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Abstract
The mixture cure model for analyzing survival data is characterized by the
assumption that the population under study is divided into a group of sub-
jects who will experience the event of interest over some finite time horizon
and another group of cured subjects who will never experience the event irre-
spective of the duration of follow-up. When using the Bayesian paradigm for
inference in survival models with a cure fraction, it is common practice to rely
on Markov chain Monte Carlo (MCMC) methods to sample from posterior dis-
tributions. Although computationally feasible, the iterative nature of MCMC
often implies long sampling times to explore the target space with chains that
may suffer from slow convergence and poor mixing. Furthermore, extra efforts
have to be invested in diagnostic checks to monitor the reliability of the gener-
ated posterior samples. A sampling-free strategy for fast and flexible Bayesian
inference in the mixture cure model is suggested in this article by combining
Laplace approximations and penalized B-splines. A logistic regression model is
assumed for the cure proportion and a Cox proportional hazards model with
a P-spline approximated baseline hazard is used to specify the conditional sur-
vival function of susceptible subjects. Laplace approximations to the posterior
conditional latent vector are based on analytical formulas for the gradient and
Hessian of the log-likelihood, resulting in a substantial speed-up in approximat-
ing posterior distributions. The spline specification yields smooth estimates of
survival curves and functions of latent variables together with their associated
credible interval are estimated in seconds. A fully stochastic algorithm based
on a Metropolis-Langevin-within-Gibbs sampler is also suggested as an alterna-
tive to the proposed Laplacian-P-splines mixture cure (LPSMC) methodology.
The statistical performance and computational efficiency of LPSMC is assessed
in a simulation study. Results show that LPSMC is an appealing alternative to
MCMC for approximate Bayesian inference in standard mixture cure models.
Finally, the novel LPSMC approach is illustrated on three applications involving
real survival data.
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1 INTRODUCTION

Survival analysis is a challenging, yet very attractive area of statistical science that is devoted to the study of time-to-event
data. Standard models for survival data typically leave no room for the existence of a cure fraction such that it is implicitly
assumed that all subjects of the population under study will experience the event of interest as time unfolds for a suffi-
ciently long period. Technological breakthroughs in medicine during the last decades, especially in cancer research, have
led to the development of promising new treatments and therapies so that many diseases previously considered fatal can
now be cured. This phenomenon has triggered the necessity to develop models that allow for long-term survivors and
gave birth to cure models. A recent complete textbook treatment on cure models is proposed by Peng and Yu1 and an
enriching literature review on cure regression models has been written by Amico and Van Keilegom.2 Among the large
family of cure models that have emerged, the mixture cure model driven by the seminal work of (Boag; Berkson and Gage;
Haybittle)3-5 and later refined by Farewell6,7 is probably the most prominent as its mathematical formulation allows for
a clear and interpretable separation of the population in two categories, namely cured subjects and susceptible subjects
who are at risk of experiencing the event of interest.

Let T ∈ [0,+∞) be a continuous random variable representing the survival time. Existence of a cure proportion
in the population under study is made possible by allowing the event {T = +∞} to arise with positive probability. To
include covariate information, denote by X and Z random covariate vectors (with continuous and/or discrete entries) that
belong to covariate spaces  and , respectively. In a mixture cure model, the population survival function expresses the
separation between the cured and uncured subpopulations as follows:

Sp(t|x, z) = 1 − p(x) + p(x)Su(t|z), (1)

with covariate vectors x = (x1, … , xp)⊤ ∈  and z = (z1, … , zq)⊤ ∈  that can share (partially) the same components
or can be entirely different. The term p(x) is frequently called the “incidence” of the model and corresponds to the
conditional probability of being uncured, that is, p(x) = P(B = 1|X = x) with binary variable B = I(T < +∞) referring
to the (unknown) susceptible status and I(⋅) the indicator function, that is, I(E) = 1 if condition E is true. The term
Su(t|z) is known as the “latency” and represents the conditional survival function of the uncured subjects Su(t|z) =
P(T > t|B = 1, Z = z). The logistic link is commonly employed to establish a functional relationship between the prob-
ability to be uncured and the vector x,8-10 so that p(x) = exp(𝛽0 + x⊤𝜷)∕(1 + exp(𝛽0 + x⊤𝜷)), with regression coefficients
𝜷 = (𝛽1, … , 𝛽p)⊤ and 𝛽0 an intercept term. The latency part is often specified in a semiparametric fashion by using the
Cox11 proportional hazards (PH) model (see eg, 12,13) and implies the following form for the survival function of the sus-
ceptibles Su(t|z) = S0(t)exp(z⊤𝜸), where 𝜸 = (𝛾1, … , 𝛾q)⊤ are the regression coefficients pertaining to the latency part and
S0(⋅) is the baseline survival function.

The philosophy underlying Bayesian approaches considers that the model parameters are random and that their
underlying uncertainty is characterized by probability distributions. After obtaining data, Bayes’ theorem acts as a mecha-
nistic process describing how to update our knowledge and is essentially the key ingredient permitting the transition from
prior to posterior beliefs. Unfortunately, the complexity of mixture cure models is such that the posterior distribution of
latent variables of interest are not obtainable in closed form. An elegant stochastic method that is widely used in practice
is Markov chain Monte Carlo (MCMC) as it allows to draw random samples from desired target posterior distributions
and hence compute informative summary statistics. According to Greenhouse et al14, the first steps of Bayesian methods
applied to mixture models with a cure fraction date back as far as Chen et al15 to analyze cancer data. Later, Stangl16 and
Stangl and Greenhouse17 used a Bayesian mixture survival model to analyze clinical trial data related to mental health.
The end of 1990s saw the emergence of Bayesian approaches in the promotion time cure model,18 another family of cure
models motivated by biological mechanisms that does not impose a mixture structure on the survival. Some references
for Bayesian analysis in the latter model class are Yin and Ibrahim19, who proposed a Box-Cox based transformation on
the population survival function to reach a unified family of cure rate models embedding the promotion time cure model
as a special case; Bremhorst and Lambert20 used Bayesian P-splines with MCMC for flexible estimation in the promo-
tion time cure model andGressani and Lambert21 suggested a faster alternative based on Laplace approximations. More
recent uses of Bayesian methods in mixture cure models are Yu and Tiwari22 in the context of grouped population-based
cancer survival data or Martinez et al23 who consider a parametric specification for the baseline survival of uncured
subjects governed by a generalized modified Weibull distribution. In the literature of cure survival models, only scarce
attempts have been initiated to propose an alternative to the deep-rooted MCMC instruments. This is especially true for
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2604 GRESSANI et al.

mixture cure models, where to our knowledge Lázaro et al24 is the only reference proposing an approximate Bayesian
method based on a combination of Integrated Nested Laplace Approximations (INLA)25 and modal Gibbs sampling.26

In this article, we propose a new approach for fast approximate Bayesian inference in the mixture cure model based on
the idea of Laplacian-P-splines.21 The proposed Laplacian-P-splines mixture cure (LPSMC) model has various practical
and numerical advantages that are worth mentioning. First, as opposed to Lázaro et al24, our approach is completely
sampling-free in the sense that estimation can be fully reached without the need of drawing samples from posterior
distributions. This of course implies a huge gain from the computational side, without even mentioning the additional
speed-up effect implied by the analytically available gradient and Hessian of the log-likelihood function in our Laplace
approximation scheme. Second, the LPSMC approach delivers approximations to the joint posterior latent vector, while
the INLA scheme concentrates on obtaining approximated versions of the marginal posterior of latent variables. A direct
positive consequence is that with LPSMC, the “delta” method can be used to compute (approximate) credible intervals
for functions of latent variables, such as the cure proportion or the survival function of the uncured, in virtually no time.
A third beneficial argument is that the use of P-splines is particularly well adapted in a Bayesian framework and pro-
vides smooth estimates of the survival function. Our methodology and its associated algorithms natively account for the
underlying mixture specification, making LPSMC a tailored toolkit to fit mixture cure models, contrary to INLA that is
originally not adapted to cope with mixture structures.24 A fully stochastic alternative to LPSMC is also proposed based on
a Metropolis-Langevin-within-Gibbs (MLWG) algorithm to sample from the joint posterior of the model parameters. The
conditional posterior distribution of the latent vector is explored via a Metropolis algorithm augmented by Langevin diffu-
sions that account for the gradient of the (log) target distribution to generate new proposals. Using the variance-covariance
matrix of the Laplace approximation as a basis for the correlation structure of the proposal distribution proves to be bene-
ficial as it improves chain mixing and convergence. The mixcurelps package27 gathers all the routines to implement the
LPSMC methodology (and MLWG sampler) and can be used to reproduce the main results of this article as shown in the
supplementary materials. For higher efficiency, algorithms related to Laplace approximations and B-splines evaluations
are coded in C++ and integrated into the R language via the Rcpp package.28

The article is organized as follows. In Section 2, the spline specification of the log-baseline hazard is presented and the
Bayesian model is formulated along with the prior assumptions. Laplace approximations to the conditional latent vector
are derived and an approximate version of the posterior penalty parameter is proposed. The end of Section 2 is dedicated
to the construction of approximate credible intervals for (functions of) latent variables. In Section 3, we propose a Markov
chain Monte Carlo algorithm with a Metropolis-adjusted Langevin setting to explore the conditional posterior distribu-
tion of the latent vector. The steps of the so-called Metropolis-Langevin-within-Gibbs (MLWG) sampler are presented in
detail and summarized in a pseudocode. Section 4 aims at assessing the proposed LPSMC and MLWG methodologies in
a numerical study with simulated data under different cure and censoring scenarios. Section 5 is dedicated to three real
data applications and Section 6 concludes the article.

2 THE LAPLACIAN-P-SPLINES MIXTURE CURE MODEL

We consider that the survival time T is accompanied by the frequently encountered feature of random right censoring.
Rather than observing T directly, one observes the pair (Tobs, 𝜏), where Tobs = min(T, C) is the follow-up time and 𝜏 =
I(T ≤ C) is the event indicator (𝜏 = 1 if the event occurred and 𝜏 = 0 otherwise) and C is a non-negative random censoring
time that is assumed conditionally independent of T given the covariates, that is, C⊥T|X, Z. At the sample level, i =
(ti, 𝜏i, xi, zi) denotes the observables for the i unit, with ti the realization of Tobs and 𝜏i its associated event indicator. Vectors
xi and zi represent the observed covariate values of subject i and the entire information set available from data with sample
size n is denoted by =

⋃n
i=1i.

2.1 Flexible modeling of the baseline risk function with B-splines

A flexible spline specification of the (log) baseline hazard function h0(⋅) is proposed29,30 using a linear combination of
cubic B-splines, that is, log h0(t) = 𝜽⊤b(t), where 𝜽 = (𝜃1, … , 𝜃K)⊤ is a K-dimensional vector of B-spline amplitudes and
b(⋅) = (b1(⋅), … , bK(⋅))⊤ is a cubic B-spline basis constructed from a grid of equally spaced knots in the closed interval
 = [0, tu], with tu the largest observed follow-up time. Partitioning  into J (say 300) sections of equal length Δ with
midpoint sj, the Riemann midpoint rule is used to approximate the analytically unsolvable baseline survival function:
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GRESSANI et al. 2605

S0(t) = exp
(
−∫

t

0
exp

(
𝜽⊤b(s)

)
ds
)

≈ exp

(
−

j(t)∑
j=1

exp
(
𝜽⊤b(sj)

)
Δ

)
,

where j(t) ∈ {1, … , J} is an integer enumerating the interval that includes time point t.

2.2 Latent vector and priors

The latent vector of the model is 𝝃 = (𝜽⊤, 𝜷̆
⊤
, 𝜸⊤)⊤ and contains the spline vector 𝜽, the vector of regression coefficients

belonging to the incidence part (including the intercept) 𝜷̆ = (𝛽0, 𝜷
⊤)⊤ and the vector of remaining regression coefficients

belonging to the latency part 𝜸, with dimension dim(𝝃) = K + (p + 1) + q. Based on the idea of Eilers and Marx31, we fix K
large enough to ensure flexible modeling of the baseline hazard curve and counterbalance the latter flexibility by imposing
a discrete penalty on neighboring B-spline coefficients based on finite differences. In a Bayesian translation,32 the prior
distributional assumption on the B-spline vector is taken to be Gaussian 𝜽|𝜆 ∼ dim(𝜽)

(
0, (𝜆P)−1), with a covariance

matrix formed by the product of a roughness penalty parameter 𝜆 > 0 and a penalty matrix P = D⊤
r Dr + 𝜀IK obtained from

rth order difference matrices Dr of dimension (K − r) × K. An 𝜀-multiple of the K-dimensional identity matrix IK is added
to ensure full rankedness33 with typical values for the scalar perturbation being 𝜀 = 10−634 or 𝜀 = 10−5.35 Furthermore,
a Gaussian prior is imposed on the remaining regression coefficients, with zero mean and small (common) precision
𝜁 = 10−6, resulting in the following proper (conditional) prior for the latent vector 𝝃|𝜆 ∼ dim(𝝃)(0,Σ𝝃(𝜆)) with covariance
matrix:

Σ𝝃(𝜆) =

(
(𝜆P)−1 0

0 𝜁−1I(p+1)+q

)
.

The prior precision matrix of the latent vector is denoted by Q𝝃(𝜆) = Σ−1
𝝃
(𝜆). For full Bayesian treatment, we impose a

robust Gamma prior on the roughness penalty parameter as suggested by Jullion and Lambert.36 In particular, the prior on
the roughness penalty parameter conditional on a dispersion hyperparameter 𝛿 > 0 is taken to be 𝜆|𝛿 ∼ (𝜑∕2, (𝜑𝛿)∕2),
where (a, b) denotes a Gamma distribution with mean a∕b and variance a∕b2. A proper Gamma hyperprior is imposed
on 𝛿, that is, 𝛿 ∼ (a𝛿, b𝛿) with small values for a𝛿 and b𝛿 to make it uninformative (here a𝛿 = b𝛿 = 10−4). For a fixed value
of 𝜑 (here 𝜑 = 3),36 have shown that the model fit exhibits almost no sensitivity to the choice of a𝛿 and b𝛿 when the latter
are fixed to a small value. This is also confirmed in our setting (see supplementary materials), where a sensitivity analysis
is implemented to measure the impact on the mixture cure model fit for different configurations of a𝛿 and b𝛿 .

2.3 Laplace approximations

In a mixture cure model, the full likelihood is given by (see eg, Sy and Taylor37):

(𝝃;) =
n∏

i=1
(p(xi)fu(ti|zi) )𝜏i (1 − p(xi) + p(xi)Su(ti|zi) )(1−𝜏i),

where fu(ti|zi) = −(d∕dt)Su(ti|zi). Using the Cox PH model specification for the survival function of the susceptibles, one
recovers:

fu(ti|zi) = −(d∕dt)Su(ti|zi)

= −(d∕dt)S0(ti)exp(z⊤
i 𝜸)

= − exp(z⊤
i 𝜸)S0(ti)exp(z⊤

i 𝜸)−1(d∕dt)S0(ti)

= exp(z⊤
i 𝜸)S0(ti)exp(z⊤

i 𝜸)−1f0(ti)
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2606 GRESSANI et al.

= exp(z⊤
i 𝜸)S0(ti)exp(z⊤

i 𝜸)−1S0(ti)h0(ti)

= exp(z⊤
i 𝜸)h0(ti)S0(ti)exp(z⊤

i 𝜸).

It follows that the log-likelihood is:

𝓁(𝝃;) ∶ = log(𝝃;)

=
n∑

i=1
𝜏i
(
log p(xi) + z⊤

i 𝜸 + log h0(ti) + exp(z⊤
i 𝜸) log S0(ti)

)
+ (1 − 𝜏i) log

(
1 − p(xi) + p(xi)S0(ti)exp(z⊤

i 𝜸)
)

.

Using the B-spline approximations for the baseline quantities, we get:

𝓁(𝝃;) ≈
n∑

i=1
𝜏i

(
log p(xi) + z⊤

i 𝜸 + 𝜽⊤b(ti) − exp(z⊤
i 𝜸)

j(ti)∑
j=1

exp
(
𝜽⊤b(sj)

)
Δ

)

+ (1 − 𝜏i) log

(
1 − p(xi) + p(xi) exp

(
− exp(z⊤

i 𝜸)
j(ti)∑
j=1

exp
(
𝜽⊤b(sj)

)
Δ

))
.

Let us denote by gi(𝝃) the contribution of the ith unit to the log-likelihood:

gi(𝝃) = 𝜏i

(
log p(xi) + z⊤

i 𝜸 + 𝜽⊤b(ti) − exp(z⊤
i 𝜸)

j(ti)∑
j=1

exp
(
𝜽⊤b(sj)

)
Δ

)

+ (1 − 𝜏i) log

(
1 − p(xi) + p(xi) exp

(
− exp(z⊤

i 𝜸)
j(ti)∑
j=1

exp
(
𝜽⊤b(sj)

)
Δ

))
,

so that the log-likelihood can be compactly written as𝓁(𝝃;) ≈
∑n

i=1gi(𝝃). Using Bayes’ theorem, the conditional posterior
of the latent vector is (up to a proportionality constant):

p(𝝃|𝜆,) ∝ (𝝃;)p(𝝃|𝜆)
∝ exp

(
𝓁(𝝃;) − 0.5𝝃⊤Q𝝃(𝜆)𝝃

)
∝ exp

( n∑
i=1

gi(𝝃) − 0.5𝝃⊤Q𝝃(𝜆)𝝃

)
. (2)

A second-order Taylor expansion of the log-likelihood yields a quadratic form in the latent vector 𝝃 and hence can
be used to obtain a Laplace approximation to (2) as shown in appendix. In what follows, we denote by p̃G(𝝃|𝜆,) =
dim(𝝃)(𝝃∗(𝜆),Σ∗

𝝃
(𝜆)) the Laplace approximation to p(𝝃|𝜆,) for a given value of 𝜆.

2.4 Approximate posterior of the penalty parameter

The conditional posterior in (2) is a function of the penalty parameter 𝜆. In a frequentist setting, an “optimal” value
for 𝜆 is generally obtained by means of the Akaike information criterion (AIC) or (generalized) cross-validation.
From a Bayesian perspective, 𝜆 is random and its associated posterior distribution is of crucial importance for
optimal smoothing. Let 𝜼 = (𝜆, 𝛿)⊤ denote the vector of hyperparameters. Mathematically, the posterior of 𝜼 is
given by:

p(𝜼|) ∝
(𝝃;)p(𝝃|𝜆)p(𝜆|𝛿)p(𝛿)

p(𝝃|𝜆,)
. (3)
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GRESSANI et al. 2607

Using the Laplace approximation to the denominator p(𝝃|𝜆,) and replacing the latent vector by its modal value
𝝃∗(𝜆) from the Laplace approximation, the marginal posterior in (3) is approximated in the spirit of Tierney and
Kadane38:

p̃(𝜼|) ∝
exp(𝓁(𝝃;))p(𝝃|𝜆)p(𝜆|𝛿)p(𝛿)

p̃G(𝝃|𝜆,)
|||𝝃=𝝃∗(𝜆)

∝
√

det(Σ∗
𝝃
(𝜆)) exp

( n∑
i=1

gi(𝝃∗(𝜆)) − 0.5𝝃∗T(𝜆)Q𝝃(𝜆)𝝃∗(𝜆)

)
𝜆0.5(K+𝜑)−1𝛿0.5𝜑+a𝛿−1 exp (−𝛿 (0.5𝜑𝜆 + b𝛿)) .

Note that in the above formula, the determinant of the block diagonal matrix Q𝝃(𝜆) (coming from the Gaussian prior
on 𝝃) is equal to the product of the determinants of the composing blocks and hence

√
det(Q𝝃(𝜆)) ∝ 𝜆0.5K , which explains

part of the power to which the roughness penalty parameter is raised. Note also that 𝛿0.5𝜑+a𝛿−1 exp (−𝛿 (0.5𝜑𝜆 + b𝛿)) is the
kernel of a Gamma distribution with shape parameter 0.5𝜑 + a𝛿 and rate parameter 0.5𝜑𝜆 + b𝛿 , so that integrating the
latter in the (0,+∞) domain yields Γ(0.5𝜑 + a𝛿)(0.5𝜑𝜆 + b𝛿)−(0.5𝜑+a𝛿), where Γ(⋅) is the gamma function. It follows that 𝛿

can be analytically integrated out from p̃(𝜼|):

p̃(𝜆|) =

+∞

∫
0

p̃(𝜼|) d𝛿

∝
√

det(Σ∗
𝝃
(𝜆)) exp

( n∑
i=1

gi(𝝃∗(𝜆)) − 0.5𝝃∗T(𝜆)Q𝝃(𝜆)𝝃∗(𝜆)

)
𝜆0.5(K+𝜑)−1(0.5𝜑𝜆 + b𝛿)−(0.5𝜑+a𝛿 ). (4)

For numerical reasons it is more appropriate to work with the log transformed penalty parameter v = log(𝜆) as the
latter is unbounded. Using the transformation method for random variables, one obtains the following approximated
(log) posterior for v:

log p̃(v|) =̇ 0.5 log
(

det(Σ∗
𝝃
(v))

)
+

n∑
i=1

gi(𝝃∗(v)) − 0.5𝝃∗T(v)Q𝝃(v)𝝃∗(v)

+ 0.5(K + 𝜑)v − (0.5𝜑 + a𝜆) log (0.5𝜑 exp(v) + b𝛿) , (5)

where =̇ denotes equality up to an additive constant. Approximation (5) provides a good starting point for various strate-
gies to explore the posterior penalty space. A possibility is to use grid-based approaches21,25 or MCMC algorithms39,40 as
often encountered in models with a multidimensional penalty space. In latent Gaussian models, the posterior penalty
typically satisfies suitable regularity conditions such as unimodality41 and not a “too-large” deviation from Gaussianity.
This suggests to use a simple and yet efficient type of bracketing algorithm to compute the (approximate) posterior mode
v∗ of log p̃(v|). Starting with an arbitrarily “large” value, say v0 = 15, the algorithm moves in the left direction with a
fixed step size 𝒹, that is, at the mth iteration vm = vm−1 −𝒹. Movement in the left direction continues until reaching vm̃,
the point at which the target function starts to point downhill p̃(vm̃|) < p̃(vm̃ +𝒹|). The approximated modal value
is then v∗ = vm̃ +𝒹∕2. Figure 1 illustrates the normalized approximate posterior to p(v|) along with the modal value
(dashed line) obtained with a step size 𝒹 = 0.01.

2.5 Approximate credible intervals

The Laplace approximation to the conditional posterior of the latent vector evaluated at the (approximated) modal pos-
terior value v∗ (cf. Section 2.4) is denoted by p̃G(𝝃|v∗,) = dim(𝝃)

(
𝝃∗(v∗),Σ∗

𝝃
(v∗)

)
and a point estimate for 𝝃 is taken to

be the mean/mode 𝝃∗(v∗) with associated variance-covariance matrix Σ∗
𝝃
(v∗).

To ensure that the estimated baseline survival function Ŝ0(⋅) “lands” smoothly on the horizontal asymptote at 0 near
the end of the follow-up, we constrain the last B-spline coefficient by fixing 𝜃K = 1. A major advantage of LPSMC is
that credible intervals for (differentiable functions of) latent variables can be straightforwardly obtained starting from
p̃G(𝝃|v∗,).
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F I G U R E 1 Approximated (normalized) posterior of the log penalty v. The dashed line is the modal value v∗ obtained with the
bracketing algorithm using a step size 𝛿 = 0.01

2.5.1 Credible interval for latent variables

A (1 − 𝛼) × 100% (approximate) credible interval for a latent variable 𝜉h ∈ 𝝃 follows easily from the fact that the Laplace
approximated posterior to 𝜉h is p̃G(𝜉h|v∗,) = 1

(
𝜉∗h , 𝜎2∗

𝜉h

)
, where 𝜉∗h is the hth entry of the vector 𝝃∗(v∗) and 𝜎2∗

𝜉h
is the

hth entry on the main diagonal of Σ∗
𝝃
(v∗). It follows that a quantile-based (1 − 𝛼) × 100% credible interval for 𝜉h is:

CI𝜉h = 𝜉∗h ± z𝛼∕2

√
𝜎2∗

𝜉h
,

where z𝛼∕2 is the 𝛼∕2−upper quantile of a standard normal variate.

2.5.2 Credible interval for the incidence p(x) and cure rate 1 − p(x)

The incidence of the mixture cure model is a function of the latent vector 𝜷̆ and hence an appropriate approach to derive
credible intervals for p(x) is through using a “delta” method. In particular, let us consider the following differentiable func-
tion of the probability to be uncured 𝜓(𝜷̆|x) = log

(
−log p(x)

)
= log

(
log(1 + exp(−𝛽0 − x⊤𝜷))

)
, where x is a known profile

of the covariate vector. The Laplace approximated posterior to vector 𝜷̆ is known to be p̃G(𝜷̆|v∗,) = dim(𝜷̆)

(
𝜷̆
∗
,Σ∗

𝜷̆

)
with

mean vector 𝜷̆∗ = 𝜷̆
∗(v∗) and covariance matrix Σ∗

𝜷̆
= Σ∗

𝜷̆
(v∗). The delta method operates via a first-order Taylor expansion

of 𝜓(𝜷̆|x) around 𝜷̆
∗:

𝜓(𝜷̆|x) ≈ 𝜓(𝜷̆∗|x) + (𝜷̆ − 𝜷̆
∗)⊤∇𝜓(𝜷̆|x)|||𝜷̆=𝜷̆∗ , (6)

with gradient:

∇𝜓(𝜷̆|x) = (
𝜕𝜓(𝜷̆|x)

𝜕𝛽0
, … ,

𝜕𝜓(𝜷̆|x)
𝜕𝛽p

)⊤

=
−(1 − p(x))

log
(
1 + exp(−𝛽0 − x⊤𝜷)

) (1, x⊤)⊤.
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GRESSANI et al. 2609

Note that 𝜓(𝜷̆|x) in (6) is still Gaussian as it is a linear combination of a random vector 𝜷̆ that is a posteriori
(approximated by a) Gaussian due to the Laplace approximation with mean E(𝜓(𝜷̆|x)) ≈ 𝜓(𝜷̆∗|x) and covariance matrix
V(𝜓(𝜷̆|x)) ≈ ∇⊤𝜓(𝜷̆|x)|

𝜷̆=𝜷̆∗Σ∗
𝜷̆
∇𝜓(𝜷̆|x)|

𝜷̆=𝜷̆∗ . This suggests to write the approximated posterior of 𝜓(𝜷̆|x) as:

(
𝜓(𝜷̆|x)|)

∼ 1

(
𝜓(𝜷̆∗|x),∇⊤𝜓(𝜷̆|x)|

𝜷̆=𝜷̆∗Σ∗
𝜷̆
∇𝜓(𝜷̆|x)|

𝜷̆=𝜷̆∗

)
,

and so an approximate quantile-based (1 − 𝛼) × 100% credible interval for 𝜓(𝜷̆|x) is:

CI𝜓(𝜷̆|x) = 𝜓(𝜷̆∗|x) ± z𝛼∕2

√
∇⊤𝜓(𝜷̆|x)|

𝜷̆=𝜷̆∗Σ∗
𝜷̆
∇𝜓(𝜷̆|x)|

𝜷̆=𝜷̆∗ . (7)

Multiplying the values in the interval (7) by exp(− exp(⋅)) gives us the desired credible interval for the incidence p(x).
If a credible interval for the cure rate 1 − p(x) is required, simply use the transformation 𝜓(𝜷̆|x) = log

(
− log(1 − p(x))

)
=

log
(
log(1 + exp(𝛽0 + x⊤𝜷))

)
with gradient ∇𝜓(𝜷̆|x) = (

p(x)∕ log(1 + exp(𝛽0 + x⊤𝜷))
)
(1, x⊤)⊤.

2.5.3 Credible interval for S0(⋅) and Su(⋅|z)
Let us denote by tq the qth quantile of the distribution of the survival time T at baseline by tq = inf{t|S0(t) ≤ 1 − q}. The
“delta” method can also be used to compute an approximate credible interval for S0(⋅) at tq by using a log(− log(⋅)) trans-
formation 𝜓(𝜽|tq) = log(− log(S0(tq))) = log

(∑j(tq)
j=1 exp(𝜽⊤b(sj))Δ

)
. Starting from the Laplace approximated posterior

p̃G(𝜽∗|v∗,) = dim(𝜽)(𝜽∗,Σ∗
𝜽
), one can show that the resulting credible interval for 𝜓(𝜽|tq) is:

CI𝜓(𝜽|tq) = 𝜓(𝜽∗|tq) ± z𝛼∕2

√
∇⊤𝜓(𝜽|tq)|𝜽=𝜽∗Σ∗

𝜽
∇𝜓(𝜽|tq)|𝜽=𝜽∗ , (8)

where ∇𝜓(𝜽|tq)|𝜽=𝜽∗ is the gradient of 𝜓(𝜽|tq) with respect to 𝜽 evaluated at 𝜽∗ and can be found in Gressani and
Lambert21, Appendix C. Applying the inverse transformation exp(− exp(⋅)) to (8) yields the desired (1 − 𝛼) × 100% credible
interval for S0(⋅) at tq.

The same approach is used to construct credible intervals for the survival function of the uncured Su(t|z) = S0(t)exp(z⊤𝜸)

at tq = inf{t|Su(t|z) ≤ 1 − q} for a given covariate profile z. Applying the log(− log(⋅)) transform yields 𝜓(𝜽, 𝜸|tq, z) =
z⊤𝜸 + log

(∑j(tq)
j=1 exp(𝜽⊤b(sj))Δ

)
with gradient:

∇𝜓(𝜽, 𝜸|tq, z) =
(

𝜕𝜓(𝜽, 𝜸|tq, z)
𝜕𝜃1

, … ,
𝜕𝜓(𝜽, 𝜸|tq, z)

𝜕𝜃K
,
𝜕𝜓(𝜽, 𝜸|tq, z)

𝜕𝛾1
, … ,

𝜕𝜓(𝜽, 𝜸|tq, z)
𝜕𝛾q

)⊤

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(∑j(tq)
j=1 exp(𝜽⊤b(sj))Δ

)−1∑j(tq)
j=1 exp(𝜽⊤b(sj))b1(sj)Δ

⋮(∑j(tq)
j=1 exp(𝜽⊤b(sj))Δ

)−1∑j(tq)
j=1 exp(𝜽⊤b(sj))bK(sj)Δ

z1

⋮

zq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The resulting credible interval for 𝜓(𝜽, 𝜸|tq, z) is:

CI𝜓(𝜽,𝜸|tq,z) = 𝜓(𝜽∗, 𝜸∗|tq, z) ± z𝛼∕2

√
∇⊤𝜓(𝜽, 𝜸|tq, z)|𝜽=𝜽∗,𝜸=𝜸∗Σ∗

𝜽,𝜸
∇𝜓(𝜽, 𝜸|tq, z)|𝜽=𝜽∗,𝜸=𝜸∗ , (9)

where Σ∗
𝜽,𝜸

is the covariance matrix of the vector (𝜽⊤, 𝜸⊤)⊤ obtained from the Laplace approximation. Finally,
an exp(− exp(⋅)) transform on (9) gives a (1 − 𝛼) × 100% credible interval for Su(t|z) at tq for a given covariate
vector z.
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2610 GRESSANI et al.

3 BAYESIAN INFERENCE BASED ON MARKOV CHAIN MONTE CARLO

A classic alternative to the Laplacian-P-splines methodology for Bayesian inference in the mixture cure model is to rely on
Markov chain Monte Carlo methods. In this section, we propose a fully stochastic algorithm to explore the joint posterior
distribution p(𝝃, 𝜆, 𝛿|). The sampling scheme is based on a Metropolis-adjusted Langevin strategy to draw samples from
the conditional posterior of the latent vector p(𝝃|𝜆,) given in (2). Such a strategy has already been proposed by Lambert
and Eilers42 in a proportional hazards model with time-varying regression coefficients and also later by Lambert and
Eilers43 for density estimation. The Gibbs sampler can then be used to directly simulate from the conditional posterior
distributions of the remaining parameters 𝜆 and 𝛿. The proposed Metropolis-Langevin-within-Gibbs (MLWG) sampler
complements the LPSMC approach and gives the end user the opportunity to choose between a totally sampling-free
approach (as provided by LPSMC in Section 2) and a fully stochastic approach (as provided by MLWG) for inference. The
conditional posterior of the roughness penalty parameter is given by:

p(𝜆|𝝃, 𝛿,) ∝ 𝜆0.5(K+𝜑)−1 exp
(
−0.5

(
𝝃⊤Q𝝃(𝜆)𝝃 + 𝜆𝜑𝛿

))
∝ 𝜆0.5(K+𝜑)−1 exp

(
−0.5

(
𝝃⊤{𝜆𝒫 +ℬ}𝝃 + 𝜆𝜑𝛿

))
∝ 𝜆0.5(K+𝜑)−1 exp

(
−𝜆0.5

(
𝝃⊤𝒫 𝝃 + 𝜑𝛿

))
,

so that (𝜆|𝝃, 𝛿,) ∼  (0.5(K + 𝜑), 0.5
(
𝝃⊤𝒫 𝝃 + 𝜑𝛿

))
, where 𝒫 is a square matrix of dimension dim(𝝃) with penalty

matrix P on the upper-left block and ℬ a matrix with the same dimension having 𝜁I(p+1)+q on the lower-right block. The
conditional posterior of the dispersion hyperparameter is shown to be (𝛿|𝝃, 𝜆,) ∼ (0.5𝜑 + a𝛿, 0.5𝜑𝜆 + b𝛿).

3.1 Metropolis-adjusted Langevin algorithm

The Metropolis-adjusted Langevin algorithm (MALA)44 is used to explore the conditional posterior distribution p(𝝃|𝜆,).
Compared to a classic random-walk Metropolis algorithm, MALA was shown to guarantee a more efficient sampling
scheme in the sense of improved mixing and convergence of the chains in the mixture cure model. Two main reasons
explain this extra efficiency. First, the proposal distribution in MALA is constructed around Langevin diffusions that use
the gradient of the (log) posterior target distribution, here ∇ log p(𝝃|𝜆,) =̇ ∇𝓁(𝝃;) − Q𝝃(𝜆)𝝃. Second, the covariance
matrix of the proposal distribution is based on the covariance matrix of the Laplace approximation Σ∗ ∶= Σ∗

𝝃
(𝜆∗) that sets

a desirable correlation structure between latent variables. Let 𝝃(m−1) and 𝜆(m−1) denote the state of the chain for 𝝃 and 𝜆

respectively at iteration (m − 1). In MALA, the candidate latent vector at iteration m is a random draw from the following
Gaussian proposal distribution:

𝝃(prop) ∼ dim(𝝃)
(
𝝃(m−1) + 0.5𝜚Σ∗∇ log p(𝝃(m−1)|𝜆(m−1),), 𝜚Σ∗) , (10)

where 𝜚 is a tuning parameter that is adaptively calibrated45,46 to reach the optimal acceptance rate of 0.57.47 The MLWG
algorithm to explore p(𝝃, 𝜆, 𝛿|) is summarized below.

Metropolis-Langevin-within-Gibbs algorithm to explore p(𝝃,𝝀, 𝜹|)

1: Set m = 0 and fix initial values 𝝃(0), 𝜆(0), 𝛿(0) and 𝜚(0).
2: for m = 1, … , M do
3: (Metropolis-adjusted Langevin)
4: Compute the Langevin diffusion: ℰ

(
𝝃(m−1)) = 𝝃(m−1) + 0.5𝜚(m−1)Σ∗∇ log p

(
𝝃(m−1)|𝜆(m−1),)

.
5: Generate proposal: 𝝃(prop) ∼ dim(𝝃)

(
ℰ

(
𝝃(m−1)) , 𝜚(m−1)Σ∗).

6: Compute the acceptance probability 𝜋
(
𝝃(m−1), 𝝃(prop)) = min

{
1,

p(𝝃(prop)|𝜆(m−1) ,)
p(𝝃(m−1)|𝜆(m−1) ,)

q(𝝃(prop) ,𝝃(m−1))
q(𝝃(m−1) ,𝝃(prop))

}
.

7: Draw u ∼  (0, 1).
8: if u ≤ 𝜋 set 𝝃(m) = 𝝃(prop) (accept), else 𝝃(m) = 𝝃(m−1) (reject).
9: (Gibbs sampler)
10: Draw 𝜆(m) ∼  (0.5(K + 𝜑), 0.5

(
𝝃(m)⊤𝒫 𝝃(m) + 𝜑𝛿(m−1))).

11: Draw 𝛿(m) ∼ (0.5𝜑 + a𝛿 , 0.5𝜑𝜆(m) + b𝛿).
12: (Update tuning parameter)
13: Set 𝜚(m)= 𝒽2

(√
𝜚(m−1) + m−1 (𝜋 (

𝝃(m−1), 𝝃(prop)) − 0.57
))

.
14: end for

 10970258, 2022, 14, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9373 by U
niversiteit H

asselt, W
iley O

nline L
ibrary on [23/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



GRESSANI et al. 2611

T A B L E 1 Parameters for the incidence, latency, and censoring rate yielding different cure and censoring levels

Scenario 𝜷0 𝜷1 𝜷2 𝜸1 𝜸2 Cure 𝝁c Censoring Plateau

1 0.70 −1.15 0.95 −0.10 0.25 28.77% 0.16 48.56% 8.00%

2 1.25 −0.75 0.45 −0.10 0.20 21.20% 0.05 29.32% 14.21%

Note: The last column indicates the percentage of observations in the plateau located at the right tail of the Kaplan-Meier curve.

The kernel of the proposal density q
(
𝝃(prop), 𝝃(m−1)) is given by:

ker
(

q
(
𝝃(prop), 𝝃(m−1))) = exp

(
− 1

2𝜚(m−1)

(
𝝃(m−1) − 𝝃(prop) − 0.5𝜚(m−1)Σ∗𝒢 (prop))⊤(Σ∗)−1(

𝝃(m−1) − 𝝃(prop) − 0.5𝜚(m−1)Σ∗𝒢 (prop))) ,

where 𝒢 (prop) ∶= ∇ log p(𝝃(prop)|𝜆(m−1),). Defining 𝒢 (m−1) ∶= ∇ log p(𝝃(m−1)|𝜆(m−1),), one can show that the ratio of
proposal distributions in the computation of the acceptance probability (line 6 of the above algorithm) is:

q
(
𝝃(prop), 𝝃(m−1))

q
(
𝝃(m−1), 𝝃(prop)) = exp

(
−1

2
(
𝒢 (prop) +𝒢 (m−1))⊤

(
𝝃(prop) − 𝝃(m−1) + 𝜚(m−1)

4
Σ∗ (𝒢 (prop) −𝒢 (m−1)))) .

The function 𝒽(⋅) on line 13 of the MLWG algorithm is given by 𝒽(z) = 𝜀I(z < 𝜀) + zI(𝜀 ≤ z ≤ 𝒜 ) +𝒜 I(z > 𝒜 ), with 𝜀 =
10−4 and 𝒜 = 104, see also Lambert and Eilers43. The above MLWG algorithm is used to explore the posterior p(𝝃, 𝜆, 𝛿|)
and the generated samples (after burn-in) permit to compute posterior estimates of latent variables.

4 SIMULATION STUDY

To measure the statistical performance of the LPSMC methodology in a mixture cure model setting, we consider a
numerical study where survival data is generated according to different cure and censoring rates. Generation of sur-
vival data for the ith subject is as follows. The incidence part is generated from a logistic regression function with
two covariates p(Xi) = 1∕(1 + exp(−𝛽0 − 𝛽1Xi1 − 𝛽2Xi2)), where Xi1 is a standard normal variate and Xi2 ∼ Bern(0.5) is a
Bernoulli random variable. The cure status is generated as a Bernoulli random variable with failure probability p(Xi),
that is, Bi ∼ Bern(p(Xi)). Survival times Ti for the uncured subjects (Bi = 1) are obtained from a Weibull Cox proportional
hazards model and are truncated at 𝜏0 = 8. The latency is given by Su(ti|Zi) = exp(−𝜈t𝜅

i exp(𝛾1Zi1 + 𝛾2Zi2)), with scale
parameter 𝜈 = 0.25 and shape 𝜅 = 1.45. The covariate vector Zi = (Zi1, Zi2)⊤ is independent of Xi. We assume that Zi1
follows a standard Gaussian distribution and Zi2 ∼ Bern(0.4). For the cured subject (Bi = 0), the theoretically infinite sur-
vival times are replaced by a large value, say Ti = 20 000. The censoring time Ci is independent of the vector (X⊤

i , Z⊤
i , Ti)⊤

and is sampled from an exponential distribution with mean 1∕𝜇c (ie, density f (ci) = 𝜇c exp(−𝜇cci)) truncated at 𝜏1 = 11.
We consider samples of sizes n = 300 and n = 600 and simulate survival data with two scenarios for the coefficients 𝜷, 𝜸
and 𝜇c, yielding different censoring and cure rates. In both scenarios (almost) all the observations in the plateau of the
Kaplan-Meier48 estimator are cured, such that the simulated data are representative of the practical real case scenarios
for which mixture cure models are used. Table 1 provides a summary of the two considered scenarios.

We specify 15 cubic B-splines in the interval [0, tu] with upper bound fixed at tu = 11 and a third order penalty to
counterbalance model flexibility. In the bracketing algorithm, we use a step size 𝛿 = 0.2 to compute the (approximate)
modal posterior log penalty value v∗. For each scenario, we simulate S = 500 replications and compute the bias, empir-
ical standard error (ESE), root mean square error (RMSE) and coverage probabilities for 90% and 95% (quantile-based)
credible intervals. Results for LPSMC and the MLWG sampler with a chain of length 10 000 and a burn-in of 3000 are
summarized in Table 2. The bias is negligible and the ESE and RMSE decrease with larger sample size, as expected. In
addition, the estimated coverage probabilities are close to their respective nominal value in all scenarios. What can also
be noted from Table 2 is the similarity between the LPSMC and MLWG results, showing that the Laplace approximation
is quite accurate and competitive against a fully MCMC based approach even with a relatively long chain length. LPSMC
is of course much faster than MLWG as it takes ≈ 0.7 s to fit the model in R with an Intel Xeon E-2186M processor at
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2612 GRESSANI et al.

T A B L E 2 Numerical results for S = 500 replications of sample size n = 300 and n = 600 under two different cure-censoring scenarios

Scenario Parameters Mean Bias ESE RMSE CP90% CP95%

Scenario 1 (n = 300) 𝛽0 = 0.70 0.721 (0.743) 0.021 (0.043) 0.249 (0.274) 0.250 (0.277) 91.0 (88.4) 96.4 (94.4)

𝛽1 = −1.15 −1.182 (−1.230) −0.032 (−0.080) 0.240 (0.255) 0.242 (0.267) 91.6 (89.8) 94.8 (94.2)

𝛽2 = 0.95 0.954 (1.044) 0.004 (0.094) 0.390 (0.407) 0.390 (0.417) 90.6 (90.4) 94.2 (95.4)

𝛾1 = −0.10 −0.101 (−0.098) −0.001 (0.002) 0.092 (0.094) 0.092 (0.094) 89.6 (87.8) 94.4 (94.8)

𝛾2 = 0.25 0.242 (0.234) −0.008 (−0.016) 0.184 (0.188) 0.184 (0.188) 89.0 (89.2) 96.4 (94.8)

Scenario 1 (n = 600) 𝛽0 = 0.70 0.703 (0.715) 0.003 (0.015) 0.184 (0.181) 0.184 (0.181) 89.6 (90.0) 95.6 (95.0)

𝛽1 = −1.15 −1.154 (−1.190) −0.004 (−0.040) 0.167 (0.172) 0.167 (0.176) 90.2 (88.2) 95.0 (93.8)

𝛽2 = 0.95 0.950 (0.978) 0.000 (0.028) 0.269 (0.280) 0.268 (0.281) 90.8 (88.4) 95.0 (93.8)

𝛾1 = −0.10 −0.102 (−0.100) −0.002 (0.000) 0.064 (0.065) 0.064 (0.065) 89.6 (89.0) 94.8 (93.8)

𝛾2 = 0.25 0.254 (0.247) 0.004 (−0.003) 0.127 (0.123) 0.127 (0.123) 90.8 (91.4) 96.0 (95.2)

Scenario 2 (n = 300) 𝛽0 = 1.25 1.281 (1.275) 0.031 (0.025) 0.229 (0.239) 0.230 (0.240) 91.4 (91.0) 95.6 (94.2)

𝛽1 = −0.75 −0.765 (−0.784) −0.015 (−0.034) 0.182 (0.197) 0.183 (0.200) 91.0 (88.2) 95.4 (93.2)

𝛽2 = 0.45 0.430 (0.480) −0.020 (0.030) 0.330 (0.333) 0.330 (0.334) 89.0 (90.2) 94.8 (95.0)

𝛾1 = −0.10 −0.103 (−0.102) −0.003 (−0.002) 0.074 (0.075) 0.074 (0.075) 88.8 (90.2) 94.4 (95.0)

𝛾2 = 0.20 0.194 (0.196) −0.006 (−0.004) 0.151 (0.157) 0.151 (0.157) 87.2 (87.8) 94.8 (93.4)

Scenario 2 (n = 600) 𝛽0 = 1.25 1.248 (1.270) −0.002 (0.020) 0.160 (0.164) 0.160 (0.165) 91.4 (90.8) 95.6 (95.8)

𝛽1 = −0.75 −0.748 (−0.771) 0.002 (−0.021) 0.129 (0.132) 0.129 (0.133) 89.8 (88.6) 95.2 (94.4)

𝛽2 = 0.45 0.459 (0.467) 0.009 (0.017) 0.223 (0.238) 0.223 (0.239) 91.0 (89.8) 95.6 (94.4)

𝛾1 = −0.10 −0.100 (−0.106) 0.000 (−0.006) 0.054 (0.052) 0.054 (0.052) 88.0 (89.6) 95.6 (94.0)

𝛾2 = 0.20 0.199 (0.195) −0.001 (−0.005) 0.105 (0.111) 0.105 (0.111) 89.6 (87.8) 95.0 (92.6)

Note: Results in parenthesis are for the MLWG sampler with chain length 10 000 and burn-in 3000.

2.90GHz. Figure 2 shows the estimated baseline survival curves (gray), the target (solid) and the pointwise median of the
500 curves (dashed) for the different scenarios using the LPSMC approach.

Another performance measure for the incidence of the model is obtained by computing the average squared error
(ASE) of p̂(x) defined as ASE(p̂) = M−1∑M

m=1(p̂(x) − p(x) )2. The latter quantity is computed on triplets of covariate values
xm = (1, xm1, xm2)⊤ for m = 1, … , M, where the set of couples {(xm1, xm2)}M

m=1 equals the Cartesian product between an
equidistant grid in [−1.50, 1.50] with step size 0.001 (for variable x1) and the set {0, 1} (for x2).

Boxplots for the ASE in the different scenarios are displayed in Figure 3. Coverage probability of the 90% and 95%
(approximate) credible interval for the incidence p(x) (and cure rate 1 − p(x)) at the mean covariate profile x = (1, 0, 0.5)⊤
as computed from (7) have also been measured (with LPSMC) and are close to their nominal value in all scenarios. In
Table 3, the performance of approximate credible intervals for the baseline survival and survival of the uncured for a mean
covariate profile z = (0, 0.4)⊤ at selected quantiles of T is shown. Results are for S = 200 replications of sample size n = 300
with K = 20 B-splines. In Scenario 1, there is a more pronounced difference in coverage performance between LPSMC and
MLWG at quantiles t0.30, t0.40, and t0.50, where the MLWG sampler exhibits estimated coverage probabilities moderately
below nominal coverage. The average credible interval widths and baseline bias S−1 ∑

s
(

Ŝ0(⋅) − S0(⋅)
)

(computed in the
supplementary materials) at the selected quantiles tq can be used to explain this difference. In Scenario 1, for t0.30, t0.40, and
t0.50, the mean credible interval widths are roughly identical for LPSMC and the sampling approach, but the baseline bias
(although negligible) is slightly higher for MLWG and thus implies a small loss in coverage. For the remaining quantiles,
LPSMC and MLWG have comparable performance except for t0.80 and t0.90, where both methods undercover but MLWG
is closer to the nominal level in both scenarios.

The empirical computation time required for implementing LPSMC and MLWG (via the mixcurelps package) is
assessed for different combinations of sample size n and B-spline dimension K. The real elapsed time averaged over S = 10
replications in each (n, K)-pair is reported in Table 4. Even in relatively large sample settings (n = 1000) with a large
number of B-spline coefficients (such as K = 50), LPSMC is able to fit the mixture cure model in a couple of seconds.
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F I G U R E 2 Estimated baseline survival curves (gray) for S = 500 replications under different scenarios with LPSMC. The black curve is
the target baseline and the dashed curve is the pointwise median of the 500 gray curves

Computational times for LPSMC on denser grids of n and K respectively are reported in the supplementary materials
and suggest that the underlying algorithms run in linear time (n) with respect to the sample size and in more than linear
time with respect to the spline dimension.

5 REAL DATA APPLICATIONS

5.1 ECOG e1684 clinical trial

We start by applying the LPSMC methodology to a well-known dataset in the cure literature and compare the estimates
with the ones obtained using the benchmark smcure package.49 The data comes from the Eastern Cooperative Oncology
Group (ECOG) phase III two-arm clinical trial with n = 284 observations after removing missing data. The aim of the
study was to assess whether Interferon alpha-2b (IFN) had a significant effect on relapse-free survival. There were 144
patients receiving the treatment and the remaining patients (140) belonged to the control group. The response of interest
is relapse-free survival time measured in years. The following covariates enter both the incidence and latency part of the
model. TRT is the binary variable indicating whether a patient received the IFN treatment (TRT = 1) or not (TRT = 0).
Variable SEX indicates if a patient is female (SEX = 1) or male (SEX = 0). In total, the study involves 113 women and
171 men. Finally, AGE is a continuous covariate (centered to the mean) indicating the age of patients. Figure 4, shows the
Kaplan-Meier estimated survival curve for the e1684 dataset. A plateau is clearly visible indicating the potential presence
of a cure fraction, so that a mixture cure model is appropriate to fit this type of data.

Table 5 summarizes the estimation results for the e1684 dataset with LPSMC, MLWG with chain length 20 000 (burn-in
of 10 000) and smcure. The estimated coefficients in the two parts of the model (incidence and latency) are of similar
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F I G U R E 3 Boxplots of the ASE for the incidence in different scenarios

magnitude for all approaches. However, the computational times to fit the mixture cure model drastically differ depending
on the method.

It takes approximately 125 s to fit the model with smcure, while LPSMC takes only≈ 0.5 s. This speedup factor of≈ 250
is mainly due to the bootstrap samples that smcure uses to compute estimates of the variance of estimated parameters.
The LPSMC approach is completely sampling-free and intrinsically accounts for fast computation of credible intervals
for the latent variables. Results for both smcure and LPSMC/MLWG show that treatment (TRT) has a significant and
positive impact on the cure probability, while IFN treatment has no significative impact in the latency part. In other words,
taking AGE and SEX into account, receiving the IFN treatment decreases the probability to be susceptible but will not
postpone relapse among the uncured. Similar findings are reported in Corbière and Joly50 and Legrand and Bertrand51.
The e1684 dataset has also been analyzed by Lázaro et al24 with the INLA methodology. For this dataset, they compared
the runtimes of INLA with a Weibull baseline hazard (via modal Gibbs running 500 iterations) with an MCMC algorithm
implemented in JAGS.52 The authors reported computational times of 28 min for INLA and around 33 seconds per 1000
iterations for MCMC (55 minutes for three Markov chains with 100 000 iterations). This is substantially above the runtime
that we measured with our MLWG sampler (around 3 seconds per 1000 iterations) which is approximately 10-fold faster.

5.2 Breast cancer data

The second dataset used to illustrate the LPSMC methodology concerns n = 286 patients with breast cancer studied in
Wang et al53. Survival time (in days) is defined as the distant-metastasis-free survival (DMFS), that is, time to occurrence
of distant metastases or death (whatever happens first) and the event of interest is distant-metastasis. The data is obtained
from the breastCancerVDX package54 on Bioconductor (https://bioconductor.org/). We consider two covariates entering
simultaneously in the incidence and latency part, namely the age of patients, ranging between 26 and 83 years with
a median of 52 years and the categorical variable Estrogen Receptor (ER) (with ER = 0: if ≤ 10 fmol per mg protein
[77 patients] and ER = 1 otherwise [209 patients]). We use K = 20 cubic B-splines in [0, tu], with tu = 5201 days, the
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GRESSANI et al. 2615

T A B L E 3 Estimated coverage probability of 90% and 95% credible intervals for S0(⋅) and Su(⋅|z = (0, 0.4)⊤) with S = 200 replications of
sample size n = 300 and K = 20 B-splines at selected quantiles tq

Nominal Scenario t0.20 t0.30 t0.40 t0.50 t0.60 t0.70 t0.80 t0.90

Baseline S0(⋅) 90 (LPSMC) 1 88.5 86.5 90.0 92.0 93.0 93.5 81.0 41.5

90 (MLWG) 1 86.0 84.0 81.0 81.0 88.0 90.5 85.5 61.5

95 (LPSMC) 1 93.5 94.0 94.5 94.5 95.0 95.5 90.0 49.0

95 (MLWG) 1 92.0 88.5 88.5 90.5 93.5 95.0 92.5 74.5

90 (LPSMC) 2 85.0 83.5 86.0 88.0 88.5 89.0 70.5 18.5

90 (MLWG) 2 84.0 80.5 82.0 86.0 87.5 90.0 79.5 40.5

95 (LPSMC) 2 93.0 92.5 91.0 94.5 94.5 92.0 79.0 30.5

95 (MLWG) 2 93.0 90.0 90.0 92.0 95.5 94.0 87.0 52.5

Uncured Su(⋅|z) 90 (LPSMC) 1 88.5 89.5 88.5 89.5 94.0 91.5 77.5 22.5

90 (MLWG) 1 82.0 76.0 75.5 79.5 86.0 88.5 81.5 51.0

95 (LPSMC) 1 96.0 93.5 95.0 96.5 98.0 97.0 85.5 34.0

95 (MLWG) 1 89.0 83.5 84.5 87.0 93.0 95.5 90.0 60.5

90 (LPSMC) 2 87.0 81.5 85.5 90.0 88.5 87.0 68.0 10.0

90 (MLWG) 2 74.5 76.0 79.0 88.0 90.5 89.5 75.5 27.0

95 (LPSMC) 2 91.5 90.0 91.0 93.0 95.0 93.0 78.0 17.5

95 (MLWG) 2 85.0 83.5 89.0 92.5 96.0 94.0 82.0 42.5

Note: Results for the MLWG sampler with chain length 10 000 and burn-in 3000 are also shown.

T A B L E 4 Empirical computation times for LPSMC and MLWG (with chain length 500) for different combinations of sample size n and
B-spline dimension K

n = 100 n = 200 n = 500 n = 800 n = 1000

LPSMC K = 15 0.289 0.333 0.572 0.777 0.970

K = 20 0.466 0.549 0.889 1.238 1.517

K = 30 1.042 1.110 1.848 3.057 4.164

K = 50 2.214 2.614 3.733 5.041 6.294

MLWG K = 15 1.561 1.808 2.514 3.250 3.801

K = 20 1.943 2.157 2.978 3.835 4.486

K = 30 2.818 3.065 4.588 5.997 7.422

K = 50 5.311 5.932 7.572 9.417 10.982

Note: Results correspond to average wall clock times (elapsed real times) in seconds over S = 10 replications.

largest follow-up time. The Kaplan-Meier estimate of the data given in Figure 5 emphasizes the existence of a plateau and
motivates the use of a mixture cure model.

The estimated latent variables with LPSMC are reported in Table 6. We see that AGE and ER have no significant
effect on the probability of being uncured (incidence) at the 10% level of significance. However, the latter two covariates
significantly affect the survival of the uncured.

For instance, a subject that is susceptible to experience metastasis with ER = 1 has a risk of experiencing the event that
is 1∕ exp(−1.047) ≈ 2.85 times smaller than the risk with ER = 0. In Figure 6, the estimated survival for the susceptible
subjects (and their associated 95% credible interval) is shown for two age categories (30 and 50 years) with ER = 1. The
same data analysis is conducted with the MLWG sampler (see supplementary materials) using a chain of length 20 000
and a burn-in of 10 000. The trace plots of the regression coefficients (in the incidence and latency part respectively) and
the roughness penalty parameter are provided together with the Geweke diagnostics.55
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F I G U R E 4 Kaplan-Meier estimated survival for the e1684 ECOG dataset. A cross indicates a censored observation
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F I G U R E 5 Kaplan-Meier estimated survival for the breast cancer data. A cross indicates a censored observation

5.3 ZNA COVID-19 data

In a third application, we use LPSMC to investigate the impact of age on survival of COVID-19 patients. The data comes
from the Ziekenhuis Netwerk Antwerpen (ZNA, Belgium), a network of hospitals in the province of Antwerp. The consid-
ered dataset has n = 3258 patients entering hospitals between March 2020 and April 2021. The follow-up time is defined
as the total number of days spent in hospital and receiving COVID-19 care. The outcome of interest is in-hospital death
due to COVID-19 as indicated by a binary variable (1 = Dead; 0 = Alive). Among the 3258 patients, 461 (14.15%) experi-
enced in-hospital death and the remaining 2797 (85.85%) are censored due to causes unrelated to the outcome of interest
(uninformative censoring). The Kaplan-Meier curve is given in Figure 7 and highlights a wide plateau around 0.52,
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T A B L E 5 Estimation results for the e1684 dataset with LPSMC, MLWG, and smcure

Model Parameter Estimate SD CI 90%

LPSMC (incidence) 𝛽0 (intercept) 1.219 0.244 [0.819; 1.620]

𝛽1 (SEX) −0.061 0.284 [−0.528; 0.406]

𝛽2 (TRT) −0.567 0.281 [−1.029; −0.105]

𝛽3 (AGE) 0.016 0.011 [−0.002; 0.034]

MLWG (incidence) 𝛽0 (intercept) 1.355 0.375 [0.884; 1.949]

𝛽1 (SEX) −0.062 0.329 [−0.596; 0.467]

𝛽2 (TRT) −0.567 0.325 [−1.092; −0.044]

𝛽3 (AGE) 0.019 0.016 [−0.001; 0.044]

smcure (incidence) 𝛽0 (intercept) 1.365 0.329 [0.823; 1.906]

𝛽1 (SEX) −0.087 0.333 [−0.634; 0.461]

𝛽2 (TRT) −0.588 0.343 [−1.152; −0.025]

𝛽3 (AGE) 0.020 0.016 [−0.006; 0.047]

LPSMC (latency) 𝛾1 (SEX) 0.092 0.170 [−0.188; 0.371]

𝛾2 (TRT) −0.137 0.169 [−0.415; 0.142]

𝛾3 (AGE) −0.007 0.006 [−0.016; 0.003]

MLWG (latency) 𝛾1 (SEX) 0.058 0.183 [−0.255; 0.353]

𝛾2 (TRT) −0.170 0.188 [−0.484; 0.135]

𝛾3 (AGE) −0.007 0.006 [−0.017; 0.004]

smcure (latency) 𝛾1 (SEX) 0.099 0.175 [−0.189; 0.388]

𝛾2 (TRT) −0.154 0.177 [−0.444; 0.137]

𝛾3 (AGE) −0.008 0.007 [−0.019; 0.004]

Note: The first column indicates the model part, the second and third columns the parameter and its estimate. The fourth column is the (posterior) SD of the
estimate and the last column the 90% confidence/credible interval.

T A B L E 6 Estimation results for the breast cancer data with LPSMC

Model Parameter Estimate SD CI 90%

(Incidence) 𝛽0 (intercept) −0.013 0.576 [−0.959; 0.934]

𝛽1 (AGE) −0.012 0.010 [−0.028; 0.005]

𝛽2 (ER) 0.181 0.281 [−0.280; 0.643]

(Latency) 𝛾1 (AGE) −0.016 0.008 [−0.030; −0.003]

𝛾2 (ER) −1.047 0.245 [−1.450; −0.645]

Note: The first column indicates the model part, the second and third columns the parameter and its posterior (mean) estimate. The fourth column is the
posterior SD of the estimate and the last column the 90% credible interval.

suggesting the existence of a cure fraction and hence motivating a cure model analysis with LPSMC. The age of patients
is taken as a covariate both in the incidence and latency part of the model. The mean age is 66 years and the youngest,
respectively oldest patient is 1 and 103 year(s) old. For the LPSMC approach, we use K = 15 B-splines between 0 and the
largest follow-up time (tu = 98.88) along with a third order penalty and K = 10 B-splines for the MLWG sampler.

Table 7 summarizes the estimation results for the model parameters with LPSMC and MLWG respectively (with a
chain length of 15 000 and a burn-in of size 8000). We see that AGE has a positive and significant effect in the incidence
part of the model. In other words, older patients have a larger probability of being uncured and hence a smaller probability
to be cured from COVID-19. The estimated cure proportion for different AGE categories is shown in Table 8. In the latency
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F I G U R E 7 Kaplan-Meier estimated survival for the ZNA data. A cross indicates a censored observation

T A B L E 7 Estimation results for the ZNA data with LPSMC and MLWG

Model Parameter Estimate SD CI 95%

LPSMC (incidence) 𝛽0 (intercept) −2.608 0.791 [−4.159; −1.057]

𝛽1 (AGE) 0.031 0.010 [0.011; 0.051]

MLWG (incidence) 𝛽0 (intercept) −2.370 0.780 [−3.850; −0.757]

𝛽1 (AGE) 0.029 0.010 [0.009; 0.049]

LPSMC (latency) 𝛾1 (AGE) 0.011 0.007 [−0.004; 0.025]

MLWG (latency) 𝛾1 (AGE) 0.012 0.007 [−0.001; 0.027]

Note: The first column indicates the model part, the second and third columns the parameter and its posterior (mean) estimate. The fourth column is the
posterior SD of the estimate and the last column the 95% credible interval.
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T A B L E 8 Estimation of the cure proportion for different age categories and associated 95% approximate credible interval

AGE 1 − p̂(x) CI 95%

20 0.879 [0.682; 0.958]

30 0.843 [0.658; 0.932]

50 0.742 [0.607; 0.837]

80 0.532 [0.466; 0.592]

part, AGE is positive and not significant at the 5% level and thus there is no significant effect of AGE on the survival of
uncured patients.

6 CONCLUSIONS

Approximate Bayesian inference methods are an interesting alternative to classic MCMC algorithms, especially when the
latter require long computation times, as can be the case for models with complex likelihoods. In survival analysis, the
mixture cure model is an interesting model class that allows for the existence of a cure fraction and hence goes beyond
classic proportional hazards models for which the feature of long-term survivors is absent. In this article, we propose a new
approach for fast Bayesian inference in the standard mixture cure model by combining the strength of Laplace approxi-
mations to (conditional) posterior distributions of latent variables and P-splines for flexible modeling of baseline smooth
quantities. The attractiveness of the LPSMC approach lies in its completely sampling-free framework, with an analyti-
cally available gradient and Hessian of the log-likelihood that makes the approach extremely fast from a computational
viewpoint. This computational advantage and the relatively straightforward possibility to derive (approximate) credible
intervals for functions of latent variables makes it a promising tool for fast analysis of survival data with a cure fraction.
Moreover, the proposed MLWG sampler brings a further layer of added value that complements the sampling-free LPSMC
approach with a fully MCMC-based strategy for inference in the mixture cure model.

A possible interesting extension for future research would be to generalize the LPSMC approach at the level of the inci-
dence with alternative specifications to the standard logistic regression setting. For instance, LPSMC could be extended
to the single-index/Cox mixture cure model of Amico et al56. Another research path is to further develop the routines of
the mixcurelps package and work on an article exclusively dedicated to the main features of the software. Finally, one
can attempt to extend Laplacian-P-splines in cure models with frailties or in the context of competing risks survival data
with a cure fraction.
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APPENDIX A. LAPLACE APPROXIMATION TO THE CONDITIONAL POSTERIOR OF THE
LATENT VECTOR

Recall that the contribution of the ith unit to the log-likelihood is given by:

gi(𝝃) = 𝜏i

(
log p(xi) + z⊤

i 𝜸 + 𝜽⊤b(ti) − exp(z⊤
i 𝜸)

j(ti)∑
j=1

exp
(
𝜽⊤b(sj)

)
Δ

)

+ (1 − 𝜏i) log

(
1 − p(xi) + p(xi) exp

(
− exp(z⊤

i 𝜸)
j(ti)∑
j=1

exp
(
𝜽⊤b(sj)

)
Δ

))
,

and using the definition of the population survival function, one has:

gi(𝝃) = 𝜏i

(
log p(xi) + z⊤

i 𝜸 + 𝜽⊤b(ti) − exp(z⊤
i 𝜸)

j(ti)∑
j=1

exp
(
𝜽⊤b(sj)

)
Δ

)
+ (1 − 𝜏i) log

(
Sp(ti|xi, zi)

)
.
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A second-order Taylor expansion of gi(𝝃) around and arbitrary point 𝝃(0) is given by:

gi(𝝃) ≈ gi(𝝃(0)) + (𝝃 − 𝝃(0))⊤∇gi(𝝃)|𝝃=𝝃(0) + 1
2
(𝝃 − 𝝃(0))⊤∇2gi(𝝃)|

𝝃=𝝃(0)
(𝝃 − 𝝃(0))

≈ c + 𝝃⊤
(
∇gi(𝝃)|𝝃=𝝃(0) − ∇2gi(𝝃)|

𝝃=𝝃(0)
𝝃(0)

)
+ 1

2
𝝃⊤∇2gi(𝝃)|

𝝃=𝝃(0)
𝝃, (A1)

where c is a constant that does not depend on 𝝃. The gradient ∇gi(𝝃)|𝝃=𝝃(0) and Hessian ∇2gi(𝝃)|
𝝃=𝝃(0)

are given by:

∇gi(𝝃)|𝝃=𝝃(0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕

𝜕𝜃1
gi(𝝃)

⋮
𝜕

𝜕𝜃K
gi(𝝃)

𝜕

𝜕𝛽0
gi(𝝃)

⋮
𝜕

𝜕𝛽p
gi(𝝃)

𝜕

𝜕𝛾1
gi(𝝃)

⋮
𝜕

𝜕𝛾q
gi(𝝃)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝝃=𝝃(0)

∇2gi(𝝃)|𝝃=𝝃(0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕2

𝜕𝜽𝜕𝜽⊤
gi(𝝃)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
K×K

𝜕2

𝜕𝜽𝜕𝜷̆
⊤

gi(𝝃)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
K×(p+1)

𝜕2

𝜕𝜽𝜕𝜸⊤
gi(𝝃)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
K×q

𝜕2

𝜕𝜷̆𝜕𝜽⊤
gi(𝝃)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
(p+1)×K

𝜕2

𝜕𝜷̆𝜕𝜷̆
⊤

gi(𝝃)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
(p+1)×(p+1)

𝜕2

𝜕𝜷̆𝜕𝜸⊤
gi(𝝃)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
(p+1)×q

𝜕2

𝜕𝜸𝜕𝜽⊤
gi(𝝃)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
q×K

𝜕2

𝜕𝜸𝜕𝜷̆
⊤

gi(𝝃)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
q×(p+1)

𝜕2

𝜕𝜸𝜕𝜸⊤
gi(𝝃)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
q×q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝝃=𝝃(0)

.

To simplify the notation, we define the following quantities:

𝜔0i ∶=
j(ti)∑
j=1

h0(sj)Δ,

𝜔k
0i ∶=

j(ti)∑
j=1

h0(sj)bk(sj)Δ,

𝜔kl
0i ∶=

j(ti)∑
j=1

h0(sj)bk(sj)bl(sj)Δ.

Gradient
We first derive the gradient and start with the partial derivatives with respect to the spline coefficients:

𝜕

𝜕𝜃k
gi(𝝃) = 𝜏i

(
bk(ti) − exp(z⊤

i 𝜸)
j(ti)∑
j=1

h0(sj)bk(sj)Δ

)
+ (1 − 𝜏i)

Sp(ti|xi, zi)
𝜕

𝜕𝜃k
Sp(ti|xi, zi).

Note that:

𝜕

𝜕𝜃k
Sp(ti|xi, zi) = −p(xi) exp

(
z⊤

i 𝜸 − exp(z⊤
i 𝜸)𝜔0i

)
𝜔k

0i.

It follows that:

𝜕

𝜕𝜃k
gi(𝝃) = 𝜏i

(
bk(ti) − exp(z⊤

i 𝜸)𝜔
k
0i
)
− (1 − 𝜏i)

Sp(ti|xi, zi)
p(xi) exp

(
z⊤

i 𝜸 − exp(z⊤
i 𝜸)𝜔0i

)
𝜔k

0i, k = 1, … , K.

To obtain the derivatives with respect to the 𝜷̆ coefficients, let us first compute:

𝜕

𝜕𝛽m
p(xi) =

𝜕

𝜕𝛽m

exp(𝛽0 + x⊤
i 𝜷)

1 + exp(𝛽0 + x⊤
i 𝜷)
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= 𝜕

𝜕𝛽m

1
1 + exp(−𝛽0 − x⊤

i 𝜷)

= xim(1 + exp(−𝛽0 − x⊤
i 𝜷))

−2 exp(−𝛽0 − x⊤
i 𝜷)

=
xim exp(−𝛽0 − x⊤

i 𝜷)(
1+exp(𝛽0+x⊤

i 𝜷)
exp(𝛽0+x⊤

i 𝜷)

)2

= xim
exp(𝛽0 + x⊤

i 𝜷)
1 + exp(𝛽0 + x⊤

i 𝜷)
1

1 + exp(𝛽0 + x⊤
i 𝜷)

= ximp(xi)(1 − p(xi)).

It follows that:

𝜕

𝜕𝛽m
gi(𝝃) = 𝜏ixim(1 − p(xi)) +

(1 − 𝜏i)
Sp(ti|xi, zi)

ximp(xi)(1 − p(xi))
(
exp(− exp(z⊤

i 𝜸)𝜔0i) − 1
)

for m = 0, … , p with xi0 = 1.

Derivatives with respect to the 𝜸 coefficients are:

𝜕

𝜕𝛾s
gi(𝝃) = 𝜏izis

(
1 − exp(z⊤

i 𝜸)𝜔0i
)
− (1 − 𝜏i)

Sp(ti|xi, zi)
p(xi) exp(z⊤

i 𝜸 − exp(z⊤
i 𝜸)𝜔0i)𝜔0izis, s = 1, … , q.

Hessian
To compute the Hessian, we only require the main diagonal and the upper triangular parts (Blocks 12, 13, and 23 below).
The lower triangular part is obtained by symmetry.

Block 11 ∶ 𝜕2

𝜕𝜃k𝜕𝜃l
gi(𝝃)k = 1, … , K l = 1, … , K.

Block 12 ∶ 𝜕2

𝜕𝜃k𝜕𝛽m
gi(𝝃)k = 1, … , K m = 0, … , p.

Block 13 ∶ 𝜕2

𝜕𝜃k𝜕𝛾s
gi(𝝃)k = 1, … , K s = 1, … , q.

Block 22 ∶ 𝜕2

𝜕𝛽m𝜕𝛽l
gi(𝝃)l = 0, … , p m = 0, … , p.

Block 23 ∶ 𝜕2

𝜕𝛽m𝜕𝛾s
gi(𝝃) m = 0, … , p s = 1, … , q.

Block 33 ∶ 𝜕2

𝜕𝛾s𝜕𝛾v
gi(𝝃)s = 1, … , q v = 1, … , q.

Block 11 Let us first define the function:

fi(𝝃) ∶= exp(z⊤
i 𝜸 − exp(z⊤

i 𝜸)𝜔0i)𝜔k
0i.

It follows that:

𝜕2

𝜕𝜃k𝜕𝜃l
gi(𝝃) = −𝜏i exp(z⊤

i 𝜸)𝜔
kl
0i − (1 − 𝜏i)p(xi)

[
𝜕fi(𝝃)
𝜕𝜃l

Sp(ti|xi, zi) − fi(𝝃)
𝜕Sp(ti|xi, zi)

𝜕𝜃l

]
S−2

p (ti|xi, zi)

k, l = 1, … , K, (A2)

where

𝜕fi(𝝃)
𝜕𝜃l

= − exp(z⊤
i 𝜸 − exp(z⊤

i 𝜸)𝜔0i) exp(z⊤
i 𝜸)𝜔

l
0i𝜔

k
0i + exp(z⊤

i 𝜸 − exp(z⊤
i 𝜸)𝜔0i)𝜔kl

0i
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2624 GRESSANI et al.

= exp(z⊤
i 𝜸 − exp(z⊤

i 𝜸)𝜔0i)𝜔kl
0i − fi(𝝃) exp(z⊤

i 𝜸)𝜔
l
0i

and

𝜕

𝜕𝜃l
Sp(ti|xi, zi) = −p(xi) exp

(
z⊤

i 𝜸 − exp(z⊤
i 𝜸)𝜔0i

)
𝜔l

0i.

Block 12

𝜕2

𝜕𝜃k𝜕𝛽m
gi(𝝃) = −(1 − 𝜏i)fi(𝝃)

[
𝜕p(xi)
𝜕𝛽m

Sp(ti|xi, zi) − p(xi)
𝜕Sp(ti|xi, zi)

𝜕𝛽m

]
S−2

p (ti|xi, zi)

k = 1, … , K, m = 0, … , p,

with

𝜕Sp(ti|xi, zi)
𝜕𝛽m

= ximp(xi)(1 − p(xi))
(
exp(− exp(z⊤

i 𝜸)𝜔0i) − 1
)

.

Block 13

𝜕2

𝜕𝜃k𝜕𝛾s
gi(𝝃) = −𝜏i exp(z⊤

i 𝜸)zis𝜔
k
0i − (1 − 𝜏i)p(xi)

[
𝜕fi(𝝃)
𝜕𝛾s

Sp(ti|xi, zi) − fi(𝝃)
𝜕Sp(ti|xi, zi)

𝜕𝛾s

]
S−2

p (ti|xi, zi)

k = 1, … , K, s = 1, … , q,

with

𝜕Sp(ti|xi, zi)
𝜕𝛾s

= −p(xi) exp(z⊤
i 𝜸 − exp(z⊤

i 𝜸)𝜔0i)zis𝜔0i.

𝜕fi(𝝃)
𝜕𝛾s

= fi(𝝃)(zis − exp(z⊤
i 𝜸)zis𝜔0i).

Block 22 Define the following function:

f̃ i(𝝃) = p(xi)(1 − p(xi))
(
exp(− exp(z⊤

i 𝜸)𝜔0i) − 1
)

.

The second-order derivatives are:

𝜕2

𝜕𝛽m𝜕𝛽l
gi(𝝃) = −𝜏iximxilp(xi)(1 − p(xi))

+ (1 − 𝜏i)xim

[
𝜕f̃ i(𝝃)
𝜕𝛽l

Sp(ti|xi, zi) − f̃ i(𝝃)
𝜕Sp(ti|xi, zi)

𝜕𝛽l

]
S−2

p (ti|xi, zi)

m, l = 0, … , p,

with

𝜕f̃ i(𝝃)
𝜕𝛽l

= xilp(xi)(1 − p(xi))(1 − 2p(xi))
(
exp(− exp(z⊤

i 𝜸)𝜔0i) − 1
)

.

𝜕Sp(ti|xi, zi)
𝜕𝛽l

= xilf̃ i(𝝃).

 10970258, 2022, 14, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9373 by U
niversiteit H

asselt, W
iley O

nline L
ibrary on [23/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



GRESSANI et al. 2625

Block 23 Define the following function:

f̆ i(𝝃) = exp(− exp(z⊤
i 𝜸)𝜔0i) − 1.

The second-order partial derivative is:

𝜕2

𝜕𝛽m𝜕𝛾s
gi(𝝃) = (1 − 𝜏i)ximp(xi)(1 − p(xi))

[
𝜕f̆ i(𝝃)
𝜕𝛾s

Sp(ti|xi, zi) − f̆ i(𝝃)
𝜕Sp(ti|xi, zi)

𝜕𝛾s

]
S−2

p (ti|xi, zi)

m = 0 … , p, s = 1, … , q,

with

𝜕f̆ i(𝝃)
𝜕𝛾s

= − exp(z⊤
i 𝜸 − exp(z⊤

i 𝜸)𝜔0i)zis𝜔0i.

Block 33 Define the following function:

f̈ i(𝝃) = exp(z⊤
i 𝜸 − exp(z⊤

i 𝜸)𝜔0i).

The second-order partial derivative is:

𝜕2

𝜕𝛾s𝜕𝛾v
gi(𝝃) = −𝜏izisziv exp(z⊤

i 𝜸)𝜔0i

− (1 − 𝜏i)p(xi)𝜔0izis

[
𝜕f̈ i(𝝃)
𝜕𝛾v

Sp(ti|xi, zi) − f̈ i(𝝃)
𝜕Sp(ti|xi, zi)

𝜕𝛾v

]
S−2

p (ti|xi, zi)

s, v = 1, … , q,

with

𝜕f̈ i(𝝃)
𝜕𝛾v

= f̈ i(𝝃)ziv(1 − exp(z⊤
i 𝜸)𝜔0i).

Laplace approximation Define the short notation
∑n

i=1∇gi(𝝃)|𝝃=𝝃(0) ∶= ∇g𝝃(0) and
∑n

i=1∇
2gi(𝝃)|

𝝃=𝝃(0)
∶= ∇2g𝝃(0) and use (A1)

to write the second-order Taylor expansion of the log-likelihood (omitting constant c) as:

𝓁(𝝃;) ≈
n∑

i=1
gi(𝝃)

≈ 𝝃⊤
(
∇g𝝃(0) − ∇2g𝝃(0)𝝃

(0)) + 1
2
𝝃⊤∇2g𝝃(0)𝝃. (A3)

Plugging the approximated log-likelihood (A3) into the conditional posterior of the latent vector yields:

p̃G(𝝃|𝜆,) ∝ exp
(
−1

2
𝝃⊤

(
Q𝝃(𝜆) − ∇2g𝝃(0)

)
𝝃 + 𝝃⊤

(
∇g𝝃(0) − ∇2g𝝃(0)𝝃

(0))) . (A4)

The logarithm of (A4) is thus:

log p̃G(𝝃|𝜆,)=̇ − 1
2
𝝃⊤

(
Q𝝃(𝜆) − ∇2g𝝃(0)

)
𝝃 + 𝝃⊤

(
∇g𝝃(0) − ∇2g𝝃(0)𝝃

(0)) . (A5)

Taking the gradient of (A5) and equating to the zero vector yields:

𝝃(1)(𝜆) = (Q𝝃(𝜆) − ∇2g𝝃(0) )
−1 (∇g𝝃(0) − ∇2g𝝃(0)𝝃

(0)) .

 10970258, 2022, 14, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9373 by U
niversiteit H

asselt, W
iley O

nline L
ibrary on [23/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2626 GRESSANI et al.

The inverse of the negative Hessian of (A5) yields:

Σ(1)
𝝃
(𝜆) = (Q𝝃(𝜆) − ∇2g𝝃(0) )

−1.

Finally, the Laplace approximation to the conditional posterior latent vector is written as:

p̃G(𝝃|𝜆,) = dim(𝝃)

(
𝝃(1)(𝜆),Σ(1)

𝝃
(𝜆)

)
.

One can iterate this in a Newton–Raphson type algorithm to obtain a Laplace approximation to the conditional latent vec-
tor p̃G(𝝃|𝜆,) = dim(𝝃)(𝝃∗(𝜆),Σ∗

𝝃
(𝜆)), where 𝝃∗(𝜆) and Σ∗

𝝃
(𝜆) denotes the mean vector and covariance matrix respectively

towards which the Newton–Raphson algorithm has converged for a given value of 𝜆.
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