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Abstract. In clinical practice, normal values or reference intervals are
the main point of reference for interpreting a wide array of measurements,
including biochemical laboratory tests, anthropometrical measurements,
physiological or physical ability tests. They are historically defined to
separate a healthy population from unhealthy and therefore serve a di-
agnostic purpose. Numerous cross-sectional studies use various classical
parametric and nonparametric approaches to calculate reference inter-
vals. Based on a large cross-sectional study (N = 60,799), we compute
reference intervals for subpopulations (e.g. males and females) which il-
lustrate that subpopulations may have their own specific and more nar-
row reference intervals. We further argue that each healthy subject may
actually have its own reference interval (subject-specific reference inter-
vals or SSRIs). However, for estimating such SSRIs longitudinal data are
required, for which the traditional reference interval estimating methods
cannot be used. In this study, a linear quantile mixed model (LQMM)
is proposed for estimating SSRIs from longitudinal data. The SSRIs can
help clinicians to give a more accurate diagnosis as they provide an in-
terval for each individual patient. We conclude that it is worthwhile to
develop a dedicated methodology to bring the idea of subject-specific
reference intervals to the preventive healthcare landscape.

Keywords: Clinical statistics· Clinical biochemistry· Reference inter-
vals · Longitudinal data · Quantile mixed models.

1 Introduction

In the era of personalized medicine, we are surrounded by sensors and method-
ologies to capture and store data from a single individual at an unprecedented
scale. These data later can be associated with Linked Data technologies [1]. Fur-
thermore, artificial intelligence, and more specifically various machine learning
(ML) techniques, are making their way to daily practice. We are presented with
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algorithms that can outperform pathologists [2] for diagnosing and staging of dis-
eases [2, 3]. However, one disadvantage of AI and ML approaches is the lack of
transparency in the decision making process. Although there is progress to make
these algorithms transparent, these efforts are in their infancy. Hence, statistical
methods and reasoning are essential to bridge the gap towards their implemen-
tation in clinical practice. Specifically, in the preventive healthcare landscape,
there is a clear lack of methodological development to render these technologies
viable in practice.

In the field of medicine, interpreting clinical laboratory results can be done
in several ways. The most common way is by comparing them to a standard
value or range that has been calculated from a reference population of healthy
individuals. Such intervals are known as normal values or reference intervals, but
for further purposes we will refer to them as population reference intervals (PRI).
In clinical practise, a patient will be considered healthy when the laboratory
results show values within this PRI. In the preventive healthcare landscape,
however, a PRI only gives little advantage since it is only designed for diagnostic
purposes. Moreover, it is assumed to be constant over time and space.

To obtain the PRI, a cross-sectional prospective or retrospective study is
typically considered. In this type of studies, the data of a particular physiological
or clinical parameters will be collected from a large number of healthy subjects.
The participants must be as similar as possible with the target population in
which the PRIs will be used. For example, a study for estimating PRIs of BNP
(brain natriuretic peptide) using only university students will be inappropriate
as this BNP test is normally run for elderly people [4].

The classical definition of a PRI is the central 95% of the reference popula-
tion of the parameter of interest. This central 95% is located between the 2.5 and
97.5 percentiles of the reference population. Various methods for estimating the
PRIs have been proposed. Parametric methods start from the assumption that
the distribution of the parameter of interest can be described by a particular
distribution (usually Gaussian). The percentiles can then be directly computed
from this distribution when its parameters (mean and variance for the Gaussian
distribution) are estimated from a dataset. In general, when the distributional as-
sumption holds, the parametric methods will be better in the sense they provide
more precise estimates of the PRI than the nonparametric methods for the same
sample size. However, without any distributional assumption, the nonparametric
methods are more suitable as they can still produce unbiased estimators of the
PRI, whereas the parametric methods may give biased results when the wrong
distribution is used. With nonparametric methods, a minimum number of 120
participants is proposed for calculating the intervals [4]. Statistically speaking,
larger sample sizes will result in better estimates in terms of bias and precision.

These classical estimation methods typically require a cross-sectional dataset,
containing a single measurement of the parameter for each subject in the study.
The application of these methods can be seen in many studies using a large num-
ber of cross-sectional samples for estimating PRIs for common clinical markers [5,
6, 8, 7, 9]. Longitudinal studies, on the other hand, are characterised by multi-
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ple (repeated) measurements of the parameter for each subject in the study.
Several studies involving longitudinal dataset for calculating PRIs have been
performed [10, 11]. However, instead of using the classical methods, a simple
random effects model and a semi-parametric method were used in these two
studies, respectively, to produce pointwise PRIs i.e. PRIs that only have a valid
probabilistic interpretation for each time point separately.

In this paper, we demonstrate the use of classical methods for reference in-
terval calculation on a large cross-sectional study. We also apply the methods
to subpopulations (e.g. males and females, for illustration purpose) and we will
argue that reference intervals can be made more specific (i.e. more informative)
when applied to such subpopulations. By extending this reasoning to every in-
dividual, we end up with reference intervals for each subject (subject-specific
reference intervals, SSRI). The assumption under SSRI is that each parameter
measured from any subject has a biological variation that is specific to this indi-
vidual and has potential upper and lower boundaries that can be inferred from
data, allowing a better interpretation of this parameter range taking into account
subject specific variation. For the estimation of these SSRI, data on single sub-
ject level are required, and hence data from longitudinal studies are needed. We
will propose to estimate subject-specific reference intervals with linear quantile
mixed models (LQMM). Data and methods are described in Section 2, while the
results are discussed in Section 3. A conclusion and some suggestions for future
research will be given in Section 4.

2 Material and Methods

2.1 Data Description

There are two different types of datasets that are used in this paper. The first
dataset comes from a cross-sectional study conducted in 2012-2016 and consist-
ing of 60,799 participants from the Balearic Island, Spain, with ages ranging from
19 to 70 years [12]. This dataset will be referred to as the Balearic data. The
measurements fall into three categories: a personal and health habits category
(e.g. gender, age and smoking status), an anthropometric or a physiological mea-
surements category (e.g. BMI and body fat percentage), and a clinical category
(e.g. HDL and LDL cholesterol level). To reduce the scope of the research, only 5
parameters from each of the physiological and the clinical category were consid-
ered. Physiological parameters consist of a body shape index (ABSI), body mass
index (BMI), waist circumference, systolic blood pressure, and diastolic blood
pressure. The clinical parameters include total cholesterol, HDL cholesterol, LDL
cholesterol, triglycerides, and glucose level.

The second dataset comes from our in-house ongoing longitudinal cohort
study of 30 individuals with monthly physiological and clinical measurements
over a period of 9 months and with age ranging from 45 to 60 years at the time
of recruitment. This dataset will be referred to as the IAM Frontier data [13].
The same 10 physiological and clinical measurements as for the Balearic data
were assessed. Characteristics of the two datasets are presented in Table 1. Due
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to privacy reasons and confidentiality, the order of the individuals presented in
each graph in Section 3 is randomised.

Table 1. Data characteristics of the Balearic and the IAM Frontier datasets.

Balearic data I AM Frontier data

Type Cross-sectional Longitudinal
Number of subjects 60,799 30
Time points Single (1 time point) Multiple (9 time points)

Category Parameter

Physiological A body shape index (ABSI)
Body mass index (BMI)
Waist circumference
Systolic blood pressure (Systolic BP)
Diastolic blood pressure (Diastolic BP)

Clinical Total cholesterol
HDL cholesterol
LDL cholesterol
Triglycerides
Glucose

2.2 Classical Parametric and Nonparametric Reference Intervals

Let n denote the total number of sample observations. For the Balearic data, the
RIs were estimated using a classical parametric method and two nonparametric
methods. The parametric method estimates the 2.5 and 97.5 percentiles as

x̄± z0.975sx (1)

where x̄ and sx indicate the sample mean and the sample standard deviation,
and z0.975 is the 97.5 percentile of a standard normal distribution [14].

With the nonparametric methods the bounds of the reference interval are
computed as the sample 2.5 percentile and the sample 97.5 percentile. These are
estimated from the order statistics, which is the ordered set of sample observa-
tions. In particular, for a sample if n observations, the order statistics can be
denoted by y[1] ≤ y[2] ≤ · · · ≤ y[n]. We consider two nonparametric methods.
The first estimates the 2.5 and the 97.5 percentile as the 0.025(n + 1)-th and
0.975(n + 1)-th order statistics. The second method estimates these percentiles
as the [(0.025 × n) + 0.5]-th and [(0.975 × n) + 0.5]-th order statistics. If any
of these numbers is not an integer then it is rounded to the nearest value, for
example a value of 12.3 is rounded to 12 and 12.6 is rounded to 13. For rounding
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off a .5 decimal, it follows the ’round-to-even’ rule, therefore 12.5 equals 12 and
13.5 equals 14. These two nonparametric methods will be referred to as NP1 and
NP2. The bootstrap or resampling technique was also applied in combination
with these methods [15]. We will call the PRIs obtained from these five ap-
proaches the classical reference intervals (CRIs) and the summary is presented
in Table 2.

For some clinical parameters, one-sided reference intervals are needed. For
example, for LDL cholesterol only an upper bound is used in clinical practice.
In such cases, the PRIs still refer to 95% of the reference population, but now
the lower bound is fixed at the minimal value of 0, and the upper bound is given
by the 95 percentile of the distribution. The methods described in the previous
paragraphs can still be used, but with the 97.5 percentile replaced with the 95
percentile.

Table 2. Summary of classical parametric and nonparametric methods

Method Formula Characteristics

Parametric x̄± z0.975sx Rely on distributional assumptions
Nonparametric Without distributional assumptions,

Nonparametric 1 (NP1) [0.025(n+1), 0.975(n+1)] based on order statistics
Bootstrapped NP1 [0.025(n+1), 0.975(n+1)] in combi-

nation with bootstrapped samples
Nonparametric 2 (NP2) [0.025n + 0.5, 0.975n + 0.5)]
Bootstrapped NP1 [0.025n + 0.5, 0.975n + 0.5)] in com-

bination with bootstrapped samples

2.3 Linear quantile mixed models Longitudinal Data

For the IAM Frontier data, linear quantile mixed models (LQMM) were fitted
to obtain the RIs estimates. Linear quantile regression models [16] are a class of
statistical models that express a particular quantile or percentile (e.g. quantile
τ ∈ (0, 1)) of the outcome distribution as a linear function of one or more
regressors. In our setting, we do not have regressors, but we do have repeated
measurements on multiple subjects. This can be formulated as a simple special
case of a linear quantile mixed model (LQMM), which extend the class of linear
quantile regression models by the inclusion of random effects. In particular,
we propose a LQMM which only includes one fixed-intercept and one random-
intercept model the between-subject variability of the reference intervals. With
Y the outcome variable (i.e. clinical parameter of interest) of subject i = 1, . . . , n,
with random effect ui and with Q(τ | ui) the subject-specific quantile function
of outcome Y evaluated in the 100× τ percentile, the model can be written as

Q(τ | ui) = β
(τ)
0 + ui, (2)

in which β
(τ)
0 represents the fixed intercept. The model is completed by specifying

the distribution of the random effects; in this paper this is restricted to the zero-
mean normal distribution with variance Ψ2

u . Note that the intercept parameter
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β
(τ)
0 has the interpretation of the 100× τ percentile bound of the PRI, whereas

β
(τ)
0 + ui has the interpretation of the SSRI for subject i. We need this model

with τ = 0.025 (lower bound) and with τ = 0.975 (upper bound).
This class of models were first described in a study in 2007 and the authors

gave details on how the model parameters can be estimated from longitudi-
nal data [17]. They also proposed a method for predicting the subject-specific
random effects ui. Their models and methods were further generalised and im-
proved in [18]. The methods are implemented in the lqmm package [19, 20] of
the statistical software R [21].

An important characteristic of the LQMM and its parameter estimation pro-
cedure, is that it can give subject-specific RIs with only few repeated measure-
ments for each subject. This is a typical feature of random effects models: the
random effects distribution allows for information-sharing between subjects.

3 Results and Discussions

3.1 Population Reference Intervals for the Balearic Data

For each parameter a boxplot was produced with reference lines corresponding to
the lower and upper bounds of PRIs that have been previously published [22–26].
Figure 1 shows boxplots for two physiological and two clinical parameters, split
by gender. The boxplots for the other parameters can be found in Appendix. The
graphs illustrate that for some parameters there may be difference between males
and females. To the contrary, the published PRIs used in clinical practice often do
not have gender-specific intervals. The example of this case can be seen in systolic
blood pressure, body mass index, diastolic blood pressure, and triglycerides level
(Figure 5 in Appendix). This suggests that, for these parameters, it may be better
to work with PRIs for subpopulations.

The numerical results for the published PRIs for all ten parameters are shown
in Table 3. Figure 1 also shows a fairly long tail in the distributions of almost all
parameters. his is an indication of a skewed distribution and hence the parametric
methods based on the normal assumption may not be appropriate here. The
nonparametric methods may thus be advised.

Figure 2 shows the published PRI and PRIs computed by applying the para-
metric and nonparametric methods (CRIs) to the Balearic dataset. The PRIs for
all parameters can be found in Table 4. From Figure 2, it can be seen that the
CRIs computed by the five parametric and nonparametric methods give wider
intervals than the published PRIs. Only for waist circumference the published
PRI is very close to the CRIs. Among the CRIs, the nonparametric methods
generally give similar intervals as the parametric method. However, for some of
the parameters such as HDL, BMI and glucose level (see Figure 6 in Appendix),
the intervals calculated by the parametric method are quite different as com-
pared to the nonparametric. In these parameters, we observed deviations from
the Normal distribution. Since the parametric method relies on distributional
assumptions (usually Gaussian), a departure from this assumption may result
in different estimates of intervals of the nonparametric methods.
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Fig. 1. Boxplots for 4 parameters in the physiological (top) and clinical (bottom) cat-
egories. The grey transparent area and the dashed lines correspond to the published
PRIs while the arrows indicate their directions. The red and green dashed lines repre-
sent the lower/upper bounds of the published PRIs for males and females, respectively,
and the grey dashed lines represent the published PRI for males and females together.
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Fig. 2. For 4 parameters in the physiological (top) and clinical (bottom) categories,
gender-specific PRIs are shown, estimated with various methods. Red and green lines
represent the RIs for males and females, respectively. For waist circumference and LDL
cholesterol, only the upper bounds were computed, and for HDL cholesterol only the
lower bounds. For systolic blood pressure (BP) both lower and upper bounds were
computed. For all calculations the Balearic dataset was used.
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Table 3. Published PRIs for all ten parameters. Only for waist circumference
and HDL cholesterol level, gender-specific PRIs are reported.

Parameter Unit Lower limit Upper limit

Physiological category
Waist circumference 1 cm 0 F < 88, M < 102∗

A body shape index 2 Z-score −∞ 0.229
BMI 3 kg/m2 18.5 24.9
Systolic BP 1 mm/Hg 90 120
Diastolic BP 1 mm/Hg 60 80

Clinical category 4

Total cholesterol mg/dL 0 190
HDL cholesterol mg/dL F ≥ 45, M ≥ 40∗ ∞
LDL cholesterol mg/dL 0 115
Triglycerides mg/dL 0 150
Glucose mg/dL 70 110

∗F for females and M for males. 1 National Heart, Lung, and Blood Insti-
tute (NHLBI), 2 Krakauer & Krakauer (2012), 3 World Health Organization
(WHO), 4 Laposata (2019).

Table 4. Reference intervals calculated by various methods for all parameters in the
Balearic dataset.

Parameter Sex∗ Published PRI Parametric RI NP1 Boot. NP1 NP2 Boot. NP2

Physiological category
Waist circumference M (0, 102) (0, 104.51) (0, 107) (0, 106.81) (0, 107) (0, 106.79)

F (0, 88) (0, 91.55) (0, 94) (0, 94.04) (0, 94) (0, 94.04)
A body shape index M (-∞, 0.229) (-∞, 1.34) (-∞, 1.29) (-∞, 1.29) (-∞, 1.29) (-∞, 1.29)

F (-∞, 0.229) (-∞, 0.77) (-∞, 0.99) (-∞, 0.99) (-∞, 0.99) (-∞, 0.99)
BMI M (18.5, 24.9) (18.59, 35.17) (20.02, 36.82) (20.01, 36.82) (20.02, 36.82) (20.02, 36.83)

F (18.5, 24.9) (15.40, 34.65) (18.36, 37.29) (18.36, 37.31) (18.36, 37.29) (18.36, 37.30)
Systolic BP M (90, 120) (94.61, 156.08) (100, 160) (100, 160) (100, 160) (100, 160)

F (90, 120) (84.97, 144.21) (90, 150) (90, 150) (90, 150) (90, 150)
Diastolic BP M (60, 80) (54.75, 97.24) (60, 100) (60, 100) (60, 100) (60, 100)

F (60, 80) (50.02, 90.83) (53, 93) (52.65, 92.63) (53, 92) (52.72, 92.61)
Clinical category

Total cholesterol M (0, 190) (0, 260.53) (0, 263) (0, 263.00) (0, 263) (0, 263.02)
F (0, 190) (0, 252.82) (0, 256) (0, 256.22) (0, 256) (0, 256.25)

HDL cholesterol M (40, ∞) (37.98, ∞) (37, ∞) (36.99, ∞) (37, ∞) (36.99, ∞)
F (45, ∞) (39.88, ∞) (41, ∞) (41.00, ∞) (41, ∞) (41.00, ∞)

LDL cholesterol M (0, 115) (0, 183.05) (0, 185) (0, 185.09) (0, 185) (0, 185.08)
F (0, 115) (0, 181.16) (0, 183) (0, 183.47) (0, 183) (0, 183.43)

Triglycerides M (0, 150) (0, 271.30) (0, 275) (0, 275.03) (0, 275) (0, 275.01)
F (0, 150) (0, 163.46) (0, 167) (0, 166.55) (0, 167) (0, 166.49)

Glucose M (70, 110) (49.06, 132.18) (65, 135) (65.37, 135.40) (65, 135) (65.40, 135.44)
F (70, 110) (55.66, 114.75) (64, 113) (63.99, 113.14) (64, 113) (63.99, 113.11)

* F for females and M for males.

When separately computing the PRIs for the males and females, we see that the
bounds may be quite different. This is a first argument in favour of refining the
PRIs towards smaller sub-populations. For example, for systolic blood pressure
there are no gender-specific reference intervals published, but when estimated
from the Balearic data we observe a clear difference between males and females.
Similar findings were also observed in the other parameters, which are displayed
in Figure 6 in Appendix.
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3.2 Subject-specific Reference Intervals for the IAM Frontier Data

The IAM Frontier dataset contains data of 30 individuals that were measured at
nine time-points. The individual profiles are shown in Figure 3. They show for all
subjects how the measurements evolve over time. The plot indicates differences
between the two genders: males generally have larger waist circumference, higher
systolic BP and higher LDL cholesterol than females, but they have lower HDL
cholesterol. Females have higher HDL than males at least until the age of 50
[27, 28] and the difference on the sex hormones between males and females can
explain this phenomenon [29]. The plot also suggests a large between-subject
variability and small within-subject variability, which is a common characteristic
of repeated measurements. This phenomenon can be quantified by the intra-
class correlation (ICC). Figure 3 also shows the ICC for each parameter. A
large ICC is an indication that the within-subject variance is small as compared
to the between-subject variance, or, equivalently, that the correlation between
observations of the same individual is large. Large ICCs are observed for waist
circumference and HDL cholesterol levels. Systolic blood pressure, on the other
hand, has an ICC of only 65%.
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Fig. 3. Subject-specific profiles for all individuals in the IAM Frontier dataset. The
grey transparent area and the dashed lines correspond to the published PRIs. The red
and green dashed lines represent the lower/upper bounds of the published PRIs for
males and females, respectively, and the grey dashed lines represent the published PRI
for males and females together (no distinction between genders). The arrows indicate
the directions of the intervals.

We argue that for parameters with a large ICC, a subject-specific RI (SSRI)
would be preferred over a population RI (PRI). The former can be calculated
from with quantile mixed models (LQMM). The results of this approach are
displayed in Figure 4. The graph also shows the PRIs that were computed with
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the classical nonparametic method, using all observations. Since these classical
methods are not valid with longitudinal data, these PRIs are only shown for
illustration purposes. The results for the other parameters can be consulted in
Appendix. Figure 4 shows that the SSRIs vary between subjects. For the two-
sided intervals, the SSRIs are generally smaller than the PRIs computed from
the same data. For the one-sided intervals, we see that the SSRI bounds vary
about the PRI bound; this variation follows the subject-specific observations.
Our results suggests that SSRIs may be more informative than PRIs.
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Fig. 4. SSRI for all subjects, estimated using LQMM with the IAM Frontier dataset.
Red and green points refer to males and females observations. The grey area together
with the red and green dashed lines indicate the published PRI for males and females,
respectively, and the grey dashed lines indicate the published PRI for males and females
together (no distinction between genders). The blue and the vertical red and green
dashed lines indicate the estimated PRI and PRIs for males and females computed
from the same data (the order of the individuals is randomised in each graph).

3.3 Discussion and Conclusion

We have applied conventional methods for estimating reference intervals for
many parameters in the Balearic dataset, which comes from a cross-sectional
study with 60,799 participants. Since such reference intervals are computed from
a large cross-sectional sample from a reference population of healthy individu-
als, they are referred to as population reference intervals (PRI). Our analyses
demonstrated that parametric and nonparametric methods do not al-
ways give the same results, from which we conclude that it is better
to rely on the nonparametric methods for they do not rely on dis-
tributional assumptions. By computing reference intervals for subgroups of
participants (e.g. males and females), we demonstrated that reference intervals
for subpopulations may be different. This pleas for not using a single PRI for all
subjects, but rather work with PRI for subpopulations.
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In this paper, we considered reference intervals for individuals, referred to
as Subject-Specific Reference Intervals (SSRI). Our motivation came from the
perspective of personalised medicine, which starts from the supposition that each
person is unique, and from the observation in longitudinal data that often the
within-subject variability of a clinical parameter over time is small as compared
to the between-subject variability. However, since longitudinal data often do not
include a very large number of observations for each individual, the conventional
nonparametric methods for RI calculation cannot be used for individual subjects.
We have proposed to use linear quantile mixed models (LQMM) for the calcu-
lation of the SSRIs. This method makes use of the assumption that the upper
(and lower) SSRI bounds vary between subjects as a normal distribution, allow-
ing for the calculation of SSRIs even with only 9 observations per subject. We
have applied the method to several parameters in the longitudinal IAM Frontier
dataset. The results show, as expected, that there is variability between
the SSRI, which is an indication for the need of subject-specific inter-
vals. The results also show that for some parameters the lengths of the SSRI
are smaller than those of the PRI. If such intervals were used in clinical practice
then a deviation from the healthy status may be sooner detected. Similarly, for
one-sided intervals, the bounds of the SSRI vary about the PRI, following the
distribution of the repeated measurements of the individual.

Despite our first positive findings of the use of LQMM for the calculation of
SSRI, more research is needed. The LQMM relies on the distribution assump-
tion that quantiles vary between subjects according to a normal distribution.
This assumption need to be assessed, and the consequences of deviations from
this assumption need to be evaluated. Moreover, the theory behind the LQMM
is asymptotic in nature, which does not guarantee that the SSRIs are unbiased
when only limited numbers of time-points are available. Future research could fo-
cus on a thorough evaluation of the LQMM for SSRI calculcation and on further
improving the methods so as to give reliable SSRIs even if model assumptions
are not satisfied.

We believe that when SSRIs are widely used in clinical practice, they will
allow for more precise diagnoses and hence they will be beneficial both for the
patients and clinicians. We anticipate that in the future, the collaboration with
artificial intelligence (AI) and machine learning (ML) algorithms could produce
SSRIs for subjects for which even no longitudinal data is available. The well un-
derstood statistical methods produced from this research can perhaps eventually
overcome the lack of algorithm transparency that is often criticised in the AI
and ML approaches.
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Fig. 5. Boxplots for 4 parameters in the physiological (top) and clinical (bottom)
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-6

-4

-2

0

2

e
x
is

t_
P

R
I

p
a

ra
m

e
tr

ic

N
P

1

b
o

o
t_

N
P

1

N
P

2

b
o

o
t_

N
P

2

A
B

S
I 
(Z

-s
c
o
re

)

ABSI Z-score

15

20

25

30

35

40

e
x
is

t_
P

R
I

p
a

ra
m

e
tr

ic

N
P

1

b
o

o
t_

N
P

1

N
P

2

b
o

o
t_

N
P

2

B
M

I 
(k

g
/m

2
)

Body mass index (BMI)

50

60

70

80

90

100

e
x
is

t_
P

R
I

p
a

ra
m

e
tr

ic

N
P

1

b
o

o
t_

N
P

1

N
P

2

b
o

o
t_

N
P

2D
ia

s
to

lic
 b

lo
o
d
 p

re
s
s
u
re

 (
m

m
/H

g
) Diastolic BP

0

100

200

300

e
x
is

t_
P

R
I

p
a

ra
m

e
tr

ic

N
P

1

b
o

o
t_

N
P

1

N
P

2

b
o

o
t_

N
P

2

T
o
ta

l 
C

h
o
le

s
te

ro
l 
(m

g
/d

L
)

Total Cholesterol

0

100

200

300

400

e
x
is

t_
P

R
I

p
a

ra
m

e
tr

ic

N
P

1

b
o

o
t_

N
P

1

N
P

2

b
o

o
t_

N
P

2

T
ri
g
ly

c
e
ri
d
e
s
 (

m
g
/d

L
)

Triglycerides

60

90

120

e
x
is

t_
P

R
I

p
a

ra
m

e
tr

ic

N
P

1

b
o

o
t_

N
P

1

N
P

2

b
o

o
t_

N
P

2

G
lu

c
o
s
e
 (

m
g
/d

L
)

Glucose

Sex Female Male

Fig. 6. For 4 parameters in the physiological (top) and clinical (bottom) categories,
gender-specific PRIs are shown, estimated with various methods. Red and green lines
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