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HIGHLIGHTS

 Chronic stroke patients, in comparison to (sub)acute patients, benefitted most from adjuvant 

tDCS.

 Application of anodal, cathodal, or bihemispheric tDCS during conventional therapy led to greater 

improvements than application before conventional therapy.

 Higher charge density, current density and stimulation duration led to greater improvements, 

while increasing the number of sessions did not.
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ABSTRACT

Objective: To systematically review how patient characteristics and/or transcranial direct current 

stimulation (tDCS) parameters influence tDCS effectiveness in respect to upper limb function post-

stroke.

Methods Three electronic databases were searched for sham-controlled randomised trials using the 

Fugl-Meyer Assessment for upper extremity as outcome measure. A meta-analysis and nine subgroup-

analyses were performed to identify which tDCS parameters yielded the greatest impact on upper limb 

function recovery in stroke patients. 

Results Eighteen high-quality studies (507 patients) were included. tDCS applied in a chronic stage 

yields greater results than tDCS applied in a (sub)acute stage. Additionally, patients with low baseline 

upper limb impairments seem to benefit more from tDCS than those with high baseline impairments. 

Regarding tDCS configuration, all stimulation types led to a significant improvement, but only tDCS 

applied during therapy, and not before therapy, yielded significant results. A positive dose-response 

relationship was identified for current/charge density and stimulation duration, but not for number of 

sessions. 

Conclusion Our results demonstrate that tDCS improves upper limb function post-stroke. However, its 

effectiveness depends on numerous factors. Especially chronic stroke patients improved, which is 

promising as they are typically least amenable to recovery. 

Significance The current work highlights the importance of several patient-related and protocol-

related factors regarding tDCS effectiveness. 

KEYWORDS: Transcranial direct current stimulation; Stroke; Upper limb; Motor recovery; Review; 

Meta-analysis.
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1. INTRODUCTION

Stroke or cerebrovascular disease is one of the leading causes of mortality and disability worldwide 

(Johnson et al., 2019, Virani et al., 2020). As more and more people survive a stroke (Feigin et al., 2014), 

the importance of rehabilitation is ever-increasing. While an enormous range of disabilities can be 

present post-stroke, motor disabilities are the most common (Adamson et al., 2004, Lawrence et al., 

2001). Mainly the upper limb (UL) is affected with a prevalence of approximately 77% (Lawrence et al., 

2001). Moreover, thirteen hours post-stroke, mild to severe paresis of the arm and hand is present in 

approximately 70% of patients (Nakayama et al., 1994), and only 5 to 20% achieve complete motor 

recovery of the initial UL impairment (Hendricks et al., 2002, Jørgensen et al., 1995, Kwakkel and 

Kollen, 2013). Although conventional therapies (e.g., strength training (Eng, 2004) and constraint-

induced movement therapy (Taub and Uswatte, 2000, Wolf et al., 2006)) provide good recovery, their 

effectiveness is limited, as complete restoration of UL function seems unachievable (Byblow et al., 

2015, Hendricks et al., 2002, Kwakkel and Kollen, 2013, Verheyden et al., 2008). Indeed, even in high-

functioning stroke patients, deficits in UL kinematics remain present (Thrane et al., 2018). 

Non-invasive brain stimulation (NIBS) appears to be a valid candidate to further improve recovery, 

adjunctive to conventional therapy. Through its effect on neuroplasticity processes, NIBS is suggested 

to potentially improve neurorecovery post-stroke (Liew et al., 2014). From a therapeutic-research 

point of view, transcranial direct current stimulation (tDCS) seems to be an interesting form of NIBS. 

Firstly, tDCS can easily be applied simultaneously with other therapies (Alisar et al., 2020, Bolognini et 

al., 2011, Chew et al., 2020, Liao et al., 2020), which is crucial since a combined NIBS-therapy approach 

generally leads to better results (Barros Galvão et al., 2014, Marquez et al., 2015, O'Brien et al., 2018, 

Rubi-Fessen et al., 2015). Secondly, tDCS is cheap and safe to apply, and well-tolerated (Aparicio et al., 

2016, Bikson et al., 2016, Brunoni et al., 2011, Poreisz et al., 2007, Stagg and Nitsche, 2011). Thirdly, 

tDCS allows for placebo-controlled double-blind studies. Several studies have shown that subjects 

cannot reliably discriminate between tDCS and sham tDCS (StDCS) (Gandiga et al., 2006, Ghasemian-

Shirvan et al., 2020, Ney et al., 2021, Saldanha et al., 2020). In addition, tDCS has been widely used in 

a multitude of (clinical) applications, mostly in the domain of neurological disorders (Bai et al., 2019, 

Byeon, 2020, da Silva et al., 2020, Mishra and Thrasher, 2020, Pilloni et al., 2020, Viana et al., 2014). 

tDCS can induce (long-term) neuroplastic effects (Fritsch et al., 2010, Hattori et al., 1990, Islam et al., 

1995, Liew et al., 2014, Monte-Silva et al., 2013, Nitsche et al., 2008, Nitsche et al., 2003), promote 

motor learning (Cuypers et al., 2013, Firouzi et al., 2020, Fritsch et al., 2010, Márquez-Ruiz et al., 2012, 

Masoudian et al., 2020, Takeuchi and Izumi, 2012), and influence regional cerebral blood flow 

(Peruzzotti-Jametti et al., 2013, Wachter et al., 2011, Workman et al., 2020, Zheng et al., 2011). In a 

standard paradigm, a low continuous current of 1mA – 2mA is provided from two 20 – 35cm² area 
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surface electrodes: an anode and a cathode (Arul-Anandam et al., 2009, Liew et al., 2014, Nitsche et 

al., 2008). This results in the modulation of the underlying brain regions (Liew et al., 2014, Nitsche and 

Paulus, 2000, 2001). In general, the anode has been suggested to increase cortical excitability, whereas 

the cathode has been suggested to decrease cortical excitability (Nitsche and Paulus, 2000, 2001). This 

hypothesis, however, seems to be an oversimplification, as factors such as stimulation intensity and 

stimulation duration can diminish or even reverse the effects of anodal and cathodal tDCS (Agboada 

et al., 2019, Batsikadze et al., 2013, Hassanzahraee et al., 2020, Jamil et al., 2017, Mosayebi Samani et 

al., 2019, Vignaud et al., 2018). 

In stroke patients, tDCS is generally applied in the context of the interhemispheric competition model. 

This model states that post-stroke, the overactive unaffected hemisphere yields an inhibitory influence 

over the underactive affected hemisphere (Bütefisch et al., 2008, Di Pino et al., 2014, Hummel and 

Cohen, 2006, Murase et al., 2004, Nowak et al., 2009, Rehme et al., 2012, Schjetnan et al., 2013, 

Schlaug and Renga, 2008). This leads to the ipsilesional hemisphere not only being disabled due to the 

stroke-induced tissue damage but also due to excessive interhemispheric inhibition (Bütefisch et al., 

2008, Di Pino et al., 2014, Murase et al., 2004). On this basis, tDCS can serve as a means to either 

increase ipsilesional cortical excitability through anodal stimulation, to decrease contralesional cortical 

excitability through cathodal stimulation, or to do both through a bihemispheric electrode montage 

(Bai et al., 2019, Hummel and Cohen, 2006, Schjetnan et al., 2013, Schlaug and Renga, 2008). However,  

the interhemispheric competition model has fallen into dispute, as evidence suggests that both M1 

excitability in the unaffected hemisphere and interhemispheric inhibition were similar in healthy 

controls and both acute, and chronic stroke patients (McDonnell and Stinear, 2017, Stinear et al., 

2015). The more recent bimodal balance recovery model (Di Pino et al., 2014) postulates that 

applicability of the interhemispheric competition model depends on the amount of structural reserve 

a patient has; more specifically, the integrity of the corticospinal tract in the affected hemisphere 

(Harris-Love and Harrington, 2017). This model states that in severely affected patients, functional 

recovery is achieved by means of substitution of the affected hemisphere by the unaffected 

hemisphere (Di Pino et al., 2014, Duyckaerts and Litvan, 2008, Harris-Love and Harrington, 2017, 

Sankarasubramanian et al., 2017, Slavin et al., 1988).

As tDCS has sparked the interest of many researchers throughout the years, it should come as no 

surprise that numerous researchers have assessed its effectiveness regarding UL rehabilitation post-

stroke. Likewise, numerous reviews and meta-analyses of the topic exist (Bai et al., 2019, Butler et al., 

2013, Chhatbar et al., 2016, Elsner et al., 2017, Lefebvre and Liew, 2017, Lüdemann-Podubecká et al., 

2014, Nowak et al., 2010, Triccas et al., 2016). While some conclude that tDCS as adjunctive therapy in 

UL rehabilitation is promising (Butler et al., 2013, Chhatbar et al., 2016, Lüdemann-Podubecká et al., 
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2014, Nowak et al., 2010), others report a non-significant effect (Elsner et al., 2017, Triccas et al., 2016). 

The most recently available meta-analysis was conducted by Bai et al. (2019) and summarised studies 

published up until 2018. Since then, numerous novel studies have appeared (Alisar et al., 2020, 

Beaulieu et al., 2019, Bornheim et al., 2020, Chew et al., 2020, Edwards et al., 2019, Iodice et al., 2020, 

Jin et al., 2019, Liao et al., 2020, Mazzoleni et al., 2019, Yao et al., 2020). Furthermore, the work of Bai 

et al. (2019) did not evaluate the effect of factors such as sequence of stimulation, charge density and 

baseline impairment. However, these factors are known to influence tDCS efficacy (Chhatbar et al., 

2016, Jin et al., 2019, Lefebvre and Liew, 2017, Marquez et al., 2015, Sriraman et al., 2014). The review 

of Lefebvre and Liew (2017) provides a compelling overview of numerous parameters [i.e., patient 

characteristics (biological factors, time after stroke, location and nature of lesion, and baseline 

impairment); therapy content; electrode placement; tDCS montage] that can influence the effect of 

tDCS. 

The current work aims to identify if tDCS improves post-stroke UL function. Moreover, it intends to 

unravel whether and how the effectiveness of tDCS relates to patient characteristics (stroke stage and 

baseline impairment), tDCS configuration (stimulation type, stimulation sequence and target region), 

and/or dose-related parameters (current density, charge density, stimulation duration, and the 

number of sessions). Although there is evidence that all of these factors influence tDCS effectiveness, 

consensus is lacking (Bai et al., 2019, Chhatbar et al., 2016, Lefebvre and Liew, 2017, Marquez et al., 

2015). Only high-quality sham-controlled randomised trials will be included in the current analysis to 

maximise the value and interpretability of the results Furthermore, only studies using the Fugl-Meyer 

Assessment for upper extremity (FMA-UE) (Fugl-Meyer et al., 1975) as outcome measure will be 

analysed. Not only is the FMA-UE the most used outcome measure post-stroke and considered the 

gold standard for measuring post-stroke UL function, the inclusion of solely one outcome measure will 

benefit the interpretability of the current work (Baker et al., 2011, Chhatbar et al., 2016, Kwakkel et 

al., 2017, Santisteban et al., 2016). 

2. METHODS

2.1. Search methods

This meta-analysis was conducted according to the Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses (PRISMA) Statement (Moher et al., 2009). Three electronic databases (Embase, 

PubMed and Web of Science) were consulted to answer the following question: “Does tDCS improve 

UL function post-stroke, measured by the FMA-UE, in comparison to sham treatment”. Search terms 

were modified for each database and are displayed in Table 1. The last search was undertaken on 

October 30th, 2020. All duplicate studies were removed. Three researchers (EB, LV and SVH), conducted 
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the literature search independently. All studies were screened based on title and abstract. 

Subsequently, the full-texts of the remaining articles were retrieved and screened for eligibility (cf., 

2.2. Eligibility criteria). Disagreements between the researchers were resolved via a consensus-based 

discussion. 

2.2. Eligibility criteria

Studies included in this systematic review had to meet the following inclusion criteria: (i) the study was 

a randomised controlled trial, in which the control group received sham therapy; (ii) the applied 

intervention consisted of solely tDCS or tDCS in combination with an additional intervention (e.g., 

constraint-induced movement therapy, strength training); (iii) the included population had suffered a 

stroke and presented with UL impairment; (iv) the FMA-UE was reported as an outcome measure; (v) 

studies were written in English. Studies were excluded if: (i) other forms of NIBS were applied in 

combination with tDCS; (ii) the study was a cross-over study; (iii) full-text or essential information, such 

as p-values, baseline and post-intervention FMA-UE score and standard deviation (SD), was missing 

and could not be retrieved after contacting the corresponding author. 

2.3. Data extraction

Data were extracted by three researchers (EB, LV and SVH), using a standardised data extraction form 

(Nancy, 2010). Information regarding study design, number of participants, patient characteristics 

(stroke stage and baseline impairment), tDCS configuration (stimulation type, stimulation sequence 

and target region), dose-related parameters (current density, charge density, stimulation duration and 

number of sessions), and results (FMA-UE outcome and significance) were documented. For further 

statistical analysis of the FMA-UE score, the mean difference (MD) and SD between pre- and post-

intervention for each group (i.e., tDCS and StDCS) were extracted from each study. When the MD and 

SD were not reported, available data was used to calculate them. 

2.4. Quality assessment

The methodological quality of each included study was assessed by three independent researchers 

(EB, LV and SVH), using two different assessment tools. (i) The PEDro scale (Blobaum, 2006) assessed 

the internal validity of studies (Maher et al., 2003). Consisting of 11 items, this scale awards one point 

when a criterion is fulfilled. Since the first item is not included in the total result, a study can maximally 

score 10/10, which indicates high methodological quality. Studies were excluded when scoring ≤ 6/10. 

(ii) The Cochrane Collaboration’s tool for assessing the risk of bias evaluated the risk of bias across the 

studies included in the review (Higgins et al., 2011). The tool consists of seven items, each evaluating 

a subtype of bias. The total risk of bias per item can be either ‘Low’, ‘Unclear’ or ‘High’. Studies were 

excluded if ‘High’ was scored on ≥ 2 items. 
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2.5. Data analysis

The effectiveness of tDCS vs StDCS was evaluated using the MD and SD of each group per study (cf., 

2.3. Data extraction). Data was analysed with R 4.0.2. (R Foundation for Statistical Computing, Vienna, 

Austria) and RStudio (RStudio Team, PBC, Boston), using the dmetar (version 0.0.9000) (Harrer et al., 

2019a) and meta (version 4.15-1) (Balduzzi, 2019) packages. A Random-Effects Model was applied to 

enable the generalisation of the results beyond the included studies (Borenstein et al., 2011, Cuijpers, 

2016, Harrer et al., 2019b, Hedges and Vevea, 1998). The effect size was expressed as the standardised 

MD (SMD), calculated in the Hedges’ g format (Hedges, 1981). This format was chosen as it controls 

for bias in small studies and is commonly used in meta-analyses (Borenstein et al., 2011, Chhatbar et 

al., 2016, Harrer et al., 2019b). Hedge’s g values of respectively < 0.2 – 0.5, 0.5 – 0.8 and > 0.8, were 

considered to be mild, moderate, and strong effects (Chhatbar et al., 2016; Cohen, 1988). A 95% 

confidence interval (CI) was calculated. Prediction intervals were calculated as well using formula 12 

of Higgins et al. (2009). This was done because CI’s do not incorporate a measure of the extent of 

heterogeneity, although this is important to correctly estimate effects in future patients (Higgins et al., 

2009, IntHout et al., 2016). Nine factors, bundled into three clusters (Fig. 1), were analysed using a 

Mixed-Effects-Model subgroup-analysis (Borenstein et al., 2011, Cuijpers, 2016, Harrer et al., 2019b, 

Hedges and Vevea, 1998). The first cluster, patient characteristics, consisted of two factors; stroke 

stage and baseline impairment. Factors in this cluster were divided into subgroups based on previous 

literature (Bernhardt et al., 2017, Woytowicz et al., 2017). The second cluster, tDCS configuration, 

consisted of three factors; stimulation type, stimulation sequence and target region. Factors in this 

cluster were divided into subgroups based on clear, demarcated differences. The third cluster, dose-

related parameters, consisted of four factors; current density, charge density, stimulation duration and 

number of sessions. As it was impossible to divide the factors in the third cluster into subgroups on the 

basis of previous literature or clear, demarcated differences, arbitrary ranges were used.

Between-study heterogeneity was estimated using Cochran’s Q and I² (Harrer et al., 2019b, Higgins 

and Thompson, 2002). I² values of respectively ~0.25, ~0.50 and ~0.75 were considered to indicate low, 

moderate and substantial heterogeneity (Higgins et al., 2003). In the general Random-Effects Model, 

studies inducing a large degree of heterogeneity were identified using three statistical procedures; (i) 

outlier detection (i.e., studies of which the 95% CI bound was lower/higher than the pooled 95% CI 

upper/lower bound) (Harrer et al., 2019b); (ii) a Baujat plot (i.e., plot displaying each individual study’s 

contribution to overall heterogeneity plotted against its contribution to the overall pooled result) 

(Baujat et al., 2002) and (iii) a graphical display of study heterogeneity (GOSH) (i.e., scatterplot 

displaying summary estimates of the SMD and I² for one million randomly selected meta-analyses 

(subsets), enabling investigation of heterogeneity and identification of influential studies) (Olkin et al., 
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2012). Identified studies were marked as outliers and were removed. The general Random-Effects 

model was reconducted to assess the robustness of the current findings (Higgins, 2008). Regarding 

subgroup analyses, the outlier-studies were retained as there was no clear way to evaluate if these 

effect sizes were attributable to coincidence or not and their removal could result in data manipulation 

(Higgins, 2008). Publication bias was assessed through a Contour-enhanced Funnel Plot (Peters et al., 

2008). In this plot, the effect size of each study is plotted against the standard error of the study (with 

larger studies having a smaller standard error) (Harrer et al., 2019b). If no publication bias is present, 

the plot resembles a symmetrical funnel shape (J. Light and B. Pillemer, 1986). The colours of the funnel 

plot aid interpretation as they signify in which significance level the effect sizes of each study fall 

(Peters et al., 2008). The Egger test was performed as a quantitative assessment of the funnel plot 

(a)symmetry (Egger et al., 1997). For all analyses, ɑ was set to 0.05.

3. RESULTS

3.1. Study selection and quality

The complete study selection procedure is displayed in Figure 2. Across the three electronic databases, 

632 results were retrieved. A total of 243 duplicate studies were removed, resulting in 389 studies that 

were screened for inclusion based on title and abstract. Out of those studies, 327 studies were 

excluded. The remaining 62 studies were assessed for eligibility based on the full-text and study 

quality, as evaluated by the PEDro scale and Cochrane Collaboration’s tool for assessing risk of bias. 

Finally, 18 high-quality, randomised sham-controlled studies were included in this meta-analysis, 

involving 507 stroke patients. Table 2 displays the characteristics of all included studies. Four studies 

were divided into sub-studies. These studies consisted of two experimental groups (with the groups 

differing regarding patient characteristics or tDCS protocols), and reported the FMA-UE score for each 

subgroup separately (Jin et al., 2019, Kim et al., 2010, Rocha et al., 2016, Triccas et al., 2015). Each sub-

study was included separately in the meta-analysis (Table 2). On average, studies scored 8.56 ± 0.76 

(mean ± SD) on the PEDro scale, indicating high internal validity (Table 3). Regarding the Cochrane 

Collaboration’s tool for assessing risk of bias (Fig. 3), risk of bias was either low or unclear but never 

high. 

3.2. Drop-outs

In total, 480 out of 507 subjects completed the intervention reported in the included studies. Twenty-

seven dropouts (i.e., 5.33%) were identified: 18 in the tDCS group and 9 in the StDCS group. In the tDCS 

group, reasons for drop-out were: death unrelated to treatment (1), refusal to continue (1), unrelated 

illness (4), headache (1), dizziness (1), skin reaction and pain (1), personal reasons (1) or not further 

specified (8). Reasons for drop-out in the sham group were: refusal to continue (2), unrelated illness 

(2), transfer to another hospital (2), technical failure (1) or not further specified (2).
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3.3. General effectivity of tDCS

The results of the Random-Effects meta-analysis show that the applied tDCS protocols in the different 

studies on average yielded a moderate effect on UL function (SMD = 0.64; 95% CI = 0.29 - 0.99; p < 

0.001; Fig. 4). Between-study heterogeneity was moderate to substantial (Cochran’s Q = 66.08 (p < 

0.01); I² = 68.2% [50.6% - 79.6%]). The prediction interval ranged from -0.79 to 2.07. Regarding the 

contour-enhanced funnel plot (Fig. 5A), some studies fell out of the shape of the funnel, with the study 

of Koh et al. (2017) deviating the most. Nonetheless, the studies were approximately uniformly 

distributed along the center line, as evaluated by the Eggers’ test (p = 0.142), indicating that there was 

no publication bias. Outlier detection identified two studies as the lower limit of their 95-CI exceeded 

the upper limit of the pooled 95%-CI; Bornheim et al. (2020) and Koh et al. (2017). The Baujat plot (Fig. 

5B) showed that these two studies (Bornheim et al., 2020, Koh et al., 2017) largely contributed to the 

degree of overall heterogeneity, while not influencing the overall pooled effect to a large degree. 

Moreover, the study of Edwards et al. (2019) was revealed to be an influential study; while it 

contributed to overall heterogeneity, it was also influential concerning the overall pooled effect (Baujat 

et al., 2002). GOSH plots (Fig. 5C – D) further confirmed that the studies of Bornheim et al. (2020) and 

Koh et al. (2017) were outliers. Therefore, the Random-Effects meta-analysis was reconducted without 

these studies (Fig. 5E). The improvement in FMA-UE remained significant in favour of the tDCS group 

(SMD = 0.57; 95% CI = 0.29 – 0.86; p < 0.001). The prediction interval ranged from -0.34 to 1.49. As 

expected, between-study heterogeneity decreased (Cochran’s Q = 36.04 (p = 0.01); I² = 47.3% [11.2% 

- 68.7%]). 

3.4. Cluster 1: Patient characteristics 

3.4.1. Stroke stage

Three subgroups were created based on stroke stage (Bernhardt et al., 2017); (1) acute (0 – 7 days), 

(2) subacute (7 days – 6 months) and (3) chronic stroke (> 6 months) (Fig. 6). Three studies (Alisar et 

al., 2020, Straudi et al., 2016, Yao et al., 2020) were not included in this subgroup analysis as they 

included both subacute and chronic stroke patients, and did not report separate outcome measures 

for each subgroup.  

Acute stroke 

Two studies were included in this subgroup. No significant difference between the tDCS and StDCS 

group was present (SMD = 1.19; 95% CI = -7.01 – 9.40; p = 0.065). Moreover, substantial between-

study heterogeneity was present (Cochran’s Q = 5.01 (p = 0.03); I² = 80% [14% - 95%]). 

Subacute stroke 
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Four studies were included in this subgroup. There was no significant difference between the tDCS and 

StDCS group (SMD = 0.14; 95% CI = -0.36 – 0.63; p = 0.444). Between-study heterogeneity was low 

(Cochran’s Q = 2.57 (p = 0.63); I² = 0% [0% - 68%]). 

Chronic stroke 

Ten studies were included in this subgroup. tDCS led to a moderate and significant improvement in 

FMA-UE in comparison to StDCS (SMD = 0.68; 95% CI = 0.10 – 1.25; p = 0.009). Between-study 

heterogeneity was moderate to substantial (Cochran’s Q = 37.34 (p < 0.01); I² = 71% [47% - 84%]). 

3.4.2. Baseline impairment

Three subgroups were created based on initial impairment (Woytowicz et al., 2017) (Table 2); (1) mild 

(FMA-UE score: 43 – 66), (2) moderate (FMA-UE score: 29 – 42) and (3) severe (FMA-UE score: 0 – 28) 

baseline impairment (Fig. 7). The mean baseline FMA-UE score was calculated for each study using the 

weighted-average of both the tDCS and StDCS group baseline values.

Mild baseline impairment (mean FMA-UE score ± SD: 49.20 ± 4.78) 

Six studies were included in this subgroup. A moderate, significant effect in favour of the tDCS group 

was noted (SMD = 0.60; 95% CI = 0.31 – 0.90; p < 0.001), and heterogeneity was low (Cochran’s Q = 

3.13 (p = 0.87); I² = 0% [0% - 27%]). 

Moderate baseline impairment (mean FMA-UE score ± SD: 36.68 ± 2.53) 

Eight studies were included in this subgroup. A moderate, significant effect in favour of the tDCS group 

was found (SMD = 0.69; 95% CI = -0.09 – 1.46; p = 0.036), and heterogeneity was moderate to 

substantial (Cochran’s Q = 33.29 (p < 0.01); I² = 79% [59% - 89%]). 

Severe baseline impairment (mean FMA-UE score ± SD: 24.83 ± 1.46) 

Six studies were included in this subgroup. There was no significant difference between the tDCS and 

StDCS group (SMD = 0.62; 95% CI = 0.53 – 1.77; p = 0.167), and heterogeneity was substantial 

(Cochran’s Q = 27.19 (p < 0.01); I² = 82% [61% - 91%]). 

3.5. Cluster 2: tDCS configuration

3.5.1. Stimulation type

Three subgroups were identified (Table 2); (1) placing the anode over the ipsilesional hemisphere and 

the cathode (i.e., the reference electrode) over/above the (supra)orbital region (anodal stimulation), 

(2) placing the cathode over the contralesional hemisphere and the anode (i.e., the reference 

electrode) over/above the shoulder region (Fusco et al., 2014) or the (supra)orbital region (Kim et al., 

2010, Rocha et al., 2016, Yao et al., 2020) (cathodal stimulation) and (3) placing the anode over the 

ipsilesional hemisphere and the cathode over the contralesional hemisphere (bihemispheric 

stimulation) (fig. 8). The study of Oveisgharan et al. (2018) was excluded from this analysis, as it 

combined bihemispheric and anodal stimulation (i.e., the tDCS group received bihemispheric 
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stimulation followed by anodal stimulation, the StDCS group received bihemispheric stimulation 

followed by sham stimulation (cf., 3.5.3. Target region)).

Anodal stimulation 

Eight studies were included in this subgroup. A moderate, significant effect in favour of the tDCS group 

was found (SMD = 0.52; 95% CI = -0.04 – 1.07; p = 0.033), and heterogeneity was moderate to 

substantial (Cochran’s Q = 28.33 (p < 0.01); I² = 72% [44% - 86%]).

Cathodal stimulation 

Four studies were included in this subgroup. A moderate, significant effect in favour of the tDCS group 

was present (SMD = 0.64; 95% = -0.05 – 1.33; p = 0.003), and heterogeneity was low (Cochran’s Q = 

2.45 (p = 0.48); I² = 0% [0% - 81%]). 

Bihemispheric stimulation 

Seven studies were included in this subgroup. A strong, significant effect in favour of the tDCS group 

was found (SMD = 0.84; 95% CI = -0.06 – 1.74; p = 0.027), and between-study heterogeneity was 

substantial (Cochran’s Q = 31.69 (p < 0.01); I² = 78% [56% - 89%]). 

3.5.2. Stimulation sequence

Two subgroups were identified based on stimulation sequence (Table 2); (1) applying tDCS during 

therapy (i.e., concurrent tDCS), and (2) applying tDCS before therapy (i.e., consecutive tDCS) (Fig. 9). 

Various therapy modalities were combined with tDCS (Table 2). The study of Oveisgharan et al. (2018) 

was excluded from this analysis, as it did not combine tDCS with additional therapy.

Concurrent tDCS 

Eleven studies were included in this subgroup. Overall, a moderate, significant effect in favour of the 

tDCS group relative to the StDCS group, was found (SMD = 0.79; 95% CI = 0.31 – 1.28; p < 0.001). 

Between-study heterogeneity was moderate to substantial (Cochran’s Q = 33.13 (p < 0.01); I² = 64% 

[34% - 80%]).

Consecutive tDCS 

Seven studies were included in this subgroup. There was no significant difference between the tDCS 

and StDCS group (SMD = 0.42; 95% CI = -0.26 – 1.09; p = 0.142). Between-study heterogeneity was 

substantial (Cochran’s Q = 28.76 (p < 0.01); I² = 76% [51% - 88%]). 

3.5.3. Target region 

Three subgroups were identified based on target region (Table 2); (1) tDCS targeting DLPFC, (2) tDCS 

targeting M1, and (3) tDCS targeting the dorsal premotor cortex (PMd) and supplementary motor 

cortex (SMA) (Fig. 10).

DLPFC 
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One study was included in this subgroup. Oveisgharan et al. (2018) applied bihemispheric stimulation 

over left and right M1hand in both the tDCS and the StDCS group. Following this, anodal stimulation was 

applied over left DLPFC in the tDCS group, and sham stimulation was applied over left DLPFC in the 

StDCS group (Oveisgharan et al., 2018). There was no significant difference between the tDCS and 

StDCS group (SMD = 0.51; 95% CI = -0.38 – 1.41; p = 0.262).

M1 

Sixteen studies were included in this subgroup. A moderate, significant effect in favour of the tDCS 

group was found (SMD = 0.65; 95% CI = 0.26 – 1.03; p < 0.001). Between-study heterogeneity was 

moderate to substantial (Cochran’s Q = 66.02 (p < 0.01); I² = 71% [55% - 82%]).

PMd & SMA 

One study was included in this subgroup. Cunningham et al. (2015) probed the effectivity of ipsilesional 

anodal tDCS over PMd and SMA. No significant difference between the tDCS and StDCS group was 

present (SMD = 0.67; 95% CI = -0.51 – 1.85; p = 0.263). 

3.6. Cluster 3: Dose-related parameters

3.6.1. Current density

Three subgroups were created based on current density (Table 2); (1) low (0.029 mA/cm²), (2) 

moderate (0.030 – 0.060 mA/cm²) and (3) high (> 0.060 mA/cm²) current density (Fig. 11). The current 

and electrode size used in each study is displayed in Table 2.

Low current density

Six studies were included in this subgroup. No significant difference between the tDCS and StDCS group 

was present (SMD = 0.31; 95% CI = -0.11 – 0.73; p = 0.086). Between-study heterogeneity was low 

(Cochran’s Q = 8.84 (p = 0.36); I² = 9% [0% - 68%]). 

Moderate current density (mean current density ± SD: 0.054 mA/cm² ± 0.007) 

Eight studies were included in this subgroup. A moderate, significant effect in favour of the tDCS group 

relative to the StDCS group was found (SMD = 0.75; 95% CI = -0.11 – 1.61; p = 0.040). Substantial 

between-study heterogeneity was present (Cochran’s Q = 44.6 (p < 0.01); I² = 84% [71% - 92%]). 

High current density (mean current density ± SD: 0.094 mA/cm² ± 0.017) 

Four studies were included in this subgroup. A strong, significant effect in favour of the tDCS group 

was found (SMD = 1.02; 95% CI = 0.29 – 1.76; p < 0.001). Low between-study heterogeneity was 

present (Cochran’s Q = 5.36 (p = 0.25); I² = 25% [0% - 70%]).

3.6.2. Charge density 

To determine the effect of charge density, three subgroups were created (Table 2); (1) low (< 0.05 

C/cm²), (2) moderate (0.05 – 0.1 C/cm²) and (3) high (> 0.1 C/cm²) charge density (Fig. 12). The electric 

charge and electrode size used in each study is displayed in Table 2.
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Low charge density (mean charge density ± SD: 0.032 C/cm² ± 0.010) 

Six studies were included in this subgroup. No significant difference between the tDCS and StDCS group 

was present (SMD = 0.52; 95% CI = -0.15 – 1.19; p = 0.065). Between-study heterogeneity was 

moderate to substantial (Cochran’s Q = 21.36 (p < 0.01); I² = 67% [31% - 84%]). 

Moderate charge density (mean charge density ± SD: 0.067 C/cm² ± 0.016) 

Eight studies were included in this subgroup. A mild but significant effect in favour of tDCS was found 

(SMD = 0.33; 95% CI = -0.02 – 0.67; p = 0.033). Between-study heterogeneity was low to moderate 

(Cochran’s Q = 14.14 (p = 0.12); I² = 36% [0% - 70%]). 

High charge density (mean charge density ± SD: 0.166 C/cm² ± 0.041) 

Four studies were included in this subgroup. A strong, significant effect in favour of the tDCS group 

was found (SMD = 1.58; 95% CI = 0.10 – 3.07; p < 0.001). Between-study heterogeneity was moderate 

to substantial (Cochran’s Q = 9.93 (p = 0.02); I² = 70% [13% - 90%]). 

3.6.3. Stimulation duration

Three subgroups were created based on stimulation duration per session (Table 2): (1) short (~10 

minutes), (2) moderate (20 minutes) and (3) long (30 minutes) stimulation duration (Fig. 13). 

Short stimulation duration (mean stimulation duration ± SD: 11.25 minutes ± 1.79) 

Three studies were included in this subgroup. No significant difference between the tDCS and StDCS 

group was present (SMD = 0.52; 95% CI = -0.38 – 1.42; p = 0.064). Between-study heterogeneity was 

low (Cochran’s Q = 3.01 (p = 0.39); I² = 0% [0% - 85%]). 

Moderate stimulation duration

Eight studies were included in this subgroup. No significant difference between the tDCS and StDCS 

group was present (SMD = 0.44; 95% CI = -0.08 – 0.96; p = 0.058). Between-study heterogeneity was 

moderate to substantial (Cochran’s Q = 33.03 (p < 0.01); I² = 73% [49% - 86%]). 

Long stimulation duration

Seven studies were included in this subgroup. A strong, significant effect in favour of tDCS was found 

(SMD = 0.96; 95% CI = 0.17 – 1.74; p < 0.001). Between-study heterogeneity was moderate to 

substantial (Cochran’s Q = 24.19 (p < 0.01); I² = 71% [40% - 86%]). 

3.6.4. Number of sessions

To evaluate the effect of session amount, three subgroups were created (Table 2): (1) low (5 to 12 

sessions), (2) moderate (15 – 24 sessions) and (3) high (30 – 36 sessions) session amount (Fig. 14).

Low session amount
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Ten studies were included in this subgroup. A moderate, significant effect in favour of the tDCS group 

relative to the StDCS group was present (SMD = 0.56; 95% CI = 0.18 – 0.94; p = 0.001). Between-study 

heterogeneity was low to moderate (Cochran’s Q = 19.14 (p = 0.09); I² = 37% [0% - 68%]). 

Moderate session amount

Six studies were included in this subgroup. tDCS yielded a strong, significant effect on FMA-UE score in 

comparison to StDCS (SMD = 1.07; 95% CI = 0.17 – 1.97; p = 0.004). Between-study heterogeneity was 

moderate to substantial (Cochran’s Q = 20.95 (p < 0.01); I² = 71% [38% - 87%]). 

High session amount

Two studies were included in this subgroup. A mild, significant effect in favour of the StDCS group was 

present (SMD = -0.16; 95% CI = -0.26 – -0.06; p < 0.001). Moreover, between-study variability was low 

(Cochran’s Q = 0 (p = 0.97); I² = 0%). 

4. DISCUSSION

Overall, the results of the current meta-analysis indicate that the applied tDCS protocols on average 

yielded a positive effect on UL function. All studies consisted of multiple sessions, as it seems unlikely 

that one session of tDCS leads to significant improvements in the FMA-UE score (Chhatbar et al., 2016). 

After removal of two positive outliers, this significant effect in favour of tDCS remained present, which 

underscores the robustness of the current findings. Moreover, a low risk of publication bias (as 

evaluated by the contour-enhanced funnel plot and Egger test), high study quality (as evaluated by the 

PEDro scale and the Cochrane Collaboration’s tool for assessing the risk of bias) and the use of the 

FMA-UE throughout all included studies maximise the interpretability of the current results. The 

prediction interval underscored the importance of the subgroup analyses: future studies should 

consider patient characteristics, tDCS configuration, and dose-related parameters when predicting the 

probability of success.

4.1. Cluster 1: Patient characteristics 

The current meta-analysis indicates that tDCS yields no significant benefits in acute and subacute 

stroke patients. However, as only two studies were included in the acute subgroup, these results 

should be interpreted with caution. In contrast, UL function in chronic stroke patients significantly 

improved as a result of tDCS, which is in line with previous literature (Bai et al., 2019, Lüdemann-

Podubecká et al., 2014, Marquez et al., 2015). Among researchers and therapists, the dogma prevails 

that therapy efficacy is maximal in the (sub)acute stage and diminishes in the chronic stage (Ballester 

et al., 2019, Kitago and Krakauer, 2013, Verheyden et al., 2008). This point-of-view might need to be 

readjusted, as the current results indicate that through administration of tDCS in the chronic phase, 

therapy efficacy can be enhanced. Although it has been argued that the stage-dependent differences 
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in tDCS effectiveness can be attributed to differences in corticospinal excitability (Bai et al., 2019, Buma 

et al., 2010, Jaillard et al., 2005, Rehme et al., 2012, Rehme et al., 2011), the exact nature of these 

differences and, more importantly, how this relates to tDCS remains poorly understood. Possibly, the 

current findings may be explained through the absence of spontaneous biological recovery in the 

chronic phase, as it subsides six months post-stroke (Byblow et al., 2015, Cramer, 2008, Grefkes and 

Fink, 2014, Langhorne et al., 2011, Li and Carmichael, 2006). Spontaneous recovery is known to involve 

certain biochemical and cellular mechanisms that are also influenced by tDCS, such as long-term 

potentiation and cortical excitability modulation (Byblow et al., 2015, Cramer, 2008, Fritsch et al., 

2010, Grefkes and Fink, 2014, Langhorne et al., 2011, Liew et al., 2014, Monte-Silva et al., 2013, Nitsche 

and Paulus, 2000, 2001, Schjetnan et al., 2013). As the precise influence of tDCS on these mechanisms 

remains to be elucidated, the possibility of tDCS interfering with, or even disrupting, spontaneous 

recovery in the (sub)acute stage cannot be ruled out (Elsner et al., 2018, Schjetnan et al., 2013). A 

cautious approach to NIBS in patients in the (sub)acute stage seems warranted. Furthermore, it has 

been speculated that increasing cortical excitability through NIBS in perilesional brain areas might lead 

to an expansion of the stroke-induced lesion due to higher oxygen and glucose demands in the stroke 

penumbra (Picconi et al., 2006, Takeuchi and Izumi, 2012). 

In line with the results of Marquez et al. (2015), subgroup analysis revealed that tDCS leads to 

significant improvements in mild and moderately impaired patients, but not in severely impaired 

patients. Regardless of baseline impairment, all included studies applied tDCS within the theoretical 

framework of the interhemispheric competition model (i.e., facilitation of ipsilesional hemisphere and 

inhibition of contralesional hemisphere) (Di Pino et al., 2014). According to the bimodal balance 

recovery model, however, severely impaired patients benefit more from substitution of the affected 

hemisphere by the unaffected hemisphere (i.e., facilitation of the contralesional hemisphere) (Di Pino 

et al., 2014). Although the bimodal balance recovery model remains poorly implemented in practice 

(e.g., none of the currently included studies applied tDCS within this theoretical framework), there is 

evidence that demonstrates its potential. Sankarasubramanian et al. (2017) investigated the effect of 

inhibitory and facilitatory repetitive transcranial magnetic stimulation over the contralesional 

hemisphere in both mild and severely impaired patients. Inhibitory stimulation yielded the best results 

in mildly affected patients, while severely affected patients benefitted most from facilitatory 

stimulation (Sankarasubramanian et al., 2017). On a different note, all studies in the subgroup of 

severely affected patients targeted M1, while evidence has indicated that more impaired patients 

typically have greater task-related activity in secondary motor areas (e.g., PMd) (Ward, 2011, Ward et 

al., 2003). Hence, in this subgroup, it might be more beneficial to target these areas (Cunningham et 

al., 2015, Sankarasubramanian et al., 2017). 
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4.2. Cluster 2: tDCS configuration

Anodal tDCS over the affected hemisphere, cathodal tDCS over the unaffected hemisphere, and 

bihemispheric tDCS (with anodal/cathodal stimulation over the affected/unaffected hemisphere 

respectively) all lead to a significant improvement in UL function. One mechanism that might explain 

the effectiveness of cathodal tDCS is the restoration of interhemispheric balance, which is in 

accordance with the interhemispheric competition model (Bai et al., 2019, Elsner et al., 2017, 

Lüdemann-Podubecká et al., 2014). However, it should be noted that the underlying rationale of the 

interhemispheric competition model has been partially debunked (cf., 1. Introduction, 

interhemispheric competition model) (McDonnell and Stinear, 2017, Stinear et al., 2015). This suggests 

that the cathodal tDCS-induced motor improvement is not per se reflective of a restored 

interhemispheric balance, but might be caused by other cathodal-tDCS induced effects (e.g., influence 

on neuroplasticity, promotion of motor learning) (Cuypers et al., 2013, Firouzi et al., 2020, Fritsch et 

al., 2010, Hattori et al., 1990, Islam et al., 1995, Liew et al., 2014, Márquez-Ruiz et al., 2012, Masoudian 

et al., 2020, Monte-Silva et al., 2013, Nitsche et al., 2008, Nitsche et al., 2003, Takeuchi and Izumi, 

2012).

All studies included in the current meta-analysis but one (Oveisgharan et al., 2019) applied tDCS in 

combination with other therapy modalities. This was to be expected as tDCS is known to ideally occur 

in conjunction with other therapies to maximise long-term effects (Hummel et al., 2008, Marquez et 

al., 2015, Schlaug and Renga, 2008). In terms of stimulation sequence, the current findings indicate 

that concurrent tDCS leads to significant results while consecutive tDCS (i.e., tDCS before therapy) does 

not. One included study, conducted by Jin et al. (2019), directly compared concurrent vs consecutive 

bihemispheric tDCS during mirror therapy and also concluded that concurrent tDCS yields the best 

results. Moreover, other studies have reported similar findings, as applying anodal tDCS in healthy 

persons during training led to greater skill acquisition than anodal tDCS applied before therapy (Reis 

et al., 2009, Sriraman et al., 2014, Stagg et al., 2011). Applied concurrently, anodal ipsilesional tDCS 

and/or cathodal contralesional tDCS are hypothesised to serve a priming function through ‘gating’, i.e., 

transient disinhibition of intracortical inhibitory circuits which boosts motor learning (Jin et al., 2019, 

Ziemann and Siebner, 2008). However, recent evidence suggests that it is misplaced to completely 

disregard consecutive (Buchwald et al., 2019, Liao et al., 2020). By lowering the neuronal activity in the 

motor cortex prior to therapy, consecutive tDCS can decrease the threshold for induction of synaptic 

plasticity (Ziemann and Siebner, 2008). Moreover, it should be noted that heterogeneity for the 

consecutive subgroup was high, which may have masked its potential effectiveness. Furthermore, the 

protocols used in the studies of this subgroup differed substantially (cf., Table 2 and section 4.4. 
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Limitations and future directions). Therefore, a possible positive effect of tDCS in consecutive protocols 

should not be ruled out. 

Regarding the target region, tDCS targeting ipsi- and/or contralesional M1 improved UL function 

significantly, whereas both tDCS over DLPFC and tDCS over PMd and SMA yielded no significant results. 

As the studies of Oveisgharan et al. (2018) and Cunningham et al. (2015) were both the only studies in 

their respective subgroup (respectively DLPFC and PMd & SMA), it seems likely that the small size of 

the subgroups was the reason for this lack of significant results (Burke et al., 2015, Wittes, 2009). 

Indeed, both Oveisgharan et al. (2018) and Cunningham et al. (2015) noted significant results in their 

own respective studies. Oveisgharan et al. (2018) applied bihemispheric tDCS in both the tDCS and 

StDCS groups before applying anodal/sham tDCS over left DLPFC in the tDCS/sham group, respectively. 

They noted a significant effect in the tDCS group and speculated that it might be caused by cognitive 

and behavioural changes (Oveisgharan et al., 2018). Cunningham et al. (2015) targeted PMd and SMA 

and also found significant results in favour of the tDCS group. Nevertheless, more evidence is 

warranted to determine if stimulation of regions other than M1 post-stroke is in fact, beneficial. 

4.3. Cluster 3: Dose-related parameters

A positive dose-response relationship was present for current density, charge density and session 

duration. Higher current density (> 0.060 mA/cm²), higher charge density (> 0.1 C/cm²), and longer 

session duration (30 minutes) all led to greater improvements in UL functionality. The substantial 

amount of between-study heterogeneity in the > 0.1 C/cm² subgroup seems to be attributable to the 

study of Oveisgharan et al. (2018), who used a vastly different protocol in comparison to the other 

studies in this subgroup (cf., 4.2. Cluster 2: tDCS configuration). The observation of a positive dose-

response relationship is in agreement with previous reviews on this topic and studies with healthy 

controls to extent (Bai et al., 2019, Chhatbar et al., 2016, Cuypers et al., 2013, Nitsche and Paulus, 

2000). For instance, Chhatbar et al. (2016) evaluated the tDCS dose-response relationship post-stroke, 

and found that both current density and charge density were positively related with upper-limb 

improvements. Nevertheless, portraying the relationship between dose and response as linear might 

be problematic. Not only do higher doses pose greater safety concerns (which is of no issue if protocols 

adhere to safety guidelines (Antal et al., 2017, Bikson et al., 2016)), evidence has also indicated that 

they do not always lead to increased therapeutic (Goldsworthy and Hordacre, 2017, Hassanzahraee et 

al., 2020, Jamil et al., 2017). For instance, Hassanzahraee et al. (2020) revealed that anodal tDCS in 

healthy subjects increased corticospinal excitability when applied for 22 or 24 minutes, but decreased 

corticospinal excitability when applied for 26, 28 or 30 minutes. Jamil et al. (2017) reported that both 

anodal and cathodal stimulation at higher intensities (i.e., 1.5 and 2mA) do not yield greater after-

effects then stimulation at lower intensities (i.e., 0.5 and 1mA). However, as these studies included 
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healthy young adults, it remains unclear to what extent their conclusions can be extrapolated to a 

stroke population (Hassanzahraee et al., 2020, Jamil et al., 2017). Regarding the number of sessions, 

no dose-response relationship was present. While tDCS protocols consisting of 5 to 24 sessions 

improved UL function, protocols consisting of 30 to 36 sessions did not. As only two studies were 

present in the 30 to 36 session subgroup, the absence of a positive dose-response relationship for this 

parameter should be interpreted cautiously. Nonetheless, this finding corroborates the meta-

regression analysis of Chhatbar et al. (2016) displaying a negative relationship between the number of 

sessions and tDCS effectiveness (as measured by FMA-UE change). 

4.4. Limitations and future directions

The current meta-analysis is subject to some limitations. First, some subgroups consisted of only one 

or two studies (e.g., acute stroke stage). Increasing the homogeneity per subgroup comes at the 

expense of subgroup size. Consequently, clinical trials are needed to validate the robustness of the 

present results, drawn from these small subgroups.  Second, the influence of lesion site on tDCS 

effectiveness remained uninvestigated, despite evidence indicating its importance regarding NIBS 

(Ameli et al., 2009, Emara et al., 2009, Khaleel et al., 2010). Third and most importantly, the protocols 

of the included studies showed marked differences. While the conducted subgroup analyses improved 

homogeneity and comparability within subgroups, some subgroups were still quite heterogeneous and 

therefore need to be interpreted cautiously. The consecutive tDCS subgroup for example included both 

a study applying tDCS for 9 minutes and a study applying tDCS for 30 minutes (Jin et al., 2019, Rocha 

et al., 2016). Comparing studies based on one factor, whilst not addressing the discrepancies in other 

factors is an oversimplification of the reality. Ideally, one would be able to investigate the effect of 

each factor while keeping all other factors identical. Overall, the emphasis of future studies should 

shift to identifying which tDCS parameters yield the best results through direct comparisons. An 

example of this would be a study probing the effect of anodal versus cathodal versus bihemispheric 

tDCS in similar patients (i.e., similar stage of stroke, baseline impairment and lesion location). Another 

interesting direction for future work is to analyse the effectiveness of tDCS in single- vs multiple-session 

study designs. To do so, different outcome measures should be included, as it is unlikely that the FMA-

UE will display significant changes as a result of a single session (Chhatbar et al., 2016). Furthermore, 

the inclusion of additional outcome measures (e.g., range of motion, force control) might provide a 

more extensive overview of the effect of tDCS on UL function. These different outcome measures 

should be analysed separately, as normalisation of different outcome measures can introduce bias 

(Chhatbar et al., 2016). Finally, none of the currently included studies used a high-definition tDCS (HD-

tDCS) set-up (Datta et al., 2009, Minhas et al., 2010, Villamar et al., 2013). However, this set-up, which 

uses configurations of < 12 mm diameter centre electrodes, seems promising to use post-stroke as it 
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allows for specific focalised modulation of a region of interest (e.g., M1) (Datta et al., 2009, Minhas et 

al., 2010, Villamar et al., 2013).

5. CONCLUSION

Our review provides compelling evidence that combining conventional therapy modalities with tDCS 

improves UL function. However, the effectiveness of tDCS seems to depend on various factors. More 

specifically, tDCS yielded significant results in chronic stroke patients and, therefore, seems to be a 

promising tool to increase therapy effectiveness in this subgroup. Moreover, patients with mild and 

moderate baseline impairments benefitted from tDCS while severely affected patients did not. tDCS 

protocols applying anodal stimulation over the affected hemisphere, cathodal stimulation over the 

unaffected hemisphere, or bihemispheric stimulation all led to improvements in UL function. Timing 

of tDCS seemed to matter, as concurrent tDCS yielded significant results, whereas consecutive tDCS 

did not. Regarding target region, most studies targeted contra- and/or ipsilesional M1 and overall, 

targeting this region resulted in a significant improvement in UL function. Finally, a positive dose-

response relationship was present for current density, charge density and stimulation duration, but 

not for the number of sessions. Future studies should focus on comparing certain factors directly, 

whilst keeping all other factors identical to identify which combinations of parameters yield the best 

results in each patient subgroup. 
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FIGURE CAPTIONS

Fig. 1. The three clusters investigated in the current meta-analysis. Each cluster consisted of multiple 

groups. Each group consisted of multiple subgroups. FMA-UE = Fugl-Meyer Assessment for upper 

extremity, tDCS = transcranial direct current stimulation.

Fig. 2. Flowchart displaying the study selection process. Study exclusion due to population, 

intervention, outcome or design was done in accordance with the in- and exclusion criteria (see 2.2. 

Eligibility criteria). If essential study information was missing, the corresponding author was contacted 

through email. If the corresponding author did not supply the essential information, the study was 

excluded. One study (Chew et al., 2020) was excluded because it used the same dataset as another 

(included) study (Ang et al., 2015).

Fig. 3. Cochrane Collaboration’s tool for assessing the risk of bias, both traffic light plots (above) and 

summary plots (below) are displayed. + indicates a low risk, - indicates an unclear risk. D1-7 = domain 

1 to 7.

Fig. 4. Forest plot displaying the general effect of tDCS, with outliers included. Some studies appear 

twice in the forest plot, as indicated by ‘author name (year)a’ and ‘author name (year)b’, when they 

have two independent experimental groups (see 3.1. Study selection and quality). 95% CI = 95% 

confidence interval, I² = I² square heterogeneity statistic, SD = standard deviation, IV = weighted mean 

difference,  = chi-square statistic.χ2
degree of freedom

Fig. 5. Contour-enhanced funnel plot (panel A), outlier analyses (panels B-D) and a forest plot with 

outliers excluded (panel E). Studies were numbered in alphabetical order. A) Contour-enhanced Funnel 

Plot displaying the standard error (y-axis) against the effect size (x-axis) for each initially included study. 

B) Baujat Plot displaying the influence of each study on the pooled effect size (y-axis, expressed as the 

difference between the pooled effect size with the study included vs. excluded) against the 

contribution of that study to the overall heterogeneity (x-axis, expressed as the study’s contribution 

to Cochran Q-test). The size of each circle indicates the weight of the respective study. Orange circles 
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display outliers, green circles display influential studies. C) & D) Graphical display of study 

heterogeneity (GOSH) plots for outlier studies, I² values (y-axis) plotted against summary effect sizes 

(x-axis). Blue dots indicate subsets including potential outliers. E) Forest plot displaying the general 

effect of tDCS, without outliers (study 4 and 12). 95% CI = 95% confidence interval, I² = I² square 

heterogeneity statistic, SD = standard deviation, SMD = standardised mean difference, IV = weighted 

mean difference,  = chi-square statistic.χ2
degree of freedom

Fig. 6. Subgroup analysis of tDCS effect depending on stroke stage. 95% CI = 95% confidence interval, 

I² = I² square heterogeneity statistic, SMD = standardised mean difference,  = chi-χ2
degree of freedom

square statistic.

Fig. 7. Subgroup analysis of tDCS effect depending on baseline FMA-UE score. 95% CI = 95% confidence 

interval, I² = I² square heterogeneity statistic, SMD = standardised mean difference,  χ2
degree of freedom

= chi-square statistic.

Fig. 8. Subgroup analysis of tDCS effect depending on the type of stimulation. 95% CI = 95% confidence 

interval, I² = I² square heterogeneity statistic, SMD = standardised mean difference,  χ2
degree of freedom

= chi-square statistic.

Fig. 9. Subgroup analysis of tDCS effect depending on stimulation sequence. 95% CI = 95% confidence 

interval, I² = I² square heterogeneity statistic, SMD = standardised mean difference,  χ2
degree of freedom

= chi-square statistic.

Fig. 10. Subgroup analysis of tDCS effect depending on target region. 95% CI = 95% confidence interval, 

I² = I² square heterogeneity statistic, SMD = standardised mean difference,  = chi-χ2
degree of freedom

square statistic.

Fig. 11. Subgroup analysis of tDCS effect depending on current density. Within subgroups 2 and 3, 

studies are arranged from lowest to highest current density. 95% CI = 95% confidence interval, I² = I² 

square heterogeneity statistic, SMD = standardised mean difference,  = chi-square χ2
degree of freedom

statistic.
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Fig. 12. Subgroup analysis of tDCS effect depending on charge density. Within subgroups, studies are 

arranged from lowest to highest charge density. 95% CI = 95% confidence interval, I² = I² square 

heterogeneity statistic, SMD = standardised mean difference,  = chi-square statistic.χ2
degree of freedom

Fig. 13. Subgroup analysis of tDCS effect depending on the session duration. Within subgroup 1, studies 

are arranged from shortest to longest stimulation duration. 95% CI = 95% confidence interval, I² = I² 

square heterogeneity statistic, SMD = standardised mean difference,  = chi-square χ2
degree of freedom

statistic.

Fig. 14. Subgroup analysis of tDCS effect depending on the number of sessions. Within subgroups, 

studies are arranged from least to greatest number of sessions. 95% CI = 95% confidence interval, I² = 

I² square heterogeneity statistic, SMD = standardised mean difference,  = chi-square χ2
degree of freedom

statistic.
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TABLES

Table 1. Keywords in Embase, PubMed and Web of Science.

Search engine Keywords Hits 

Embase #1 tDCS [Title or Abstract] OR Transcranial direct current stimulation 

[Title or Abstract] AND ‘Randomised Controlled Trial’

1759

#2 Stroke [Title or Abstract] OR cerebrovascular accident [Title or 

Abstract] AND ‘Randomised Controlled Trial’

26796

#3 #1 AND #2 342

PubMed #1 tDCS [MeSH] OR Transcranial direct current stimulation [MeSH] 2810 

#2 Stroke [MeSH] 137261 

#3 #1 AND #2 212

#4 #3 AND Randomised Controlled Trial [Filter] 82

#1 tDCS [Topic] OR Transcranial direct current stimulation [Topic] 7288

#2 Stroke [Topic] 359650

Web of 

Science

#3 #1 AND #2 1034
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Table 2. Characteristics of the included studies.

Patient characteristics tDCS configuration Dose-related parameters

Author N Age (years) 

(mean ± SD)
Stage

Baseline FMA-

UE score

Subgroup

Type
Stimulation sequence 

Additional therapy
Target

Current density 

(mA/cm²) 

Subgroup

Charge density 

(C/cm²) (subgroup)

Duration 

(min) 

(subgroup)

Sessions

 (subgroup)

Alisar et al. 

(2020)
32

E: 63.56 ± 10.19

S: 63.50 ± 12.60
II & III

31.6 

Moderate
B

Concurrent  

PT and/or OT
M1

0.091 (2mA/22cm²)

High

0.164 (3.6C/22cm²)

High

30 

Long

15 

Moderate

Ang et al. 

(2015) 
19

E: 52.1 ± 11.7

S: 56.3 ± 9.5

III 34.3 

Moderate
B

Consecutive

MI + BCI
M1

0.029 (1mA/35cm²)

Low

0.034 (1.2C/35cm²)

Low

20 

Moderate

10 

Low

Beaulieu et al. 

(2019b) 
14

E: 71 ± 12.5

S: 66.7 ± 7.1
III

59.5 

Mild
B

Concurrent

Resistance training
M1

0.057 (2mA/35cm²)

Moderate

0.069 (2.4C/35cm²)

Moderate

20 

Moderate

12 

Low

Bornheim et al. 

(2020) 
50

E: 62.5 ± 11.9

S: 63.5 ± 12.9 I

36.8 

Moderate
A

Consecutive

PT and/or OT
M1

0.040 (1mA/25cm²)

Moderate

0.048 (1.2C/25cm²)

Low

20 

Moderate

20 

Moderate

Cunningham et 

al. (2015) 
12

E: 63.7 ± 7.6

S: 58.8 ± 9.6
III

44.5

Mild
A

Concurrent

CIMT

PMd & 

SMA

0.029 (1mA/35cm²)

Low

0.051 (1.8C/35cm²)

Moderate

30 

Long

15 

Moderate

Edwards et al. 

(2019) 
82 67.8 III

24.1 

Severe
A

Consecutive

RAT
M1

0.057 (2mA/35cm²)

Moderate

0.069 (2.4C/35cm²)

Moderate

20 

Moderate

36 

High

Fusco et al. 

(2014) 
14

E: 56.4 ± 15.4

S: 60 ± 11.9
II

25.8 

Severe
C

Consecutive

PT and/or OT
M1

0.043 

(1.5mA/35cm²)

Moderate

0.026 (0.9C/35cm²)

Low

10 

Short

10 

Low

Jin et al. 

(2019)a 
20

E: 59.00 ± 9.80

S: 57.50 ± 7.08
III

51 

Mild
B

Consecutive

Mirror therapy
M1

0.029 (1mA/35cm²)

Low

0.051 (1.8C/35cm²)

Moderate

30 

Long

10 

Low

Jin et al. 

(2019)b
20

E: 58.70 ± 7.92

S: 57.50 ± 7.08
III

47.6 

Mild
B

Concurrent

Mirror therapy
M1

0.029 (1mA/35cm²)

Low

0.051 (1.8C/35cm²)

Moderate

30 

Long

10 

Low
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Kim et al. 

(2010)a
14

E: 55.3 ± 16.4

S: 62.9 ± 9.2
II

37.2 

Moderate
A

Concurrent

PT and/or OT
M1

0.080 (2mA/25cm²)

High

0.096 (2.4C/25cm²) 

Moderate

20 

Moderate

10 

Low

Kim et al. 

(2010)b 
13

E: 53.6 ± 14.9

S: 62.9 ± 9.2
II

42.7 

Mild
C

Concurrent

PT and/or OT
M1

0.080 (2mA/25cm²)

High

0.096 (2.4C/25cm²)

Moderate

20 

Moderate

10 

Low

Koh et al. (2017) 25
E: 55.3 ± 11.4

S: 56.9 ± 13.5
III

23.7 

Severe
B

Concurrent

Sensory modulation
M1

0.060 

(1.5mA/25cm²)

Moderate

0.108 (2.7C/25cm²)

High

30 

Long

24 

Moderate

Lindenberg et 

al. (2010) 
20

E: 61.7 ± 14.7

S: 55.8 ± 12.9
III

39 

Moderate
B

Concurrent

PT and/or OT
M1

0.092 

(1.5mA/16cm²)

High

0.166 (2.7C/16m²)

High

30 

Long

5 

Low

Mazzoleni et al. 

(2019) 
40

E: 67.5 ± 16.3

S: 68.7 ± 15.8
II

37.6 

Moderate
A

Concurrent

RAT
M1

0.057 (2mA/35cm²)

Moderate

0.069 (2.4C/35cm²)

Moderate

20 

Moderate

30 

High

Oveisgharan et 

al. (2018) 
20

E: 52.1 ± 12.8

S: 65.3 ± 16.5
I

49.3 

Mild
A No other therapy DLPFC

0.125 (2mA/16cm²)

High

0.225 (3.6C/16cm²)

High

30 

Long

10 

Low

Rocha et al. 

(2016)a
14

E: 58.3

S: 58.5
III

47.8 

Mild
A

Consecutive

modified CIMT
M1

0.029 (1mA/35cm²)

Low

0.022 (0.8C/35cm²)

Low

13 

Short

12 

Low

Rocha et al. 

(2016)b
14

E: 58.5

S: 58.5
III

51.3 

Mild
C

Consecutive

modified CIMT
M1

0.029 (1mA/35cm²)

Low

0.015 (0.5C/35cm²)

Low

9 

Short

12 

Low

Straudi et al. 

(2016)
23

E: 52.7 ± 16.0

S: 64.3 ± 9.7 II & III

23 

Severe
B

Concurrent

RAT
M1

0.029 (1mA/35cm²)

Low

0.051 (1.8C/35cm²)

Moderate

30 

Long

10 

Low

Triccas et al. 

(2015)a
17

E: 64.3 ± 10.4

S: 62.5 ± 13.6
II

36.7 

Moderate
A

Concurrent

RAT
M1

0.029 (1mA/35cm²)

Low

0.034 (1.2C/35cm²)

Low

20 

Moderate

18 

Moderate

Triccas et al. 

(2015)b
17

E: 64.2 ± 8.6

S: 62.5 ± 13.6
III

27.4 

Severe
A

Concurrent

RAT
M1

0.029 (1mA/35cm²)

Low

0.034 (1.2C/35cm²)

Low

20 

Moderate

18 

Moderate

Viana et al. 

(2014)
20

E: 56.0 ± 10.2

S: 55.0 ± 12.2
III

40.3 

Moderate
A

Consecutive

VR therapy
M1

0.057 (2mA/35cm²)

Moderate

0.045 (1.6C/35cm²)

Low

13 

Short

15 

Moderate
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Yao et al. (2020) 42
E: 63.0 ± 7.5

S: 66.2 ± 6.2
II & III

25.2 

Severe
C

Concurrent

VR therapy
M1

0.057 (2mA/35cm²)

Moderate

0.069 (2.4C/35cm²)

Moderate

20 

Moderate

10 

Low

 I = acute stroke, II = subacute stroke, III = chronic stroke, A = Anodal tDCS, B = bihemispheric tDCS, BCI = brain-computer interface, C = Cathodal tDCS, CIMT = constraint-

induced movement therapy, DLPFC = dorsolateral prefrontal cortex, E = experimental group, FMA-UE = Fugl-Meyer Assessment for upper extremity, M1 = primary motor cortex, 

MI = motor imagery, NA = not available, OT = occupational therapy, PMd = dorsal premotor cortex, PT = physiotherapy, RAT = robot-assisted therapy, S = sham/control group, 

SD = standard deviation, SMA = supplementary motor cortex, tDCS = transcranial direct current stimulation, VR = virtual reality.
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Table 3. PEDro characteristics of each included study.

✔ = fulfilled, ✖ = not-fulfilled, 1 = Eligibility criteria specified, 2 = Randomisation, 3 = Concealed allocation, 4 = 

Baseline characteristics, 5 = Blinding subjects, 6 = Blinding therapists, 7 = Blinding researchers, 8 = >85% Follow-

up, 9 = Intention-to-treat analysis, 10 = between group comparisons, 11 = Point measures and variability 

measures.

PEDro items

1 2 3 4 5 6 7 8 9 10 11 Total

Alisar et al. (2020) ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ 9/10

Ang et al. (2015) ✔ ✔ ✖ ✔ ✔ ✖ ✖ ✔ ✔ ✔ ✔ 7/10

Beaulieu et al. (2019) ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ 9/10

Bornheim et al. (2020) ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 9/10

Cunningham et al. (2015) ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ 9/10

Edwards et al. (2019) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✖ ✖ ✔ ✔ 8/10

Fusco et al. (2014) ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✖ ✔ ✔ 8/10

Jin et al. (2019) ✔ ✔ ✔ ✔ ✔ ✖ ✖ ✔ ✔ ✔ ✔ 8/10

Kim et al. (2010) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 10/10

Koh et al. (2017) ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ 9/10

Lindenberg et al. (2010) ✔ ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✖ ✔ ✔ 8/10

Mazzoleni et al. (2019) ✔ ✔ ✔ ✔ ✔ ✖ ✖ ✔ ✖ ✔ ✔ 7/10

Oveisgharan et al. (2018) ✔ ✔ ✔ ✔ ✔ ✖ ✖ ✔ ✔ ✔ ✔ 8/10

Rocha et al. (2016) ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ 9/10

Straudi et al. (2016) ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ 9/10

Triccas et al. (2015) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✔ 9/10

Viana et al. (2014) ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ 9/10

St
ud

y

Yao et al. (2020) ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ 9/10
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