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Abstract

To deal with permanent deformations and residual stresses, we consider a mor-
phoelastic model for the scar formation as the result of wound healing after a skin
trauma. Next to the mechanical components such as strain and displacements, the
model accounts for biological constituents such as the concentration of signaling
molecules, the cellular densities of fibroblasts and myofibroblasts, and the density
of collagen. Here we present stability constraints for the one-dimensional coun-
terpart of this morphoelastic model, for both the continuous and (semi-) discrete
problem. We show that the truncation error between these eigenvalues associated
with the continuous and semi-discrete problem is of order O(h2). Next we perform
numerical validation to these constraints and provide a biological interpretation of
the (in)stability. For the mechanical part of the model, the results show the com-
ponents reach equilibria in a (non) monotonic way, depending on the value of the
viscosity. The results show that the parameters of the chemical part of the model
need to meet the stability constraint, depending on the decay rate of the signaling
molecules, to avoid unrealistic results.

1 Introduction

Burn wounds are a global problem and are the fifth most common cause of non-fatal
childhood injuries. Figures show that the number of burn injuries was nearly 11 million
worldwide in 2004, and about 180,000 people die from burns each year WHO (2018).
Given that burns mainly occur at home and workplace and that particularly adult women
and children are vulnerable to burns WHO (2018), targeting burn prevention specifically
at these target groups results in lower numbers of incidents. Besides pain, itching, and
loss of energy, mental factors and additional factors of wound healing play a role. Slow
wound healing, infection, extreme pain, hypertrophic scars, and contractures remain as
major challenges in burn management Wang (2018).

The wound healing process comprises four partially overlapping phases that normally
act upon each other quickly. The first phase, haemostasis, begins almost immediately
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after injury and aims primarily at stopping bleeding and starting the second phase.
Burn wound healing passes over haemostasis, by cause of burning and cauterization of
blood vessels. Hence burn wound healing starts with the second phase of normal wound
healing, called the inflammatory response, which starts in just a few hours after injury
to clean the wound and protects it against infections. The growth factors that play a
major role stimulate angiogenesis and collagen metabolism Enoch and Leaper (2008)
and activate cells, such as granulocytes (white blood cells) that play a major role in the
continuation of the wound healing cascade.

During inflammation, the wound is cleaned and protected from bacterial infections,
and the proliferative phase begins. These phases in wound healing are overlapping.
The sub processes that take place during the proliferative phase are re-epithelialization,
angiogenesis, fibroplasia and wound contraction. Sometimes, re-epithelialization never
completes and skin grafting is necessary Young and McNaught (2011). The ultimate
phase, remodeling and scar maturation, can take several years. This phase brings various
processes and structures into balance. This results in a scar that, on average, has 50%
strength of unwounded skin (within three months), and 80% on the long-term Enoch
and Leaper (2008); Young and McNaught (2011).

Wound contraction is yet visible in small wounds: the edges of the wound pull in, the
wound size reduces and the wounded area deforms. In adult patients, wounds can become
20-30% smaller over several weeks Olsen et al. (1995). Wound contraction involves
a biomechanical interaction of fibroblasts, myofibroblasts, chemokines, and collagen.
Depending on the wound dimensions (location on the body, size), and the extent of
contraction, the result can cause reduced mobility. If the contraction result causes
reduced mobility, then we commonly refer to a contracture. Contraction can lead to
limited range-of-motion of joints, which can lead to immobility and is an important
indication for scar revision.

Various studies report on mathematical models to predict the behavior of experimental
and clinical wounds and to gain insight into which elements of the wound healing response
might have a substantial influence on the contraction Tranquillo and Murray (1992);
Olsen et al. (1995); Barocas and Tranquillo (1997); Dallon et al. (1999); McDougall
et al. (2006); Koppenol (2017); Menon et al. (2017) to name a few. This study uses the
morphoelastic model for burn wound contraction that has been developed by Koppenol
in 2017 Koppenol and Vermolen (2017). Morphoelasticity is based on the following
principle Hall (2008): the total deformation is decomposed into a deformation as a
result of growth or shrinkage and a deformation as a result of mechanical forces. In a
mathematical context, one considers the following three coordinate systems: X, Xe(t),
and x(t), which, respectively, represent the initial coordinate system, the equilibrium at
time t that results due to growth or shrinkage, and the current coordinate system that
results due to growth or shrinkage and mechanical deformation. Assuming sufficient
regularity, the deformation gradient tensor is written by

F =
∂x

∂X
=

∂x

∂Xe

∂Xe

∂X
= AZ, (1)
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in which the tensor Z represents the deformation gradient tensor due to growth or
shrinkage, and A represents the deformation gradient due to mechanical forces Hall
(2008); Goriely and Amar (2006); Rodriguez et al. (1994).

Given Koppenol’s morphoelastic model for skin contraction Koppenol and Vermolen
(2017), we analyse stability around equilibria in a one-dimensional environment to study
the parametric dependence of stable and unstable solutions. We use a linear stability
analysis with Fourier series, where the transformations represent perturbations around
equilibria. Such a stability analysis on morphoelastic models is new in the literature.
We analyse the nonlinear equations as a system of equations, and we provide stability
conditions. Here we distinguish between the entire continuous problem, which represents
the actual solution, and the semi-discrete problem, which is the solution of a semi-discrete
solution method. We show that stability of the continuous system implies stability
of the semi-discrete stable system. Next to stability conditions, we call attention to
the effects of system instability regarding the real-life wound contraction. We further
discuss particular components of the model that we can adapt to bring the model closer
to reality. The results in this article together form an entirely recent addition to the
existing morphoelastic model for skin contraction.

The organization of this paper is as follows. Section 2 presents the mathematical model
and Section 3 presents the stability analysis. Subsequently, Section 4 presents the numer-
ical method that is used to approximate the solution and Section 5 presents the numer-
ical validation of the stability constraints and a biological interpretation of (in)stability.
Finally, Section 6 presents the conclusion and discussion.

2 The mathematical model

We borrow the morphoelastic continuum hypothesis-based modeling framework from
Koppenol, and present it in one-dimensional form. It is not our aim to derive the
model completely and will therefore go into this less in depth than the original articles
by Koppenol Koppenol and Vermolen (2017); Koppenol et al. (2017b,a). More details
about this framework can be found in the cited articles. This model considers the
displacement of the dermal layer (u), the displacement velocity of the dermal layer (v)
and the effective strain present in the dermal layer (ε). The effective strain is a local
measure for the difference between the current configuration of the dermal layer and a
hypothetical configuration of the dermal layer where the tissue is mechanically relaxed.
Furthermore, four constituents are incorporated: signaling molecules (c), fibroblasts
(N), myofibroblasts (M) and collagen (ρ). Here we use collagen as a collective name
for the molecules, fibrils and bundles of collagen, and we use signaling molecules as a
collective name for growth factors, such as transforming growth factor beta (TGF-β),
platelet derived growth factor (PDGF) and connected tissue growth factor (CTGF), and
cytokines.

We show the conservation laws for mass and linear momentum, together with the evo-
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lution equation that describes how the infinitesimal effective strain changes. We bear
in mind that due to the forces that are exerted by the cells, the domain deforms and
hence the points within the domain of computation are subject to displacement. The
local displacement rate is incorporated by passive convection, which is reflected by the
second term in the left-hand side in equations (2)-(9). Next, we briefly discuss what (the
right-hand side of) the equations represent.

The equation for the signaling molecules (2) represents diffusion according to normal
Fickian diffusion and random spread, enhanced secretion by fibroblasts and a portion
of myofibroblasts Barrientos et al. (2008), proteolytic breakdown by Matrix Metallo
Proteins (MMPs) Mast and Schultz (1996); Sternlicht and Werb (2001), the handle
of release of MMPs by (myo)fibroblasts and collagen Lindner et al. (2012), and the
inhibition of the secretion of MMPs by signaling molecules Overall et al. (1991):

∂c

∂t
+
∂(cv)

∂x
= Dc

∂2c

∂x2
+ kc

[
c

aIc + c

]
[N + ηIM ]− δc

[N + ηIIM ]ρ

1 + aIIc c
c. (2)

Here Dc is the Fickian diffusion coefficient of the signaling molecules, kc is the maximum
net secretion rate of the signaling molecules, ηI is the ratio of myofibroblasts to fibroblasts
in the maximum secretion rate of the signaling molecules, aIc is the concentration of the
signaling molecules that causes the half-maximum net secretion rate of the signaling
molecules, δc is the proteolytic breakdown rate parameter of the signaling molecules,
ηII is the ratio of myofibroblasts to fibroblasts in the secretion rate of the MMPs and
1/[1+aIIc c] represents the inhibition of the secretion of the MMPs. Next to the derivation
of this equation in Koppenol and Vermolen (2017), one finds the derivation of the second
part on the right-hand side in Olsen et al. (1995).

The equations for the (myo)fibroblasts (3)&(4) represent migration towards the gradient
of the signaling molecules Postlethwaite et al. (1987); Boon et al. (2016); Dallon et al.
(2001) by a minimal model for chemotaxis Hillen and Painter (2008), and cell density-
dependent Fickian diffusion. The proliferation of the cells depends on the signaling
molecules (as an activator-inhibitor), and inhibition because of crowding Vande Berg
et al. (1989). This is modeled by two similar logistic growth models. Further, the
equations represent differentiation of fibroblasts to myofibroblasts Tomasek et al. (2002),
and apoptosis of the cells:

∂N

∂t
+
∂(Nv)

∂x
= − ∂

∂x

(
−DF (N +M)

∂N

∂x
+ χFN

∂c

∂x

)
+

rF

[
1 +

rmax
F c

aIIIc + c

]
[1− κF (N +M)]N1+q − kF cN − δNN, (3)

∂M

∂t
+
∂(Mv)

∂x
= − ∂

∂x

(
−DF (N +M)

∂M

∂x
+ χFM

∂c

∂x

)
+

rF

[
[1 + rmax

F ]c

aIIIc + c

]
[1− κF (N +M)]M1+q + kF cN − δMM. (4)
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Here DF represents (myo)fibroblast random diffusion and χF is the chemotactic param-
eter that depends on both the binding and unbinding rate of the signaling molecules
with its receptor, and the concentration of this receptor on the cell surface of the
(myo)fibroblasts, rF is the cell division rate, rmax

F is the maximum factor of cell di-
vision rate enhancement because of the presence of the signaling molecules, aIIIc is the
concentration of the signaling molecules that cause half-maximum enhancement of the
cell division rate, κF (N +M) represents the reduction in the cell division rate because
of crowding, q is a fixed constant, kF is the signaling molecule-dependent cell differenti-
ation rate of fibroblasts into myofibroblasts, δN is the apoptosis rate of fibroblasts and
δM is the apoptosis rate of myofibroblasts.

An important difference between the two equations is that myofibroblasts only proliferate
in the presence of the signaling molecules. The form of the logistic growths needs more
justification. The exact mechanism behind many of the biological processes is not always
known, let alone a quantitative description of such a biological mechanism, and if others
have developed a quantitative description, reliable estimates of the values for parameters
are often lacking. So in general, Koppenol has avoided the use of quadratic terms in the
biological parts of the models as much as possible, unless there is really a good biological
reason for this. The growth of the (myo)fibroblasts is therefore taken to the power (1+q)
to make the model consistent. The value of q is a necessary consequence of the other
values of the parameters of the model. Let therefore c,N,M define the equilibria of
the signaling molecules, the fibroblasts and the myofibroblasts, respectively. If we take
M = 0 and c = 0 as the kinetic equilibrium, then, solving the reactive term in equation
(3) for δN yields

δN = rF [1− κFN ]N
q
. (5)

The equation for collagen (6) represents the production of collagen by (myo)fibroblasts
Baum and Arpey (2006), enhancement of the secretion by signaling molecules Ivanoff
et al. (2005), and proteolytic breakdown of collagen by MMPs (similar as for the signaling
molecules):

∂ρ

∂t
+
∂(ρv)

∂x
= kρ

[
1 +

[
kmax
ρ c

aIVc + c

]]
[N + ηIM ]− δρ

[N + ηIIM ]ρ

1 + aIIc c
ρ. (6)

Here kρ is the collagen secretion rate, kmax
ρ is the maximum factor of secretion rate

enhancement because of the presence of the signaling molecules, aIVc is the concentration
of the signaling molecules that cause the half-maximum enhancement of the secretion
rate of collagen and δρ is the degradation rate of collagen. A generic MMP affects the
reaction kinetics of the signaling molecules and collagen, and is assumed always to be at
a local equilibrium concentration. Reasoning for this modeling choice has been to avoid
even more complexity and additional unknown parameter values.

Let ρ define the equilibrium of collagen. Then, solving the reactive term in equation (6)
for ρ yields

ρ =
√
kρ/δρ. (7)
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The equation for the displacement velocity (8) represents Cauchy stress by a visco-
elastic constitutive relation, and a body force that is proportional to the product of the
cell density of the myofibroblasts and a function of the concentration of collagen. This
visco-elastic constitutive relation follows the assumption from Ramtani Ramtani (2004);
Ramtani and et al (2002), which incorporates the dependence of the Young’s modulus
of skin on the density of collagen:

ρt

(
∂v

∂t
+ 2v

∂v

∂x

)
=

∂

∂x

(
µ
∂v

∂x
+ E
√
ρε

)
+

∂

∂x

(
ξMρ

R2 + ρ2

)
. (8)

Here ρt represents the total mass density of the dermal tissues, µ is the viscosity, E
√
ρ

represents the Young’s modulus (stiffness), ξ is the generated stress per unit cell density
and the inverse of the unit collagen concentration, R is a constant. The above equation
represents the balance of momentum, and despite many studies neglect inertial effects
(the first two terms), we have chosen to keep the inertia terms in order to stay closer to
the underlying physics.

To incorporate a plastic deformation in the equation for the effective strain (9), a tensor-
based approach is used that is also commonly used in the context of growth of tissues
(such as tumors). The ‘growth’ contribution, which with a negative sign models contrac-
tion of the tissue, is assumed to be proportional to the product of the amount of effective
strain (see Hall (2008)), the cell density of (myo)fibroblasts, and to be a function of the
collagen density. In particular, it is assumed that the tensor for contraction depends on
the product of the concentration of the MMPs, the concentration of the chemokines and
the reciprocal of the collagen density. Taken together, the following equations present
the one-dimensional morphoelastic framework for skin contraction:

∂ε

∂t
+ v

∂ε

∂x
+ (ε− 1)

∂v

∂x
= −ζ [N + ηIIM ]c

1 + aIIc c
ε. (9)

Here ζ is the rate of morphoelastic change (i.e., the rate at which the effective strain
changes actively over time).

2.1 Initial and boundary conditions

We define the domain of computation by Ωx,t and the boundary by ∂Ωx,t. The dimension
x is in centimeters and t in days. Since we are interested in the stability of the model
around equilibria, we define the initial conditions by perturbations around equilibria,
where the values on the boundaries are the equilibrium values. Further, we impose the
following boundary conditions. For all x ∈ ∂Ωx,t and t ≥ 0:

c(x, t) = 0, N(x, t) = N, M(x, t) = 0, v(x, t) = 0. (10)

Regarding the equations for ε and ρ, an ordinary differential equation with derivatives
regarding time in terms of the material derivative is obtained. We see this if we write
the left-hand side of equation (6) as Dρ

Dt + ρ ∂v∂x and equation (9) as Dε
Dt + ε ∂v∂x = ∂v

∂x − αε.
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The partial derivatives regarding space only involve the displacement velocity v. On
the boundaries, for v we use the boundary condition v = 0. Therefore, to specify the
solution of ε and ρ in the (open) domain Ω, it is unnecessary to specify any boundary
conditions (the characteristics in the x, t-plane are vertical). We note that in cases (not
currently) where characteristics would be directed out of the domain of computation,
imposing these boundary conditions for would lead to failure of existence and continuity.
To summarize, we do not need any boundary conditions for ρ and ε.

3 Linear stability of the model

In this Section we analyse the stability of the one-dimensional morphoelastic model for
skin contraction. First, we analyse linear stability of the continuous problem. The sta-
bility conditions are formulated in terms of the input parameters. We do this analysis
in order to understand the a priori behavior of the solution. Since we are not able
to derive the exact solution to the problem, we also analyse stability of the numer-
ical approximation. We consider the following linearised equations around equilibria
(c,N,M, ρ, v, ε) = (0, N, 0, ρ, 0, ε), where N, ρ, ε ∈ R≥0:

∂ĉ

∂t
−Dc

∂2ĉ

∂x2
+N

[
δcρ−

kc
aIc

]
ĉ = 0,

∂N̂

∂t
−DFN

∂2N̂

∂x2
+ χFN

∂2ĉ

∂x2
− rFN

q
((1 + q)(1− κFN)− κFN)N̂

+ δN N̂ + rFκFN
1+q

M̂ −N
[
rF r

max
F

aIIIc

[1− κFN ]N
q − kF

]
ĉ = 0,

∂M̂

∂t
−DFN

∂2M̂

∂x2
+ δMM̂ − kFNĉ = 0,

∂ρ̂

∂t
+ δρρ

2(ηII − ηI)M̂ − δρρ2N

(
kmaxρ

aIVc
+ aIIc

)
ĉ+ 2δρNρρ̂ = 0,

∂v̂

∂t
− µ

ρt

∂2v̂

∂x2
− E
√
ρ

ρt

∂ε̂

∂x
− Eε

2ρt
√
ρ

∂ρ̂

∂x
− ξρ

ρt(R2 + ρ2)

∂M̂

∂x
= 0,

∂ε̂

∂t
+ (ε− 1)

∂v̂

∂x
+ ζεNĉ = 0,

(11)

where ĉ, N̂ , M̂ , ρ̂, v̂, and ε̂ are variations around the equilibria. Here we used that kρ =
δρρ

2 must hold in equilibrium.
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3.1 Stability of the continuous problem

We write the variations around the equilibria in terms of a complex Fourier series

ĉ(x, t) =
1

|Ω|

∞∑
j=−∞

ccj(t)e
2iπjx, N̂(x, t) =

1

|Ω|

∞∑
j=−∞

cNj (t)e2iπjx,

M̂(x, t) =
1

|Ω|

∞∑
j=−∞

cMj (t)e2iπjx, ρ̂(x, t) =
1

|Ω|

∞∑
j=−∞

cρj (t)e
2iπjx,

v̂(x, t) =
1

|Ω|

∞∑
j=−∞

cvj (t)e
2iπjx, ε̂(x, t) =

1

|Ω|

∞∑
j=−∞

cεj(t)e
2iπjx,

(12)

where |Ω| denotes the length of Ω and i represents the imaginary unit number.

Substitution of the variations (12) into the linearised equations (11), multiplication by
e−2iπkx, and integration over Ω gives

ċck(t) +Dc(2πk)2cck(t) +N

[
δcρ−

kc
aIc

]
cck(t) = 0,

ċNk (t) +DFN(2πk)2cNk (t)− χFN(2πk)2cck(t) + rFκFN
1+q

cMk (t)

− rFN
q
((1 + q)(1− κFN)− κFN)cNk (t) + δNc

N
k (t)

−N
[
rF r

max
F

aIIIc

[1− κFN ]N
q − kF

]
cck(t) = 0,

ċMk (t) +DFN(2πk)2cMk (t) + δMc
M
k (t)− kFNcck(t) = 0,

ċρk(t) + δρρ
2(ηII − ηI)cMk (t)− δρρ2N

[
kmaxρ

aIVc
+ aIIc

]
cck(t)

+ 2δρNρc
ρ
k(t) = 0,

(13)

for the chemical part of the model, and

ċvk(t) +
µ

ρt
(2πk)2cvk(t)− i

E
√
ρ

ρt
(2πk)cεk(t)− i

Eε

2ρt
√
ρ

(2πk)cρk(t)

− i ξρ

ρt(R2 + ρ2)
(2πk)cMk (t) = 0,

ċεk(t) + i(ε− 1)(2πk)cvk(t) + ζεNcck(t) = 0,

(14)

for the mechanical part of the model. The derivation of equations (13) and (14) is given
in Appendix 1. Interchanging the second and third equation of (13), these equations
together with equations (14) are in the form y′ +Ay = 0 with

A =



A11 0 0 0 0 0
A21 A22 0 0 0 0
A31 A32 A33 0 0 0
A41 A42 0 A44 0 0
0 A52 0 A54 A55 A56

A61 0 0 0 A65 0

 . (15)
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We determine the eigenvalues of A by solving |A − λI| = 0 for λ, where I represents
the identity matrix. For this we use the first four diagonal values as pivots and end
up with a 2-by-2 matrix containing the mechanical part of the model with determinant
λ2 − A55λ − A56A65. Hence the eigenvalues are the first four diagonal entries and λ =
1
2A55± 1

2

√
A2

55 + 4A56A65. Note that the system is linearly stable if and only if the real
part of the eigenvalues is non-negative, hence we need

Dc(2πk)2 +N

[
δcρ−

kc
aIc

]
≥ 0,

DFN(2πk)2 − rFN
q
((1 + q)(1− κFN)− κFN) + δN ≥ 0,

DFN(2πk)2 + δM ≥ 0,

2δρNρ ≥ 0,

(2πk)2µ

2ρt
± 1

2

√(
(2πk)2µ

ρt

)2

+ 4
(2πk)2E

√
ρ

ρt
(ε− 1) ≥ 0.

(16)

The first two requirements imply that stability is obtained for δc ≥ kc
aIcρ

and combining

the second requirement with equation (5), gives qδN ≤ κF rFN
1+q

(k = 0). In addition,
given the relation in (5), it must hold that δN > 0 and hence κFN < 1. Further, the
third and fourth eigenvalues meet the stability condition Re(λ(A)) ≥ 0 independent of
the chosen values for the parameters given that the parameters are positive. Lastly,
linear stability is obtained for ε ≤ 1, else a saddle point problem is obtained if λ5,6 ∈ R.
Note that this is also a physical requirement given that equation (9) only holds for small
strains. These last two eigenvalues are real-valued as long as

µ ≥
√
ρtE
√
ρ(1−ε)
π (k = 1). If the last-mentioned condition is satisfied for k = 1, then

the eigenvalues are real-valued for other values of k. For all the other conditions, it is
obvious that they hold for all k ∈ Z as well. The constant case k = 0 implies that these
eigenvalues are zero, which reflects the trivial case in which there are no dynamics. This
also implies that ε = 0 is a stable equilibrium state with real-valued eigenvalues. We
summarize these results in Theorem 1.

Theorem 1. Let {c,N,M, ρ, v, ε} satisfy equations (2)-(9). Let δN = rF (1−κFN)N
q
>

0 and ρ =
√
kρ/δρ, then

1. The equilibria (c,N,M, ρ, v, ε) = (0, N, 0, ρ, 0, ε), {N, ρ, ε} ∈ R>0, are linearly

stable if and only if δcρ ≥ kc
aIc

, and qδN ≤ κF rFN
1+q

and ε ≤ 1;

2. Given ε < 1, then the eigenvalues are real-valued if and only if

µ ≥
√
ρtE
√
ρ(1−ε)
π (k = 1);

Remark 1. Note that δc ≥ kc
aIcρ

, for k = 0 (constant states). Hence, if constant pertur-

bations are stable, then wave-like perturbations are stable. In case δc is not large enough,
fast oscillating perturbations will vanish, while slow oscillating perturbations will not van-

ish and can amplify. Further, if ε < 1 and if µ <

√
ρtE
√
ρ(1−ε)
π , then convergence from

9



variations around ε will occur in a non-monotonic way over time because the eigenvalues
of the linearised dynamical system are not real-valued.

Next we provide some quantitative examples that illustrate the stability claims. Sta-
bility is warranted if there is a sufficient decay of the growth factor. Monotonicity (of
convergence) is obtained if there is sufficient damping in terms of viscous forces.

Example If we let δc = 5 × 10−4 cm6/(cells g day), kc = 4 × 10−13 g/(cells day),
aIc = 10−8 g/cm3, and ρ = 0.1125 g/cm3, then we have
δc = 5×10−4 ≥ 3.55×10−4 = kc/(a

I
cρ). Hence with these parameter values we meet the

stability condition for the signaling molecules. Further, if we let N = 104 < 106 = κ−1
F

cells/cm3, δN = 0.002/day, rF = 0.924 cm3q/(cellsq day) and q = log(δN )−log(rF (1−κFN)

log(N)
≈

−0.42, then we have

qδN = −8.4 × 10−4 ≤ 1.9 × 10−4 = κF rFN
1+q

. Hence with these parameter values
we meet the stability condition for the fibroblasts. Note that there is only a distance of
1.45×10−4 cm6/(cells g day) between the left- and right-hand side in the first condition,
and a much larger distance of 1.03 × 10−3 between the left- and right-hand side in the
second condition. In addition, substitution of δN = rF (1 − κFN)N

q
into the second

equation of (16), and solving for q with k = 0 yields q ≤ κFN/(1 − κFN) ≈ 0.01,
yielding the upper bound δN < 1.004 (with the chosen parameter values). Given that
the doubling time (DT) of fibroblasts ranges from 18-20 h Alberts et al. (1989); Ghosh
et al. (2007), and that the average lifespan of fibroblasts varies between 40 and 70
population doublings (PD) Ghosh et al. (2007); Moulin et al. (2011), using the formula
δN = (ln 2)/(PD×DT/24), yields the save range 0.0119 ≤ δN ≤ 0.0231 for the fibroblast
apoptosis rate.

3.2 Stability of the discrete problem

Stability of the continuous problem does not always automatically imply stability of the
(semi-) discrete counterpart of the problem. Therefore, we assess stability of the semi-
discrete problem, which can assess stability of the full discrete system. Lax’ Equivalence
Theorem states that a consistent, stable method converges. The global truncation error
tends to zero as the step size tends to zero (as h→ 0), if the local truncation error (i.e.,
the difference between the derivatives and difference ratios) tends to zero as the step size
is sent to zero.

A well-known way to assess numerical stability is by including Gershgorin’s Circle Theo-
rem. This theorem is widely used and very general in the sense that it is straightforward
to generalize stability to general, non-equidistant meshes and to cases where the input
variables are non constant. However, in many examples, the eigenvalue bounds obtained
through Gershgorin’s Circle Theorem are less accurate than by the use of the Von Neu-
mann analysis, which is based on discrete Fourier analysis. Because of the accuracy
and also the ease of application of the Von Neumann analysis, we apply this analysis
on a uniform grid on the system of linearised equations with constant coefficients (11).
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The Von Neumann stability analysis provides sufficient conditions for numerical stability
Fletcher (1998). The finite difference method (FDM) gives:

λck = −Dc
ck−1 − 2ck + ck+1

h2
+N

[
δcρ−

kc
aIc

]
ck,

λNk = −DFN
Nk−1 − 2Nk +Nk+1

h2
+ χFN

ck−1 − 2ck + ck+1

h2

+
[
δN − rFN

q
((1 + q)(1− κFN)− κFN)

]
Nk + rFκFN

1+q
Mk

−N
[
rF r

max
F

aIIIc

[1− κFN ]N
q − kF

]
ck,

λMk = −DFN
Mk−1 − 2Mk +Mk+1

h2
+ δMMk − kFNck,

λρk = δρρ
2(ηII − ηI)Mk − δρρ2N

(
kmaxρ

aIVc
+ aIIc

)
ck + 2δρNρρk,

(17)

for the chemical part of the model, and

λvk = − µ
ρt

vk−1 − 2vk + vk+1

h2
− E
√
ρ

ρt

εk+1 − εk−1

2h

− Eε

2ρt
√
ρ

ρk+1 − ρk−1

2h
− ξρ

ρt(R2 + ρ2)

Mk+1 −Mk−1

2h
,

λεk = (ε− 1)
vk+1 − vk−1

2h
+ ζεNĉk,

(18)

for the mechanical part of the model. Let

ck =
n−1∑
β=1

ĉβe
−2πβkhi, Nk =

n−1∑
β=1

N̂βe
−2πβkhi, Mk =

n−1∑
β=1

M̂βe
−2πβkhi,

ρk =
n−1∑
β=1

ρ̂βe
−2πβkhi, vk =

n−1∑
β=1

v̂βe
−2πβkhi, εk =

n−1∑
β=1

ε̂βe
−2πβkhi.

(19)

Substitution of (19) in equations (17) and (18), subdivision by e−2πβkhi, and using Euler’s
formula and 2− 2 cos(2πβh) = 4 sin2(πβh) results in

λĉβ =
Dc

h2
4 sin2(πβh)ĉβ +N

[
δcρ−

kc
aIc

]
ĉβ,

λN̂β =
DFN

h2
4 sin2(πβh)N̂β −

χFN

h2
4 sin2(πβh)ĉβ

+
[
δN − rFN

q
((1 + q)(1− κFN)− κFN)

]
N̂β

+ rFκFN
1+q

M̂β −N
[
rF r

max
F

aIIIc

[1− κFN ]N
q − kF

]
ĉβ,

λM̂β =

[
DFN

h2
4 sin2(πβh) + δM

]
M̂β − kFNĉβ,

λρ̂β = δρρ
2(ηII − ηI)M̂β − δρρ2N

[
kmaxρ

aIVc
+ aIIc

]
ĉβ + 2δρNρρ̂β,

(20)
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for the chemical part of the model, and

λv̂β =
µ

ρth2
4 sin2(πβh)v̂β + i

E
√
ρ

ρth
sin(2πβh)ε̂β

+ i
Eε

2ρt
√
ρh

sin(2πβh)ρ̂β + i
ξρ

2ρt(R2 + ρ2)h
sin(2πβh)M̂β,

λε̂β = −i(ε− 1)

h
sin(2πβh)v̂β + ζεNĉβ,

(21)

for the mechanical part of the model. The derivation of equations (20) and (21) is given
in Appendix 2. These equations are in the form λz = Cz with the matrix C as in (15).
Hence the eigenvalues are found in the same way as before. Note that the discrete system
is linearly stable if and only if the real part of the eigenvalues is non-negative, hence we
need

Dc

h2
4 sin2(πβh) +N

[
δcρ−

kc
aIc

]
≥ 0,

DFN

h2
4 sin2(πβh)− rFN

q
((1 + q)(1− κFN)− κFN) + δN ≥ 0,

DFN

h2
4 sin2(πβh) + δM ≥ 0,

2δρNρ ≥ 0,

2µ

ρth2
sin2(πβh)±

1

2

√(
µ

ρth2
4 sin2(πβh)

)2

+ 4
E
√
ρ

ρth2
(ε− 1) sin2(2πβh) ≥ 0.

(22)

To guarantee linear stability, the first requirement states δcρ ≥ kc
aIc

. Given δN =

rF (1−κFN)N
q
, the second requirement states qδN ≤ κF rFN

1+q
. The third and fourth

eigenvalues meet the stability condition independent of the chosen values for the pa-
rameters given that the parameters are positive. Lastly, for the discrete problem linear
stability is also obtained for ε ≤ 1, and since

4
E
√
ρ

ρth2
(1− ε) sin2(2πβh) ≥ 0, (23)

stability is guaranteed for all h ∈ R>0. To conclude, we have demonstrated that if the
equilibrium is stable in the continuous problem, then it is also stable in the semi-discrete
problem.

There exists a consistency between the stability criteria of the continuous problem and
the stability criteria of the discrete problem. We show this consistency by writing sin2(x)

12



as a Taylor series. Substitution into the first and last equation in (22) yields:

Dc(2πβ)2 +O(h2) +N

[
δcρ−

kc
aIc

]
≥ 0,

(2πβ)2µ

2ρt
+O(h2)±

1

2

√(
(2πβ)2µ

ρt
+O(h2)

)2

+ 4
(2πβ)2E

√
ρ

ρt
(ε− 1) +O(h2) ≥ 0.

(24)

Comparison to the first and last second equation of (16)

Dc(2πk)2 +N

[
δcρ−

kc
aIc

]
≥ 0,

(2πk)2µ

2ρt
± 1

2

√(
(2πk)2µ

ρt

)2

+ 4
(2πk)2E

√
ρ

ρt
(ε− 1) ≥ 0.

(25)

yields a difference in eigenvalues of order O(h2). Note that in the same way, a difference
of order O(h2) follows for the second equations of (16) and (22).

Furthermore, the last equation in (22) implies that for real-valued eigenvalues we need

µ2

ρ2
th

4
42 sin4(πβh) ≥ 4

E
√
ρ

ρth2
(1− ε) sin2(2πβh).

Writing sin2(2πβh) = 4 sin2(πβh) cos2(πβh), multiplication by
ρ2th

2

42 sin4(πβh)
gives

µ2 ≥ ρth2E
√
ρ(1− ε)cos2(πβh)

sin2(πβh)
.

Hence the numerical criterium

µ ≥ h

tan(πβh)

√
ρtE

√
ρ(1− ε). (26)

For consistency, we have

lim
h→0

h

tan(πβh)
= lim

h→0

πβh

tan(πβh)
· 1

πβ
=

1

πβ

and h
tan(πβh) ≤

1
πβ , for β = 1, . . . , n−1 (hn = |Ω|). Hence for monotonic convergence for

β = 1, we see that the convergence is consistent with convergence of the fully continuous
model for h→ 0. We summarise the results in Theorem 2.

Theorem 2. Let {c,N,M, ρ, v, ε} satisfy the semi-discrete spatial finite differences ver-
sion of equations (2)-(9). Then stability in the fully continuous problem implies stabil-
ity in the semi-discrete formulation, regardless the step-size. Furthermore, monotonic
convergence in the fully continuous problem implies monotonic convergence in the semi-
discrete problem formulation, regardless the step-size.

13



Corollary 1. Let {c,N,M, ρ, v, ε} satisfy the semi-discrete spatial finite differences ver-
sion of equations (2)-(9). Let δN = rF (1−κFN)N

q
and ρ =

√
kρ/δρ, then the equilibria

are unconditionally stable for the trapezoid rule and the Euler backward method as long

as δcρ ≥ kc/a
I
c and qδN ≤ κF rFN

1+q
. Furthermore, the Euler backward method is

A-stable.

Remark 2. It is possible that the semi-discrete yields monotonic convergence, whereas
the continuous problem does not. The reason for this is that h

tan(πβh) ≤
1
πβ . Hence the

inequality for the continuous problem is sharper than for the semi-discrete problem.

4 Numerical method for validation

We approximate the solution to the model equations by the finite-element method using
linear basis functions. For more information about this method we refer to Van Kan
et al. (2014). We multiply the equations (2)-(9) by a test function ϕ(x, t) ∈ H1

0 , integrate
over the domain of computation Ω (integration by parts), apply the application of the
Gauss’ theorem, and apply the Leibniz-Reynold’s transport theorem.

To construct the basis functions we subdivide the domain of computation into n ∈ N
sub-domains ep = [xp, xp+1] (i.e., the elements). Let Xh(t) =

⋃
ep the finite element

subspace and xj , j ∈ {1, . . . , n+1} the vertices of the elements. We choose ϕi(xj , t) = δij ,
i, j ∈ {1, . . . , n+ 1} as the linear basis functions, where δij denotes the Kronecker delta
function.

Note that the following holds for the chosen subspace Xh(t) ⊂ Ωx,t:
Dϕi

Dt = 0 for all ϕi Dziuk and Elliot (2007). The Galerkin equations are simplified using
this property. We solve the Galerkin equations using backward Euler time integration
and we use a monolithic approach with inner Picard iterations to account for the non-
linearity of the equations. To avoid loss of monotonicity (i.e. oscillations), we use the
process called mass lumping.

We approximate the local displacements by

ut+∆t
i ' utt + ∆tvt+∆t

i , (27)

with
u(x, 0) = 0, ∀x ∈ Ωx,0, (28)

the initial condition.

5 Results

To experimentally assess the convergence of the numerical method, we use a domain
of computation of 10 cm in which we model a 4 cm large wound. To account for the
steepness of the gradients of the initial fibroblast distribution, and signaling molecule
and collagen densities, we use an interval with length of 1 cm over which the initial
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solution varies between its equilibrium and zero. Within the wound, we assume that
there are 2000 fibroblast cells/cm3, 10−8 g/cm3 signaling molecules and 0.01125 g/cm3

collagen present. We model the gradient of the steepness area by sine functions. We
divide the domain of computation in n elements, where n ∈ {41, 81, 161, 321, 641, 1281}.
For each simulation, we define ∆t = h2, where h is the size of the elements, and simulate
skin contraction for 1 day. In each simulation, we report the densities of the variables
(the solutions) and the relative surface area of the wound (RSAW). The convergence
order results are computed as follows. Let lim

h→0
zh(x, 1) = z(x, 1) denote the true density

of variable z on day 1 and z0.0078(x, 1) =: zh/r the solution in the last simulation (i.e.,
the reference, which has been computed using the highest numerical resolution). We
approximate the errors ε :=

∫
|z − zh|dx of the solutions on the full domain of compu-

tation, and since we are interested in the displacement of the boundary of the wound,
we approximate the errors of the solutions on the boundary of the wound in particular.
For this we use the following error definition:

ε|41|(h) =
41∑
i=1

∣∣zh/r(xi,41)− zh(xi,41)
∣∣ , (29)

where the grid-points xi,n correspond to the grid-points in the simulation with n = 41
nodes. This error is a variant of the L1-norm in which we evaluate the solution to the
equations on the same grid-points.

Figure 1 shows some of the results for error ε|41|, where we show the relations of the
errors with the element size h for the displacement velocity, and the error of the relative
surface area of the wound.

From the left plot, we see that the absolute error of the displacement velocity decreases
consistently as h becomes smaller. The average slope of this graph is 2.1882, hence the
order of convergence is about O(h2). From the right plot, we see that the absolute error
of the relative surface area of the wound decreases consistently as h becomes smaller.
The average slope of this graph is 2.2092, showing an order of convergence about O(h2)
as well. We note that all averaged slopes of the logarithms of the absolute errors of
the variables and the relative surface area of the wound show an overall consistent
convergence of order O(h2). One finds these slopes in Table 2 in Appendix 4.

To validate the stability for the model, we perturb the initial conditions around equilibria
using sine functions, and we vary the parameters δc and µ. We use n = 500 elements
to divide the domain of computation between 0 and 1, which represents half a domain
of the modeled skin on which we perform computations. This is possible due to the
symmetry of the model. We fix all parameters except for δc and µ. The values of the
fixed parameters are given in Table 1. When not stated otherwise, for time integration,
we use a step of ∆t = 5× 10−1 days.

For the initial conditions, we vary the number of waves k using three levels (1, 5 and 10).
We perturb the initial condition for the fibroblasts and collagen by using a sine function
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Figure 1: Numerical validation of convergence. Here, the contraction of a wound of 4
cm, with 1 cm steepness, on a domain of 10 cm is simulated. Initially, in the wound
there are 2000 fibroblast cells/cm3, 10−8 g/cm3 signaling molecules and 0.01125 g/cm3

collagen present. The values of the other parameters are shown in Table 1. The left plot
shows the logarithm of the step size versus the logarithm of the absolute displacement
velocity density error on the domain of computation on a fixed number of grid-points.
The right plot shows the logarithm of the step size h versus the logarithm of the absolute
relative surface area error

with amplitude 10 cells/cm3 and 10−2 g/cm3, respectively. This is possible because the
equilibrium distribution of the fibroblasts and the equilibrium density of collagen are
non-zero. For the initial condition of the myofibroblasts and the signaling molecules we
use uniform splines with 2k+1 knots. On the boundaries, the knots have zero value, and
in between the values are 3 and 6 cells/cm3 for the myofibroblasts, and 0.5× 10−15 and
2× 10−15 g/cm3 for the signaling molecules. This way we ensure that the myofibroblast
distribution and signaling molecule density values are positive. The initial amplitudes
of the displacement velocity and effective strain are 0.05 and 0.5, respectively.

For stability, Theorem 1 requires that δc ≥ kc
aIcρ

in case k = 0. Further, given that the

equilibrium density of the effective strain is less than 1, eigenvalues are real-valued if and
only if µ ≥

√
ρtE
√
ρ(1− ε0)/π in case k = 1. We choose to vary the signaling molecule

decay rate δc using three levels (2 × 10−4, 3 × 10−4 and 5 × 10−4) cm6/(cells g day),
where the first two values are chosen such that such that the stability condition is not
met. We vary the viscosity parameter µ using two levels (1 and 100) (N day)/cm2. The
first value is chosen such that the corresponding eigenvalue is not real-valued. Videos
corresponding to the shown figures can be found in the online resources. The values of
the fixed parameters can be found in Appendix 3.

In the first simulation we take δc = 5×10−4 cm6/(cells g day) and µ = 100 (N day)/cm2

and simulate for 400 days. We note that for these values, the stability criteria are met.
Figure 2 shows the results.
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Figure 2: Evolution of distributions and densities of the modeled variables for δc =
5×10−4 cm6/(cells g day) and µ = 100 (N day)/cm2. The values of the other parameters
are shown in Table 1. The plots on the upper left and right, the middle left and right,
and the lower left and right show the displacement velocity, the effective strain, the
signaling molecules, the fibroblasts, the myofibroblasts, and collagen, respectively

We see that the displacement velocity density rearranges to negative values. As the
density moves below zero, the amplitude of the wave initially increases, after which the
density moves gradually toward the equilibrium v = 0. The effective strain density
does not change signs. The values on the boundaries of the domain of computation
initially move away from the equilibrium, where all other values gradually move toward
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the equilibrium ε ≈ −0.05. Because of the boundary condition, the signaling molecule
density is fixed at equilibrium on the left boundary of the domain of computation. We see
that on the right boundary, the density increases in the first days, after which it decreases
to the equilibrium c = 0 g/cm3. Because of the negative values of the displacement
velocity density after 12 hours, the mesh moves to the left. This is most clear in the
fibroblast plot. During the simulation, the fibroblast distribution displacements to the
left, and values above the equilibrium gradually move toward the equilibrium N = 104

cells/cm3. The fibroblast distribution on the right boundary starts by moving away from
the equilibrium as the fibroblasts differentiate to myofibroblasts because of the increased
density of signaling molecules. After the signaling molecule density is almost zero around
the right boundary on day 30, the fibroblast distribution moves toward the equilibrium,
reaching it fully around day 400. We see the same effect in the myofibroblast plot, where
the distribution moves to the left, and moves gradually toward the equilibrium M = 0
cells/cm3. Only the values on the right boundary move away from the equilibrium in
the first 10 days, because of the differentiated fibroblasts. The plot of collagen is like
the plot of the effective strain, although the effect of the local displacements seems
larger for collagen, and for collagen it takes much longer before the density reaches the
equilibrium ρ = 0.1125 g/cm3. Overall, the model behaves absolutely stable given these
stable parameter values.

From a biological perspective, minor variations in the number of (myo) fibroblast cells,
and in the density of signaling molecules and collagen, already initialises wound healing
in which contraction appears for 100 days. If there is a disruption in the distribution of
collagen, the skin recovers this almost immediately. However, this process takes longer
than for signaling molecules, for example. Further, local displacements in the skin are
either in the direction toward the center of the wound or in the direction of the boundary
of the wound.

Next, in the second, third and fourth (k = 1, 5, 10) simulations we take δc = 2 × 10−4

cm6/(cells g day) and µ = 100 (N day)/cm2 and simulate for 1200 days (not shown).
While running these simulations, at first the constituents (almost) reach their equilib-
ria. For k = 1, the signaling molecule density reaches the equilibrium around day 250,
the fibroblast distribution changes towards equilibrium until day 650, the myofibroblast
distribution reaches equilibrium around day 390, and the collagen density around day
650 as well. Further, both the displacement velocity and effective strain density reach
equilibria within 15 days. However, from day 660, the signaling molecule density in-
creases and starts decreasing around day 753. The fibroblast distribution decreases after
day 650 and starts increasing around day 745 again. The myofibroblast distribution
also increases, which happens around day 638, and starts decreasing again around day
704. Shortly after the collagen density seems to reach equilibrium around day 650, the
density explodes and does not start decreasing. Because of singular matrices, we ended
this simulation. The Picard iterations did not converge and because of NaN’s in all the
solutions, there were no plots available anymore. The same is seen where k = 5, 10.

Theoretically, if the human body or an external factor reduces the decay rate of signaling
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molecules too much, then initially, this does not cause the skin to rupture. However,
after a few years, the secretion of signaling molecules can increase significantly, causing
such problems. Present fibroblasts fully differentiate into myofibroblasts. The scar
will undergo a severe contraction, and collagen will cause tissue to rupture because of
excessive production. We believe that the human body protects against the lowering
of the decay rate of signaling molecules to this extent, in order to prevent such a non-
realistic occurrence.

Next, in the fifth, sixth and seventh (k = 1, 5, 10) simulations we take δc = 5 × 10−4

cm6/(cells g day) and µ = 1 (N day)/cm2 and simulate for 600 days. Note that the
signaling molecule decay rate stability condition is met and that we focus on the effect
of complex eigenvalues in the mechanical part of the model. Initially we use a time step
of ∆t = 0.01, and we change that to ∆t = 1 after 2 days, and to ∆t = 2 after 50 days.
Figure 3 shows the results for k = 1.

We see that all the constituents reach equilibria within 600 days, after which the distri-
butions and densities do not change anymore. Initially, the displacement velocity density
oscillates around zero, moving the mesh to the left and right, and the effective strain
density oscillates around the (new) equilibrium. Shortly after the start of the simulation,
the wave in the displacement velocity density fades out. Further, within approximately
15 minutes, the amplitude increases by a factor 10 above the equilibrium value, and
by a factor 25 below the equilibrium value. Shortly after that, around approximately
1.5 hours, the amplitude of the displacement velocity density has increased by a fac-
tor 45, after which the amplitude decreases until zero. Both the displacement velocity
density and effective strain density reach the equilibria within a few days, the displace-
ment velocity density reaching the equilibrium v = 0 first. Note that these results both
confirm the non-monotonic convergence from the variations around ε (see Theorem 1
and Theorem 2). We see the mesh also moving in the plots of the constituents. While
the displacement velocity density oscillates, the distributions and densities of the con-
stituents move from the right to the left and back, until the distributions and densities
move gradually towards the equilibria. First, the signaling molecules density reaches
equilibrium around day 60. About twice that time, around 120 days, the myofibroblast
distribution reaches equilibrium. The fibroblast distribution grows as follows. After
a few days, when the displacement velocity density reaches equilibrium, the fibroblast
distribution above the equilibrium decreases, and the fibroblast distribution below the
equilibrium increases, except for the fibroblast distribution around the right boundary
of the domain of computation, representing the center of the portion of skin that we
model. The number of fibroblasts around this right boundary decreases until about 23
days, after which it increases towards equilibrium. The collagen density changes calmly:
the density above the equilibrium moves downward to the equilibrium, and the density
below the equilibrium moves upward to the equilibrium.

Where k = 5 (figures not shown), the results show that increasing the number of waves
makes the initial increase in amplitudes in the displacement velocity density smaller.
Again, initially this amplitude increases around 15 minutes, after which it decreases while
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Figure 3: Evolution of distributions and densities of the modeled variables for δc =
5× 10−4 cm6/(cells g day) and µ = 1 (N day)/cm2. The values of the other parameters
are shown in Table 1. The plots on the upper left and right, the middle left and right,
and the lower left and right show the displacement velocity, the effective strain, the
signaling molecules, the fibroblasts, the myofibroblasts, and collagen, respectively

the density oscillates around the equilibrium. Fading out the waves takes more time,
here about 4.8 hours, compared to 1.5 hours where k = 1, and the local displacements
are much smaller. The other densities and distributions change similar to where k = 1,
except for some features. Equilibria are reached around day 112, 210, and 600 for the
signaling molecule density, the myofibroblast distribution, the fibroblast distribution
and collagen density, respectively, the first two later than where k = 1. The waves
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in the fibroblast distribution disappear faster and the distribution moves faster toward
the equilibrium. The smaller local displacements are clearly visible in the plots of the
constituents. We have seen that the signaling molecule density shifts to the left between
0 and 3 hours, and to the right between 3 and 8 hours. Further, the density decreases
gradually toward the equilibrium, and the waves have already started fading out on day
4.

Comparing the results from the simulation where k = 10 (figures not shown) with the
simulations where k = 1, 5, we conclude the waves fade out faster for faster oscillat-
ing perturbations and that initially the distributions and densities of the constituents
and the effective strain move faster toward the equilibria. In addition, the initial in-
crease in amplitude in the displacement velocity density is larger for smaller k. Taken
these numerical results together, we can confirm that the one-dimensional morphoelastic
framework for skin contraction is stable given that δc ≥ kc/(aIcρ).

From a biological perspective, a large value of the viscosity mimics a large amount of
damping, and this damping term makes the equation for the displacement velocity more
‘diffusive’. A diffusion equation satisfies a maximum principle, that is, the extremes
can only be assumed on the boundary of the domain or initially, unless the solution
is constant. This implies that the solution must behave more monotonically for large
viscosities as shown in the upper left plot in Figure 2. A small value in the viscosity
makes the equation for the displacement velocity less diffusive, so that the extremes are
not bounded by the boundary of the domain or initially as shown in the upper left plot
in Figure 3. Here, the modeled medium is less resistant to the rate of deformation, and
given the initial fluctuation in the displacement velocity density, this results not only in a
back-and-forth movement in the displacement, also a direct effect in the stress (effective
strain) that is proportional to the shear deformation.

As stated before, the model can numerically be unstable when δc < kc/(a
I
cρ). However,

we have seen that sometimes for small signaling molecule decay rates not too far below
the stated lower boundary, the model still converges. In the last simulation we set the
number of waves with k = 10, and we take δc = 3× 10−4 cm6/(cells g day) and µ = 100
(N day)/cm2. Figures 4 and 5 show some of the results of the simulation of 1000 days.
These show that the model converges, and highlight what happens in this case.

First, everything seems calm until day 60 (for example, see the left plot in Figure 4).
The displacement velocity density (figure not shown) reaches equilibrium within 10 days,
and the effective strain density around day 20. However, the initial perturbed waves are
still visible. Initially, the signaling molecule density decreases, but on approximately day
9 the upper bound of the density surpasses the initial upper bound (see the right plot in
Figure 4). The signaling molecule density keeps increasing until day 215, affecting the
(myo)fibroblast distributions and the collagen density, shown in Figure 5.

The initial perturbed waves in the (myo)fibroblast distribution fade out within 4.5 days.
Both distributions move toward the corresponding equilibria 104 cells/c3 and approxi-
mately 0.16 cells/cm3 (hence no cells), respectively. However, on days 63.5 and 65, for
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Figure 4: (early) Evolution of myofibroblast distribution and signaling molecule density
for δc = 3 × 10−4 cm6/(cells g day) and µ = 100 (N day)/cm2 and k = 10. The
values of the other parameters are shown in Table 1. The left and right plots show the
myofibroblasts and the signaling molecules, respectively
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Figure 5: Evolution of distributions and densities of the constituents for δc = 3 × 10−4

cm6/(cells g day) and µ = 100 (N day)/cm2 and k = 10. The values of the other
parameters are shown in Table 1. The plots on the upper left and right, and lower left
and right, show the signaling molecules, the fibroblasts, the myofibroblasts and collagen,
respectively

the fibroblasts and myofibroblasts respectively, the distributions move away from the
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equilibria. Only the collagen density is not affected by this setup until day 120, after
which this density increases.

After the signaling molecule density decreases from day 215 on, the myofibroblast dis-
tribution, the collagen density and the fibroblast distribution keep moving away from
their equilibria until days 230, 250 and 260, respectively. From the plot for collagen,
it takes more time to fade out the initial perturbed waves. From these moments (i.e.,
the days where maxima and minima are reached), the distributions and densities of the
constituents oscillate around a new equilibrium. At the end of the simulation of 1000
days the new equilibria in the center of the modeled skin are 4.245× 10−11 g/cm3, 9723
cells/cm3, 76 cells/cm3, and 0.1348 g/cm3 for the signaling molecules, the fibroblasts,
the myofibroblasts, and collagen, respectively.

From a biological perspective, if there is an enhanced expression of signaling molecules
because of their reduced decay, a wound may heal properly at first. However, over
time, persistent signaling will lead to over-expression of signaling molecules, resulting
in excessive scarring and contraction. The excessive deposition of collagen is reminis-
cent of keloids and hypertrophic scars, characterised by thicker collagen bundles Tuan
and Nichter (1998). In addition, myofibroblasts are abundant in hypertrophic scars.
Since aberrant TGF-β signaling in myofibroblasts is associated with the formation of
hypertrophic scars Zhang et al. (2020), it is likely that such a situation exists precisely
because of a lower decay rate of signaling molecules. Further, hypertrophic scars are
not immediately visible after injury. These scars develop in 1 to 2 months after injury,
whereas keloids develop months to years after the initial injury, supporting our results.
Experimental evidence suggests that fibroblasts from hypertrophic scars might represent
a hyper-proliferative phenotype that can be reverted once the stimulation, such as the
overabundance of growth factors, is lifted Tuan and Nichter (1998). We verified this
by setting the signaling molecule density to equilibrium on day 1000, and saw that this
directly initiates the change of the (myo)fibroblast distributions and collagen density to-
ward the healthy equilibria. First, the myofibroblasts disappear after 100 days, then 350
days later, the collagen density reaches equilibrium, and finally 100 days after that, the
fibroblast distribution reaches equilibrium. Hence, according to our simulation, it takes
about 1.5 year to reverse the process. To conclude this Section, the model is stable under
the condition that the decay rate of the signaling molecules is not too far decreased to
values below the stated bound δc ≥ kc/(aIcρ).

6 Conclusion and discussion

In this study, we investigate the stability of the one-dimensional model for intensity
of contraction and the formation of contractures in burn scars. The model presented
in this paper is the one-dimensional version of the morphoelastic model developed by
Koppenol. This model is based on the theory and derivations developed by Hall (2008).
In this model, four constituents are incorporated: fibroblasts, myofibroblasts, signaling
molecules, and collagen. Furthermore, we use equations for the displacement of the
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dermal layer, the displacement velocity of the dermal layer, and the effective Eulerian
strain present in the dermal layer.

We presented a stability analysis for the model, for both the fully continuous and the
semi-discrete (where the spatial derivatives have been replaced with differences) version
of the problem. A surprising result was that we could derive the eigenvalues of the matrix
involved in the stability analytically. This is possible because the linearised equations
(11) leave out other variables after accounting for the equilibria values. As a result, we
could say that three of the six eigenvalues meet the stability constraints independent
of the chosen value for the parameters, given that the parameters involved are positive
and realistic. We have shown that the equilibrium distribution of the effective strain
should should meet ε ≤ 1, and that the parameter that represents the viscosity of
skin should be greater or equal to a factor containing the total mass density of dermal
tissues, the Young’s Modulus and the equilibrium distribution of the effective strain, to
have monotonically behavior of the solution. Note that the the stability criterium of
the effective strain is also a physical requirement, from equation (9). Further, another
important stability constraint states the model is stable on the condition that the decay
rate of the signaling molecules is greater than a factor concerning the maximum net
secretion rate of the signaling molecules, the concentration of the signaling molecules
that causes half-maximum net secretion rate of the signaling molecules, and the collagen
equilibrium density.

We have shown that there is a consistency between the eigenvalues of the discrete model
which we used for the uniform grid based finite element approximation, and the eigen-
values of the continuous model which is the ‘true’ model. We see that if the equilibrium
solution to the continuous problem is stable, then the equilibrium to the semi-discrete
problem is also stable under the current discretization (that is, if we use the right dis-
cretization method). The convergence rate towards the equilibrium is determined by the
obtained eigenvalues of the system. In case µ ≥ h

tan(πβh)

√
ρtE
√
ρ(1− ε), convergence in

the semi-discrete system is monotonic for β = 1 and consistent for h → 0. For mono-
tonic convergence in the continuous system it must hold that µ ≥ 1

π

√
ρtE
√
ρ(1− ε) ≥

h
tan(πβh)

√
ρtE
√
ρ(1− ε), β = 1, . . . , n − 1. Hence monotonic convergence in the con-

tinuous system implies monotonic convergence in the semi-discrete system. Conversely,
convergence could be monotonic in the semi-discrete system and not in the continuous
system. We have assessed the convergence of the numerical method experimentally, in
which the order of convergence is shown to be of order O(h2). Since the difference
between the eigenvalues from the continuous and semi-discrete problem is of the order
O(h2), the convergence rates towards the equilibrium differ by an order O(h2). This
is in accordance to the expectations since the discretization method should have local
truncation errors of order O(h2).

Using numerical simulations, we validated the stability constraints that we derived in
the analysis. In case we meet stability criteria, the model behaves absolutely stable given
these stable parameter values. Because of the initial perturbation, it takes some time
to rearrange the distribution of (myo)fibroblasts and the densities of signaling molecules
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and collagen. First, the signaling molecule density increases in the center of the modeled
skin, after which local fibroblasts differentiate to myofibroblasts, decreasing the local fi-
broblast distribution and increasing the local myofibroblast distribution. Because of the
initial perturbation in the displacement velocity density, there are local displacements.
Because the displacement velocity density rearranges such that all values have the same
sign, the mesh moves in one particular direction. Both the collagen density and effec-
tive strain density gradually move toward the equilibrium. We conclude that a small
perturbation of order O(10−15) g/cm3 in the signaling molecule density and a few cells
in the (myo)fibroblast distributions is already responsible for initializing wound healing
that takes more than a year time.

In case we do not meet the signaling molecule stability condition δc ≥ kc/(aIcρ), the model
can numerically be unstable. Initially, the model seems stable. The signaling molecule
density and myofibroblast distribution seem to reach equilibria first, after which the fi-
broblast distribution and the collagen density seem to reach equilibria as well. Shortly
after this has happened, the signaling molecule density or the myofibroblast distribution
increase first, after which the fibroblast distribution drops and the collagen density ex-
plodes. Although the signaling molecule density and (myo)fibroblast distributions move
back towards the equilibria, the collagen density does not, and therefore the numeri-
cal method does not converge. Because of the lack of convergence in the inner Picard
iterations, the numerical method cannot attain a solution.

We confirmed the model is stable if the eigenvalues are not real-valued. If the viscosity
is low, the figures show that the distributions and densities of the variables reach their
equilibrium densities. Though, in this case convergence is not monotonic, but oscillates
as seen in Figure 3. Besides this conclusion, we point out that the larger the number
of initial perturbed waves, the faster the equilibria are reached and the faster the initial
oscillations fade out. Because of an initial increase in amplitude in, and the oscillating
behavior of, the displacement velocity density, the mesh moves shortly after the start
of the simulation back and forth to the left and right. After the displacement velocity
density stabilises, the distributions and densities of the constituents move gradually
toward the equilibria. In conclusion, we need real-valued eigenvalues to prevent the
model to increase the amplitudes of the initial perturbations in the displacement velocity
density. However, this does not induce instability in terms of equilibria.

If we have δc < kc/(a
I
cρ) not too far below the bound, then the signaling molecules move

away from equilibrium and affect the distributions of the fibroblasts and the myofibrob-
lasts. All the constituents move away from the expected equilibria and oscillate around
new equilibria. The collagen density still shows the initial waves of the perturbations
around day 260, while these waves already vanished in the other densities. We have
linked this situation to real-life scar occurrences, namely hypertrophic scars and keloids.
By reverting the stimulation of matrix production and differentiation to myofibroblasts
by setting the signaling molecule density to (healthy) equilibrium, we have provided
experimental evidence, from a mathematical point of view, that fibroblasts can be in-
deed be reverted. Taken together, the numerical model fully reproduces the stability
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constraints.

It would interest to incorporate hypertrophy to this one-dimensional morphoelastic
model Koppenol et al. (2017b), since hypertrophic scars can also develop contractures
and elevate above healthy skin levels. The beauty of the one-dimensional model is the
speed, hence incorporation of hypertrophy will quickly yield new results and therefore
insight. However, validating results from such a model is a challenge since hypertrophy
depends highly on angiogenesis, which nowadays seems impossible to test in vitro.

An interesting direction is to model the boundaries of the wounded area as elastic springs,
since with the current setting the boundary of the domain of computation needs to be
“sufficiently far away”. We are planning on incorporating pulling and stretching forces
because of the growth of children and motility. A first attempt to incorporate the
growth of children is to add another term to the right-hand side of equation (9). We will
incorporate motility forces by adding new boundary conditions.

Considering the modeling choices, we could keep a linear growth rate and introducing a
tune-able quadratic cell death term for fitting equilibrium, instead of with the constant
q in equation (3). We can also easily consider that myofibroblasts in response to TGF-
β move slower than fibroblasts Thampatty and Wang (2006), and that myofibroblasts
can differentiate back to fibroblasts under the influence of Prostaglandin E2 (PGE2)
Garrison et al. (2013).

It would interest to investigate the influence of such other modeling choices on the
simulation results. Currently, we are working on a sensitivity analysis and feasibility
study, and a neural network for the one-dimensional morphoelastic model.
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Appendices

Appendix 1: The derivation of the stability constraints for the contin-
uous problem

First we substitute the variations (12) into the linearised equations (11). This yields
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for the chemical part of the model, and
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(2πj)cρj (t)e
2iπjx

− i ξρ

|Ω|ρt(R2 + ρ2)

∞∑
j=−∞

(2πj)cMj (t)e2iπjx = 0,

1

|Ω|

∞∑
j=−∞

ċεj(t)e
2iπjx + i

(ε− 1)

|Ω|

∞∑
j=−∞

(2πj)cvj (t)e
2iπjx

+
ζεN

|Ω|

∞∑
j=−∞

ccj(t)e
2iπjx = 0,

for the mechanical part of the model. Multiplication by e−2iπkx gives

1

|Ω|

∞∑
j=−∞

ċcj(t)e
2iπ(j−k)x +

Dc

|Ω|

∞∑
j=−∞

(2πj)2ccj(t)e
2iπ(j−k)x

+
N

|Ω|

[
δcρ−

kc
aIc

] ∞∑
j=−∞

ccj(t)e
2iπ(j−k)x = 0,

1

|Ω|

∞∑
j=−∞

ċNj (t)e2iπ(j−k)x +
DFN

|Ω|

∞∑
j=−∞

(2πj)2cNj (t)e2iπ(j−k)x

− χFN

|Ω|

∞∑
j=−∞

(2πj)2ccj(t)e
2iπ(j−k)x

− rF
|Ω|

N
q
((1 + q)(1− κFN)− κFN)

∞∑
j=−∞

cNj (t)e2iπ(j−k)x

+
δN
|Ω|

∞∑
j=−∞

cNj (t)e2iπ(j−k)x +
rFκFN

1+q

|Ω|

∞∑
j=−∞

cMj (t)e2iπ(j−k)x

− N

|Ω|

[
rF r

max
F

aIIIc

[1− κFN ]N
q − kF

] ∞∑
j=−∞

ccj(t)e
2iπ(j−k)x = 0,
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1

|Ω|

∞∑
j=−∞

ċMj (t)e2iπ(j−k)x +
DFN

|Ω|

∞∑
j=−∞

(2πj)2cMj (t)e2iπ(j−k)x

+
δM
|Ω|

∞∑
j=−∞

cMj (t)e2iπ(j−k)x − kFN

|Ω|

∞∑
j=−∞

ccj(t)e
2iπ(j−k)x = 0,

1

|Ω|

∞∑
j=−∞

ċρj (t)e
2iπ(j−k)x +

δρρ
2

|Ω|
(ηII − ηI)

∞∑
j=−∞

cMj (t)e2iπ(j−k)x

− δρρ
2N

|Ω|

(
kmaxρ

aIVc
+ aIIc

) ∞∑
j=−∞

ccj(t)e
2iπ(j−k)x

+
2δρN

|Ω|
ρ

∞∑
j=−∞

cρj (t)e
2iπ(j−k)x = 0,

for the chemical part of the model, and

1

|Ω|

∞∑
j=−∞

ċvj (t)e
2iπ(j−k)x +

µ

|Ω|ρt

∞∑
j=−∞

(2πj)2cvj (t)e
2iπ(j−k)x

− iE
√
ρ

|Ω|ρt

∞∑
j=−∞

(2πj)cεj(t)e
2iπ(j−k)x − i Eε

|Ω|2ρt
√
ρ

∞∑
j=−∞

(2πj)cρj (t)e
2iπ(j−k)x

− i ξρ

|Ω|ρt(R2 + ρ2)

∞∑
j=−∞

(2πj)cMj (t)e2iπ(j−k)x = 0,

1

|Ω|

∞∑
j=−∞

ċεj(t)e
2iπ(j−k)x + i

(ε− 1)

|Ω|

∞∑
j=−∞

(2πj)cvj (t)e
2iπ(j−k)x

+
ζεN

|Ω|

∞∑
j=−∞

ccj(t)e
2iπ(j−k)x = 0,

for the mechanical part of the model. Integration over Ω gives the result, hence equations
(13) and (14).
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Appendix 2: The derivation of the stability constraints for the discrete
problem

Substitution of the variations (19) in finite differences equations (17) and (18) gives

λck = −Dc

h2

n−1∑
β=1

ĉβ

{
e−2πβ(k−1)hi − 2e−2πβkhi + e−2πβ(k+1)hi

}

+N

[
δcρ−

kc
aIc

] n−1∑
β=1

ĉβe
−2πβkhi,

λNk = −DFN

h2

n−1∑
β=1

N̂β

{
e−2πβ(k−1)hi − 2e−2πβkhi + e−2πβ(k+1)hi

}

+
χFN

h2

n−1∑
β=1

ĉβ

{
e−2πβ(k−1)hi − 2e−2πβkhi + e−2πβ(k+1)hi

}

+
[
δN − rFN

q
((1 + q)(1− κFN)− κFN)

] n−1∑
β=1

N̂βe
−2πβkhi

+ rFκFN
1+q

n−1∑
β=1

M̂βe
−2πβkhi

−N
[
rF r

max
F

aIIIc

[1− κFN ]N
q − kF

] n−1∑
β=1

ĉβe
−2πβkhi,

λMk = −DFN

h2

n−1∑
β=1

M̂β

{
e−2πβ(k−1)hi − 2e−2πβkhi + e−2πβ(k+1)hi

}

+ δM

n−1∑
β=1

M̂βe
−2πβkhi − kFN

n−1∑
β=1

ĉβe
−2πβkhi,

λρk = δρρ
2(ηII − ηI)

n−1∑
β=1

M̂βe
−2πβkhi

− δρρ2N

(
kmaxρ

aIVc
+ aIIc

) n−1∑
β=1

ĉβe
−2πβkhi + 2δρNρ

n−1∑
β=1

ρ̂βe
−2πβkhi,
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for the chemical part of the model, and

λvk = − µ

ρth2

n−1∑
β=1

v̂β

{
e−2πβ(k−1)hi − 2e−2πβkhi + e−2πβ(k+1)hi

}

− E
√
ρ

ρt2h

n−1∑
β=1

ε̂β

{
e−2πβ(k+1)hi − e−2πβ(k−1)hi

}

− Eε

2ρt
√
ρ2h

n−1∑
β=1

ρ̂β

{
e−2πβ(k+1)hi − e−2πβ(k−1)hi

}

− ξρ

ρt(R2 + ρ2)2h

n−1∑
β=1

M̂β

{
e−2πβ(k+1)hi − e−2πβ(k−1)hi

}
,

λεk =
(ε− 1)

2h

n−1∑
β=1

v̂β

{
e−2πβ(k+1)hi − e−2πβ(k−1)hi

}
+ ζεN

n−1∑
β=1

ĉβe
−2πβkhi,

for the mechanical part of the model.

This must be true for arbitrary {cβ, Nβ,Mβ, ρβ, vβ, εβ}, hence each factor following
{cβ, Nβ,Mβ, ρβ, vβ, εβ} in the sum should be zero. Subdivision by e−2πβkhi gives

λck = −Dc

h2
ĉβ

{
e2πβhi − 2 + e−2πβhi

}
+N

[
δcρ−

kc
aIc

]
ĉβ,

λNk = −DFN

h2
N̂β

{
e2πβhi − 2 + e−2πβhi

}
+
χFN

h2
ĉβ

{
e2πβhi − 2 + e−2πβhi

}
+
[
δN − rFN

q
((1 + q)(1− κFN)− κFN)

]
N̂β

+ rFκFN
1+q

M̂β −N
[
rF r

max
F

aIIIc

[1− κFN ]N
q − kF

]
ĉβ,

λMk = −DFN

h2
M̂β

{
e2πβhi − 2 + e−2πβhi

}
+ δM

n−1∑
β=1

M̂β − kFNĉβ,

λρk = δρρ
2(ηII − ηI)M̂β − δρρ2N

(
kmaxρ

aIVc
+ aIIc

)
ĉβ + 2δρNρρ̂β,
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for the chemical part of the model, and

λvk = − µ

ρth2
v̂β

{
e2πβhi − 2 + e−2πβhi

}
− E
√
ρ

ρt2h
ε̂β

{
e−2πβhi − e2πβhi

}
− Eε

2ρt
√
ρ2h

ρ̂β

{
e−2πβhi − e2πβhi

}
− ξρ

ρt(R2 + ρ2)2h
M̂β

{
e−2πβhi − e2πβhi

}
,

λεk =
(ε− 1)

2h
v̂β

{
e−2πβhi − e2πβhi

}
+ ζεNĉβ,

for the mechanical part of the model. Using Euler’s formula and 2 − 2 cos(2πβh) =
4 sin2(πβh) gives the result, hence equations (20) and (21).

Appendix 3: The parameters

The value of the parameter q is a consequence of the values of other parameters, see
equation (5). Further, the value of the parameter kρ is a consequence of the values of
other parameters, see equation (7).

Appendix 4: Absolute errors in convergence

The averaged errors in Table 2 show that the order of convergence in the numerical
method is O(h2). Shown are the averaged slopes of the errors that are defined in (29)
and by:

εL1(h) = h
n∑
i=1

∣∣zh/r(xi,n)− zh(xi,n)
∣∣ ,

εL2(h) =

√√√√h
n∑
i=1

(
zh/r(xi,n)− zh(xi,n)

)2
,

where the grid-points xi,n correspond to the grid-points in the simulation with n nodes.
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Table 1: Overview of the parameters used for the simulations. Shown are the symbols,
values, dimensions and references. Here TW denotes that the value of the parameter is
estimated in the study, and NC denotes that the value of the parameter is a consequence
because of the chosen values for other parameters.

Symbol Value Dimension Reference

Dc 2.88× 10−3 cm2/day Haugh (2006)
DF 10−7 cm5/(cells day) Sillman et al. (2003)
χF 2× 10−3 cm5/(g day) Murphy et al. (2012)
kc 4× 10−13 g/(cells day) Olsen et al. (1995)
rF 9.24× 10−1 cm3q/(cellsq day) Alberts et al. (1989) &Gosh et al. (2007)
rmax
F 2 - Strutz (2001)
kρ 7.6× 10−8 g/(cells day) [NC]
kmax
ρ 10 - Olsen et al. (1995)

aIc 10−8 g/cm3 Olsen et al. (1995)
aIIc 2× 108 cm3/g Overall et al. (1991)
aIIIc 10−8 g/cm3 Grotendorst (1992) &Olsen et al. (1995)
aIVc 10−9 g/cm3 Roberts et al. (1986)
ηI 2 - Rudolph and Vande Berg (1991)
ηII 5× 10−1 - [TW]
kF 1.08× 107 cm3/(g day) Desmoulière et al. (1993)
κF 10−6 cm3/cells Vande Berg et al. (1989)
q −4.151× 10−1 - [NC]
δc 5× 10−4 cm6/(cells g day) Olsen et al. (1995)
δN 2× 10−2 /day Olsen et al. (1995)
δM 6× 10−2 /day Koppenol et al. (2017b)
δρ 6× 10−6 cm6/(cells g day) Koppenol et al. (2017b)

N 104 cells/cm3 Olsen et al. (1995)

M 0 cells/cm3 Olsen et al. (1995)
c 0 g/cm3 Koppenol et al. (2017b)
ρ 1.125× 10−1 g/cm3 Olsen et al. (1995)
ρt 1.09 g/cm3 Wrobel et al. (2009)
µ 102 (N day)/cm2 [TW]
E 2.1× 102 N/((g cm)0.5) [TW]
ξ 4.4× 10−2 (N g)/(cells cm2) Maskarinec et al. (2009) & Wrobel et al. (2002)
R 9.95× 10−1 g/cm3 [TW]
ζ 4× 102 cm6/(cells g day) [TW]
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Table 2: Overview of the averaged slopes of the errors of the variables for different
element sizes h on the full domain of computation and on the boundary of the wound.
The columns show slopes for the different errors, and the rows show the averaged slopes
for the variables. The last column shows the averaged slopes of the rows. The reference
is the solution in which h = 0.0078.

Variable ε|41| εL1 εL2 εboundary Averaged

N 2.1843 2.0160 1.9701 2.1850 2.0889
M 2.1735 2.1203 2.0961 2.1892 2.1448
c 2.1900 2.0964 2.0675 2.0929 2.1117
ρ 2.1911 2.0626 1.9211 2.1708 2.0864
v 2.1882 2.1891 2.1911 2.1189 2.1718
ε 2.2283 2.2301 2.2521 2.2403 2.2377
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