of L such that for every finite ordered605

structure A of vocabulary σ it holds that A |= ϕP iff A has property P.606

Note that by Theorem 3 we can give an equivalent definition in terms607

of direct-access Turing machines, avoiding the need for binary encodings of608

structures.609

The following result confirms that index logic serves our original purpose of610

characterizing PolylogTime on the class of finite ordered structures.611

Theorem 8. On finite ordered structures, index logic captures PolylogTime.612

Proof.613

23

Formulae of index logic can be evaluated in polylogarithmic time. Let VAR be a614

finite set of variables (of sort n, v, and relational). We define a Turing machine615

model that has a designated work-tape for each of the variables in VAR. The idea616

here is that the tape designated for a variable contains the value of that variable617

encoded as a binary string. We use induction on the structure of formulae to618

show that for every sentence ϕ of index logic, whose variables are from the set619

VAR, there exists a direct-access Turing machine Mϕ such that for every ordered620

structure A with |A| = n and every valuation val decides in time O(dlog neO(1))621

whether A, val |= ϕ. Since VAR is an arbitrary finite set, this suffices.622

In the proof variables v of sort n and v are treated in a similar way as623

constant symbols, meaning that their value val(v) is written in binary in the624

first dlog ne cells of their designated work-tapes. The work-tape designated to a625

relation variable X of arity k contains val(X) ⊆ Num(A)k encoded as a binary626

string in its first dlog nek cells, where a 1 in the i-th cell indicates that the i-th627

tuple in the lexicographic order of Num(A)k is in val(X).628

Let t be a term, M be a direct-access Turing machine and val be a valuation629

such that for every variable χ that occurs in t the value val(χ) is the one encoded630

in binary in the designated work-tape for χ. We start by showing that val(t)631

can then be computed by M in time O(dlog neO(1)). If t is a variable of sort n,632

v or a constant symbol, then M only needs to read the first dlog ne cells of the633

appropriate work-tape or constant-tape, respectively. If t is a term of the form634

fi(t1, . . . , tk), we access and copy each val(tj) in binary in the corresponding635

address-tapes of fi. By the induction hypothesis this takes time O(dlog neO(1))636

each. Using dlog ne additional steps the result of length dlog ne will then be637

accessible in the value-tape of fi.638

We use induction to prove our main claim. Let ϕ be a formula with variables639

in VAR, val be a valuation and M be a direct-access Turing machine such that640

for every variable χ that occurs free in ϕ the value val(χ) is written in binary in641

the designated work-tape for χ. We show that A, val |= ψ can be decided by M642

in time O(dlog neO(1)).643

If ϕ is an atomic formula of the form t1 ≤ t2 then M can evaluate ϕ in644

24

polylogarithmic time by accessing the values of t1 and t2 in binary and then645

comparing their dlog ne bits.646

If ϕ is an atomic formula of the form Ri(t1, . . . , tk) then M can evaluate ϕ647

in polylogarithmic time by simply computing the values of the terms t1, . . . , tk648

and copying them to the corresponding address-tapes of Ri. Recall that each649

term’s value can be computed in polylogarithmic time. They can also be copied650

in polylogarithmic time since each such value takes up to dlog ne bits of space.651

If ϕ is an atomic formula of the form X(x1, . . . , xk) then M can evaluate ϕ652

in polylogarithmic time as follows. First M accesses the values x1, . . . , xk and653

computes (in binary) the position i of the tuple (x1, . . . , xk) in the lexicographic654

order of Num(A)k. Then M accesses the i-th cell of the work-tape which655

contains the encoding of val(X) of length dlog nek. Computing i involves simple656

arithmetic operations on binary numbers of length bounded by log(dlog nek),657

which can clearly be done in time polynomial in log n.658

If ϕ is an atomic formula of the form t = index{x : ψ(x)} then M proceeds659

as follows. Let s = dlog ne− 1 and let bsbs−1 · · · b0 be val(t) in binary. For every660

i, 0 ≤ i ≤ s, M writes i in binary in the work-tape designated for the variable661

x and checks whether A, val(i/x) |= ψ(x) iff bi = 1. Since by the induction662

hypothesis this check can be done in polylogarithmic time and val(t) can also be663

computed in polylogarithmic time, we get that M decides t = index{x : ϕ(x)}664

in polylogarithmic time as well.665

If ϕ is a formula of the form [IFPx̄,Xψ]ȳ where the arity of X is k. Let666

FA,val
ψ,x̄,X : P((Num(A))k)→ P((Num(A))k) denote the related operator F 0 := ∅667

and F i+1 := F i ∪ FA,val
ψ,x̄,X (F i) for each i ≥ 0. The inflationary fixed point is668

reached on stage |Num(A)k| at the latest and thus ifp(FA,val
ψ,x̄,X) = F logk n. Recall669

that670

FA,val
ψ,x̄,X (S) := {ā ∈ (Num(A))k | A, val(S/X, ā/x̄) |= ψ(X, x̄)}.671

Then M can proceed as follows. On each stage M computes the value of F i+1 in672

binary on a work-tape and then copy over this value to the work-tape designated673

for X. In stage i = 0 it only needs to write the string 0dlognek in the work-674

25

tape designated for X. To compute F i+1 from F i it goes through all k-tuples675

ā ∈ (Num(A))k in lexicographic order. For 1 ≤ j ≤ k it writes ā[j] in binary on676

the designated work-tape for x̄[j] and checks whether677

A, val(S/X, ā/x̄) |= ψ(X, x̄) (2)678

holds. By induction hypothesis, this can be checked in time O(dlog neO(1)). If679

(2) holds and ā is the l-th k-tuple in the lexicographic ordering then M writes 1680

in the l-th cell of the work-tape where the value of F i+1 is being constructed.681

Otherwise it writes 0. Hence the computation of F i+1 from F i can be done in time682

logk n×O(dlog neO(1)) which is still O(dlog neO(1)). Clearly ifp(FA,val
ψ,x̄,X) = F logk n

683

can be computed in time O(dlog neO(1)) as well. To determine whether val(ȳ) is684

included in the fixed point is also computable in O(dlog neO(1)) since M can just685

compute the position of val(ȳ) in the lexicographic order of k-tuples and then686

check whether that position has a 0 or 1 in the work-tape corresponding to X.687

If ϕ is a formula of the form ∃x(x = index{x : α(x)}∧ψ(x)) then M proceeds688

as follows. For each i ∈ {0, . . . , dlog ne−1}, M writes i in binary in the work-tape689

designated for x and checks whether A, val(i/x) |= α(x). Since by definition690

x does not appear free in α(x), it follows by the induction hypothesis that M691

can perform each of these checks in polylogarithmic time. In parallel M writes692

the bit string bsbs−1 · · · b0 defined such that bi = 1 iff A, val(i/x) |= α(x) to the693

work-tape designated to the variable x. Let the content of this work-tape at the694

end of this process be t in binary. M can now check whether t < n (recall that695

by convention M has the value n in binary in one of its constant-tapes and thus696

this can be done in polylogarithmic time). If t ≥ n then A, val 6|= ϕ. If t < n697

then M checks whether A, val(t/x) |= ψ. By the induction hypothesis this check698

can also be done in polylogarithmic time.699

Finally, if ϕ is a formula of the form ∃xψ then for each i ∈ {0, . . . , dlog ne−1}700

M writes i in binary to the work-tape designated for x and checks whether701

A, val(i/x) |= ψ. It follows by the induction hypothesis that M can perform702

each of these checks in polylogarithmic time. If the test is positive for some703

i then A, val |= ϕ. The remaining cases are those corresponding to Boolean704

26

connectives and follow trivially from the induction hypothesis.705

Every polylogarithmic time property can be expressed in index logic. Suppose we706

are given a class C of ordered σ-structures which can be decided by a deterministic707

polylogarithmic time direct-access Turing machine M = (Q,Σ, δ, q0, F, σ) that708

has m tapes (including ordinary work-tapes, address-tapes, (function) value-709

tapes and constant-tapes). We assume w.l.o.g. that F = {qa} (there is only one710

accepting state), |Q| = a+ 1 and Q = {q0, q1, . . . , qa}.711

Let M run in time O(dlog nek). Note that a finite number of small inputs712

(up to some fixed constant size) may require more time than dlog nek. Such713

small inputs can however be dealt with separately since each finite structure can714

be defined by an index logic sentence. Hence we do not consider them here. By715

using the order relation ≤A of the structure A we can define the lexicographic716

order ≤A
k for the k-tuples in Num(A)k. We use this order to model time and717

positions of the tape heads of M . This is possible since the number of k-tuples718

in Num(A)k is dlog nek. Expressions of the form t̄ . t′ denote that val (̄t) is the719

(val(t ′) + 1)-th tuple in the order ≤A
k . This is clearly expressible in index logic720

since it is a polynomial time property on the n sort.721

Adapting the construction used by Immerman and Vardi [5, 6] to capture P722

we use the following relations to encode the configurations of polylogarithmic723

time direct-access Turing machines.724

• A k-ary relation Sq for every state q ∈ Q such that Sq(t̄) holds iff M is in725

state q at time t̄.726

• 2k-ary relations T 0
i , T

1
i , T

t
i for every tape i = 1, . . . ,m such that T si (p̄, t̄)727

holds iff at the time t̄ the cell p̄ of the tape i contains the symbol s.728

• 2k-ary relations Hi for every tape i = 1, . . . ,m such that Hi(p̄, t̄) holds iff729

at the time t̄ the head of the tape i is on the cell p̄.730

We show that these relations are definable in index logic by means of a731

simultaneous inflationary fixed point formula. The following sentence of index732

logic is satisfied by a structure A iff A ∈ C. Note that the simultaneous fixed733

27

point operator in the formula reconstructs step-by-step the computation of M734

for the given input.735

∃x0 . . . xk−1

(
[S-IFPt̄,Sqa ,A,B1,B2,B3,C ϕqa ,ΦA,ΦB1

,ΦB2
,ΦB3

,ΦC](x0, . . . , xk−1)
)

736

where737

A = t̄, Sq0 , . . . , t̄, Sqa−1 B1 = p̄ t̄, T 0
1 , . . . , p̄ t̄, T

0
m B2 = p̄ t̄, T 1

1 , . . . , p̄ t̄, T
1
m738

739

B3 = p̄ t̄, Tt1 , . . . , p̄ t̄, T
t
m C = p̄ t̄, H1, . . . , p̄ t̄, Hm740

741

ΦA = ϕq0 , . . . , ϕqa−1 ΦB1 = ψ01, . . . , ψ0m ΦB2 = ψ11, . . . , ψ1m742

743

ΦB3
= ψt1, . . . , ψtm ΦC = γ1, . . . , γm.744

Here p̄ and t̄ denote k-tuples of variables of sort n.745

The formula builds the required relations Sqi , T
0
i , T 1

i , Tti and Hi (for746

1 ≤ i ≤ m) in stages, where the j-th stage represents the configuration at time747

steps up to j − 1. The subformulae ϕqi , ψ0i, ψ1i, ψti and γi define Sqi , T
0
i , T 1

i ,748

Tti and Hi, respectively.749

To simplify the presentation of the subformulae we assume w.l.o.g. that in750

every non-initial state of a computation each address-tape only contains a single751

binary number between 0 and n − 1. This number has at most dlog ne bits.752

Hence we encode positions of address-tapes (and function value-tapes) with a753

single variable of sort n (instead of a tuple of variables).754

The formulae ϕqi , ψ0i, ψ1i, ψti and γi are defined according to M . Next we755

define ψ0i in detail. ψ1i and ψti can be defined in a similar way. The intuition756

is that the formulae describe both the initial configuration of the computation757

and how each subsequent configurations is computed from the previous one in758

the sequence. The formula ψ0i(p̄, t̄) for instance defines whether the i-th tape759

at cell position p̄ at time t̄ contains the symbol 0. If i is an address-tape or an760

ordinary work-tape then in the initial configuration of the computation the tape761

i contains the blank symbol t in all its cells. In this case the formula ψ0i is of762

the form ¬(t̄ . 0) ∧ α0
i (p̄, t̄ − 1) where α0

i (p̄, t̄ − 1) list conditions under which763

28

at the following time instant t̄ the position p̄ of the tape i contains 0. In the764

general case the formula has the form765

(t̄ . 0 ∧ ξT 0
i
) ∨ (¬(t̄ . 0) ∧ α0

i (p̄, t̄− 1))766

where ξT 0
i

is used to define the initial configuration related to the relation T 0
i .767

Assume i denotes an address-tape or an ordinary work-tape. We define768

α0
i (p̄, t̄ − 1) as a disjunction over all cases for tape i to have a 0 in position p̄769

at time t̄. There are two possibilities: (a) at time t̄ − 1 the head of tape i is770

not in position p̄ and position p̄ already has a 0, (b) at time t̄− 1 the head of771

tape i is in position p̄ and writes a 0. Let τRl,1, . . . , τ
R
l,rl

denote the rl address-772

tapes corresponding to the rl-ary relation Rl. Let check(Rl(x1, . . . , xrl), bl) be773

Rl(x1, . . . , xrl) or ¬Rl(x1, . . . , xrl) depending on whether bl = 1 or bl = 0,774

respectively. Let p̄ = p̄i. The disjunct of α0
i (p̄, t̄− 1) corresponding to case (b)775

for a transition of the form δi(q, a1, . . . , am, b1, . . . , bp) = (0,→) is as follows.776

∃p̄1 . . . p̄i−1p̄i+1 . . . p̄m

(
Sq(t̄− 1)∧(∧

1≤j≤m

Hj(p̄j , t̄− 1) ∧ T ajj (p̄j , t̄− 1)
)
∧

∧
1≤l≤p

∃x1 . . . xrl
(
check(Rl(x1, . . . , xrl), bl)∧

∧
1≤k≤rl

xk = index{x | (T 1
τR
l,k

(x, t̄− 1))}
))
,

At time t̄− 1 M is in the

state q and the head of

the tape j is in position p̄j

reading aj.

At time t̄− 1 the tuple of

values in the address-tapes

of Rl is in RA iff bl = 1.

777

Assume i denotes a value-tape of a function fj of arity kj . Let τfj,1, . . . , τ
f
j,kj

778

refer to its address-tapes. Then ψ0i(p, t̄) can be defined as follows.779

∃x1 . . . xkj

((∧
1≤l≤kj

xl = index{x | T 1
τf
j,l

(x, t̄)}
)
∧ ¬BIT(fj(x1, . . . , xkj), p)

)
,780

781

Here BIT(fj(x1, . . . , xkj), p) expresses that the bit of position p of fj(x1, . . . , xkj)782

in binary is 1. As shown in Section 5.1 this is definable in index logic. Note783

that the content of the value-tape of a function at time t̄ depends only on the784

contents of its address-tapes at time t̄. This however does not results in a circular785

29

definition since the contents of such address-tapes at time t̄ are all defined based786

only in the configuration of the machine at time t̄− 1.787

We let ϕq0 be t̄ . 0 ∨ (¬(t̄ . 0) ∧ αq0(t̄ − 1)). For q 6= q0 we let ϕq be788

¬(t̄ . 0) ∧ αq(t̄ − 1) where αq(t̄ − 1) list conditions under which M will enter789

state q at time t̄.790

Finally, we define γi as follows.791

(t̄ . 0 ∧ p̄ . 0) ∨
(
¬(t̄ . 0) ∧ αi(p̄, t̄− 1)

)
792

Here αi(p̄, t̄− 1) describe the conditions for the head of tape i to be in position793

p̄ at time t̄.794

We omit the remaining subformulae since it should be sufficiently clear at795

this point that they can indeed be written as index logic formulae. It is also796

not difficult to see that in the j-th stage of the simultaneous inflationary fixed797

point computation, the relations Sq, (T 0
i , T

1
i , T

t
i)1≤i≤m and (Hi)1≤i≤m encode798

the configuration of M at every time ≤ j − 1. This completes our proof.799

As pointed out in [32] among others, from the point of view of applications800

such as database queries it is also desirable that there is a computable function801

that associates with every sentence ϕ of the logic a machine M such that802

M decides ϕ within the required time bound (PolylogTime in our case). The803

constructive proof of Theorems 8 directly implies that such a computable function804

exists for the index logic.805

6. Definability in Deterministic PolylogTime806

We observe here that very simple properties of structures are not definable807

in index logic. Moreover, we provide an answer to a fundamental question808

on the primitivity of the built-in order predicate (on terms of sort v) in our809

logic. Of course, the semantics of index terms only makes sense on ordered810

structures. However that does not mean that formulae that do not mention the811

order predicate are useless. For example, the following formula expresses that812

30

the cardinality of the domain is a power of two:813

∃x(x = index{x : true})814

Index terms are based on sets of bit positions which can be compared as binary815

numbers. Hence, it is reasonable to consider the logic with the index terms,816

but without the built-in order predicate available, and ask whether this actually817

results in a strictly weaker logic. We prove that in the presence of constant or818

function symbols this is indeed the case.819

We start with an inexpressibility result which shows that checking emptiness820

(or non-emptiness) of a unary relation is not decidable in PolylogTime and thus821

not expressible in index logic.822

Proposition 9. Let C be the class of ordered {≤, P}-structures that interprets the823

unary relation symbol P as the empty set. The language L = {bin(A) : A ∈ C}824

is not decidable in PolylogTime.825

Proof. For a contradiction, assume that L is decidable in PolylogTime. Consider826

ordered first-order structures over the vocabulary {≤, P}, where P is a unary827

relation symbol. Let M be some random-access Turing machine that given a828

binary encoding of a {≤, P}-structure A decides in PolylogTime whether PA is829

empty. Let f be a polylogarithmic function that bounds the running time of M .830

Let n be a natural number such that f(n) < n.831

Let A∅ be the {≤, P}-structure with domain {0, . . . , n− 1} where PA∅ = ∅.832

The encoding of A∅ to the Turing machine M is the sequence s := bin(≤A) 0 . . . 0︸ ︷︷ ︸
n times

.833

Note that the running time of M with input s is strictly less than n. This means834

that there must exist an index i ≥ n2 of s that was not read in the computation835

M(s). Define836

s′ := bin(≤A) 0 . . . 0︸ ︷︷ ︸
i times

1 0 . . . 0︸ ︷︷ ︸
n− i− 1 times

.837

Clearly the output of the computations M(s) and M(s′) are identical, which is838

a contradiction since s′ is an encoding of a {≤, P}-structure where the interpre-839

tation of P is a singleton.840

31

The technique of the above proof can be adapted to prove a plethora of unde-841

finability results, e.g., it can be shown that k-regularity of directed graphs cannot842

be decided in PolylogTime, for any fixed k. These kinds of lower bounds are843

well known by researchers working in the area of sublinear time algorithms [33].844

We can develop this technique further to show that the order predicate on845

terms of sort v is a primitive in the logic. The proof of the following lemma is846

quite a bit more complicated though.847

Lemma 10. Let P and Q be unary relation symbols. There does not exist an848

index logic formula ϕ such that for all ordered {≤, P,Q}-structures A such that849

PA and QA are disjoint singleton sets {l} and {m}, respectively, it holds that850

A, val |= ϕ if and only if l < m.851

Proof. We will show that the property described above cannot be decided in852

PolylogTime; the claim then follows from Theorem 8. For a contradiction,853

suppose that the property can be decided in PolylogTime, and let M and854

f : N → N be the related random-access Turing machine and polylogarithmic855

function, respectively, such that, for all ordered {≤, P,Q}-structures A that856

satisfy the conditions of the claim, M(bin(A)) decides the property in at most857

f(|bin(A)|) steps. Let k be a natural number such that f(2k) < k − 1.858

Consider a computation M(s) of M with an input string s. We say that an859

index i is inspected in the computation, if at some point during the computation860

i is written in the index tape in binary. Let InsM (s) denote the set of inspected861

indices of the computation of M(s) and InsjM (s) denote the set of inspected862

indices during the first j steps of the computation. We say that s and t are863

M-j-equivalent if the lengths of t and s are equal and t[i] = s[i], for each864

i ∈ InsjM (s). We say that A and B are M-j-equivalent whenever bin(A) and865

bin(B) are. Note that if two structures A and B are M -j-equivalent, then the866

computations M(bin(A)) and M(bin(B)) are at the same configuration after867

j steps of computation. Hence if A and B are M-f(|bin(A)|)-equivalent, then868

outputs of M(A) and M(B) are identical.869

32

Let C be the class of all ordered {≤, P,Q}-structures A of domain {0, . . . k−1},870

for which PA and QA are disjoint singleton sets. The encodings of these871

structures are bit strings of the form bin(≤A)b1 . . . bkc1 . . . ck, where exactly one872

bi and one cj , i 6= j, is 1. The computation of M(bin(A)) takes at most f(2k)873

steps.874

We will next construct a subclass C∗ of C that consists of exactly those875

structures A in C for which the indices i ≥ 2n that are in Ins(bin(A)) hold only876

the bit 0. We present an inductive process that will in the end produce C∗. Each877

step i of this process produces a subclass Ci of C for which the following hold:878

a) The structures in Ci are M -i-equivalent.879

b) There exists Ai ∈ Ci and880

Ci = {B ∈ C | ∀j ∈ Insi(bin(Ai)), if j ≥ 2n, the jth bit of bin(B) is 0}.881

Define C0 := C; clearly C0 satisfies the properties above. For i < f(2k), we define882

Ci+1 to be the subclass of Ci consisting of those structures A that on time step883

i+ 1 inspects an index that holds the bit 0, or that inspects an index that is at884

most 2n − 1.4885

Assume that a) and b) hold for Ci, we will show that the same holds for Ci+1.886

Proof of a): Let A,B ∈ Ci+1. By construction and by the induction hypothesis,887

A and B are M -i-equivalent, and on step i + 1 M(bin(A)) and M(bin(B))888

inspect the same index, and if the index is at least 2n, it holds 0. Remember889

that the first 2n indices of both A and B hold the same string (namely bin(≤A)).890

Thus A and B are M -(i+ 1)-equivalent. Proof of b): It suffices to show that891

Ci+1 is nonempty; the claim then follows by construction and the property b) of892

Ci. By the induction hypothesis, there is a structure Ai ∈ Ci. Let j be the index893

that M(bin(Ai)) inspects on step i + 1. If j < 2n then Ai ∈ Ci+1. Suppose894

j ≥ 2n. Since i+ 1 ≤ f(2k) < k − 1, there exists a structure A′i ∈ Ci such that895

4If the machine already halted on an earlier time step t, we stipulate that the machine

inspects on time step i + 1 the same index that it inspected on time step t.

33

the jth bit of bin(A′i) is 0. Clearly A′i ∈ Ci+1.896

Consider the class Ck−2 (this will be our C∗) and B ∈ Ck−2 and recall897

that bin(B) is of the form bin(≤A)b1 . . . bkc1 . . . ck. Since |Insk−2(B)| ≤ k − 2,898

there exists two distinct indices i and j, 2n ≤ i < j < 2n + k, such that899

i, j, i + k, j + k /∈ Insk−2(bin(A)). Let BP<Q denote the structure such that900

bin(BP<Q) is a bit string with prefix bin(≤A), and where the ith and j + kth901

bits are 1 and all other bits are 0. Similarly, let BQ<P denote the structure902

such that bin(BQ<P) is a bit string with prefix bin(≤A), and where the jth and903

i + kth bits are 1 and all other bits are 0. Clearly the structures BP<Q and904

BQ<P are in Ck−2 and M -(k − 2)-equivalent. Since (k − 2) bounds above the905

length of computations of M(bin(BP<Q)) and M(bin(BQ<P)), it follows that906

the outputs of the computations are identical. This is a contradiction, for BP<Q907

and BQ<P are such that M should accept the first and reject the second.908

We are now in a position to show, as announced, that the order predicate of909

sort v is primitive.910

Theorem 11. Let c and d be constant symbols in a vocabulary σ. There does911

not exist an index logic formula ϕ that does not use the order predicate ≤ on912

terms of sort v and that is equivalent to the formula c ≤ d.913

Proof. For the sake of a contradiction, assume that ϕ is a formula as stated in914

the theorem. We will derive a contradiction with Lemma 10. Without loss of915

generality, we may assume that the only symbols of σ that occur in ϕ are c and916

d, and that ϕ is a sentence (i.e., ϕ has no free variables).917

We define the translation ϕ∗ of ϕ inductively. In addition to the cases below,918

we also have the cases where the roles of c and d are swapped.919

• For ψ that does not include c or d, let ψ∗ := ψ.920

• For ψ of the form (α1 ∧ α2), let ψ∗ := (α∗1 ∧ α∗2).921

• For ψ of the form (¬α), let ψ∗ := (¬α∗).922

• For ψ of the form (∃xα), let ψ∗ := (∃xα∗)923

34

• For ψ of the form (∃x(x = index{x : α(x)} ∧ ϕ)), let924

ψ∗ = (∃x(x = index{x : α(x)} ∧ ϕ)∗)925

• For ψ of the form [IFPx̄,Xθ] ȳ, let ψ∗ := [IFPx̄,Xθ
∗] ȳ.926

• For ψ of the form c = d, let ψ∗ := ⊥.5927

• For ψ of the form c = x or x = c, let ψ∗ := C(x).928

• For ψ of the form x = index{x : θ(x)}, define ψ∗ as x = index{x : θ∗(x)}.929

• For ψ of the form c = index{x : θ(x)}, let930

ψ∗ := ∃z(z = index{x : θ∗(x)} ∧ C(z)),931

where z is a fresh variable.932

If A is a {≤, C,D}-structure such that CA and DA are disjoint singleton sets, we933

denote by A′ the {≤, c, d}-structure with the same domain such that {cA′} = CA
934

and {dA′} = DA. We claim that for every {≤, C,D}-structure A such that CA
935

and DA are disjoint singleton sets {l} and {m} and every valuation val the936

following holds:937

l < m ⇔ cA
′
< dA

′
⇔ A′, val |= ϕ ⇔ A, val |= ϕ∗.938

This is a contradiction with Lemma 10. It suffices to prove the last equivalence939

as the first two are reformulations of our assumptions. The proof is by induction940

on the structure of ϕ. The cases that do not involve the constants c and d are941

immediate. Note that by assumption, cA and dA are never equal and thus the942

subformula c = d is equivalent to ⊥. The case c = x is also easy:943

A′, val |= c = x ⇔ val(x) = cA
′
⇔ val(x) ∈ CA ⇔ A, val |= C(x).944

The case for c = index{x : θ(x)} is similar:945

A′, val |= c = index{x : θ(x)} ⇔ A′, val |= ∃z(z = index{x : θ(x)} ∧ c = z)946

⇔ A, val |= ∃z(z = index{x : θ(x)} ∧ C(z)).947
948

5By ⊥ we denote some formula that is always false, e.g, ∃x x 6= x.

35

All other cases follow similarly.949

We conclude this section by affirming that, on purely relational vocabularies,950

the order predicate on sort v is redundant. The intuition for this result was951

given in the beginning of this section.952

Theorem 12. Let σ be a vocabulary without constant or function symbols. For953

every sentence ϕ of index logic of vocabulary σ there exists an equivalent sentence954

ϕ′ that does not use the order predicate on terms of sort v.955

Proof. We will define the translation ϕ′ of ϕ inductively. Without loss of956

generality, we may assume that each variable that occurs in ϕ is quantified957

exactly once (for this purpose, we stipulate that the variable x is quantified by958

the term index{x : α(x)}). For every variable x of sort v that occurs in ϕ, let959

αx(x) denote the unique subformula such that ∃x(x = index{x : αx(x)} ∧ ψ) is960

a subformula of ϕ for some ψ. Note that x occurs only in index{x : αx(x)}. We961

define the following shorthands for variables x and y of sort n:962

ϕx=y(ψ(x), θ(y)) := ∀z
(
ψ(z/x)↔ θ(z/y)

)
,963

ϕx<y(ψ(x), θ(y)) := ∃z
((
¬ψ(z/x) ∧ θ(z/y)

)
∧964

∀z′
(
z < z′ →

(
ψ(z′/x)↔ θ(z′/y)

)))
,965

966

where z and z′ are fresh distinct variables of sort n. In the formulae above,967

ψ(z/x) denotes the formula that is obtained from ψ by substituting each free968

occurrence of x in ψ by z. The translation ϕ 7→ ϕ′ is defined as follows:969

• For formulae that do not include variables of sort v as well as for formulae of970

the form R(x1, . . . , xr) where R is an r-ary relation symbol, the translation971

is the identity.972

• For ψ of the form (α1 ∧ α2), let ψ′ := (α′1 ∧ α′2).973

• For ψ of the form ¬α, let ψ′ := ¬α′.974

• For ψ of the form ∃xα, let ψ′ := ∃xα′975

36

• For ψ of the form [IFPx̄,Xθ] ȳ, let ψ′ := [IFPx̄,Xθ
′] ȳ.976

• For ψ of the form x ≤ y, let977

ψ′ :=
(
ϕx=y

(
αx(x), αy(y)

)
∨ ϕx<y

(
αx(x), αy(y)

))′
.978

• For ψ of the form x = index{y : θ(y)}, define ψ′ := x = index{y : θ′(y)}.979

• For ψ of the form ∃x(x = index{x : α(x)} ∧ θ), define980

ψ′ := ∃x((x = index{x : α(x)})′ ∧ θ′).981

To see that the translation is well-defined and always produces a sentence of982

index logic, let x1, . . . , xn be a list of all variables of sort v that occur in a given983

index logic sentence ϕ such that, if xi is quantified before xj in ϕ then i < j. We984

now show that the case (x ≤ y)′ does not lead to a cycle and that the translation985

terminates. All other cases are clear. Recall that986

(xi ≤ xj)′ =
(
ϕxi=xj

(
αxi

(xi), αxj
(xj)

)
∨ ϕxi<xj

(
αxi

(xi), αxj
(xj)

))′
.987

Since ϕ is a sentence, it follows from the index logic syntax that the only variables988

of sort v that may occur in ϕxi=xj

(
αxi(xi), αxj (xj)

)
∨ ϕxi<xj

(
αxi(xi), αxj (xj)

)
989

are x1, . . . , xmax{i,j}−1. Hence, while the translation (xi ≤ xj)′ might introduce990

additional occurrences of ≤, the variables in subformulae of the form xl ≤ xl′991

are such that l, l′ < max{i, j}. Hence the translation is well-defined.992

By a straightforward inductive argument it can be verified that the translation993

preserves equivalence.994

7. Index logic with partial fixed points995

In this section we introduce a variant of index logic defined in Section 5. This996

logic, which we denote as IL(PFP), is defined by simply replacing the inflationary997

fixed point operator IFP in the definition of index logic by the partial fixed point998

operator PFP. We stick to the standard semantics of the PFP operator. We999

define that1000

A, val |= [PFPx̄,Xϕ]ȳ iff val(ȳ) ∈ pfp(FA,val
ϕ,x̄,X),1001

37

where pfp(FA,val
ϕ,x̄,X) denotes the partial fixed point of the operator FA,val

ϕ,x̄,X (see the1002

description above Definition 6). The partial fixed point pfp(F) of an operator1003

F : P(B)→ P(B) is defined as the fixed point of F obtained from the sequence1004

(Si)i∈N, where S0 := ∅ and Si+1 := F (Si), if such a fixed point exists. If it does1005

not exist then pfp(F) := ∅.1006

It is well known that first-order logic extended with partial fixed point1007

operators captures PSPACE. As a counterpart for this result we show that1008

IL(PFP) captures the complexity class polylogarithmic space (PolylogSpace).1009

Recall that in IL(PFP) the relation variables bounded by the PFP operators1010

range over (tuples of) Num(A), where A is the interpreting structure. Thus,1011

the maximum number of iterations before reaching a fixed point (or concluding1012

that it does not exist) is not exponential in the size n of A as in FO(PFP). It1013

is instead quasi-polynomial, i.e., of size O(2logk n) for some constant k. This1014

observation is the main reason why IL(PFP) characterizes PolylogSpace. Finally,1015

an analogous argument to the one that proves the well-known relationship1016

PSPACE ⊆ DTIME(2n
O(1)

) proves that PolylogSpace ⊆ DTIME(2logO(1) n).1017

7.1. The Complexity Class PolylogSpace1018

Let L(M) denote the class of structures of a given vocabulary σ accepted by1019

a direct-access Turing machine M . We say that L(M) ∈ DSPACE[f(n)] if M1020

visits at most O(f(n)) cells in each work-tape before accepting or rejecting an1021

input structure whose domain is of size n. We define the class of all languages1022

decidable by a deterministic direct-access Turing machines in polylogarithmic1023

space as follows:1024

PolylogSpace :=
⋃
k∈N

DSPACE[(dlog ne)k].1025

Note that it is equivalent whether we define the class PolylogSpace by means of1026

direct-access Turing machines or random-access Turing machines. Indeed, from1027

Theorem 3 and the fact that the (standard) binary encoding of a structure A is1028

of size polynomial with respect to the cardinality of its domain A, the following1029

corollary is immediate.1030

38

Corollary 13. A class of finite ordered structures C of some fixed vocabulary σ1031

is decidable by a random-access Turing machine working in PolylogSpace with1032

respect to n̂, where n̂ is the size of the binary encoding of the input structure, iff1033

C is decidable by a direct-access Turing machine in PolylogSpace with respect to1034

n, where n is the size of the domain of the input structure.1035

Moreover, in the context of PolylogSpace, there is no need for random-access1036

address-tape for the input; PolylogSpace defined with random-access Turing1037

machines coincide with PolylogSpace defined with (standard) Turing machines1038

that have sequential access to the input.1039

Proposition 14. A class of finite ordered structures C of some fixed vocabulary1040

σ is decidable by a random-access Turing machine working in PolylogSpace with1041

respect to n̂ iff C is decidable by a standard (sequential-access) Turing machine1042

in PolylogSpace with respect to n̂, where n̂ is the size of the binary encoding of1043

the input structure.1044

Proof. We give the idea behind the proof; the proof itself is straightforward. We1045

take as the definition of the standard (sequential-access) Turing machine the1046

definition of the random-access Turing machine given in Section 3, except that1047

we suppose a sequential-access read-only-head for the input tape and remove1048

the address-tape.1049

A random-access Turing machine Mr can simulate a sequential-access Turing1050

machine Ms directly by using its address-tape to simulate the movement of the1051

head of the sequential-access input-tape. In the simulation, when the head of1052

the input-tape of Ms is on the i+ 1-th cell, the address-tape of Mr holds the1053

number i in binary and hence refers to the i + 1-th cell of the input. When1054

the head of the input-tape of Ms moves right, the machine Mr will increase1055

the binary number in its address-tape by one. Similarly, when the head of the1056

input-tape of Ms moves left, the machine Mr will decrease the binary number1057

in its address-tape by one. A total of dlog ne bits suffices to access any bit of an1058

input of length n. Clearly increasing or decreasing a binary number of length at1059

most dlog ne by one can be done in PolylogSpace. The rest of the simulation is1060

39

straightforward.1061

The simulation of the other direction is a bit more complicated. Each time1062

the content of the address-tape of the random-access machine is updated, we1063

need to calculate the corresponding position of the head of the input-tape of the1064

sequential-access machine. This computation however can be clearly done in1065

PolylogSpace: We use a work-tape of the sequential-access machine to mimic the1066

address-tape of the sequential-access machine and an additional work-tape as a1067

binary counter. After each computation step of the random-access machine, the1068

sequential-access machine moves the head of its input tape to its leftmost cell and1069

formats the work-tape working as a binary counter to have exactly the binary1070

number that is written on the address-tape. Then the sequential-access machine1071

moves the head of its input-tape right step-by-step simultaneously decreasing the1072

binary counter by 1. Once the binary counter reaches 0, the head of the input1073

tape is in correct position. The rest of the simulation is straightforward.1074

Since the function dlog ne is space constructible (s.c. for short), or equivalently1075

proper as called in [16], and for any two s.c. functions their product is also s.c.,1076

we get that for any k ≥ 1 the function (dlog ne)k is s.c. Hence, from Savitch’s1077

theorem we get the following result.1078

Fact 15. For any k ≥ 1, it holds that NSPACE[(dlog ne)k] ⊆ DSPACE[(dlog ne)2k].1079

Thus, nondeterministic and deterministic PolylogSpace coincide.1080

7.2. Index logic with partial fixed point operators captures PolylogSpace1081

To encode a configuration of polylogarithmic size, we follow a similar strategy1082

as in Theorem 8, i.e., in the proof of the characterization of PolylogTime by1083

IL(IFP). The difference here is that there is no reason to encode the whole1084

history of a computation in the fixed point. At a time step t it suffices that the1085

configuration of the machine at time step t− 1 is encoded; hence we may drop1086

the variables t̄ from the fixed point formula defined on page 28. Moreover, we1087

make a small alteration to the Turing machines so that acceptance on an input1088

structure will correspond to the existence of a partial fixed point.1089

40

Theorem 16. Over ordered finite structures, IL(PFP) captures PolylogSpace.1090

Proof. The direction of the proof that argues that IL(PFP) can indeed be1091

evaluated in PolylogSpace is straightforward. Let ψ be an IL(PFP)-sentence.1092

We only need to show that there exists a direct-access Turing machine Mψ that1093

works in O(logd n) space for some constant d and that for every structure A1094

and valuation val it holds that A ∈ L(Mψ) iff A, val |= ψ. Note that in an1095

induction on the structure of ψ, all cases except the case for the PFP operator1096

are as in the proof of Theorem 8. Clearly if a formula can be evaluated in1097

PolylogTime it can also be evaluated in PolylogSpace. For the case of the PFP1098

operator (using a similar strategy as in [28]) we set a counter to 2logr n using1099

exactly logr n cells in a work-tape, where r is the arity of the relation variable X1100

bounded by the PFP operator. To evaluate the PFP operator, say on a formula1101

ϕ(x̄, X), M will iterate evaluating ϕ and decrease the counter in each iteration.1102

When the counter gets to 0, M checks whether the contents of the relation X1103

is equal to its contents in the following cycle and whether the tuple given in1104

the PFP application belongs to it. If both answers are positive then M accepts.1105

Otherwise it rejects. This suffices to find the fixed point (or to conclude that1106

it does not exist) as there are 2logr n many relations of arity r with domain1107

{0, . . . , dlog ne − 1}.1108

For the converse, let M = (Q,Σ, δ, q0, F, σ) be an m-tape direct-access Turing1109

machine that works in PolylogSpace. Same as in the proof of Theorem 8 we can1110

assume w.l.o.g. that F = {qa} (i.e., there is only one accepting state), |Q| = a+11111

and Q = {q0, q1, . . . , qa}. We additionally assume here that once the machine1112

reaches an accepting state, it will not change its configuration any longer. That1113

is, all of its heads stay put and write the same symbol that they read. Note that1114

the machine M accepts if and only if M is in the same accepting configuration1115

during two consecutive time steps.1116

We build an IL(PFP)-sentence ψM such that for every structure A and1117

valuation val , it holds that A ∈ L(M) iff A, val |= ψM . The formula is a1118

derivative of that of Theorem 8 and is defined using a simultaneous PFP operator.1119

41

In the formula below, Sq0 , . . . , Sqa denote 0-ary relation variables that range1120

over the values true and false. We define1121

ψM := [S-PFPSqa ,A,B1,B2,B3,C ϕqa ,ΦA,ΦB1
,ΦB2

,ΦB3
,ΦC],1122

where1123

A = Sq0 , . . . , Sqa−1
B1 = p̄, T 0

1 , . . . , p̄, T
0
m B2 = p̄, T 1

1 , . . . , p̄, T
1
m1124

1125

B3 = p̄, Tt1 , . . . , p̄, T
t
m C = p̄, H1, . . . , p̄, Hm1126

1127

ΦA = ϕq0 , . . . , ϕqa−1
ΦB1

= ψ01, . . . , ψ0m ΦB2
= ψ11, . . . , ψ1m1128

1129

ΦB3
= ψt1, . . . , ψtm ΦC = γ1, . . . , γm.1130

The formulae used in the PFP operator are defined in the same way as in1131

Theorem 8; with the following two exceptions.1132

1. The formulae of the form α0
i (p̄, t̄ − 1) are replaced with the analogous1133

formulae α0
i (p̄) obtained by simply removing the variables referring to time1134

steps.1135

2. Subformulae of the form t̄ . 0 are replaced with ¬Sq0 ∧ . . .∧¬Sqa−1
, which1136

are true only on the first iteration of the fixed point calculation.1137

Following the proof of Theorem 8 it is now easy to show that A, val |= ψM if1138

and only if M accepts A.1139

8. Discussion1140

The natural question left open by our work is to find a logic capturing1141

PolylogTime over structures that are not necessarily ordered. Since index logic1142

captures PolylogTime on ordered structures, this question is equivalent to finding1143

an effective syntax for the sentences in index logic that are order-invariant. As1144

explored in Section 6, it appears that actually very few properties of unordered1145

structures are in fact decidable in PolylogTime. Then again, any polynomial-time1146

numerical property of the size of the domain is clearly decidable in PolylogTime.1147

42

So, there seems to be a delicate balance of weakness on the one hand, and power1148

on the other hand, and it seems interesting to pursue this open question further.1149

Another natural direction is to get rid of Turing machines altogether and work1150

with a RAM model working directly on structures, as proposed by Grandjean1151

and Olive [34]. Plausibly by restricting their model to numbers bounded in value1152

by a polynomial in n (the size of the structure), we would get an equivalent1153

PolylogTime complexity notion.1154

In this vein, we would like to note that extending index logic with numeric1155

variables that can hold values up to a polynomial in n, with arbitrary polynomial-1156

time functions on these, would provide useful syntactic sugar. Since this remains1157

in PolylogTime, it follows from our capturing result that such extension would1158

not increase the expressive power of index logic.1159

Acknowledgements1160

We thank the two anonymous reviewers whose comments have significantly1161

helped to improve the manuscript.1162

[1] E. Grädel, P. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Vardi, Y. Venema,1163

S. Weinstein, Finite Model Theory and Its Applications, Springer, 2007.1164

[2] Y. Gurevich, Toward logic tailored for computational complexity, in:1165

M. Richter, et al. (Eds.), Computation and Proof Theory, Vol. 1104 of1166

Lecture Notes in Mathematics, Springer-Verlag, 1984, pp. 175–216.1167

[3] N. Immerman, Descriptive Complexity, Springer, 1999.1168

[4] R. Fagin, Generalized first-order spectra and polynomial-time recognizable1169

sets, in: R. Karp (Ed.), Complexity of Computation, Vol. 7 of SIAM-AMS1170

Proceedings, Americal Mathematical Society, 1974, pp. 43–73.1171

[5] N. Immerman, Relational queries computable in polynomial time, Informa-1172

tion and Control 68 (1986) 86–104.1173

43

[6] M. Vardi, The complexity of relational query languages, in: Proceedings1174

14th ACM Symposium on the Theory of Computing, 1982, pp. 137–146.1175

[7] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley,1176

1995.1177

[8] M. Y. Vardi, The complexity of relational query languages, in: Proceedings1178

of the 14th Annual ACM Symposium on Theory of Computing, ACM, 1982,1179

pp. 137–146.1180

[9] F. Ferrarotti, S. González, J. M. Turull Torres, J. Van den Bussche,1181

J. Virtema, Descriptive complexity of deterministic polylogarithmic time,1182

in: Logic, Language, Information, and Computation - 26th International1183

Workshop, WoLLIC 2019, Proceedings, Vol. 11541 of Lecture Notes in1184

Computer Science, Springer, 2019, pp. 208–222.1185

[10] M. Grohe, W. Pakusa, Descriptive complexity of linear equation systems and1186

applications to propositional proof complexity, in: 32nd Annual ACM/IEEE1187

Symposium on Logic in Computer Science, LICS, IEEE Computer Society,1188

2017, pp. 1–12.1189

[11] N. Immerman, Number of quantifiers is better than number of tape cells, J.1190

Comput. Syst. Sci. 22 (3) (1981) 384–406.1191

[12] D. A. Mix Barrington, N. Immerman, H. Straubing, On uniformity within1192

NC1, J. Comput. Syst. Sci. 41 (3) (1990) 274–306.1193

[13] D. A. Mix Barrington, Quasipolynomial size circuit classes, in: Proceedings1194

of the Seventh Annual Structure in Complexity Theory Conference, IEEE1195

Computer Society, 1992, pp. 86–93.1196

[14] F. Ferrarotti, S. González, K. Schewe, J. M. Turull Torres, The polylog-time1197

hierarchy captured by restricted second-order logic, in: 20th International1198

Symposium on Symbolic and Numeric Algorithms for Scientific Computing,1199

IEEE, 2018, pp. 133–140.1200

44

[15] L. Stockmeyer, The polynomial-time hierarchy, Theor. Comput. Sci. 3 (1)1201

(1976) 1–22.1202

[16] C. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.1203

[17] M. Garey, D. Johnson, Computers and Intractability: A Guide to the1204

Theory of NP-Completeness, Freeman, 1979.1205

[18] A. Borodin, On relating time and space to size and depth, SIAM J. Comput.1206

6 (4) (1977) 733–744.1207

[19] R. Greenlaw, H. J. Hoover, W. L. Ruzzo, Limits to Parallel Computation:1208

P-completeness Theory, Oxford University Press, 1995.1209

[20] J. H. Reif, Logarithmic depth circuits for algebraic functions, SIAM J.1210

Comput. 15 (1) (1986) 231–242.1211

[21] G. Matera, J. M. Turull Torres, The space complexity of elimination theory:1212

Upper bounds, in: Foundations of Computational Mathematics, Springer,1213

1997, pp. 267–276.1214

[22] A. Grosso, N. Herrera, G. Matera, M. E. Stefanoni, J. M. Turull Torres,1215

An algorithm for the computation of the rank of integer matrices in poly-1216

logarithmic space, Electronic Journal of the Chilean Society of Computer1217

Science 4 (1), 45 pages, in Spanish.1218

[23] G. Gottlob, N. Leone, F. Scarcello, Computing LOGCFL certificates, Theor.1219

Comput. Sci. 270 (1-2) (2002) 761–777.1220

[24] G. Gottlob, R. Pichler, F. Wei, Tractable database design through bounded1221

treewidth, in: Proceedings of the Twenty-Fifth ACM SIGACT-SIGMOD-1222

SIGART Symposium on Principles of Database Systems, ACM, 2006, pp.1223

124–133.1224

[25] G. Gottlob, R. Pichler, F. Wei, Tractable database design and datalog1225

abduction through bounded treewidth, Inf. Syst. 35 (3) (2010) 278–298.1226

45

[26] M. Beaudry, P. McKenzie, Circuits, matrices, and nonassociative computa-1227

tion, J. Comput. Syst. Sci. 50 (3) (1995) 441–455.1228

[27] M. Grohe, Descriptive Complexity, Canonisation, and Definable Graph1229

Structure Theory, Cambridge University Press, 2017.1230

[28] H.-D. Ebbinghaus, J. Flum, Finite Model Theory, 2nd Edition, Springer,1231

1999.1232

[29] L. Libkin, Elements of Finite Model Theory, Springer, 2004.1233

[30] Y. Gurevich, S. Shelah, Fixed-point extensions of first-order logic, Annals1234

of Pure and Applied Logic 32 (1986) 265–280.1235

[31] D. Knuth, Sorting and Searching, 2nd Edition, Vol. 3 of The Art of Computer1236

Programming, Addison-Wesley, 1998.1237

[32] M. Grohe, The quest for a logic capturing PTIME, in: Proceedings of the1238

Twenty-Third Annual IEEE Symposium on Logic in Computer Science,1239

LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA, IEEE Computer Society,1240

2008, pp. 267–271.1241

[33] R. Rubinfeld, A. Shapira, Sublinear time algorithms, SIAM J. Discret. Math.1242

25 (4) (2011) 1562–1588.1243

[34] E. Grandjean, F. Olive, Graph properties checkable in linear time in the1244

number of vertices, J. Comput. Syst. Sci. 68 (2004) 546–597.1245

46

