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Utilizing thermal comfort and walking facilities to propose a Comfort 

Walkability index (CWI) at the neighbourhood level 

Abstract 

Many walkability indices have been developed by considering a range of specific indicators. 

However, comfort indicators at the neighbourhood scale and the effects of thermal comfort have 

generally not been accounted for in such research. To this end, we propose the comfort walkability 

index (CWI) at the neighbourhood micro-scale. The proposed tool is based on two questionnaires, 330 

respondents answered the first questionnaire, to evaluate the relative coefficient for each indicator 

(Cis). The second questionnaire based on  282 respondents using a simple random sampling technique 

to assess the scores of the selected factors (Sis). We tested the CWI in two areas in the city centre of 

Annaba, Algeria, and calculated the physiological Equivalent temperature (PET) using RayMan 

software on two average summer days from 7 a.m. to 8 p.m. when heat and humidity peaks are 

observed. The results show that over 95% of the suggested indicators were estimated as being very 

important and necessary. The CWI scores were dependent on PET values and thermal perception. The 

highest scores of CWI were 40.95% and  25.23% in Colonial centre and Old town respectively, 

correlated with neutral thermal sensation (20°C-26°C). CWI in the Colonial centre was changing from 

rarely acceptable comfort quality to uncomfortable level depending on PET scores; however, CWI in 

Old Town defined a low comfort quality despite the variability of PET scores. This paper highlights 

the importance of assessing pedestrian comfort facilities at the neighbourhood microscale and heeding 

the importance of thermal comfort in promoting a satisfying walking experience. 
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1. Introduction 

Walkability refers to the suitability of an urban environment to provide pedestrian 

walkways [1–4]. Walkability also enhances the liveability and environmental quality of a 

neighbourhood [5,6], while it depends on simple infrastructure [1,3,7,8]. Walking is now 

considered a significant factor in promoting healthier, sustainable and active communities [9]. 

It has pertinent effects on reducing pollution in cities and ensuring inhabitants’ well-being and 

health [10–12]. Encouraging walking environments in cities is viewed as a relevant goal in 

attaining sustainable mobility patterns.  

A number of studies have investigated macro-level indicators at the neighbourhood 

scale to improve walking rates in urban areas [10–12]. Other studies have attempted to 

address key elements that help to create a pedestrian-friendly neighbourhood [13] by 

considering important factors such as safety, comfort and convenience indicators [7,14,15]. 

Urban furniture such as drinking fountains [16,17], slope [7,18] and benches [19,20] provide a 

comfortable environment for pedestrians in urban areas besides other social benefits [21–23]. 

Another important urban design indicator is vegetation, which has the aesthetic potential to 

create attractive spaces [21,22]. Trees that provide shade [12] encourage citizens to walk 

around the streets during the hot hours of the day [22]. Using the microscale approach can 

contribute to the provision of attractive sidewalks, pleasant and comfortable walking paths. 

Thus, walkability micro-scale assessment models allow us to achieve a better and more 

reliable perception of the walking environment [1]. 

From another perspective, thermal comfort can affect the use of the outdoor 

environment and many studies have shown the importance of climatic conditions for the well-

being of inhabitants in outdoor environments [24,25]. People in outdoor environments are 

vulnerable to thermal conditions throughout the different seasons of the year, ranging from 
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heat stress and cold stress to neutral and comfortable conditions. Even during a single day, 

people can be subject to varying levels of hot and cold thermal stress [29]. Many studies have 

elaborated universal indices to define thermal comfort in hot and cold conditions [26]. The 

two leading thermal comfort indices, the physiologically equivalent temperature (PET) and 

the Universal Thermal Climate Index (UTCI) have been widely used and applied to cold and 

hot conditions [26,27]. However, PET has been successfully tested in different climate zone 

and urban spaces such as streets, squares, parks [24,28–31]. That had been based on 

questionnaire confirmed by people’s vote [26,32,33]. 

Because street life and outdoor activities vary depending on the climatic conditions 

[34], associating thermal comfort with walkability could contribute to making streets more 

comfortable for pedestrians. A pedestrian-friendly environment can be developed by realizing 

standards and assessing walking facilities in an ongoing manner. Previous studies have linked 

comfort to urban design features, attractiveness and safety [7,8,35–38]. However, few studies 

have considered the micro-level factors at the neighbourhood scale. Moreover, walkability in 

urban areas has rarely been assessed using thermal comfort indices such as PET. Although 

there have been some developments in walkability measurement, the following practical 

issues related to pedestrian comfort remain unresolved: (1) the lack of methods and 

measurement tools that address the neighbourhood micro-scale; (2) the definitions of comfort 

walkability indicators; and (3) the assessment of walkability by considering thermal comfort. 

Therefore, the main objective of this study is to complement the current literature by 

measuring walking comfort on the neighbourhood micro-level and PET values. The proposed 

measurement is tested in the hot-summer Mediterranean climate (Csa) of Annaba, Algeria. 

The novelty of this study involves the design of a new assessment tool, the Comfort 

Walkability Index (CWI) based on 21 pedestrian comfort indicators at the neighbourhood 

microscale, besides PET as a thermal comfort index. The lack of thermal comfort in 
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walkability assessment tools is a challenge when the process results are to be interpreted and 

applied in the transport planning and urban design. 

2. Literature review 
 

The literature review presented in this section intended to identify the effective 

pedestrian- features and climatic conditions related to the comfort concept at the 

neighbourhood micro scale. Measurement tools and methods had been also described for a 

better understanding of the representative measurement of thermal comfort and walkability. 

Cain et al. [39] note that there are two methods for assessing walkability at the 

neighbourhood scale. The first concerns macro-level characteristics, including existing 

structures of neighbourhoods (e.g., street connectivity, land-use mix, residential density) that 

are not exposed to frequent changes in the urban environment [40]. The second approach is 

related to the micro-level at the neighbourhood scale, consisting of the quality and 

attractiveness of sidewalks, which can affect the comfort and safety of walkability in urban 

spaces [7,35,41]. However, the micro-level approach at the neighbourhood scale, which can 

more easily account for frequent changes than at the macro level, has rarely been explored 

[39]. Moreover, it is essential to identify pedestrian amenities in relation to the quality of the 

walking environment [7]. Thermal comfort assessment at the neighbourhood micro-level is 

thus a promising quantitative approach to estimate pedestrian comfort because of its 

straightforward measurement. 

Streets, sidewalks, parks, squares and other urban design elements can play a crucial 

role in promoting walkability, as they can affect pedestrian walking behaviour [9,40,42]. 

Furthermore, sidewalk amenities conducive to comfortable walking involve main facilities 

(e.g., kerbs, ramps, sidewalk width), encouragement facilities (e.g., lighting, sitting areas, 

landscaping and trees) and convenience facilities (e.g., toilets, drinking fountains) [1]. Such 

indicators can transform spaces into accessible, walkable and comfortable areas [1,4,45,46]. 
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Aghaabbasi et al. [8] divided walkability indicators into different components, such as 

accessible design factors (e.g., accessible drinking fountains, accessible toilets, tactile 

pavements, kerb ramps, accessible signage and signals, skybridge lifts); safety design factors 

(e.g., landscaping and trees, signage, bollards, surfaces and materials, lighting, signals); 

attractiveness design factors (e.g., landscaping and trees, benches and sitting areas, rubbish 

bins, effective sidewalk width, lighting, cleanliness); and sidewalk path conditions (e.g., 

maintenance, slope, natural barriers). Other studies have used similar walkability indicators, 

such as seating areas, bollards, landscaping and trees, toilets, rubbish bins, skybridge lifts, 

driveways, slope, materials/surfaces, effective sidewalk width, signals, signage, tactile 

pavements, ramps, kerb ramps, cleanliness, lighting [7], drinking fountains [1], shady trees, 

accessibility to green spaces, benches and pedestrian-scale lighting [43–47]. 

According to Asadi-Shekari et al. [43], improvement in sidewalk conditions can be 

achieved by integrating certain walkability factors such as the following: slower traffic, mid-

block crossings, landscaping and trees, facilities (e.g., fire hydrants), lighting, signals, 

bollards, slope, kerb ramps, wheelchair-accessible drinking fountains, tactile pavements 

(warning and guiding), signals, benches and seating areas. These walkability indicators are 

suitable for all users, including people with disabilities. 

It can be concluded that most existing studies have focused on attractive design 

features, safety, usability and convenience design factors at the street level. Few studies have 

explored comfort at the neighbourhood scale. We, therefore, propose a wide range of comfort 

indicators for the neighbourhood micro-scale level. 

2.1 Assessment of walkability tools 

In recent years, numerous studies have adopted an objective approach to the 

evaluation of walkability. The complexity of the relationship between neighbourhood micro-



6 
 

scale indicators and walking behaviour, and in addition the role of individual perception, form 

an elaborate framework that researchers have tried to resolve.  

The Path Environment Audit Tool (PEAT) [48] uses a variety of walkability indicators 

at the micro-scale level; however, many comfort indicators such as sidewalk material and 

width, as well as trees and shade, are not considered. The Walking Suitability Assessment 

Form (WSAF) [49] and the PIN3 Neighbourhood Audit Instrument [50] examine a restricted 

number of walkability indicators and focus on the presence of trees and shading effects on the 

walking area and street lighting; however, many comfort factors are not included (e.g., toilets, 

slope, fountains, benches, seated drinking fountains, toilets, slope benches, seats). The 

Neighbourhood Environment Walkability Survey (NEWS) [51] is the most commonly used 

tool in survey question formats, and includes a number of walkability indicators such as 

lighting, cleanliness and separation of pedestrians and vehicles (buffering). However, NEWS 

also lacks certain comfort indicators (e.g., drinking fountains, tactile pavements, toilets). 

Clifton et al. [20] proposed the Pedestrian Environment Data Scan (PEDS) tool, which 

includes abroad range of indicators (e.g., path material, path condition, slope and path 

obstructions), although, again, many comfort indicators are missing (e.g., drinking fountains, 

slope and kerbs). Aghaabbasi et al. [7] focused on the Neighbourhood Sidewalk Assessment 

Tool (NSAT), which considers a wide variety of comfort indicators besides extended 

pedestrian categories, leading to increased satisfaction among people with different physical 

abilities. Overall, there is a generalised lack of use of comfort indicators in the assessment of 

walkability in measures such as PIN3, PEAT, NEWS and PEDS, besides the exclusion of 

consideration of people with disabilities. 

Asadi-Shekari et al. [35] reported that the pedestrian level of service (PLOS) was 

found to be a useful measurement tool. This measure helps designers and planners to evaluate 

the quality of the street environment for pedestrians and can provide guidance regarding 
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enhancements to solve existing problems. Although some studies have used PLOS to assess 

sidewalk capacity [35], PLOS models have generally focused on the street characteristics 

involving micro-design factors and pedestrian amenities [14,35,41,43]. 

The different methods described above have been used according to the respective 

research objectives. Because most of these objectives focused on the street level, few methods 

are available for the neighbourhood micro-scale level. 

2.2. Thermal comfort 
 

In recent years, researchers have paid particular attention to thermal comfort in urban 

environments and its effect on inhabitants [25,26,33,52–54]. Numerous studies have 

attempted to define thermal comfort conditions to determine the concept of thermal sensation 

in outdoor urban spaces [24,53,55–59]. Thermal comfort is referred to as user satisfaction 

regarding the thermal environment [26,60]. 

Understanding microclimate environment characteristics is important because they 

influence people’s comfort and outdoor activities [24]. Some studies have focused on the 

development of universal indices that can measure thermal comfort in hot and cold climates 

[24,26]. Indices such as Perceived temperature (Pt) [26,61], Standard Effective Temperature 

(SET*) [26,62] and its outdoor variant OUT-SET* [63], UTCI [64], PET [68,69] and 

predicted mean vote (PMV) [26,67–69] have been effectively applied to urban areas for 

thermal comfort assessment. 

Most current indices for outdoor thermal perception include PET, PMV, UTCI and 

SET* [26], and these are suitable for calculating heat and cold stress. PMV allows the 

classification of thermal sensation; PET, UTCI and SET* provide an evaluation in °C of 

thermal sensation. SET* is a more suitable index for hot climates, whereas PET and UTCI are 

typically employed in both hot and cold climates [27].  

 



8 
 

According to Chen and Matzarakis. [70], UTCI used 135 W/m
 2

 as reference activity. 

It highlights the relevance of the effect of air humidity and wind speed concern. The initial 

scaling for UTCI was based on the multi-node dynamic-thermo physiological UTCI - Fiala 

model [71]. While PET used 80 W/m
2
 as a standard stimulating activity, experimental studies 

showed that people feel usually much heated under brutal metabolism than slight metabolism 

[70]. The original scaling for PET was based on human energy balance [72], besides PET 

focuses on radiant and sensible heat loss [70]. 

PET had been less criticized in comparison with UTCI, according to Potchter et al. 

[26], the examination of the relation between PET and full scale and outdoor thermal 

conditions showed a positive relationship and demonstrated a strong correlation. Many field 

surveys based on questionnaires have been undertaken in different climatic zones, searching 

to validate those indices against actual people’s votes [24,32,33], while the exploration of the 

relation between UTCI full scale and outdoor thermal conditions highlighted a positive and 

weak relation, identified as not correlative and significant due to the limited sample size [26]. 

Besides a few studies tested the subjective method, which the results showed a different scale 

of no stress category (comfort range) for the different climatic condition, that should be 

examined according to Potchter et al.[26]. In comparison PET had been validated in several 

climatic zones [27,28,31,65] and investigated in a wild range of outdoor environments 

[30,31,53,75].However, the verification of the PET and UTCI indices shows that the 

perceived comfort zone values are very similar to each other [26]. 

PET was introduced in Western and Central Europe [24,55,78]; The “neutral” scale for 

the PET index in hot climates of 24–26°C was confirmed in 95% of studies. In a cold climate, 

89% of studies showed a “neutral” range of 15–20°C. Lin [79] examined thermal sensation 

and its adaptation to the tropical climate in Taiwan and reported PET values of 21.3–28.5°C 

all year round, which were higher than the European scale PET values of 18–23°C. Another 
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study in the Csa of Tel Aviv, Israel, demonstrated that the PET values were higher than the 

European PET scale by 3°C and lower by 5°C than the lower boundary of the PET values 

recorded in Taiwan [24]. Mahmoud [29] studied thermal comfort in an urban park in Cairo, 

Egypt, where the PET values were 22–30°C in summer and 21–29°C in winter, which were 

also higher than the European scale [26]. These results demonstrated the influence of urban 

climatic characteristics on human balance, energy and people’s thermal perception, all of 

which affect the use of outdoor environments [55]. These studies thus highlight the impact of 

the duality of microclimatic measurement and thermal perception in cities and the use of the 

outdoor environment in different climates. 

Based on this literature review, we strongly support the feasibility of including thermal 

comfort in the assessment of walkability. This study seeks to develop an innovative approach 

towards inclusive design features and thermal comfort for a pleasant walking experience. We 

focus on universal comfort factors at the neighbourhood micro-scale level, in addition to a 

broad range of user categories, and consider PET as a thermal comfort index, that had been 

calculated based on climatic data such as air temperature, relative humidity and wind velocity 

on two representative summer days. Our method had been tested in the city of Annaba, 

Algeria, which is characterised by a Csa climate. Moreover, relating walkability scores to 

people’s perception of the pedestrian environment and thermal sensation in a Csa climate 

provides a better understanding of the pedestrian comfort rating. 

3. Method 
 

Several methodologies have been developed and applied in urban planning to integrate 

pedestrian audits in transportation system plans and pedestrian planning. To date, however, 

there are few data gathered using walkability measurement methods that involve the 

neighbourhood micro scale. We now briefly present each of the main steps of the CWI 

procedure. Figure 1 provides a comprehensive description. 
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Fig. 1.Conceptual framework of the comfort walkability index (CWI). 

3.1. Review of effective indicators 
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neighbourhood and Csa. Some papers were omitted because they focused on collecting data 

related to the trip level, and as a result, there was a lack of information regarding tool 

assessment and application. According to our criteria, the selected indicators concerned 

research conducted between 2002 and 2019, with the aim of defining the comfort indicators 

that promoted enjoyment of a pleasant walking experience. This concept was analysed on 

neighbourhood and street scales, as well as the widely used index of thermal comfort in 

outdoor environments. The findings highlighted the gap in research on the neighbourhood 

micro-scale regarding the evaluation of thermal comfort in walkability. The relevant comfort 

indicators are presented in Table 1. 

Table 1. List of pedestrian comfort indicators appropriate for the neighbourhood micro scale. 

Pedestrian comfort indicators References 

Slower traffic speed [43,36] 

Buffer and barriers (kerb and furnishing zone) [43,36] 

Fewer traffic lanes [43,36] 

Mid-block crossings [36] 

Landscaping and trees [1,35,43,36,8,7] 

Furniture (rubbish bins) [1,35,43,7] 

Footpath pavement [36,9,38] 

Marking (crosswalk) [36] 

Sidewalks on both sides [36] 

Footpath width [1,35,43,7] 

Slope [43,8,7] 

Lighting [1,35,43,36,8,7] 

Ramp [1,35,43,36,7] 

Parks and spaces for playing [80,81] 

Social spaces (cafés) [9,82] 

Shade [12,20] 

Benches and seating areas [1,35,43,7] 

Toilets [1,8,7] 

Pedestrian signals [35,43,36,8,7] 

Shorter crossing distance (kerb extension) [36] 

 
 

3.2. Data collection 
 

For data collection, we conducted two surveys, one with pedestrians and the other via 

an online platform (Monkey, Google Forms). It is worth noting that the participants who 

answered on online platforms were very familiar with the selected neighbourhood as they are 
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residents. Besides general information (age, sex, education), the questionnaire focused on the 

importance of pedestrian comfort facilities and the status of each indicator in the selected 

neighbourhoods. The respondents were asked to classify the importance of the chosen factors 

and estimate their actual condition. 

3.3. Assessing  indicators 
 

To evaluate the indicators, we calculated coefficients and scores from the survey 

results, as well as a suitable model for designing walkable neighbourhoods. Climate data such 

as air temperature, wind velocity and relative humidity were used to calculate PET values 

using RayMan software. We chose two representative summer days to explore the micro 

differences in the same season characterised by a Csa. Finally, we calculated the CWI using a 

point system; the related scoring method for PLOS followed Asadi-Shekari et al. [36,41,43]. 

The CWI score can be calculated from Eq. (1): 

 𝐂𝐖𝐈 = (( Ci × Si𝑖=22
𝑖=1 )/ Ci) × 100

𝑖=22

𝑖=1
, (1) 

Where Ci is the coefficient of each indicator and Si is the score of each indicator. 

Table 2 shows the different classifications of the CWI percentage rating and their 

interpretations. CWI A shows the highest comfort quality conditions. CWI B may be 

acceptable considering the availability of some comfort indicators besides the feasibility of 

some operational improvements. CWI C requires more attention and improvement. CWI D 

indicates inferior quality and uncomfortable conditions, requiring considerable improvement. 

CWI E and F are the worst comfort quality and lack of standard pedestrian facilities; 

therefore, they require significant improvement. 
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Table 2. Interpretation of CWI rating. 

CWI % 

rating 

Model 

score 
Interpretation 

A 80–100 
Highest comfort quality (very pleasant), many pedestrian comfort facilities 

present. 

B 60–79 High comfort quality (acceptable), some pedestrian comfort facilities present. 

C 40–59 
Average comfort quality (rarely acceptable), pedestrian comfort facilities 

present; however, there is potential to improve pedestrian comfort conditions. 

D 20–39 Low quality (uncomfortable), minimal pedestrian comfort facilities. 

E 1–19 Lowest comfort quality (unpleasant). 

F 0 No standard pedestrian amenities (very uncomfortable). 

 

For thermal comfort, we selected PET for its various benefits in outdoor urban spaces 

 PET was applied and approved in multiple urban areas with detailed shading 

design; precise averages for thermal environments were thus obtained [27,28, 

30,31]. 

 PET was compared and related to the mean thermal sensation vote (MTSV) 

scale across multiple climatic zone classifications [24,55,69,83–85] and used 

for improving outdoor thermal comfort ratings in hot and cold climates. 

 PET was validated in different climatic zones using multiple field surveys 

based on population responses [25,33,55,76], which makes it reliable.PET was 

legally approved as a human biometeorological climate assessment tool for 

urban and regional planning, according to the German standard VDI 3787 

(VDI,1998) [55]. 

 PET was calculated using software packages (e.g., RayMan, ENVI-met) and 

considering climatic/microclimatic data (air temperature, relative humidity, 

wind speed, average radiant temperature). 

 PET had been explored and proved at the street level [55,24,86,58,71], and 

correlated to the pedestrian thermal comfort term. 

We validated the relevance of the listed indicators and thermal comfort within the 

Csa using the method described below. 
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3.4. Data collection 
 

The selected indicators were the subject of two specific questionnaires for data 

collection: the first focused on the importance of comfort design features at the 

neighbourhood micro scale, and the second included the participants’ evaluation of each 

indicator. 

The climate data (air temperature, relative humidity and wind velocity) were acquired 

from the Annaba weather records 2017 on two representative summer days (18 July and 8 

August 2017) when air temperatures and the relative humidity reach their peak. 

3.5. Process indicator evaluation 

3.5.1. Pedestrian comfort facility coefficients and scores 
 

The first questionnaire evaluates the importance of 21 indicators at the neighbourhood 

micro-scale level using a five-point Likert scale ranging from 1 (least important) to 5 (very 

important). In total, 330 respondents from different cities in Algeria including Annaba 

answered the first questionnaire using an online platform. The outputs of this questionnaire 

are used to generate the relative coefficient for each comfort indicator (Cis). The second 

questionnaire (282 respondents) assesses the scores of the selected factors (Sis), using a 

simple random sampling technique. The randomised information allowed us to define the 

respondents’ characteristics (e.g., sex, age, residential origin), while participants evaluated 

each indicator using a scale ranging from 0 (awful) to 4 (very good). 

3.5.2. Calculating and scoring PET 

3.5.2.1. Calculating PET 
 

This study used RayMan software to calculate PET values from 7 a.m. to 8 p.m. 

(every hour) on two representative summer days. This software, which was developed in 

accordance with guidelines of the German Engineering Society [87] at the University of 
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Freiburg, Germany, is regarded as one of the most reliable radiation and bioclimate models 

[24,55] to predict thermal comfort and has been approved for use in urban spaces and several 

climatic zones [29,34,36,59,84]. 

RayMan measures PET based on air temperature, air humidity, wind speed, mean 

radiant temperature, clothing and human activity. The period of the year, time of day and 

environmental obstacles allow the sky view factor (SVF) to be calculated. It can also be 

adjusted to account for other variables, such as the albedo of the surrounding surfaces, altitude 

and location, the Bowen ratio of the ground surface and the related air turbidity [30,55,56]. 

The software manufacturer recommends that for the assessment of thermal sensation, 

constants should be adjusted based on a man with a height of 1.75 m and a weight of 75 kg 

[24,66]. PET calculation is based on representative segments of each neighbourhood, with 

every street having a PET calculating point. The PET value in each neighbourhood is the 

average of the calculated points (Fig. 2). 

3.5.2.2. Scoring PET 
 

To score PET in a Csa, a scale from 0 to 1 was adopted according to the TSV defined 

in Tel Aviv, which is characterised by a Csa. The thermal comfort range that reflects a neutral 

sensation of the TSV classification is estimated at between 19°C and 25°C for winter, and 

between 20°C and 26°C in the summer [24]. For cold and hot and very hot the score of PET is 

0; for cool and warm, 0.25; for slightly cool and slightly warm, 0.5; and for the neutral 

thermal sensation, 1 (see Tables 3 and 4). 
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Table 3. Thermal sensation and PET range for Tel Aviv (Csa) [77,89,90]. 

TSV Thermal sensation 
PET range for Tel Aviv 

(°C) 

Tel Aviv climatic zone 

(Köppen classification) 

–4 Very cold – 

Csa 

–3 Cold 8 

–2 Cool 12 

–1 Slightly cool 15 

0 Neutral 19 

1 Slightly warm 26 

2 Warm 28 

3 Hot 34 

4 Very hot 40 
a
Subtropical (Csa)  ; TSV, thermal sensation vote scale. 

Table 4. PET scores according to thermal sensation and PET range in a Csa. 

PET range PET scores 

8–12°C 0 

12.1-15°C 0.25 

15.1–19°C 0.5 

19.1–26°C 1 

26.1–28°C 0.5 

28.1–34°C 0.25 

34.1–40°C 0 

 

3.6. Case study 
 

The field study was conducted in the city of Annaba, Algeria (36°54N, 7°46E; +5 m 

above sea level) with a population of 640,050 (National Office of Statistics, 2008). Annaba is 

characterised by a hot-summer Mediterranean climate (Csa) according to the Köppen [91] 

classification. In the 2015–2019 period, the air temperature varied from 12°C to 22°C 

(maximum) and 4°C to 11°C (minimum) in winter, and the maximum summer air temperature 

varied from 26°C to 36.5°C. The minimum summer temperature varied from 15°C to 24°C. 

The Colonial Centre and the Old Town (Medina) are located in Annaba city centre, and they 

are rated as the most walkable neighbourhoods (66% and 64% walking scores, respectively, 

based on [92]). In addition, a dense commercial area means that the city centre plays a 

significant role. 
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PET calculation is based on representative segments of each neighbourhood according 

to the following criteria: street hierarchy, street width, standard sidewalks, slight slope, the 

height of buildings, street orientation, street length, and vegetative species and their 

distribution. 

 

 

Source: PDAU Annaba, 2004 

Fig 2 Selected streets at Colonial Center and Old Town in Annaba city centre. 
 

4. Results 
 

Distinct neighbourhoods regardless of their characteristics can be evaluated using the 

CWI model, as the indicators and standards are from leading models and current research. We 

studied two areas to test the CWI model; the PET values of each neighbourhood are taken 

from average PET values of selected streets. 
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4.1. Pedestrian comfort facility coefficients and scores 
 

Table 5 shows the results of coefficients and scores at the neighbourhood micro scale. 

Each neighbourhood had four representative streets characterised by their length varying 

between 230 m and 510 m in the Colonial Centre, and between 116 m and 428 m in the Old 

Town along different orientations: North, South, East, West, North-west–South-east and 

North-east–South-west. The selected streets in each neighbourhood were used to get the 

neighbourhood representative PET based on street computing point. In total, 21 pedestrian 

facilities in addition to thermal comfort were tested at the neighbourhood micro scale. 

According to the survey results, 95% of the indicators were considered very important 

and necessary, with coefficients of 0.80–0.93 and 0.67–0.77, respectively (e.g., landscaping 

and trees, footpath pavement ramps, pedestrian signals, footpath width, slope); the exception 

was one indicator (rubbish bins) that was viewed as less critical (coefficient of 0.32). The 

perception of participants varied from very good, good, some problems, many problems to 

awful, with respective scores of 0.79, 0.52–0.65, 0.4–0.47, 0.2–0.39 and 0.14–0.18. The 

scores for the Colonial Centre were higher than those for the Old Town (Fig. 3). 

Most of the pedestrian facilities in the Colonial Centre scored highly, indicating their 

pleasant condition (0.60-0.79) (e.g., benches and seating areas, slope, social spaces, 

landscaping and trees, footpath pavements), although there were some exceptions (facilities 

such as lighting, ramps). In contrast, few indicators were estimated as good in the Old Town, 

with the highest score assigned to shade. Most pedestrian facilities received low scores of 

0.18–0.23 (e.g., benches and seating areas, footpath width, landscaping and trees, ramps, 

parks, spaces for playing) reflecting their awful condition (Table 5). 

Analysis of the comfort indicator scores in the Colonial Centre shows that PET values 

achieved both the maximum score of 1 and the lowest score of 0, compared with pedestrian 

comfort facilities where benches and seating areas earned the highest score of 0.79 versus 
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ramps, which were evaluated with the lowest score of 0.2 (Fig. 4). In the Old Town, PET 

values also achieved both the maximum score of 1 and the lowest score of 0, compared with 

shade, with a score of 0.54, and toilets, with a score of 0.14 (Fig. 5). 
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Table 5. Scores and coefficients of walkability comfort indicators in two selected areas. 1 

N: North, S: South, E: East, W: West, NW/SE: North-west/South-east, NE/SW: North-east/South-west. 2 

 3 

 4 

 Colonial Centre neighbourhood Old Town neighbourhood 

 Street 1 Street 2 Street 3 Street 4 Street 5 Street 6 Street 7 Street 8 

Orientation NE/SW E/W N/S NW/SE N/S E/W NE/SW NW/SE 

Street length 510 m 435.43 m 410.26 m 230.46 m 427.66 m 239.21 m 115.84 m 163.96 m 

Indicators Coefficient Average scores at Colonial Centre Average scores at Old Town 

Landscaping and trees 0.93 0.62 0.23 
Footpath pavement 0.92 0.6 0.25 

Parks and spaces for playing 0.85 0.52 0.18 
Shade/thermal comfort 0.85 0.59 0.54 
Markings (crosswalk) 0.84 0.55 0.26 

Benches and seating areas 0.84 0.79 0.39 
Toilets 0.82 0.54 0.14 

Buffer and barriers (kerbs and furnishing zone) 0.80 0.52 0.25 
Social spaces (cafés) 0.80 0.62 0.47 

Sidewalk on both sides 0.80 0.59 0.33 
Ramps 0.77 0.2 0.18 

Mid-block crossings 0.76 0.38 0.21 
Pedestrian signals 0.76 0.59 0.43 
Width of footpaths 0.75 0.47 0.25 

Shorter crossing distances (kerb extension) 0.73 0.4 0.34 
Slower traffic speed 0.72 0.23 0.24 

Slope 0.71 0.65 0.41 
Lighting 0.69 0.34 0.2 

Fewer traffic lanes 0.68 0.46 0.28 
Standard driveways 0.67 0.37 0.22 

Furniture and facilities (rubbish bins) 0.32 0.61 0.51 
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 5 

Fig.  3. Comparison of the pedestrian comfort indicators scores in the two selected neighbourhoods. 6 

 7 

 8 

Fig. 4. Scores for pedestrian facilities and PET values in the Colonial Centre on two representative 9 

summer days 10 

 11 
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 13 

 14 

Fig. 5. Scores for pedestrian facilities and PET values in the Old Town on two representative summer 15 

days 16 

4.2. PET values and scores in the two neighbourhoods 17 

 18 

PET1 and PET2 are the PET values in the Colonial Centre on 18 July and 8 August 19 

2017, respectively; PET3 and PET4 are those in the Old Town on the same dates, 20 

respectively. 21 

PET1–PET4 values indicate hourly differences. Table 6 summarises the PET values 22 

for the representative summer days (7 a.m. – 8 a.m.) according to the TSV in a Csa. Figure 6 23 

shows that PET1 and PET3 values are similar at the same hours of the day. The highest score 24 

is 1 at 7 a.m., which means that the thermal sensation is neutral; from 8 a.m. to 5 p.m., the 25 

score is 0, reflecting a thermal perception of hot or very hot; at 6 .p.m. the PET value is 0.25, 26 

indicating a thermal perception of warm. Between 7 p.m. and 8 p.m., there is a slightly warm 27 

thermal sensation, with a score of 0.5 (Table 6). 28 

Figure 6 also shows that PET 2 and PET 4 scores are similar at the same hours of the 29 

day. The highest score is 1 at 7 a.m., indicating a neutral thermal sensation. However, at 8 30 
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a.m., there are two PET scores of 1 and 0.5, indicating differing thermal perceptions, one 31 

neutral and the other slightly warm, respectively. At 9 a.m. and 7 p.m., the value of 0.25 32 

indicates a warm thermal sensation. Between 10 a.m. and 6 p.m., the PET score is 0, 33 

indicating a hot or very hot thermal perception (Table 6). 34 

 35 

Fig. 6. Changes in PET values in the two selected areas on the two representative summer days. 36 

Table 6.PET scores according to the TSV scale in a Csa. 37 

Date/Time Colonial Centre Old Town Date/Time Colonial 

Centre 

Old Town 

18 July 17 PET1 Score PET3 Score 08-08-17 PET2 Score PET4 Score 

7 a.m. 20.5 1 21 1 18 1 1 18 1 

8 a.m. 35.3 0 35.6 0 26.8 0.5 0.5 27.7 0.5 

9 a.m. 38.8 0 41 0 34 0.25 0.25 32.6 0.25 

10 a.m. 42.3 0 43.1 0 41 0 0 43.5 0 

11 a.m. 51 0 51 0 47.4 0 0 48.5 0 

12 p.m. 49.5 0 49.4 0 51 0 0 51.1 0 

1 p.m. 40.7 0 40.6 0 46.7 0 0 46.8 0 

2 p.m. 38 0 37.9 0 43.5 0 0 43.9 0 

3 p.m. 44.1 0 44.5 0 40 0 0 40.2 0 

4 p.m. 44.9 0 44.5 0 36.8 0 0 36.9 0 

5 p.m. 36.9 0 36.8 0 37.7 0 0 36.9 0 

6 p.m. 32.6 0.25 32.5 0.25 35.3 0 0 35.4 0 

7 p.m. 27.9 0.5 27.8 0.5 29.8 0.25 0.25 30 0.25 

8 p.m. 26.5 0.5 26.4 0.5 23.6 1 1 23.5 1 

 38 
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4.3. The CWI 42 
 43 

We used Equation (1) to calculate the CWI in the two selected areas on the two 44 

representative summer days (18 July and 8 August 2017). Our estimated model explains the 45 

contributions of thermal comfort and pedestrian facilities to a pleasant walking experience. 46 

The highest CWI value was 40.95% in the Colonial Centre on both representative days 47 

at 7 a.m. (Fig. 7), when the thermal sensation was neutral, defining a rarely acceptable 48 

average comfort quality that necessitates improvements (Table 1). The minimum CWI value 49 

was 37.09%, that is, a hot thermal sensation, which indicated an uncomfortable walking 50 

experience. CWI reached new scores (38% and 39%) when the thermal perception was warm 51 

and slightly warm, respectively, with a lower classification which reflected uncomfortable 52 

conditions and low comfort quality (Fig. 7). 53 

For the Old Town, the recorded scores were lower than for the Colonial Centre. The 54 

highest CWI value was 25.23% at 7 a.m. when the thermal sensation was neutral, illustrating 55 

uncomfortable comfort conditions and minimal pedestrian facilities. CWI reached its 56 

minimum value (21.45%) when the thermal perception was hot, with increasing scores 57 

(22.32% and 23.36%) with a warm and slightly warm thermal sensation (Fig. 8). Despite 58 

these reported differences in thermal sensation, the CWI remained between 20% and 39%, 59 

which indicates a low comfort quality level and needed improvements. 60 

The results also showed that the CWI scores were almost identical over the two days, 61 

although thermal perception differed marginally depending on the time of day. For example, 62 

on 8 August, a neutral thermal sensation was recorded at 7 a.m. and 8 a.m., compared with 63 

only at 7 a.m. on 18 July, giving the highest CWI value in both neighbourhoods (40.95% vs 64 

25.23%). The minimum CWI ratings (37.09% and 21.36%) occurred from 10 a.m. and 65 

remained constant until 6 p.m. on 8 August, compared with from 9 a.m. to 5 p.m. on 18 July, 66 

with a hot thermal sensation (Fig. 9). 67 
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 68 

CWI 1: Comfort Walkability Index in Colonial centre, CWI3 Comfort WalkabikityIndex in Old Town. 69 

 70 

Fig. 7. Changes in CWI in the two neighbourhoods on 18 July 2017. 71 

 72 

CWI2: Comfort Walkability Index in Colonial centre,CWI4 Comfort WalkabikityIndex in Old Town. 73 

Fig. 8. Changes in CWI in the two neighbourhoods on 8 August 2017. 74 

 75 
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 78 

CWI 1: Comfort Walkability Index in Colonial centre, CWI3 Comfort Walkability Index in Old Town. (18/07/2017). 79 

CWI2: Comfort Walkability Index in Colonial centre, CWI4 Comfort Walkability Index in Old Town. (08/08/2017). 80 

Fig. 9. Changes in CWI in the two neighbourhoods on the two representative summer days. 81 

5. Discussion   82 

While most existing assessment tools evaluate sidewalks at the street level, few studies 83 

have examined sidewalks at the neighbourhood scale. The proposed model presents an easy-84 

to-follow method for the assessment of walkability comfort indicators on the neighbourhood 85 

micro scale. 86 

5.1. Coefficients and scores of pedestrian comfort facilities 87 
 88 

As revealed by the survey, landscaping and trees were estimated as the most 89 

significant indicator for respondents of the questionnaire (0.93), which highlighted their role 90 

in providing pleasant and attractive streets [1,8], with a shady environment and landscaped 91 

views [12], thereby promoting rain infiltration and improving the local microclimate [44], as 92 

well as enhancing pedestrian safety [8,14,22,93]. Shade, parks and spaces for playing were 93 

also rated as very important in providing relaxation areas for inhabitants. 94 
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Furthermore, these characteristics improve the attractiveness and security of walkways 95 

[44,94–96], enhancing well-being, comfort and health. Our results are also consistent with 96 

those of Aghaabbasi et al.[8], which emphasised the contribution of seating areas and benches 97 

to the attractiveness of sidewalks, and the convenience and comfort for pedestrians [97], 98 

especially for improved access for people with disabilities [48]. Moreover, these indicators 99 

can be considered as fundamental factors that affect pedestrian safety [35,98]. Mid-block 100 

crossings, slope and slower traffic speed are also considered important indicators because 101 

their absence generates an unpleasant effect on comfort and safety. Pedestrian signals had a 102 

weighting of 0.76, which shows that they are a principal comfort indicator that ensures 103 

usability and safety [35]. 104 

Another important walkability indicator is path width, with a weighting of 0.75; 105 

clearly, path width can affect the comfort, attractiveness and safety of the walking experience 106 

[7,8]. However, some sidewalk features, such as lighting, fewer traffic lanes and standard 107 

driveways with a weighting of 0.67–0.71 drew less attention than other comfort indicators. 108 

Rubbish bins had the lowest weighting of 0.32. 109 

The scores for each neighbourhood are related to people’s perception of the area. 110 

Notably, the obtained scores corroborate that these perceptions are in line with actual 111 

conditions. For instance, in the Colonial Centre, furniture and facilities, rubbish bins, 112 

footpaths, sidewalks on both sides and pedestrian signals have high scores because this area is 113 

well maintained by the local authorities as a popular tourist location. The Colonial Centre also 114 

has a sufficient number of sitting areas and benches, social spaces (cafés), landscaping and 115 

trees, and shade (courts and squares), all of which are essential for the pedestrian comfort 116 

level. The Old Town scores are lower than the Colonial Centre for all comfort indicators 117 

except for slower traffic speed (Table 5). Owing to the layout of the medieval neighbourhood 118 

of the Old Town, with its twisting, irregular streets, vehicles in the area tend to respect speed 119 
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limits. As presented in Table 3, the TSV considered in the summer period was varying 120 

between neutral, slightly warm, warm, hot and very hot. 121 

Our analysis shows that PET values vary depending mainly on the time of day on the 122 

two representative days. The highest CWI values were neutral, for the lowest category of 123 

thermal sensation, followed by slightly warm and warm. The lowest CWI values were hot and 124 

very hot, for the highest category of thermal sensation. 125 

The highest CWI values represent a neutral thermal sensation, which is considered an 126 

acceptable thermal comfort satisfaction level [60] during the summer period. Moreover, a 127 

neutral temperature is always related to a comfortable feeling [55]. The changes in the CWI 128 

during the two representative days in each neighbourhood reflect their dependence on the 129 

user’s thermal sensation and comfortable weather conditions. Our findings are supported by 130 

those of Cohen et al. [89] and Givoni et al. [52], and confirm the importance of the climatic 131 

conditions in outdoor urban spaces and highlight their impact on quality of life and well-being 132 

in cities. Thus, a neutral thermal sensation characterises the recommended walking hours in 133 

the summer season (18<PET<23.6), followed by a slightly warm (26.8<PET<27.9) and a 134 

warm (29.8<PET<34) thermal sensation. In contrast, hot and very hot thermal sensations 135 

(35.3<PET<51) can be taken as uncomfortable walking conditions. It is of note that urban 136 

greening reduces daytime heat in the outdoor environment, and provides large areas of shade 137 

from tree canopies [85], thereby promoting walking even in the hot hours of the day. 138 

To our knowledge, this study is the first to evaluate the walkability comfort level by 139 

including thermal comfort indices. The CWI tool has been developed to assess the standard 140 

pedestrian comfort features in neighbourhoods together with PET in a Csa. Comfort facilities 141 

and the thermal comfort of pedestrians encourage inhabitants to walk, thereby contributing to 142 

a healthy life. Moreover, the CWI indicated a good match with the real-life conditions in the 143 

two study areas. 144 
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6. Conclusion 145 

Application of these comfort indicators can lead to enhancing comfort quality and may 146 

allow people to have a more pleasant walking experience in an urban environment. The CWI 147 

model would also help municipalities to improve the quality of life and contribute to 148 

increasing sustainable development strategies and health promotion. Our assessment tool 149 

indicated a strong correlation with the current real-life conditions of the two neighbourhoods 150 

studied, thereby confirming its reliability and reflecting the model-based performance. The 151 

model proposed in this study was applied to two different neighbourhoods in the city of 152 

Annaba, Algeria, by considering their distinct types of streets beside the suitability of 153 

considering PET as a thermal comfort indicator.PET was validated during different hours of 154 

the day considering air temperature, wind speed and relative humidity.CWI model is a 155 

relevant tool for the assessment of walkability including thermal comfort in different 156 

neighbourhood microscale level. In its initial design, this tool included a number of comfort 157 

indicators that were appropriate for all categories of users, such as slope, slower traffic speed, 158 

shorter crossing distances (kerb extensions) and ramps. However, there were some specific 159 

comfort indicators (e.g., drinking fountains, tactile pavements, skybridge lifts) that were not 160 

appropriate for the selected neighbourhoods due to their rare presence. Including potential 161 

thermal comfort indices such as the mean radiant temperature (Tmrt) at the street scale allowed 162 

for enhanced precision with respect to PET values. Finally, using this model in other cities 163 

characterised by Csa or other climatic contexts represents a potential direction for future 164 

research. Exploring additional requirements on street level, such as microclimate 165 

measurement, shade or the UTCI index may provide an interesting alternative to evaluate 166 

thermal comfort effect on walkability as physical activity and provide additional comparative 167 

analysis for future research.  168 

 169 
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