
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Factor copula models for right-censored clustered survival data

Peer-reviewed author version

CAMPOS EUGENIO FILHO, Eleanderson; BRAEKERS, Roel; de Souza, Devanil J.

& Chaves, Lucas M. (2021) Factor copula models for right-censored clustered

survival data. In: LIFETIME DATA ANALYSIS,.

DOI: 10.1007/s10985-021-09525-5

Handle: http://hdl.handle.net/1942/34331



Lifetime Data Analysis manuscript No.
(will be inserted by the editor)

Factor copula models for right-censored clustered survival
data

Eleanderson Campos · Roel Braekers · Devanil J.
de Souza · Lucas M. Chaves

Received: date / Accepted: date

Abstract In this article we extend the factor copula model to deal with right-censored
event time data grouped in clusters. The new methodology allows for clusters to have
variable sizes ranging from small to large and intracluster dependence to be flexibly
modeled by any parametric family of bivariate copulas, thus encompassing a wide
range of dependence structures. Incorporation of covariates (possibly time depen-
dent) in the margins is also supported. Three estimation procedures are proposed:
both one- and two-stage parametric and a two-stage semiparametric method where
marginal survival functions are estimated by using a Cox proportional hazards model.
We prove that the estimators are consistent and asymptotically normally distributed,
and assess their finite sample behavior with simulation studies. Furthermore, we il-
lustrate the proposed methods on a data set containing the time to first insemination
after calving in dairy cattle clustered in herds of different sizes.
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1 Introduction

In many applications involving survival data analysis, there is a concomitant interest
in assessing both covariate effect and the relationship between failure times. Mul-
tivariate survival analysis arises from this class of problems. In these settings, the
independence assumption is often misleading, since failure times can be governed by
an unknown dependence structure. Moreover, when subjects are allocated in clusters,
we expect dependence to be more prominent within clusters rather than among clus-
ters. This is an intuitive assumption, because subjects in a same cluster are affected by
the environment in a similar fashion and tend to share some characteristics. Clustered
survival data analysis is crucial in many areas. For example, in biomedical studies,
when dealing with multicenter clinical trials, where patients are clustered according
to their treatment center. In agriculture, when analyzing infectious disease data of
livestock grouped in herds. In finance, when assessing time to default over different
portfolios. Copula models and frailty models are two techniques commonly used to
analyze these types of clustered event time data.

In frailty models, it is assumed that failure times within a cluster are condition-
ally independent given the frailty. This frailty is incorporated in the model as a mul-
tiplicative term represented by ui, the frailty effect for the ith cluster, and is an actual
realization of a latent variable U following a particular distribution (the frailty dis-
tribution) with unit mean and finite variance. In this sense, individuals with ui > 1
are considered frail, due to an increased hazard, i.e., higher risk of failure, whereas
individuals with ui < 1 have a lower risk of failure. In these models, the interest lies
in obtaining the hazard function of an individual given the frailty effect. A thorough
study of frailty models can be found in Duchateau and Janssen (2008) and Wienke
(2011).

Despite allowing clusters to have different sizes, it is not possible to use any com-
bination of marginal survival functions and dependence structures to build a frailty
model (Hougaard, 2000). Furthermore, according to Duchateau and Janssen (2008),
choosing the right frailty distribution in a frailty model is of great importance, be-
cause of its relationship (even though it is not explicit) to the shape of intracluster
dependence. However, only a few distributions have been commonly used in prac-
tice (mainly the gamma and lognormal distributions). These flexibility issues have
motived the alternative use of copula-based approaches to model clustered survival
data.

Owing to the groundbreaking work of Sklar (1959), copula-based models can
easily overcome the dependence modeling limitations in frailty models. This follows
from the role that copulas play in multivariate models by working (in a survival anal-
ysis context) as a link between the marginal survival functions and the joint survival
function for subjects. That is, copulas can be seen as dependence models separated
from the margins. In view of this, they impose no restrictions on the choice of the
marginal survival functions and dependence structure (modeled by the copula itself).
Moreover, there are several families of copulas already available in the literature,
each representing a unique dependence structure. They can be easily implemented to
model intracluster dependence in multivariate survival data, being readily available
in several statistical software packages.
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Parametric estimation in copula models is usually done by taking either a fre-
quentist or Bayesian approach. Frequentist approaches typically rely on maximum
likelihood estimation methods, e.g., one-stage and two-stage. The first is the classical
maximum likelihood, where the parameters from the copula and marginal survival
functions are simultaneously estimated; while in the second method, commonly re-
ferred to as inference functions for margins (Xu, 1996), estimation is done in two
stages: parameters from the margins are estimated first, by assuming independence,
and, in a second stage, the association parameter of the copula is obtained by maxi-
mizing the likelihood function with the parameters from the marginal survival func-
tions fixed at the estimates from the first stage. Although less reliable, the two-stage
method is preferred over the one-stage when estimation is computationally expensive.

One of the pioneer works in multivariate survival data modeling with copulas is
due to Shih and Louis (1995). The authors provided estimation methods and derived
asymptotic results for the estimators under a bivariate setting. Following their work,
Andersen (2005) incorporated covariates in the model for bivariate data. Slightly im-
proving the cluster size issue, Massonnet et al. (2009) proposed a quadrivariate copula
model to study the time until infection in the four quarters of a cow udder. Despite the
fact that clusters with a fixed size K were admissible in the model of Glidden (2000)
and with varying size in Othus and Li (2010), the choice of copulas was restricted to
the Clayton and Gaussian families, respectively.

A more flexible class of models, built with Archimedean copulas based on Laplace
transforms, was proposed by Prenen et al. (2017a). In their case, clusters were al-
lowed to have variable sizes, although important classes of copulas were still not
comprehended, such as elliptical (Gaussian, t) and extreme-value copulas (except for
the also Archimedean, Gumbel-Hougaard copula). In a similar way, Romeo et al.
(2018) proposed a model based on the two-parameter Archimedean family of Power
Variance Function (PVF) copulas, but differently from the frequentist methods em-
ployed by Prenen et al. (2017a), estimation was performed by taking a one-stage
Bayesian approach with fixed-size clusters.

More recently, Barthel et al. (2018, 2019) proposed a vine copula-based approach
to model clustered survival data. Within their model framework, any type of bivari-
ate copula can be used to model the different pairwise dependencies. However, the
model of Barthel et al. (2018) can only deal with clusters of fixed size. Although vari-
able sized clusters are allowed in Barthel et al. (2019), the authors were concerned
with recurrent event times, a different setting from our case. In both cases, the au-
thors worked with small sized clusters due to the high computational cost of making
inference for vine copulas in high dimensions.

Motivated by the aforementioned shortcomings, we propose a new copula-based
methodology for right-censored clustered survival data modeling. The new methods
impose no restrictions on the choice of copula families and allow clusters with vary-
ing sizes (possibly large). This provides the means to model multivariate survival
data that exhibit different types of dependence behaviors, ranging from symmetric
positive to tail dependence with possible tail asymmetries. Marginal survival func-
tions can also be flexibly modeled using different parametric families (allowing for
covariates). Additionally, we propose a semiparametric formulation for the marginal
survival function with incorporation of time dependent covariates. Our methodol-
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ogy extends the one-factor copula model of Krupskii and Joe (2013) by providing
new inferential tools for right-censored clustered survival data. The proposed model
includes the Archimedean copula model of Prenen et al. (2017a) and the Gaussian
copula model of Othus and Li (2010) as particular cases.

We provide three estimation methods: both one- and two-stage parametric, and
a two-stage semiparametric method with marginal survival functions estimated by
using a Cox proportional hazards model (Cox, 1972). Estimators derived under all
three estimation procedures are shown to be consistent and asymptotically normally
distributed. Their finite sample behavior is investigated in simulation studies. All es-
timation methods were implemented in R (R Core Team, 2018) and, in general, nu-
merical computations are reasonably fast. We also provide an analytical alternative
to the grouped jackknife method employed by Othus and Li (2010) and Prenen et al.
(2017a), which drastically reduces the computational cost for estimations under the
semiparametric procedure.

Our paper is arranged as follows: a detailed description of the model is given in
Section 2. The estimation procedures are explored in Section 3 and a simulation study
is detailed in Section 4. In Section 5 we illustrate the methodology with a real data
example. Proofs for the two propositions in Section 2.1 and the different asymptotic
results stated in Section 3.3 can be found in the Appendix.

2 Description of the model

We consider the case of clusters with variable sizes, but settings with fixed cluster
size are also supported by our methodology. Denote the number of clusters by K
and the lifetime of individuals by a positive random variable Ti j, with j = 1, ...,ni
representing the jth individual within cluster i (i = 1, ...,K), and ni the size of the ith

cluster. For every individual we assume an independent random censoring variable
Ci j. Considering a right censoring scheme, the observed quantities are

Xi j = min(Ti j,Ci j) and
δi j = I(Ti j 6 Ci j) i = 1, ...,K, j = 1, ...,ni,

where each lifetime Ti j may depend on a vector Zi j of covariates. Also, let Vi (i =
1, ...,K) be Uniform[0,1] random variables. We then assume that, within cluster i, the
lifetimes are conditionally independent given Vi and the covariates. In other words, Vi
behaves as a latent variable (common factor) that governs the associations between
the lifetimes in cluster i. Hence, conditional on Vi and Zi j ( j = 1, ...,ni), we can write
the joint survival function in cluster i, as

S(ti1, ..., tini |Vi,Zi1, ...,Zini) =
ni

∏
j=1

S(ti j|Vi,Zi j),

where S(ti j|Vi,Zi j) is the conditional survival function of Ti j|Zi j given Vi = vi, that
is, S(ti j|Vi,Zi j) is the (negative) partial derivative of the bivariate survival function
S(ti j,vi|Zi j) with respect to vi:

S(ti j|Vi,Zi j) =−
∂

∂vi
S(ti j,vi|Zi j).
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By Sklar’s theorem, we can rewrite the equation above in terms of a bivariate copula

S(ti j|Vi,Zi j) =−
∂

∂vi
Ci j(S(ti j|Zi j),S(vi)),

where S(ti j|Zi j) is the marginal survival function of Ti j|Zi j, S(vi) is the marginal sur-
vival function of Vi and Ci j is the bivariate copula that joins Ti j|Zi j to Vi. Considering
that S(ti j|Vi,Zi j) comes from the bivariate copula Ci j, we shall denote the former by
Ci j|V (S(ti j|Zi j)|vi). Thus, we have that

S(ti1, ..., tini |Vi,Zi1, ...,Zini) =
ni

∏
j=1

Ci j|V (S(ti j|Zi j)|vi).

It is reasonable to assume that every subject in cluster i is affected by Vi in a similar
fashion (exchangeability). In this case, it follows that

S(ti1, ..., tini |Vi,Zi1, ...,Zini) =
ni

∏
j=1

C·|V (S(ti j|Zi j)|vi). (1)

Now we can retrieve the unconditional joint survival function of cluster i by integrat-
ing Vi out of (1)

S(ti1, ..., tini |Zi1, ...,Zini) =
∫ 1

0

ni

∏
j=1

C·|V (S(ti j|Zi j)|vi)dvi. (2)

Following Krupskii and Joe (2013), we will call (2) a one-factor copula model.
In the presence of right censoring, the contribution of cluster i to the likelihood is

obtained by taking derivatives over the uncensored observations in cluster i

Li = (−1)di
∂ di

(∂xi1)
δi1 ... (∂xini)

δini
S(xi1, ...,xini |Zi1, ....,Zini),

where di =
ni
∑
j=1

δi j. Using representation (2) and assuming that differentiation and

integration are interchangeable, the contribution to the likelihood can be expressed as

Li = (−1)di
∂ di

(∂xi1)
δi1 ... (∂xini)

δini

∫ 1

0

ni

∏
j=1

C·|V (S(xi j|Zi j)|vi)dvi

= (−1)di

∫ 1

0

∂ di

(∂xi1)
δi1 ...(∂xini)

δini

ni

∏
j=1

C·|V (S(xi j|Zi j)|vi)dvi

= (−1)di

∫ 1

0

ni

∏
j=1

{
∂

∂xi j
C·|V (S(xi j|Zi j)|vi)

}δi j

×C·|V (S(xi j|Zi j)|vi)
1−δi j dvi.
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We also assume that the bivariate copula C·V is absolutely continuous, such that its
density c·V (ui j,vi) =

∂

∂ui j
C·|V (ui j|vi) =

∂ 2

∂ui j∂vi
C·V (ui j,vi) exists. Then

Li = (−1)di

∫ 1

0

ni

∏
j=1

{
c·V (S(xi j|Zi j),vi)(− f (xi j|Zi j))

}δi j ×C·|V (S(xi j|Zi j)|vi)
1−δi j dvi

=
∫ 1

0

ni

∏
j=1

{
c·V (S(xi j|Zi j),vi) f (xi j|Zi j)

}δi j×C·|V (S(xi j|Zi j)|vi)
1−δi j dvi,

where f (xi j|Zi j) = −dS/dxi j is the density of the lifetime Xi j. Therefore, by taking
the product ∏

K
i=1 Li, that is, combining the contribution of all clusters, we have the

likelihood function

L =
K

∏
i=1

∫ 1

0

ni

∏
j=1

{
c·V (S(xi j|Zi j),vi) f (xi j|Zi j)

}δi j×C·|V (S(xi j|Zi j)|vi)
1−δi j dvi. (3)

One advantage of the proposed model is that the likelihood function is only deter-
mined by the number of uncensored observations in each cluster. This follows from
the joint survival functions of the clusters having exchangeable margins. Therefore,
it is possible for clusters to have different sizes. On the other hand, a direct conse-
quence of these unbalanced settings is that the integrals in (3) do not have analytical
solutions. This is because every configuration leads to a different and complicated
integral. For this reason, numerical integration methods are required to evaluate the
likelihood function. One avenue is to use Gauss-Legendre quadrature, as suggested
by Krupskii and Joe (2013). In this case, the expression of the likelihood becomes

L≈
K

∏
i=1

nq

∑
k=1

wk

ni

∏
j=1

{
c·V (S(xi j|Zi j),y∗k) f (xi j|Zi j)

}δi j ×C·|V (S(xi j|Zi j)|y∗k)
1−δi j ,

where wk and y∗k = 0.5yk + 0.5 are the weights and nodes of the quadrature, respec-
tively. Krupskii and Joe (2013) also pointed out that a reasonable choice for the num-
ber of points of the quadrature, nq, is around 21-25 for a one-factor copula model.
However, we find that in our case estimation results are only reliable for nq ≥ 50.
As an alternative, we also use the adaptive quadrature method of Gauss-Kronrod for
numerical integration. It can be the case that, when an elevated number of quadrature
points is needed in the Gauss-Legendre quadrature, the adaptive method tends to be
computationally more efficient. Additional details about the computational aspects
are given in Section 4.

2.1 Frailty models versus copula-based models

Frailty models have been traditionally used in the literature to model survival data
grouped in clusters of variable size and, more recently, copula-based models became
a very popular alternative. Although dealing with the same data settings, these two
approaches are quite different. As discussed by Goethals et al. (2008), a notable dis-
tinction between these models is in the way that the survival function of an individual
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is modeled, for example. In copula-based models, the survival function is treated sep-
arately, from a marginal perspective (population-average), while in frailty models, the
survival function of a subject is modeled from a conditional (to the cluster) point of
view. In addition, there is an important difference regarding the interpretation of the
dependence parameter in the two models. Since copulas are able to exclusively model
the dependence between random variables, they allow a direct interpretation of their
parameters, whereas in frailty models the interpretation of the parameter is different
(heterogeneity between clusters). Curiously, as observed by Goethals et al. (2008),
there are a few structural similarities between frailty and copula models, but these
are limited to the Archimedean world. We are, indeed, speaking about two distinct
classes of models with their own specificities.

The increasing popularity of the copula-based approaches to clustered survival
data modeling is due to their flexibility when dealing with dependence modeling:
there are numerous families of copulas available, each representing a different de-
pendence structure, and they are fairly simple to implement from a computational
viewpoint. The R package copula, for example, offers many possibilities (Yan et al.,
2007). In practice, the number of different copula families is enormous, since there
are even methods for creating new copulas, such as the methods based on copula
mixtures and rotations. In this sense, copula-based models provide almost unlimited
options to model intracluster dependence. For example, within our model framework,
by choosing

C·|V (u j|vi) = Φ

(
Φ−1(u j)−θΦ−1(v)

(1−θ 2)1/2

)
, j = 1, ...,ni (4)

in (2), where the expression in the RHS is the partial derivative with respect to v of
a bivariate Gaussian copula (θ > 0), we can model a positive (symmetric) relation-
ship with weak tail association between subjects in a cluster, such as in the model of
Othus and Li (2010). Within the same class of elliptical copulas, stronger tail associ-
ations can be captured by the t-copula if we set C·|V (u j|vi) to be the partial derivative
(with respect to v) of a bivariate t-copula. Alternatively, asymmetrical tail depen-
dence structures (association earlier versus later in time) can be modeled by using
the Archimedean Clayton (stronger association between late lifetimes) copula, such
as in the model of Prenen et al. (2017a), or the extreme-value Galambos (stronger
association between early lifetimes) copula. The flexibility here lies precisely on the
extensive list of bivariate copula families that can be used within our model frame-
work to achieve, virtually, any type of intracluster dependence. In fact, we show that
the Archimedean copula model of Prenen et al. (2017a) and the Gaussian copula
model of Othus and Li (2010) (for σ > 0) are subclasses of our model.

Proposition 1 Let ϕθ ∈ L∞ be a generator function from the class of Laplace trans-
forms of non-negative random variables with no mass at 0, i.e., ϕθ : [0,+∞)→ [0,1],
the generator of an Archimedean copula, is a continuous strictly decreasing function
with ϕθ (0) = 1, ϕθ (+∞) = 0 and inverse ϕ

−1
θ

. Also, ϕθ is the Laplace transform of
a distribution function Gθ (x) with inverse G−1

θ
(x) and Gθ (0) = 0. Then, for

C·|V (u j|v) = exp
{
−G−1

θ
(v)ϕ−1

θ
(u j)

}
, (5)
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it follows that, for all u j ∈ [0,1] (j=1,...,n),∫ 1

0

n

∏
j=1

C·|V (u j|v)dv =
∫ +∞

0

n

∏
j=1

exp
{
−xϕ

−1
θ

(u j)
}

dGθ (x), (6)

where the expression on the right-hand side is the Archimedean copula model of
Prenen et al. (2017a).

Proposition 2 Let T̃i j =
√

σbi+εi j be the transformed lifetime of the jth ( j = 1, ...,ni)
subject in cluster i (i = 1, ...,K) as defined in the marginalized frailty model exten-
sion of Othus and Li (2010), where σ > 0, bi ∼ N(0,1) is a cluster-level frailty and
εi j ∼ N(0,1−σ) is an error term. Assume also that bi,εi1, ...,εini are mutually inde-
pendent. Then, the joint cumulative distribution function of T̃i1, ..., T̃in can be written
as a one-factor copula model.

The proof of the propositions above can be found in the Appendix. For a more
complete list of bivariate copula families with their dependence properties, the reader
is referred to the books of Nelsen (2007) and Joe (2014).

If clusters have a fixed size n, it is also possible to adapt our methodology to the
new settings. This can be done by allowing C·|V (u j|v) in (2) to be different for every
j, resulting in

S(ti1, ..., tin|Zi1, ...,Zin) =
∫ 1

0

n

∏
j=1

C j|V (S(ti j|Zi j)|vi)dvi.

By doing this, we can achieve different pairwise dependencies for the lifetimes in a
cluster, similarly as done by Barthel et al. (2018) using vine copulas. In this sense, it
is even possible to use a different survival function for each component of the cluster.

2.2 Measuring intracluster dependence: the role of the Kendall’s tau

It is important to note that, while dependence is explicitly determined between two
random variables in a classic bivariate copula, within our one-factor copula model
framework, intracluster relationships are shaped implicitly through a latent variable
V (the common factor) in an exchangeable fashion. Therefore, in order to compute
the Kendall’s tau for any given pair of individuals (free of V ) inside a cluster, the
following must be done: let Tj and Tk denote the lifetimes of two arbitrary individuals
belonging to a cluster with joint survival function given by expression 2. Owing to
the factor copula’s framework, the relationship between the lifetimes Tj and Tk is
uniquely determined by a latent variable V through

C jk(S(t j|Z j),S(tk|Zk);θ) =
∫ 1

0
C·|V (S(t j|Z j)|v;θ)C·|V (S(tk|Zk)|v;θ)dv,

which is the same as looking at the relationship between U j and Uk in the underlying
copula

C jk(u j,uk;θ) =
∫ 1

0
C·|V (u j|v;θ)C·|V (uk|v;θ)dv. (7)
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Following a well known result (see Nelsen, 2007, p. 164), we can write the Kendall’s
tau of U j and Uk as

τ jk = 1−4
∫ 1

0

∫ 1

0
C j|k(u j|uk)Ck| j(uk|u j)du jduk.

Hence, we must obtain the conditional cumulative distribution functions C j|k(u j|uk)
and Ck| j(uk|u j) from (7):

Ck| j(uk|u j) =
∂

∂u j

∫ 1

0
C·|V (u j|v)C·|V (uk|v)dv

=
∫ 1

0
c·V (u j,v)C·|V (uk|v)dv.

Similarly,

C j|k(u j|uk) =
∫ 1

0
C·|V (u j|v)c·V (uk,v)dv.

Therefore, the Kendall’s tau for the pair (U j,Uk) - or, equivalently, (Tj,Tk) - in a
one-factor copula model is given by

τ jk = 1−4
∫ 1

0

∫ 1

0

(∫ 1

0
c·V (u j,v)C·|V (uk|v)dv

)(∫ 1

0
C·|V (u j|v)c·V (uk,v)dv

)
du jduk.

(8)
This expression cannot be evaluated analytically, except for some specific choices

of the bivariate copula C·V (e.g., Gaussian copula and FGM copula), but it can be
easily computed with numerical integration methods for any given expression of C·|V
together with the value of its parameter θ .

From the perspective of our model, the Kendall’s tau as computed by (8) can be
regarded as an exchangeable measure for the intracluster associations, that is, every
subject in a cluster is equally affected by the common factor V , so they all share the
same Kendall’s tau with respect to V (τ·V ) and, as a consequence, the same measure
of association between each other, i.e., τ jk is the same for every j,k = 1, ...,n with
j 6= k and n being the cluster size.

Although τ·V is allowed to assume any value in [−1,1], the negative range is not
covered by τ jk when the clusters have variable sizes in a one-factor copula model.
This can be demonstrated by showing that τ jk = 1 when C·V is equal to either W
or M, the Fréchet-Hoeffding lower bound (perfect negative dependence) and upper
bound (perfect positive dependence), respectively. Since τ jk = 0 when C·V =Π (inde-
pendence/product copula) and knowing that every copula with a negative dependence
structure lies between W and Π , it follows that 0≤ τ jk ≤ 1 for any given pair (Tj,Tk)
of lifetimes in our model. Furthermore, it can also be shown that τ jk ≤ τ·V , i.e., the
strength of association between Tj and Tk is weaker than that between Tj (or Tk) and
V , unless τ·V = 1, in which case τ jk will also be equal to 1.
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3 Estimation

Our estimation procedures are based on two common frequentist techniques for cop-
ula models, the one- and two-stage methods. The former estimates the association
and the marginals parameters simultaneously, whereas the latter splits the estimation
procedure in two parts, first estimating the parameters of the marginal survival func-
tions and then, conditional on these estimates, the association parameter is estimated
in a second step. We investigate these two methods and, in addition, a two-stage semi-
parametric approach, where the marginal survival functions are estimated by using a
Cox proportional hazards model. Under Archimedean copula models, Prenen et al.
(2017a) studied the same estimation procedures and derived asymptotic results. We
extend their work by considering a more general factor copula model.

In a balanced design, with all clusters having a fixed size n, it is possible to order
the components within the clusters, therefore allowing the estimation of a different
baseline survival function for each element in the cluster, whilst having the same
covariate information for every subject. In our case, the clusters have different sizes,
thus making it impossible to assume a different survival function for each individual.
For this reason, we proceed by defining a unique baseline survival function for all
individuals, allowing for subject-specific covariate information.

3.1 One-stage procedure

The one-stage procedure is the classical maximum likelihood approach, where the
association and the marginal survival function’s parameters are simultaneously esti-
mated by finding the maxima of the likelihood function. Let βββ be the p-dimensional
parametric vector for the baseline survival function S, containing distribution and co-
variate information. Also, let θ be the association parameter for individuals within
every cluster, i.e., the parameter of the underlying copula C. Let L(βββ ,θ) be the like-
lihood function as derived in (3). The maximum likelihood estimators β̂ββ and θ̂ are
yielded by solving the score equations

{
Uβββ (βββ ,θ) = 000

Uθ (βββ ,θ) = 0,

where Uβββ (βββ ,θ) =
∂

∂βββ
logL(βββ ,θ) and Uθ (βββ ,θ) =

∂

∂θ
logL(βββ ,θ). It is known from

maximum likelihood theory (Cox and Hinkley, 1974; Lehmann and Casella, 1998)
that, under customary regularity conditions,

√
K
(

β̂ββ −βββ , θ̂ −θ

)
converges to a mul-

tivariate normal distribution with mean vector 000 and variance-covariance matrix I−1,
the inverse of the Fisher information matrix. In practical applications standard errors
for parameter estimates are given by the square root of the diagonal of the inverse of
the Hessian matrix evaluated at βββ = β̂ββ and θ = θ̂ .
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3.2 Two-stage parametric estimation

In the two-stage procedure, we use the method of inference functions for margins
(IFM), proposed by Xu (1996). Differently from the one-stage procedure, estimation
now is carried out in two steps. The first stage consists in estimating the marginal
survival function’s parameters alone, not taking into account the intracluster depen-
dence. In the second stage we estimate the copula’s association parameter whilst fix-
ing the likelihood for the estimates of the first stage. This method is preferred over the
one-stage procedure when full likelihood estimation is computationally expensive.

Formally: Let βββ and θ be defined as in Section 3.1. In the first stage, βββ is esti-
mated considering the lifetimes Ti j as independent and identically distributed random
variables, i.e., by solving

U∗
βββ
(βββ ) =

K

∑
i=1

ni

∑
j=1

(
δi j

∂ log f (xi j|Zi j)

∂βββ
+(1−δi j)

∂ logS(xi j|Zi j)

∂βββ

)

=
K

∑
i=1

U∗i,βββ (βββ ) =
K

∑
i=1

ni

∑
j=1

U∗i, j,βββ (βββ ) = 000. (9)

Let β̄ββ be the estimator obtained from (9). Under regularity conditions,
√

K(β̄ββ −βββ )
converges to a multivariate normal distribution with mean 000 and variance-covariance
matrix (I∗)−1V(I∗)−1, where V is the variance-covariance matrix of the score func-
tions U∗

βββ
(βββ );

V = E[U∗i,βββ (βββ 0)U
∗
i,βββ (βββ 0)

T ]

and I∗ is the Fisher information matrix of U∗
βββ
(βββ );

I∗ = E
[
− ∂

∂βββ
U∗i,βββ (βββ 0)

]
.

βββ 0 is the true parametric vector.
Due to misspecification of the model, i.e., assuming independence between the

random variables Ti j when they are actually dependent, the usual inverse of the
Fisher information, (I∗)−1, is not a consistent estimator of the asymptotic variance-
covariance matrix. Hence, we use the robust sandwich estimator (I∗)−1V(I∗)−1.

In the second stage, the association parameter θ is estimated by plugging β̄ββ , ob-
tained in the first stage, in the full likelihood (3) and solving

Uθ (β̄ββ ,θ) =
∂

∂θ
logL(β̄ββ ,θ) = 0

for θ . Thus, obtaining the two-stage estimator for θ .

Theorem 1 Let θ̄ be the two-stage estimator for θ , obtained from Uθ (β̄ββ ,θ) = 0.
Under regularity conditions (see Xu, 1996),

√
K(θ̄ −θ) converges to a normal dis-

tribution with mean 0 and variance

var(θ̄) =
1

Iθθ

+
Iθβββ (I∗)

−1V(I∗)−1Iβββθ

I2
θθ

, (10)
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where the Fisher information matrix I = Eηηη

[
−∇2 logL(ηηη)

]
, ηηη = (βββ ,θ) with size

(p+1), is partitioned as follows

I =
(

Iββββββ Iβββθ

Iθβββ Iθθ

)
.

A proof of this theorem is given in Prenen et al. (2017a).
Therefore, estimates for the standard errors of β̄ββ and θ̄ can be obtained, respec-

tively, by the square root of the diagonal of
(

Î∗
)−1

V̂
(

Î∗
)−1

, where

Î∗ =
K

∑
i=1

ni

∑
j=1
− ∂

∂βββ
U∗i, j,βββ (βββ )

∣∣∣∣
βββ=β̄ββ

,

V̂ =
K

∑
i=1

(
ni

∑
j=1

U∗i, j,βββ (βββ )
∣∣∣∣
βββ=β̄ββ

)(
ni

∑
j=1

U∗i, j,βββ (βββ )
∣∣∣∣
βββ=β̄ββ

)T

and by the square root of expression (10) after replacing the quantities Iθθ , Iθβββ and
Iβββθ for their empirical counterparts obtained from the Hessian matrix by performing
one iteration of the one-stage procedure with βββ fixed at β̄ββ and θ at θ̄ . The matrix

(I∗)−1V(I∗)−1 should also be replaced by
(

Î∗
)−1

V̂
(

Î∗
)−1

.

3.3 Two-stage semiparametric estimation

If a more flexible setting for the margins is desired, rather than using fully parametric
models, it is possible to estimate the margins by taking a semiparametric approach.
In this case, we use the Cox proportional hazards model (Cox, 1972). Estimation now
consists in obtaining, for the first stage, β̌ββ and Λ̌ , the estimated covariate effects and
cumulative hazard function, respectively. As in the two-stage parametric method, it
is assumed that the subjects are independent in the first stage, the so-called indepen-
dence working assumption. Also, a common baseline hazard function is assumed for
all individuals, but allowing for subject-specific covariate information, which can also
depend on time. Estimators for βββ and Λ along with formulas for their standard errors
can be found in Spiekerman and Lin (1998). In practice, the R package survival

(Therneau, 2015) provides the necessary functions to retrieve β̌ββ , Λ̌ and their standard
errors.

In the second stage, the estimate θ̌ of the copula’s association parameter is re-
trieved by maximizing the likelihood for θ whilst fixing for the first stage estimates,
i.e., by solving maxθ

{
L
(

θ , β̌ββ ,Λ̌
)}

.

Theorem 2 Under regularity conditions 1-8 in the Appendix,
(

θ̌ , β̌ββ ,Λ̌
)

are consis-

tent estimators for (θ0,βββ 0,Λ0), the true parameters.
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The proof for the consistency of
(

β̌ββ ,Λ̌
)

can be found in Spiekerman and Lin

(1998) whereas the consistency of θ̌ is proved in the Appendix, following ideas from
Prenen et al. (2017a) and Othus and Li (2010).

Theorem 3 Under regularity conditions 1-8 in the Appendix,
√

K
(
θ̌ −θ0

)
converges

to a normal distribution with mean 0 and variance equal to

var(Ξ)/W (θ0)
2. (11)

A proof for Theorem 3 and the formal definitions of Ξ and W (θ0) are presented in
the Appendix. We derive this proof by extending the results in Prenen et al. (2017a)
from Archimedean copulas to the more general factor copulas. An analytical formula
to compute the standard error of θ̌ is also provided in the Appendix and it will be
soon implemented in the R package Sunclarco. With this formula, we were able
to drastically reduce the computing time of the two-stage semiparametric procedure
compared to the grouped jackknife alternative employed by Prenen et al. (2017a) and
Othus and Li (2010).

4 Simulation study

In order to assess the finite sample behavior of the estimators, we simulate 1000
data sets under different settings. For the number of clusters, we use K = 50, 200
and 500, with each cluster having size varying uniformly from 2 to 50. We use the
Clayton (θ = 1.07, 2.383, 4.816), Gaussian (θ = 0.556, 0.767, 0.899) and Galam-
bos (θ = 0.866, 1.538, 2.78) copulas to simulate intracluster dependence, such that
we have representatives from different classes (Archimedean, elliptical and extreme-
value copulas, respectively) and three degrees of association for each case (Kendall’s
τ ≈ 0.2, 0.4, 0.6 computed with formula (8)). Individual lifetimes are generated from
a Weibull distribution, with survival function given by S(t|Z) = exp{−λ exp(β z) tρ}
and choosing λ = 0.5, ρ = 1.6 and Z a dichotomous covariate with effect β = 3. Data
are generated using the sampling algorithm proposed by Joe (2014). We consider
three different censoring scenarios: 25%, 50% and no censoring. Censoring times are
obtained from a Weibull distribution with parameters λC = 0.425, ρC = 1.6, for 25%
of censoring and λC = 2.241, ρC = 1.6, for 50%.

Simulation results for the three estimation methods are summarized in Tables 1,
2 and 3 for K = 50,200 and 500 clusters, respectively. In all three scenarios, we
provide, for the Clayton, Gaussian and Galambos copulas, the mean estimated val-
ues of θ̂ , θ̄ and θ̌ in the first rows, along with their mean estimated standard errors
and coverage of 95% confidence intervals in the second rows. In the parametric one-
stage method, standard errors are retrieved from the inverse of the Hessian matrix,
whereas in the parametric and semiparametric two-stage, we obtain the estimates of
the standard errors via formulas (10) and (11), respectively. Moreover, by using the
plug-in estimator of the standard error in the semiparametric two-stage method, we
noticeably reduce the computing time if compared to the grouped jackknife alterna-
tive employed by Prenen et al. (2017a) and Othus and Li (2010). We deal with the
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infeasible integrals in the likelihood expressions by using a Gauss-Legendre quadra-
ture rule with nq = 50 points, resulting in reasonable accuracy at a small compu-
tational cost for the parametric and semiparametric two-stage methods. In contrast,
the parametric one-stage estimator is highly sensible (specially for high values of
Kendall’s τ) to the number of quadrature points, thus making necessary to use at
least nq = 200 points when K = 50. This effect is magnified for larger values of K,
therefore making the parametric one-stage computationally expensive. However, by
using the adaptive quadrature of Gauss-Kronrod we were able to mitigate this issue
in the one-stage method. Nevertheless, the two-stage methods are still the better op-
tion regarding computational time. As evidenced in Tables 2 and 3, the parametric
and semiparametric two-stage methods perform well when K ≥ 200, yielding small
biases and appropriate coverage probabilities at a much lower computational cost.

Censoring affects the performance of the estimators in different ways for the
Clayton, Gaussian and Galambos copulas, although standard errors systematically in-
crease as the censoring percentage increases (as expected). Due to the opposite nature
of the Clayton and Galambos copulas (lower tail dependence versus upper tail depen-
dence), we notice that, as the censoring percentage increases, coverage probabilities
also increase for the Clayton copula, while the opposite happens for the Galambos
copula. This can be seen for K = 50, 200, and, to a lesser extent, for K = 500 clusters.
Although this behavior appears to be counterintuitive, similar results were obtained
in the simulation studies of Prenen et al. (2017a). One possible explanation is that
the upper tail of extreme-value copulas is directly affected by the right censoring,
i.e., the higher the percentage of censoring, the more information in the upper tail
of an EV copula is lost. Therefore, results are expected to be worse. On the other
hand, since the Clayton copula has lower tail dependence, increasing the percentage
of right censoring would give more emphasis on the lower tail. Coverage probabil-
ities for the Gaussian copula are not significantly affected by censoring percentage,
owing to its symmetrical dependence structure. As can be seen in Tables 1, 2 and
3, the strength of association, represented by the three values of Kendall’s τ , has an
intuitive impact on the estimators, i.e., higher values of Kendall’s τ impose inferior
results, while the results tend to be better for smaller values of Kendall’s τ . This is
specially perceivable for K = 50, and for the semiparametric two-stage method when
K ≤ 200. This effect was studied by Joe (2005) for copula models under two-stage
estimation (IFM), who showed that the efficiency of the IFM estimators tend to be
affected when there is strong dependence (high values of θ ). It is important to note
that for samples with a small number of clusters (K around 50 clusters), the two-stage
methods are not much reliable (Table 1). The parametric one-stage is recommended
in these scenarios, as it gives better results in terms of bias and coverage probability.
Fortunately, for K ≥ 200, the two-stage methods have a good performance and a low
computational cost.

We also conduct an additional simulation study to assess the use of the AIC on
the discrimination between different factor copula models under the two-stage infer-
ence method. In this case, we simulate 500 data sets coming from different copula
models under a Kendall’s τ = 0.35: Clayton PBD from the Archimedean model of
Prenen et al. (2017a) (θ = 1.107), Factor Clayton (θ = 2), Gaussian OL model of
Othus and Li (2010) (θ = 0.723) and the Factor Galambos (θ = 1.339). We then
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use the two-stage parametric method to fit, to each generated data set (coming from
a particular copula, the true model), the four copula models and calculate the delta
AIC, ∆ = AICFitted−AICTrue. The results can be seen in Table 4 for a scenario with
K = 50 clusters with size varying uniformly from 2 to 50 and for 25% of right cen-
soring. Our criterion here is that two models are indistinguishable if their delta AIC is
less than two. As can be seen in Table 4, the high values of mean delta AIC (and low
standard deviation), indicate that the AIC was able to easily identify the best model
in almost every situation. Another evidence is the small number of delta AICs less
than two. Therefore, we conclude that, at least for applications where the global sce-
nario is close to the one we have considered, our inference method is robust to detect
deviations from the true copula model.

Table 4 Comparison of different copula models based on the delta AIC values (∆ = AICFitted−AICTrue).
Values on the first rows represent the mean delta AIC calculated from 500 simulations, while the second
rows contain the standard deviation of ∆ and the number of times ∆ ≤ 2.

True
model Fitted model

Factor Clayton Clayton PBD Gaussian OL Factor Galambos

Factor Clayton 0 53.19
(17.77; 0)

96.61
(28.57; 0)

213.62
(47.85; 0)

Clayton PBD 47.83
(16.02; 0) 0 120.49

(27.28; 0)
221.67
(41.53; 0)

Gaussian OL 133.84
(41.69; 0)

112.28
(32.45; 0) 0 41.17

(19.00; 7)
Factor Galambos 297.42

(88.48; 0)
251.93
(81.23; 0)

44.41
(15.24; 0) 0

5 Real data example - Insemination dataset

One possible application of the proposed methods is to model the time to first insemi-
nation after calving in dairy cattle clustered in herds. For this, we use the insemination
dataset, available in the R package Sunclarco (Prenen et al., 2017b). This dataset
consists of 181 clusters (farms) of different sizes, containing 10513 cows in total. The
cluster sizes range from 1 to 174 cows and the times to first insemination are subject
to right censoring, which makes this dataset suited for our purposes. Despite repre-
senting only 5.5% of the data, right censoring is still present, making it necessary to
be considered in the modeling. This right censoring is due to no insemination of a
cow within 330 days or if it is culled before insemination. The insemination dataset
also contains covariate information, represented by the dichotomous covariate parity,
which is 0 for multiparous cows and 1 for primiparous cows.

According to Duchateau and Janssen (2004), the time from parturition until first
insemination is one of the main factors that determines the calving interval, which
should be optimally between 12 and 13 months in order to maximize milk produc-
tion. Usually, insemination is done by the farmer, relying only on his experience. By
modeling the association between insemination times, we can get more insight into
this process.
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We use four different factor copulas to model the association between times to
first insemination: the first built with a bivariate Clayton copula (Factor Clayton); the
second using a bivariate Gaussian copula (Gaussian OL or Factor Gaussian), which
leads to the model of Othus and Li (2010); the third built with a bivariate Galambos
copula (Factor Galambos) and the fourth being the Clayton copula model (Clayton
PBD) of Prenen et al. (2017a). Being particular cases of the one-factor copula, the
Gaussian OL and Clayton PBD models can be obtained by setting C·|V (u j|v) as in
expressions (4) and (5) (using the generator of the Clayton copula and the gamma
distribution with parameters shape θ and scale 1/θ ), respectively. In all four settings,
we use a baseline Weibull survival function (one- and two-stage parametric estima-
tion) to model the times to first insemination and a Cox proportional hazards model
for the two-stage semiparametric method, allowing for covariate information (parity
of the cow). The expression for the Weibull survival function used is

S(t|Z) = exp{−λ exp(β z) tρ} ,

where β is the parity effect for the dichotomous covariate Z.
Using the one- and two-stage procedures for estimation, we provide results for the

parity effect and association parameters for all four factor copula settings considered,
along with their AIC (see Table 5). It is important to note that, since the parametric
and semiparametric models are different in nature, one must be careful not to use the
AIC to compare them.

Table 5 Estimation results for the insemination dataset.

Factor Clayton Gaussian OL Factor Galambos

Weibull
one

stage
Weibull

two
stage

Cox
two

stage
Weibull

one
stage

Weibull
two

stage
Cox
two

stage
Weibull

one
stage

Weibull
two

stage
Cox
two

stage

β −0.138
(0.016)

−0.066
(0.022)

−0.060
(0.021)

−0.132
(0.017)

−0.066
(0.022)

−0.060
(0.021)

−0.100
(0.015)

−0.066
(0.022)

−0.060
(0.021)

θ 0.779
(0.023)

0.829
(0.143)

0.995
(0.098)

0.623
(0.020)

0.575
(0.034)

0.520
(0.021)

1.236
(0.042)

0.916
(0.038)

0.768
(0.035)

τ 0.132 0.143 0.177 0.254 0.214 0.174 0.321 0.218 0.164

AIC −7144.8 −7008.0 149.1 −7038.4 −7004.2 511.3 −6941.7 −6731.9 1032.2

Clayton PBD

Weibull
one

stage
Weibull

two
stage

Cox
two

stage

−0.132
(0.018)

−0.066
(0.022)

−0.060
(0.021)

0.209
(0.014)

0.325
(0.043)

0.448
(0.062)

0.095 0.140 0.183

−7445.3 −7355.2 −71.59

The parity of the cow had a similar and coherent effect for all settings, with
primiparous cows having a significantly lower hazard of experiencing the event (in-
semination). Indeed, for the one-stage method, hazard ratios are 0.88 (95% confi-
dence interval (CI) [0.84,0.91]), 0.87 (95% confidence interval (CI) [0.84,0.90]),
0.90 (95% confidence interval (CI) [0.88,0.93]) and 0.88 (95% confidence interval
(CI) [0.84,0.91]) for the Gaussian OL, Factor Clayton, Factor Galambos and Clayton
PBD models, respectively. For the two-stage parametric method, all models lead to a
hazard ratio of 0.94 (95% confidence interval (CI) [0.89,0.98]). The hazard ratio for
the semiparametric method is 0.94 (95% confidence interval (CI) [0.90,0.98]) under
all four copula models. According to the AIC, the Clayton PBD copula presented the
best fit among the four models for every estimation procedure. Considering that the
Clayton copula has lower tail dependence, it can be inferred, in this context, that later
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Fig. 1 (a) Estimated survival curves for multiparous (continuous) and primiparous (dashed) cows (Clayton
PBD model under one-stage estimation) and (b) estimated survival curves (multiparous cows) for the
Clayton PBD (continuous), Clayton (dashed), Gaussian OL (dash-dotted) and Galambos (dotted) factor
copula models under one-stage estimation.

times of insemination have a stronger association and lower values are weakly cor-
related. Moreover, under the one-stage method, the estimation results show that the
times until insemination are significantly affected by the farm (aggregate of many ex-
ogenous variables). The strength of this association can be measured by the estimate
of the association parameter (0.209 with 95% confidence interval (CI) [0.182,0.236]),
which is equivalent to a Kendall’s τ of 0.095. This means that the new methodology
is not only capable of controlling for cluster effect, but to assess the shape of intra-
cluster dependence (allowing the use of any copula family) and its strength. This can
be crucial when Archimedean or Gaussian copulas are not suited to the data.

As can be seen in Figure 1, for the Weibull-Clayton PBD model, the estimated
survival curve for primiparous cows is greater than the one from multiparous cows,
meaning that multiparous cows are inseminated earlier than primiparous cows, with
approximately 50% of the multiparous cows being inseminated before 92 days, while
for primiparous cows, the estimated median is 101 days. This difference in the median
time is more accentuated when comparing the estimated marginal survival curves
for the four models (see Figure 1). Due to the upper tail dependence feature of the
Galambos copula (stronger association for lower times of insemination), the esti-
mated survival curve for the Weibull-Galambos model is notably less than the other
three for lower values of the variable time until insemination. Indeed, estimated me-
dian survival times for the Gaussian OL, Clayton PBD and Clayton factor copulas
are, respectively, 91, 101 and 91 days for multiparous cows, while for the Galambos
it is 64 days.

By deriving the expression for the survival function of a subject in a given cluster
(using the fitted factor copula model and the observed data in the cluster),

S(t∗|Xi1 = xi1, ...,Xini = xini), (12)
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we make it possible to rank the clusters in terms of any quantiles, or even the mean
or median survival times. This had not been done so far for copula-based models
as pointed out by Schneider et al. (2020). We illustrate this concept in Figure 2 for
the insemination dataset, where we plot the median times until first insemination of
primiparous and multiparous cows for each cluster under the Weibull-Clayton PBD
model (one-stage method).

Based on an optimal calving interval between 12 and 13 months and an average
gestation period of 282 days, we calculate the ideal times until first insemination of
83 and 113 days, which are displayed in Figure 2. In this way, it is possible to verify
which farms are performing better. In other words, we expect that the median times
until first insemination should be within the interval of 83 and 113 days or close.
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Fig. 2 Median times until first insemination (by cluster) for primiparous (circle)
and multiparous (cross) cows obtained from the fitted Weibull-Clayton PBD factor
copula model under one-stage estimation. Dashed lines represent optimal times of
insemination of 83 and 113 days.

6 Discussion

Current methodologies restrict clustered survival data modeling to settings where ei-
ther cluster sizes are small and fixed or the number of copula families implemented
is limited. This work aims to overcome these limitations. By using factor copulas, we
developed a comprehensive methodology that allows for clusters to be large and with
variable size, altogether with the flexibility of supporting any copula family. Ow-
ing to clusters having different sizes, we assume exchangeability between lifetimes
within a cluster and proceed by estimating a common baseline survival function using
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the whole data set. Nonetheless, subject-specific covariate information is introduced
(possibly time dependent). One drawback of the proposed models is the lack of an-
alytical expressions for the likelihood, a consequence of the infeasible integral in its
definition. However, we can still obtain reliable results by using Gauss-Legendre in-
tegration with an appropriate number of quadrature points, or even adaptive methods,
such as the Gauss-Kronrod quadrature. Three estimation methods were investigated:
parametric one-stage and two-stage along with a semiparametric two-stage approach.
Additionally, we derived estimators and proved their consistency and asymptotic nor-
mality for all the three methods. Simulation results showed that the three methods
behave reasonably well under different settings, with the one-stage procedure be-
ing, in general, more reliable for samples with a small number of clusters. On the
other hand, the one-stage method is computationally demanding for a large number
of clusters (K ≥ 200). This is not an issue for both the parametric and semiparametric
two-stage methods, since they yielded up to standard results for settings with a large
number of clusters (K ≥ 200). Moreover, the computational cost in the two-stage
procedures is substantially reduced. This paper is an extension of the works of Pre-
nen et al. (2017a), who investigated similar estimation methods under Archimedean
copula based models, and Othus and Li (2010), who explored a semiparametric two-
stage approach using Gaussian copulas. We also mention the foundational work of
Shih and Louis (1995), who derived essential results for bivariate data.

Our perspectives for future works include the extension of our methods to also al-
low for dependent censoring and semicompeting risks, following ideas from Schnei-
der et al. (2020) and Emura et al. (2017). We also plan on broadening the current
factor copula methodology to accommodate for nested structures with more latent
variables (p > 1). The computational routines that we have developed will soon be
included in the R package Sunclarco as well.
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express our deep appreciation to the editor, the associate editor and the reviewers for their comments on
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Appendix

Proof of Proposition 1

Assuming that Gθ (x) is differentiable, such that gθ (x) = d
dx Gθ (x), we can make x =

G−1
θ
(v) with dx = dv

gθ (G
−1
θ

(v))
= dv

gθ (x)
. This way, we can rewrite Equation (6) as

∫ 1

0

n

∏
j=1

C·|V (u j|v)dv =
∫ 1

0

n

∏
j=1

exp
{
−G−1

θ
(v)ϕ−1

θ
(u j)

}
dv. (13)
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By subtracting
∫ 1

0

n
∏
j=1

exp
{
−G−1

θ
(v)ϕ−1

θ
(u j)

}
dv from both sides of Equation (13),

we get ∫ 1

0

n

∏
j=1

C·|V (u j|v)dv−
∫ 1

0

n

∏
j=1

exp
{
−G−1

θ
(v)ϕ−1

θ
(u j)

}
dv = 0

⇐⇒
∫ 1

0

(
n

∏
j=1

C·|V (u j|v)−
n

∏
j=1

exp
{
−G−1

θ
(v)ϕ−1

θ
(u j)

})
dv = 0.

Hence, for the above condition to hold, it is sufficient that
n

∏
j=1

C·|V (u j|v)−
n

∏
j=1

exp
{
−G−1

θ
(v)ϕ−1

θ
(u j)

}
= 0,

or, equivalently,
C·|V (u j|v) = exp

{
−G−1

θ
(v)ϕ−1

θ
(u j)

}
,

which is the conditional distribution derived from

C·V (u j,v) =
∫ v

0
exp
{
−G−1

θ
(t)ϕ−1

θ
(u j)

}
dt

=
∫ G−1

θ
(v)

0
exp
{
−sϕ

−1
θ

(u j)
}

dGθ (s),

a bivariate function with the following properties:

1) C·V (u j,v) is grounded

C·V (0,v) =
∫ v

0
exp
{
−G−1

θ
(t)ϕ−1

θ
(0)
}

dt =
∫ v

0
0dt = 0

C·V (u j,0) =
∫ 0

0
exp
{
−G−1

θ
(t)ϕ−1

θ
(u j)

}
dt = 0.

2) C·V (u j,v) has margins u j and v

C·V (1,v) =
∫ v

0
exp
{
−G−1

θ
(t)ϕ−1

θ
(1)
}

dt =
∫ v

0
dt = v

C·V (u j,1) =
∫ G−1

θ
(1)

0
exp
{
−sϕ

−1
θ

(u j)
}

dGθ (s) =
∫ +∞

0
exp
{
−sϕ

−1
θ

(u j)
}

dGθ (s)

= ϕθ

(
ϕ
−1
θ

(u j)
)
= u j.

3) C·V (u j,v) is 2-increasing, i.e., ∀u j,u∗j ,v,v
∗ ∈ [0,1] with u j ≤ u∗j , v≤ v∗, it follows

that C·V (u∗j ,v
∗)−C·V (u j,v∗)−C·V (u∗j ,v)+C·V (u j,v)> 0∫ v∗

0

[
exp
{
−G−1

θ
(t)ϕ−1

θ
(u∗j)

}
− exp

{
−G−1

θ
(t)ϕ−1

θ
(u j)

}]
dt

−
∫ v

0

[
exp
{
−G−1

θ
(t)ϕ−1

θ
(u∗j)

}
− exp

{
−G−1

θ
(t)ϕ−1

θ
(u j)

}]
dt > 0

⇐⇒
∫ v∗

v

[
exp
{
−G−1

θ
(t)ϕ−1

θ
(u∗j)

}
− exp

{
−G−1

θ
(t)ϕ−1

θ
(u j)

}]
dt > 0.
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Therefore, C·V (u j,v) is a bivariate copula, proving that the Archimedean copula
model of Prenen et al. (2017a) is a subclass of our model.

Proof of Proposition 2

Let T̃i0 = bi and εi j ∼ N(0,1), such that T̃i j =
√

σbi +
√

1−σεi j. Since bi,εi1, ...,εini

are independent standard normal random variables, their joint density is fbi,εi1,...,εini
=

φ(bi)φ(εi1)...φ(εini). Given the set of transformation functions

T̃i0 = g0(bi,εi1, ...,εini) = bi

T̃i1 = g1(bi,εi1, ...,εini) =
√

σbi +
√

1−σεi1

...

T̃ini = gni(bi,εi1, ...,εini) =
√

σbi +
√

1−σεini ,

take the set of inverse transformation functions g−1
0 ,g−1

1 , ...,g−1
ni

bi = g−1
0 (T̃i0, T̃i1, ..., T̃ini) = T̃i0

εi1 = g−1
1 (T̃i0, T̃i1, ..., T̃ini) =

T̃i1−
√

σ T̃i0√
1−σ

...

εini = g−1
ni
(T̃i0, T̃i1, ..., T̃ini) =

T̃ini −
√

σ T̃i0√
1−σ

.

It can be shown that the Jacobian of the transformations above is given by

J =
ni

∏
j=1

1√
1−σ

.

Hence, the joint cumulative distribution function of T̃i1, ..., T̃ini after integrating out
T̃i0 and making appropriate variable changes is given by

FT̃i1,...,T̃ini
:= C(Φ(t̃i1), ...,Φ(t̃ini)) =

∫ +∞

−∞

[
ni

∏
j=1

Φ

(
t̃i j−
√

σbi√
1−σ

)]
φ(bi)dbi

=
∫ 1

0

ni

∏
j=1

Φ

(
t̃i j−
√

σΦ−1(vi)√
1−σ

)
dvi,

a one-factor copula model where the bivariate linking copulas are all Gaussian with
correlation parameter θ =

√
σ .

On the original time scale:

S(ti1, ..., tini |Zi1, ...,Zini) =
∫ 1

0

ni

∏
j=1

Φ

(
Φ−1(S(ti j|Zi j))−

√
σΦ−1(vi)√

1−σ

)
dvi,
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where S(ti j|Zi j) is the marginal survival function associated with a Cox proportional
hazards model. ut

For convenience, we first introduce some notations and definitions adapted from
Prenen et al. (2017a) and Othus and Li (2010) before we continue with the other
proofs.

Yi j(t) = I{Xi j≥t}

Λ̌(t) =
∫ t

0

d
K
∑

i=1

ni
∑
j=1

δi jI{Xi j≤u}
K
∑

i=1

ni
∑
j=1

Yi j(u)exp
{

β̌ββ
′
Zi j(u)

} =
K

∑
i=1

ni

∑
j=1

δi jI{Xi j≤t}
K
∑

k=1

nk
∑

l=1
I{Xkl≤Xi j} exp

{
β̌ββ
′
Zkl(Xi j)

} ,
Hi j = exp

[
−
∫

τ

0
Yi j(u)exp

{
βββ
′Zi j(u)

}
dΛ(u)

]
,

H0
i j = exp

[
−
∫

τ

0
Yi j(u)exp

{
βββ
′
0Zi j(u)

}
dΛ0(u)

]
,

Ȟi j = exp
[
−
∫

τ

0
Yi j(u)exp

{
β̌ββ
′
Zi j(u)

}
dΛ̌(u)

]
,

Hi j(t) = exp
[
−
∫

τ

0
Yi j(u)exp

{
βββ
′Zi j(u)

}
d {Λ + t (Γ −Λ)}(u)

]
.

Note that Hi j = Hi j(0).

L(θ ,βββ ,Λ) =
K

∏
i=1

Li(θ ,βββ ,Λ)

=
K

∏
i=1

∫ 1

0

ni

∏
j=1

c·V (Hi j,vi)
δi j×C·|V (Hi j|vi)

1−δi j dvi

=
K

∏
i=1

∫ 1

0
exp

{
ni

∑
j=1

log
(

c·V (Hi j,vi)
δi j ×C·|V (Hi j|vi)

1−δi j
)}

dvi

=
K

∏
i=1

∫ 1

0
exp

{
ni

∑
j=1

logCCC(Hi j,vi;θ)

}
dvi,

where CCC(Hi j,vi,θ) = c·V (Hi j,vi;θ)δi j ×C·|V (Hi j|vi;θ)1−δi j .

lK(θ) = K−1 log{L(θ ,βββ ,Λ)} ,
lK0(θ) = K−1 log{L(θ ,βββ 0,Λ0)} ,

ľK(θ) = K−1 log
{

L
(

θ , β̌ββ ,Λ̌
)}

,
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UK(θ) =
∂ lK(θ)

∂θ
= K−1 ∂ log{L(θ ,βββ ,Λ)}

∂θ

= K−1
K

∑
i=1

∫ 1

0
exp

{
ni

∑
j=1

logCCC(Hi j,vi,θ)

}{
ni

∑
j=1

∂

∂θ
logCCC(Hi j,vi,θ)

}
dvi

∫ 1

0
exp

{
ni

∑
j=1

logCCC(Hi j,vi,θ)

}
dvi

,

UK0(θ) =
∂ lK0(θ)

∂θ
= K−1 ∂ log{L(θ ,βββ 0,Λ0)}

∂θ
,

ǓK(θ) =
∂ ľK(θ)

∂θ
= K−1

∂ log
{

L
(

θ , β̌ββ ,Λ̌
)}

∂θ
.

The following notation is copied from Spiekerman and Lin (1998). Let a⊗0 =
1, a⊗1 = a, a⊗2 = a′a and r = 0,1,2:

S(r) (βββ , t) = K−1
K

∑
i=1

ni

∑
j=1

Yi j(t)exp
{

βββ
′Zi j(t)

}
Zi j(t)

⊗r, s(r) = E
[
S(r) (βββ , t)

]
,

E(βββ , t) =
S(1) (βββ , t)
S(0) (βββ , t)

,

e(βββ , t) =
s(1) (βββ , t)
s(0) (βββ , t)

,

V(βββ , t) =
S(2) (βββ , t)
S(0) (βββ , t)

−E(βββ , t)⊗2,

v(βββ , t) =
s(2) (βββ , t)
s(0) (βββ , t)

− e(βββ , t)⊗2.

Assume the following regularity conditions, where τ > 0 is a constant denoting the
last survival time of the uncensored subjects:

Condition 1 βββ is in a compact subset of Rp.

Condition 2 Λ(t)< ∞.

Condition 3 θ ∈ ν , where ν is a compact subset of Θ .

Condition 4 P(Ci j ≥ t, ∀t ∈ [0,τ])> δc > 0 for i = 1, ...,K and j = 1, ...,ni.

Condition 5 Let Zi j(t) =
{

Zi j1(t), ...,Zi jp(t)
}

. For i = 1, ...,K, j = 1, ...,ni and k =
1, ..., p,∣∣Zi jk(0)

∣∣+∫ τ

0

∣∣dZi jk(t)
∣∣≤ BZ < ∞ almost surely for some constant Bz.

Condition 6 E[log{Li(θ1,βββ ,Λ)/Li(θ2,βββ ,Λ)} exists for all θ1,θ2 ∈Θ , i = 1, ...,K.

Condition 7 A =
∫

τ

0 v(βββ 0,u)s
(0)(βββ 0,u)dΛ0(u) is positive definite.

Condition 8 The bivariate copula C·V (ui j,vi;θ) is absolutely continuous.
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Proof of Theorem 2

Since the consistency of β̌ββ and Λ̌ was already proved in Spiekerman and Lin (1998),
we only show the consistency of θ̌ . This is done by extending the results in Prenen
et al. (2017a) and Othus and Li (2010).

Accounting for the fact that we use plug-in estimators for βββ and Λ , we pro-
ceed by taking a Taylor series expansion of the log-likelihood of θ in the neigh-
bourhood of βββ and Λ . In view of Λ being an unspecified function, we need to
include a functional expansion term. The concept of Hadamard differentiability is
suitable in this case. In order to use this approach, we must first verify that the log-
likelihood l(θ) is Hadamard differentiable with respect to Λ : By condition 5, the
term

∫
τ

0 Yi j(u)exp
{

βββ
′Zi j(u)

}
dΛ(u) in Hi j is Hadamard differentiable. Furthermore,

by the chain rule for Hadamard derivatives (Van der Vaart, 2000), we conclude that
l(θ) is Hadamard differentiable with respect to Λ .

Let BV [0,τ] denote the class of functions with bounded total variation on [0,τ].
The Hadamard derivative of l(θ) with respect to Λ at Γ −Λ ∈ BV [0,τ] can be ob-
tained by taking the derivative of K−1 log [L{θ ,βββ ,Λ + t (Γ −Λ)}] with respect to t
and then making t = 0:

d
dt

(
K−1 log [L{θ ,βββ ,Λ + t (Γ −Λ)}]

)∣∣∣∣
t=0

=
∫

τ

0
ζK(θ ,Λ)(u)d(Γ −Λ)(u),

where ζK (θ ,Λ)(u) is equal to

K−1
K

∑
i=1

∫ 1

0
exp

{
ni

∑
j=1

logCCC(Hi j,vi,θ)

}[
ni

∑
j=1

{(
∂

∂Hi j
logCCC(Hi j,vi,θ)

)
DΛ

i j

}]
dvi

∫ 1

0
exp

{
ni

∑
j=1

logCCC(Hi j,vi,θ)

}
dvi

= K−1
K

∑
i=1

∫ 1

0
P(vi|Hi·,θ)

[
ni

∑
j=1

{(
∂

∂Hi j
logCCC(Hi j,vi,θ)

)
DΛ

i j

}]
dvi

= K−1
K

∑
i=1

ni

∑
j=1

DΛ
i j E
[

∂

∂Hi j
logCCC(Hi j,vi,θ)

]
,

DΛ
i j = (−Hi j)Yi j(u)exp

{
βββ
′Zi j(u)

}
,

and

P(vi|Hi·,θ) =

exp

{
ni
∑
j=1

logCCC(Hi j,vi,θ)

}
∫ 1

0
exp

{
ni

∑
j=1

logCCC(Hi j,vi,θ)

}
dvi

(14)
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is a probability density function of a random variable Vi assuming values in [0,1].
Similarly, the derivative of l(θ) with respect to βββ is

ζK(θ ,βββ ) = K−1
K

∑
i=1

∫ 1

0
P(vi|Hi·,θ)

[
ni

∑
j=1

{(
∂

∂Hi j
logCCC(Hi j,vi,θ)

)
Dβββ

i j

}]
dvi

= K−1
K

∑
i=1

ni

∑
j=1

Dβββ

i j E
[

∂

∂Hi j
logCCC(Hi j,vi,θ)

]
,

where
Dβββ

i j = (−Hi j)
∫

τ

0
Yi j(u)Zi j(u)exp

{
βββ
′Zi j(u)

}
dΛ(u).

Let ‖·‖ denote the Euclidean norm and let ‖·‖
∞

denote the supremum norm
on [0,τ]. To prove the consistency of θ̌ , we need ‖ζK(θ ,Λ)‖

∞
and ‖ζK(θ ,βββ )‖ to be

bounded. Note that, by the definition of Hi j and conditions 2 and 5, the terms
∥∥∥DΛ

i j

∥∥∥
∞

and
∥∥∥Dβββ

i j

∥∥∥ are bounded. Therefore, in order to satisfy the boundedness condition of

‖ζK(θ ,Λ)‖
∞

and ‖ζK(θ ,βββ )‖, we shall require the expectations in their formulae to
be finite.

We now continue with the proof by taking an expansion of ľK(θ) around βββ 0 and
Λ0, given by

ľK(θ) = lK0(θ)+ζK(θ ,βββ 0)(β̌ββ −βββ 0)+
∫

τ

0
ζK(θ ,Λ0)(t)d(Λ̌ −Λ0)(t)+R.

Another (intuitive) notation is

lK,θ (β̌ββ ,Λ̌)= lK,θ (βββ 0,Λ0)+
∂

∂βββ
lK,θ (βββ 0,Λ0)(β̌ββ−βββ 0)+

∂

∂Λ
lK,θ (βββ 0,Λ0)(Λ̌−Λ0)+R.

The remainder term R is of order op

(
max

{∥∥∥β̌ββ −βββ 0

∥∥∥ ,∥∥Λ̌ −Λ0
∥∥

∞

})
. This can be

seen from the definition of Hadamard differentiability, since∥∥∥∥∥ lK,θ

{
βββ ,Λ0 + t(Λ̌ −Λ0)

}
− lK,θ (βββ ,Λ̌)

t
− ∂

∂Λ
lK,θ (βββ ,Λ0)(Λ̌ −Λ0)

∥∥∥∥∥
∞

→ 0, as t ↓ 0

uniformly in Λ̌ −Λ0 in all compact subsets of D, the space of cumulative hazard
functions. Since β̌ββ is consistent and Λ̌ is uniformly consistent (Spiekerman and Lin,
1998), R = op(1). To prove that θ̌ is consistent we need to verify the uniform con-
vergence of the log-likelihood with the plug-in estimate of Λ to the expected value of
the log-likelihood evaluated at the true value of Λ , denoted lK0(θ):

sup
θ∈ν

∣∣ľK(θ)−E[lK0(θ)]
∣∣= oP(1). (15)

This can be shown as follows:

ľK(θ)−E[lK0(θ)] = lK0(θ)−E[lK0(θ)]+ζK(θ ,βββ 0)(β̌ββ −βββ 0)

+
∫

τ

0
ζK(θ ,Λ0)(t)d(Λ̌ −Λ0)(t)+R.
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By the law of large numbers, for fixed θ

lK0(θ)−E[lK0(θ)]
p→0. (16)

Since ‖ζK(θ ,βββ )‖ and ‖ζK(θ ,Λ)(u)‖
∞

are bounded, say ‖ζK(θ ,βββ )‖ ≤ M1 and
‖ζK(θ ,Λ)(u)‖

∞
≤M2, we have

sup
θ∈ν

∣∣∣ζK(θ ,βββ 0)(β̌ββ −βββ 0)
∣∣∣≤M1

∥∥∥β̌ββ −βββ 0

∥∥∥ ,
sup
θ∈ν

∣∣∣∣∫ τ

0
ζK(θ ,Λ0)(t)d(Λ̌ −Λ0)(t)

∣∣∣∣≤M2
∥∥Λ̌ −Λ0

∥∥
∞
.

For this reason,

sup
θ∈ν

∣∣ľK(θ)−E[lK0(θ)]
∣∣≤ sup

θ∈ν

|lK0(θ)−E[lK0(θ)]|+M1

∥∥∥β̌ββ −βββ 0

∥∥∥
+M2

∥∥Λ̌ −Λ0
∥∥

∞
+R.

Using result (16), the consistency of β̌ββ and the uniform consistency of Λ̌ and the fact
that R = op(1), we obtain

sup
θ∈ν

∣∣ľK(θ)−E[lK0(θ)]
∣∣= op(1).

Finally, to verify that θ̌ is consistent, we need to show that the expected log-likelihood
is maximized at the true value:

E[lK0(θ)]−E[lK0(θ0)]< 0. (17)

Since clusters are independent, the log-likelihood lK(θ) can be written as a sum of
independent and identically distributed random variables:

K−1
K

∑
i=1

log{Li(θ ,βββ ,Λ)},

with

Li = (−1)di
∂ di

(∂xi1)
δi1 ... (∂xini)

δini
S(xi1, ...,xini)

=
K

∏
i=1

∫ 1

0
exp

{
ni

∑
j=1

log
(

c·V (exp{−Λ(xi j)},vi)
δi j

×C·|V (exp{−Λ(xi j)}|vi)
1−δi j

)}
dvi.
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Take θ 6= θ0. The law of large numbers, Jensen’s inequality and condition 6 imply
that

lim
K→∞

lK0(θ)− lK0(θ0) = E[lK0(θ)]−E[lK0(θ0)]

= E

[
K−1

K

∑
i=1

log{Li(θ ,βββ 0,Λ0)}
]
−E

[
K−1

K

∑
i=1

log{Li(θ0,βββ 0,Λ0)}
]

= E [log{Li(θ ,βββ 0,Λ0)}− log{Li(θ0,βββ 0,Λ0)}]
= E [log{Li(θ ,βββ 0,Λ0)/Li(θ0,βββ 0,Λ0)}]
≤ log(E [log{Li(θ ,βββ 0,Λ0)/Li(θ0,βββ 0,Λ0)}])
≤ log(E [log{Li(θ ,βββ 0,Λ0)/Li(θ0,βββ 0,Λ0)}])
= log(1) = 0.

Since θ̌ maximizes ľ(θ), Equation (15) implies that

0≤ ľK
(
θ̌
)
− ľK (θ0)+E [lK0 (θ0)]−E [lK0 (θ0)] = ľK

(
θ̌
)
−E [lK0 (θ0)]+op(1)

=⇒ E [lK0 (θ0)]≤ ľK
(
θ̌
)
+op(1).

Subtracting E
[
lK0
(
θ̌
)]

from each side of the inequality we get

E [lK0 (θ0)]−E
[
lK0
(
θ̌
)]
≤ ľK

(
θ̌
)
−E

[
lK0
(
θ̌
)]

+op(1)

≤ sup
θ∈Θ

∣∣ľK (θ)−E [lK0 (θ)]
∣∣+op(1) = op(1). (18)

Now take θ such that |θ −θ0| ≥ ε for any fixed ε > 0. By inequality (17), there must
be some γε > 0 such that

E
[
lK0
(
θ̌
)]

+ γε < E [lK0 (θ0)] .

It follows that

P(|θ̌ −θ0| ≥ ε)≤ P
{

E
[
lK0
(
θ̌
)]

+ γε < E [lK0 (θ0)]
}
.

Equation (18) implies that

P
{

E
[
lK0
(
θ̌
)]

+ γε < E [lK0 (θ0)]
}
→ 0 as K→ ∞.

Therefore

P(|θ̌ −θ0| ≥ ε)→ 0 as K→ ∞.
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Proof of Theorem 3

Take a first order Taylor series expansion of ǓK(θ̌) around θ0:

ǓK(θ̌) = ǓK(θ0)+
(
θ̌ −θ0

) ∂ǓK

∂θ

∣∣∣∣
θ=θ∗

,

where θ ∗ is between θ̌ and θ0. It must be that ǓK(θ̌) = 0 since θ̌ was taken to be the
maximum of L(θ , β̌ββ ,Λ̌). For this reason

√
K
(
θ̌ −θ0

)
=

√
KǓK (θ0)

−∂ǓK/∂θ
∣∣
θ=θ∗

. (19)

We already showed that θ̌ consistently estimates θ0, so the law of large numbers
implies that

∂ǓK

∂θ

∣∣∣∣
θ=θ∗

→W (θ0) = lim
K→∞

∂ǓK

∂θ

∣∣∣∣
θ=θ0

.

We shall show that the score equation ǓK(θ0) in the numerator of Equation (19)
follows a normal distribution. Hereto, we need a Taylor series expansion of ǓK(θ0)
in the neighbourhood of βββ 0 and Λ0. Because Λ0 is an unspecified function, we shall
use the Hadamard derivative of UK(θ0) with respect to Λ at Γ −Λ ∈ BV [0,τ]:

d
dt

(
K−1 ∂ log [L{θ ,βββ ,Λ + t(Γ −Λ)}]

∂θ

)∣∣∣∣
t=0

=
∫

τ

0
ξK(θ ,Λ)(u)d(Γ −Λ)(u),

where ξK(θ ,Λ)(u) is equal to

K−1
K

∑
i=1

[∫ 1

0
P(vi|Hi·,θ)

{
ni

∑
j=1

∂ 2 logCCC(Hi j,vi,θ)

∂θ∂Hi j
DΛ

i j +
ni

∑
j=1

∂ logCCC(Hi j,vi,θ)

∂θ

×
ni

∑
j=1

∂ logCCC(Hi j,vi,θ)

∂Hi j
DΛ

i j

}
dvi−

∫ 1

0
P(vi|Hi·,θ)

{
ni

∑
j=1

∂ logCCC(Hi j,vi,θ)

∂θ

}
dvi

×
∫ 1

0
P(vi|Hi·,θ)

{
ni

∑
j=1

∂ logCCC(Hi j,vi,θ)

∂Hi j
DΛ

i j

}
dvi

]

= K−1
K

∑
i=1

ni

∑
j=1

DΛ
i j

{
E
[

∂ 2 logCCC(Hi j,vi,θ)

∂θ∂Hi j

]

+
ni

∑
k=1

Cov
[

∂ logCCC(Hi j,vi,θ)

∂θ
,

∂ logCCC(Hik,vi,θ)

∂Hik

]}
,

DΛ
i j = (−Hi j)Yi j(u)exp

{
βββ
′Zi j(u)

}
,

and P(vi|Hi·,θ) has the same definition as in expression (14). The derivative of UK(θ0)
with respect to βββ is given by the same expression as ξK(θ ,Λ)(u), replacing DΛ

i j for

Dβββ

i j = (−Hi j)
∫

τ

0
Yi j(u)Zi j(u)exp

{
βββ
′Zi j(u)

}
dΛ(u).
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By the same arguments used to show the consistency of θ̌ , we also need ‖ξK(θ ,Λ)‖
∞

and ‖ξK(θ ,βββ )‖ to be bounded. For this reason, we shall require the expectation and
covariance in their formulae to be finite. Hence, we proceed by taking a Taylor series
expansion of ǓK(θ0) in the neighbourhood of βββ 0 and Λ0 which gives

ǓK(θ0) =UK0(θ0)+ξK(θ0,βββ 0)(β̌ββ −βββ 0)+
∫

τ

0
ξK(θ0,Λ0)(t)d

{
Λ̌(t)−Λ0(t)

}
+GK ,

where GK is the remainder term for the Taylor series. Since Λ̌ is
√

K consistent,
it can be shown that GK = op(K−1/2). Define the pointwise limit of ξK(θ ,Λ)(t) as
ξ (θ ,Λ)(t) and denote ξ (θ ,βββ ) = E[ξK(θ ,βββ )]. Since ‖ξK(θ ,Λ)‖

∞
and ‖ξK(θ ,βββ )‖

are bounded, ‖ξ (θ ,Λ)‖
∞

and ‖ξ (θ ,βββ )‖ are also. Therefore

√
KǓK(θ0) =

√
K
[
UK0(θ0)+ξK(θ0,βββ 0)(β̌ββ −βββ 0)

+
∫

τ

0
ξK(θ0,Λ0)(t)d

{
Λ̌(t)−Λ0(t)

}]
+op(1).

By Spiekerman and Lin (1998)

√
K(β̌ββ −βββ 0)→ A−1

K

∑
i=1

wi.,

where wi. is the ith component of the score function for βββ under the independence
working assumption, evaluated at βββ 0:

wi. =
ni

∑
j=1

∫
τ

0

{
Zi j(u)−E [βββ 0,u]

}
dMi j(u),

with

Mi j(t) = δi jYi j(t)−
∫ t

0
Yi j(u)exp

{
βββ
′
0Zi j(u)

}
dΛ0(u).

They also showed that

√
K
{

Λ̌0(t, β̌ββ )−Λ0(t)
}
→W(t) = K−1/2

K

∑
i=1

Ψi(t),

whereW(t) is a zero mean Gaussian process with variance function

E
[
Ψi(t)

2
]
,

with

Ψi(t) =
∫ t

0

dMi.(u)
s(0) (βββ 0,u)

+hT (t)A−1wi.

and

h(t) =−
∫ t

0
e(βββ 0,u)dΛ0(u).
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That is why

√
K
[
UK0(θ0)+ξK(θ0,βββ 0)(β̌ββ −βββ 0)+

∫
τ

0
ξK(θ0,Λ0)(t)d

{
Λ̌(t)−Λ0(t)

}]
=
√

K

[
K−1

K

∑
i=1

φi(θ0)+ξK(θ0,βββ 0)K
−1/2A−1

K

∑
i=1

wi.

+K−1/2
∫

τ

0
ξK(θ0,Λ0)(t)d

{
K−1/2

K

∑
i=1

Ψi(t)

}]

=
√

K
K

∑
i=1

[
K−1

φi(θ0)+ξK(θ0,βββ 0)K
−1/2A−1wi.+K−1

∫
τ

0
ξK(θ0,Λ0)(t)dΨi(t)

]
= K−1/2

K

∑
i=1

[
φi(θ0)+ξK(θ0,βββ 0)

√
KA−1wi.+

∫
τ

0
ξK(θ0,Λ0)(t)dΨi(t)

]
= K−1/2

K

∑
i=1

Ξi

The central limit theorem implies that
√

KǓK(θ0) converges to a normally distributed
random variable with mean 0 and variance equal to the variance of Ξ . Thus we have

√
K
(
θ̌ −θ0

)
=

√
KǓK(θ0)

−∂ǓK/∂θ
∣∣
θ=θ∗

,

where
√

KǓK(θ0)
D→N {0,var(Ξ)}

and

∂ǓK/∂θ
∣∣
θ=θ∗

P→W (θ0) .

By Slutsky’s theorem,
√

K
(
θ̌ −θ0

)
converges to a normal distribution with mean 0

and variance

var(Ξ)/W (θ0)
2.

The variance of Ξ (note that var[Ξ ] = E[Ξ 2]) can be estimated by K−1
∑

K
i=1 Ξ̌ 2,

where Ξ̌ is obtained from Ξ replacing parameter values by their estimates. W (θ0) can
be estimated by the (minus) derivative of the pseudoscore function ǓK(θ) evaluated
at θ̌ . Therefore, the standard error of θ̌ is given by the square root of

var(θ̌) =
K−2

∑
K
i=1 Ξ̌ 2(

∂ǓK/∂θ
∣∣
θ=θ̌

)2 .
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