

Bram Bamps Researcher MPR&S (Hasselt University) Belgium Evaluation and optimization of the peel performance of a heat sealed topfilm and bottomweb undergoing cool processing

Packaging Technology and Science

PAPER SUBMITTED TO IAPRI PEER REVIEW STREAM 🛛 🙃 Open Access 🛛 💿 🕥 🗐 🌍

Evaluation and optimization of the peel performance of a heat sealed topfilm and bottomweb undergoing cool processing

Bram Bamps 💌, Bart De Ketelaere, Johanna Wolf, Roos Peeters

First published: 21 February 2021 | https://doi.org/10.1002/pts.2562

Funding information: Agentschap Innoveren en Ondernemen, Grant/Award Number: TETRA nr. 180224; Bundesministerium für Wirtschaft und Energie, Grant/Award Number: IGF project no. 243 EBR/1

Introduction

Optimization peel performance Evaluation peel performance – cool processing Conclusions

Introduction

- Closure of food packages is crucial to guarantee food safety and food quality
 → Heat conductive sealing
- Cool processing to extend shelf life
- Expectations consumers + population ageing → need for convenient packaging: 'easy peel'

Introduction

- Objectives
 - Develop and validate a method to **optimize** peel performance during and after cool processing
 - Evaluate the relation peel performance cool processing
- Materials: commercial films
 - Topfilm: PET/PE-EVOH-PE (peel) 12/45
 - Bottomweb: PET/PE 250/35
- Seal characterization:
 - 180° peel test < 4h after sealing</p>

Introduction Optimization peel performance Evaluation peel performance – cool processing Conclusions

- Design of experiment approach (6 steps)^{1,2}
 - 1. A design space is defined based on preliminary tests

2. An experimental design is proposed: I-optimal design with 24 runs³

Position (mm)

3. Experimental work: in duplo + samples *DURING* and *AFTER* cool processing are tested

	Process parameters (x)				Responses (y)					
	Seal temperature (°C)	Seal time (s)	Seal pressure (N.mm ⁻²)	Processing temperature (°C)	DURING cool processing		AFTER cool processing			
					Average peel strength (N.mm ⁻¹)	Maximum peel strength (N.mm ⁻¹)	Peel energy (J)	Average peel strength (N.mm ⁻¹)	Maximum peel strength (N.mm ⁻¹)	Peel energy (J)
_	155	2.0	2.5	-18	1.1	1.2	0.34	0.8	0.8	0.20
1					1.1	1.2	0.33	0.7	0.8	0.18
-	180	1.0	4.0	4	1.0	1.0	0.26	0.7	0.7	0.17
2					1.0	1.0	0.27	0.8	0.8	0.20
3	155	1.0	1.0	4	0.8	1.0	0.21	0.2	0.3	0.02
					0.3	0.7	0.10	0.6	0.7	0.13

 \rightarrow 24

4. Response surface models are fitted to obtained data Example: model for maximum peel strength *DURING* processing

 $\begin{array}{l} Maximum \ peel \ strength \\ = \ -4.598 \pm 0.028 * Tseal + 0.468 * tseal + 0.244 * pseal \pm Match \ T processing[-18 \rightarrow 0.082; 4 \rightarrow 0.042; 23 \rightarrow -0.124] \pm 0.009 * Tseal \\ * \ tseal - 0.212 * tseal^2 \pm 0.009 * Tseal * pseal \pm 0.124 \ tseal \ pseal \pm 0.032 * pseal^2 \pm Tseal \\ * \ Match \ T processing[-18 \rightarrow 0.008; 4 \rightarrow -0.007; 23 \rightarrow -0.002] \pm tseal * \ Match \ T processing[-18 \rightarrow -0.044; 4 \rightarrow 0.118; 23 \rightarrow -0.074] \\ \pm \ pseal * \ Match \ T processing[-18 \rightarrow -0.014; 4 \rightarrow -0.129; 23 \rightarrow 0.143] \\ \end{array}$

5. Optimal peel performance is defined.

For this concept: maximum = average = 0.5 N.mm^{-1} , maximize peel energy Seal temperature, time and pressure are predicted to achieve optimal responses at 23 °C

Responses DURING and AFTER cool processing at -18 and 4 °C are predicted

6. Validation: 5 samples are sealed at optimal seal temperature, time and pressure + tested *DURING* and *AFTER* cool processing

Processing	Average peel stre	ength (N.mm ⁻¹)	Maximum peel strength (N.mm ⁻¹)			
temperature	Predicted value	CI measured	Predicted value	CI measured		
-18 °C DURING	0.80	[1.02, 1.24]	0.99	[1.17, 1.25]		
-18 °C AFTER	0.54	[0.56, 0.67]	0.62	[0.62, 0.68]		
4 °C DURING	0.47	[0.94, 1.04]	0.63	[0.97, 1.07]		
4 °C AFTER	0.48	[0.60, 0.77]	0.47	[0.68, 0.77]		
23 °C	0.45	[0.51, 0.62]	0.58	[0.60, 0.66]		

→Confidence intervals (=CI) follow the trend of predicted values Trend = DURING cool processing peel strength increases at -18°C BUT also at 4°C increased peel strength is measured. AFTER: no impact of cool processing.

Introduction Optimization peel performance **Evaluation peel performance – cool processing** Conclusions

Evaluation

DURING: peel strength increases (23 < 4 < -18 °C): Why?

Peeling = bending + elongation + fracture

Films are characterized DURING -18, 4 and 23 °C

The following tests are discussed in the paper

- 3-Point flexural test bottomweb
- Tensile test topfilm
- Tensile test LDPE film

MPR&S

HHHHH

E

THE NOR

Fring

hhundal

Salahia.

-

Reinforced (stiff bottomweb)

Less sharp decrease of strength DURING -18 and 4 °C \rightarrow seal failure mechanism

23 °C: full cohesive peeling DURING -18 and 4 °C: partially delamination occurs

Evaluati

Evaluation

Seal failure mechanismCross sections

Topfilm

Bottomweb

Materials and Packaging Research & Services

MPR&S

Introduction Optimization peel performance Evaluation peel performance – cool processing **Conclusions**

Conclusions

- Method to optimize peel performance
 - *AFTER* cool processing: no impact of processing temperature
 - *DURING* cool processing: Peel strength increased at low temperature
- Evaluation peel performance cool processing
 - Increase in peel strength related with seal failure mechanism
 - Minor impact of bending bottomweb on peel strength

Thank you for your attention!

Questions?

Ing. Bram Bamps Wetenschapspark 27 3590 Diepenbeek +32(0)11292164 bram.bamps@uhasselt.be

