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1. INTRODUCTION
Document Scope and Rationale
Digital health is an umbrella term to describe the use of 
digital information, data, and communication technologies 
to collect, share, and analyze health information to improve 
patient health, education, and health care delivery (https://
www.fcc.gov/general/5-questions-you-can-ask-your-
doctor-about-digital-health; Turakhia 2016).1,2 This con-
cept encompasses telehealth, electronic health records 
(EHRs), implantable device monitoring, wearable sensor 
data, analytics and artificial intelligence (AI), behavioral 
health, and personalized medicine. Among these, mobile 
health (mHealth) is a component of digital health, defined 
by the World Health Organization—as medical and pub-
lic health practice supported by mobile devices, such as 
mobile phones, patient-monitoring devices, personal digi-
tal assistants, and other wireless devices (https://www.
who.int/goe/publications/goe_mhealth_web.pdf; https://
apps.who.int/gb/ebwha/pdf_files/WHA71/A71_20-en.
pdf?ua=1).3,4 Utilization of these devices has proliferated 
among health-conscious consumers in recent years and 
is likely to continue rapid expansion and integration into 
more formalized medical settings.

mHealth flows intuitively to health professionals in 
the field of arrhythmia management from experience 
gained through remote monitoring (RM) of cardiovas-
cular implantable electronic devices (CIEDs), such as 

pacemakers and implantable cardioverter-defibrillators 
(ICDs; Varma 2010).5 A wealth of data garnered from 
many studies over the last 10 to 15 years has confirmed 
the benefits of remote technology-assisted follow-up 
and established it as a standard of care (Varma 2013, 
Slotwiner 2015).6,7 However, results of RM of CIEDs 
may not be immediately generalizable to mHealth. For 
instance, the former is restricted to those with cardiac 
disease (largely arrhythmias and heart failure [HF]), that 
is, a group already defined as patients. The care path-
ways for CIED RM are also well defined, with billing and 
reimbursement in place in the United States and many 
other parts of the world. In comparison, mHealth differs: it 
is widely available in the form of consumer products that 
penetrate most sectors of society, including individuals 
without formal medical diagnoses; it may be applied to a 
wider group of medical conditions; data can be self-mon-
itored rather than assessed by health care profession-
als (HCPs); and reimbursement models are not mature. 
Indeed, some heart rhythm tracking capabilities may be 
indirectly acquired in products purchased for different 
goals and then subsequently used for self-monitoring. 
Conversely, in the medical space, applications are largely 
not prescribed by HCPs, often lack validation for disease 
management use cases, and care pathways remain varied 
or poorly defined. Nevertheless, if properly implemented, 
the intersection of these two communities opens up a 
broad spectrum of opportunities, extending from popula-
tion screening and surveillance for undiagnosed disease 

Figure. mHealth tools for the individual. 
Sensors can be embedded in a variety of wearables. IoT indicates Internet of things—connects from any location to hospital or cloud; see Table 1.
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to longitudinal disease management and importantly, 
engaging patients in their own cycle of care, allowing 
much health care to be asynchronous and virtualized. Its 
value and degree of integration will depend on different 
health care systems in different countries (Table 1).

mHealth has value only if the acquired information 
leads to decisions that improve outcome. This requires a 
clear path of information flow and actionability. Moreover, 
all stakeholders need to be aware of the logistical chain (so 
that everyone knows what to expect) and responsibilities 
clearly defined (possibly including device vendors). Simi-
larly, actions taken based on the monitored information 

should be transparent to all stakeholders. For example, 
for a patient who records and transmits an irregular heart 
rhythm via a wearable device, a designated decision pro-
cess should be followed to confirm, for example, whether 
the rhythm is atrial fibrillation (AF) or not, whether con-
firmation by another diagnostic test is required, how that 
is arranged, and finally, what therapy should be imple-
mented and in what reasonable time frame? Clearly, there 
are risks of increasing cost from medical testing and 
provoking anxiety in consumers—who by virtue of seek-
ing a medical verification become patients. Again, CIED 
experience sets a precedent. Studies that have shown 

Table 1. Mobile Health–Based Modalities for Arrhythmia Monitoring

 
Signal acquisition and 
visualization ECG duration

Signal storage and 
transmission

Indications/
populations 
tested Advantages Limitations

ECG-based devices

 Handheld External sensors; single or 
multilead ECG on demand; 
display in-screen ECG or 
screen of PC/laptop/smart-
phone, after transmission 
or real-time; ECG analysis 
available

Intermittent recording:  
10 s to 2 min

Built-in memory; 
Bluetooth; Wi-Fi

Palpitations; AF 
screening

Easy to use; low cost Short ECG 
duration

  Wearable 
patches

Built-in electrodes; patch 
attached to the skin

Continuous recording  
up to 14 d

Built-in memory with 
post hoc analysis or 
Bluetooth transmis-
sion with real-time 
analysis in selected 
devices

Low-risk patients 
with palpitations 
and syncope; AF 
screening

continuous longer term 
ECG recording; built-in 
alarm button; high patients’ 
compliance; patients can 
affix at home; water re-
sistant

Single-channel 
ECG; skin ir-
ritation

 Biotextiles Electrodes/sensors em-
bedded into biotextile: 
vests, belts; single or mul-
tichannel

Continuous recording 
up to 30 d

Built-in memory; 
real-time Bluetooth 
transmission

Low-risk patients 
with palpitations 
and syncope; AF 
screening

Continuous long-term 
recording; built-in alarm 
button; high patients’ ac-
ceptance and adherence; 
multiparameter evaluation; 
can be used as monitoring 
and treating device (WCD)

Limited avail-
ability; move-
ment artifacts

  Smartphone 
based

External sensors attached 
to mobile phone; single/
multilead ECG; real-time 
ECG on smartphone’s 
screen or PC/laptop after 
transmission

Intermittent recording 
up to 30 s; patient 
activated

Built-in memory; 
real-time or post hoc 
transmission

Low-risk patients 
with palpitations; 
AF screening

Widely available; long-life 
possibility of intermittent 
recording

Intermittent 
recording

  Smartwatch 
based

Built-in sensors Intermittent recording; 
patient activated

Built-in memory; 
real-time or post hoc 
transmission

Low-risk patients 
with palpitations; 
AF screening

Widely available; long-life 
possibility of intermittent 
recording

Intermittent re-
cording; single 
channel

Non–ECG-based devices

 PPG HR from changes in reflec-
tance of the tissue blood 
volume of a skin surface

Intermittent patient 
activated in smart-
phones; continuous 
measurement of HR 
in smartwatches and 
wristbands

Built-in memory; 
real-time or post hoc 
transmission

Low-risk patients 
with palpitations; 
AF screening; 
HR measurement 
during physical 
activity

Widely available Irregular heart-
presumed AF

  Oscillometry BP monitors with HR  
measurement

Intermittent recording 
during BP measure-
ment

Built-in memory; 
post hoc transmis-
sion

HR assessment; 
opportunistic AF 
screening

Widely available Irregular heart-
presumed AF

  Video recording Camera from smartphones, 
TVs

Patient activated; 
continuous recording 
in prespecified time 
frame

Real-time or post 
hoc transmission

Low-risk patients 
with palpitations; 
AF screening; un-
diagnosed falls

Can use existing cameras 
from household goods

Irregular heart-
presumed AF; 
limitedavail-
ability

AF indicates atrial fibrillation; BP, blood pressure; d, days; HR, heart rate; min, minutes; PC, personal computer; PPG, photoplethysmography; s, seconds; TV, televi-
sion; and WCD, wearable cardioverter-defibrillator.
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improved outcome with telemonitoring succeeded when 
integrated into a clear logistical framework for a specific 
use case of disease management (eg, IN-TIME for RM 
in patients receiving cardiac resynchronization therapy, 
CardioMEMS; Abraham 2011, Hindricks 2014, Varma 
2013).6,8,9 Replicating this with mHealth creates chal-
lenges for health care providers and goes far beyond the 
technological capabilities of the monitoring and trans-
mission equipment. Implementation will require defined 
aims and fundamental changes to existing workflows 
and responsibilities. Such changes are always difficult. 
Apart from the organizational issues required to achieve 
such changes, reimbursement may drive or hinder such 
changes in the workplace. Awareness of these factors 
has been heightened by the SARS-CoV-2 (severe acute 
respiratory syndrome coronavirus 2) pandemic, during 
which telemedicine solutions have been advocated to 
reduce patient contact with health care providers yet 
continue health care delivery (Varma 2020).10

In view of the rapid technological development and 
popularity of wearable and other mobile devices, and 
the need for analysis and planning of the mHealth infra-
structure, the International Society for Holter and Non-
invasive Electrocardiology, Heart Rhythm Society (HRS), 
European Heart Rhythm Association, and Asia-Pacific 
HRS recognized the need for this collaborative state-
ment. The aim of this document is to define state-of-
the-art mHealth technologies and their application in 
arrhythmia management and explore future directions 
for clinical application. As such, the scope of the docu-
ment encompasses discussion of the different mHealth 
technologies currently available or in development; the 
acquisition of health-related data; the applications of 
such data, including disease identification and man-
agement; clinical trials; the patient perspective; and the 
issues that must be addressed in the future to permit 
useful application of mHealth technologies. Addition-
ally, discussion is extended to mHealth facilitation of 
those comorbidities increasingly recognized to influence 
arrhythmia management (eg, obesity and sleep apnea) 
that are becoming the responsibility of heart rhythm pro-
fessionals (Chung 2020).11

REFERENCES: SECTION 1
 1. Federal Communications Commission (FCC). Five Questions You  

Can Ask Your Doctor about Digital Health. Accessed January 26, 2021.  
https://www.fcc.gov/general/five-questions-you-can-ask-your-doctor- 
about-digital-health#ab.

 2. Turakhia MP, Desai SA, Harrington RA. The outlook of digital health for car-
diovascular medicine: challenges but also extraordinary opportunities. JAMA 
Cardiol. 2016;1:743–744. doi: 10.1001/jamacardio.2016.2661

 3. World Health Organization. mHealth new horizons for health through mobile 
technologies. 2011. Accessed January 26, 2021. https://www.who.int/
goe/publications/goe_mhealth_web.pdf.

 4. World Health Organization. mHealth: use of appropriate digital technologies 
for public health. 2018. Accessed January 26, 2021. https://apps.who.int/
gb/ebwha/pdf_files/WHA71/A71_20-en.pdf.

 5. Varma N, Epstein AE, Irimpen A, Schweikert R, Love C; TRUST Investiga-
tors. Efficacy and safety of automatic remote monitoring for implantable 
cardioverter-defibrillator follow-up: the Lumos-T Safely Reduces Routine 
Office Device Follow-Up (TRUST) trial. Circulation. 2010;122:325–332. 
doi: 10.1161/CIRCULATIONAHA.110.937409

 6. Varma N, Ricci RP. Telemedicine and cardiac implants: what is the benefit? 
Eur Heart J. 2013;34:1885–1895. doi: 10.1093/eurheartj/ehs388

 7. Slotwiner DJ, Abraham RL, Al-Khatib SM, Anderson HV, Bunch TJ, 
Ferrara MG, Wilkoff BL. HRS white paper on interoperability of data from car-
diac implantable electronic devices (CIEDs). Heart Rhythm. 2019;16:e107–
e127. doi: 10.1016/j.hrthm.2019.05.002

 8. Abraham WT, Adamson PB, Bourge RC, Aaron MF, Costanzo MR, 
Stevenson LW, Strickland W, Neelagaru S, Raval N, Krueger S, et al; CHAM-
PION Trial Study Group. Wireless pulmonary artery haemodynamic monitoring 
in chronic heart failure: a randomised controlled trial. Lancet. 2011;377:658–
666. doi: 10.1016/S0140-6736(11)60101-3

 9. Hindricks G, Taborsky M, Glikson M, Heinrich U, Schumacher B, Katz A, 
Brachmann J, Lewalter T, Goette A, Block M, et al; IN-TIME Study Group*. 
Implant-based multiparameter telemonitoring of patients with heart failure 
(IN-TIME): a randomised controlled trial. Lancet. 2014;384:583–590. doi: 
10.1016/S0140-6736(14)61176-4

 10. Varma N, Marrouche NF, Aguinaga L, Albert CM, Arbelo E, Choi JI, 
Varosy PD. HRS/EHRA/APHRS/LAHRS/ACC/AHA worldwide prac-
tical guidance for telehealth and arrhythmia monitoring during and 
after a pandemic. Circ Arrhythm Electrophysiol. 2020;13:e009007. doi: 
10.1161/CIRCEP.120.009007

 11. Chung MK, Eckhardt LL, Chen LY, Ahmed HM, Gopinathannair R, Joglar JA, 
Noseworthy PA, Pack QR, Sanders P, Trulock KM; American Heart Asso-
ciation Electrocardiography and Arrhythmias Committee and Exercise, 
Cardiac Rehabilitation, and Secondary Prevention Committee of the 
Council on Clinical Cardiology; Council on Arteriosclerosis, Thrombosis 
and Vascular Biology; Council on Cardiovascular and Stroke Nursing; and 
Council on Lifestyle and Cardiometabolic Health. Lifestyle and risk factor 
modification for reduction of atrial fibrillation: a scientific statement from 
the American Heart Association. Circulation. 2020;141:e750–e772. doi: 
10.1161/CIR.0000000000000748

2. mHEALTH TECHNOLOGIES
Dedicated applications and sensors within or adjunctive 
to mobile communication devices enable users to monitor, 
collect, and share physiological and health data. Their appli-
cations range from diagnostic, decision support, disease 
management, evaluation of medication adherence, and for 
educational and clinical research purposes (Figure 1). They 
synergize naturally with arrhythmia evaluation and extend 
management to associated comorbidities and lifestyle.

Applications to Arrhythmias
• Diagnostic

	○ Evaluate patients with symptoms suggestive of 
arrhythmias.

	○ Assess patients’ response to both pharmacologi-
cal and invasive treatment of arrhythmias.

• Screening
	○ Increasing emphasis on AF.

2.1. Ambulatory ECG Monitoring
This is the cornerstone diagnostic method, and the choice 
of technique and time frame depend on whether symp-
toms (eg, palpitations and syncope) are present and how 
often they occur (Figure 2). Since the XXI century has 
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become the era of the AF epidemic, the emphasis has 
shifted to screen for asymptomatic patients at high risk 
of developing AF or in those with cryptogenic stroke, to 
enable early treatment with the hope of preventing stroke 
and other serious complications. Novel tools expand the 
time window in which information can be gathered and 
overcome existing limitations with traditional methods, 
that is, intermittent physical exam or ECG for the detec-
tion of a largely asymptomatic arrhythmia.

• Conventional ambulatory ECG devices with contin-
uous or intermittent recording abilities (eg, Holter, 
mobile cardiac telemetry) increase the diagnos-
tic yield for suspected arrhythmias, but limitations 
such as inadequate duration of monitoring, insuf-
ficient sensitivity or specificity for AF detection, 
cost, and patient discomfort and inconvenience 
remain important implementation barriers. Further 
details on these conventional systems are available 
in a prior expert consensus statement (Steinberg 
2017).1

• Implantable loop recorders continuously monitor 
cardiac rhythm, similar to traditional external loop 
recorders, but only record an ECG shortly before 
and after activation by either the patient or by an 
automated algorithm. The total monitoring period 
is limited only by battery longevity (≈2–4 years). 
Newer devices have dedicated algorithms resulting 
in increased interest in their use for AF detection, 

especially after cryptogenic stroke. Several approved 
implantable loop recorder devices are available 
(Musat 2018, Sakhi 2019, Tomson 2015),2–4 and 
several studies have been performed to evaluate 
the diagnostic accuracy of these devices (Ciconte 
2017, Hindricks 2010, Mittal 2016, Nolker 2016, 
Sanders 2016).5–9 Since implantable loop recorders 
are invasive and costly, some functions may shift to 
mHealth.

2.2. New mHealth-Based Modalities for 
Arrhythmia Monitoring
These can be divided into those

• recording ECG tracings (single or multilead, in inter-
mittent or continuous format, of various durations)

• using non-ECG technologies such as pulse 
photoplethysmography.

mHealth tools permit indefinite monitoring and widen 
application to a range of conditions and patient popu-
lations. There has been rapid development and integra-
tion of diagnostic sensors into consumer devices such 
as smartwatches, fitness bands, and smartphones. 
However, validation of their notified data (or underlying 
algorithms) and mechanisms for professional review (as 
established for CIEDs and mobile cardiac telemetry) are 
scant, if at all (Section 7). This is open to risks of not 

Figure 1. Application of digital health technologies in arrhythmias (many of these sectors are interconnected).
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detecting significant events or overtreating—for example, 
false-positive episodes of AF—if not confirmed by expert 
physicians.

2.2.1. ECG Based
Among these, handheld and patch systems have under-
gone the most extensive validation.

2.2.1.1. Handheld Devices
Several stand-alone handheld devices operate without 
additional hardware. These devices with 2 or 3 ECG 
electrodes on either side generate short, 30-second-to-
1-minute, single or multilead ECG recordings. Some of 
them display ECG tracings on a monitor. Most of these 
devices are equipped with dedicated automatic algo-
rithms for detection of arrhythmias and usually focus on 
AF. Recognition of AF is usually based on the analysis of 
RR interval irregularity. The devices can store ECG trac-
ings, which can be uploaded to a computer for review 
and are usually available for physicians via web-based 
platforms. Studies across diverse populations have doc-
umented the diagnostic accuracy of handheld devices 
in detection of AF by short-term rhythm monitoring 
(Desteghe 2017, Doliwa 2009, Doliwa 2012, Hendrikx 
2014, Kaasenbrood 2016, Poulsen 2017, Svennberg 
2017, Tavernier 2018, Tieleman 2014, Vaes 2014; 
Table 2).10–28

2.2.1.2. Wearable Patches
Traditional cable/wire-based devices increasingly have 
been displaced by solutions with electrodes embedded 
in adhesive patches. Commercially available patches can 
be worn up to 14 days (Barrett 2014, Turakhia 2013).29,30 
Unlike adhesive electrodes for lead-based systems, the 
water-resistant patches are not removed during the mon-
itoring period, leading to greater wear time, more ana-
lyzable data, and no lead reversal errors. The cutaneous 
patch monitors are typically single use and continuously 
or intermittently record single-lead electrocardiography. 
Most have an integrated button to mark the timing of 
symptoms on the recorded rhythm trace. After the moni-
toring period, the device is returned to the manufacturer 
for data extraction, analysis by a proprietary algorithm, 
and further secondary analysis of potential arrhythmias 
by medical technicians. A diagnostic report is sent to the 
treating physician. This process may be associated with 
delays of several weeks.

Although such patches only record a single-lead 
ECG, a high agreement (P<0.001) has been demon-
strated compared with multilead Holter monitors for 
identifying AF events and estimating AF burden (Bar-
rett 2014, Rosenberg 2013).29,31 As the patch has no 
external leads, it is perceived to be more comfortable to 
wear compared with conventional Holter monitors, with 

Figure 2. Mobile health (mHealth) devices for arrhythmia monitoring according to indications.
Traditional wearable monitors are used for defined, short periods of time. Advantages are continuous monitoring and the ability to use multiple 
leads, which may be important for arrhythmia differentiation. These have been used historically for evaluation of palpitations, syncope, and 
defining QRS morphology. mHealth extends monitoring time indefinitely, to be defined by the user, and to the possibility of monitoring other 
parameters simultaneously with the ECG, and linking to machine learning. Typically, mHealth utilizes single-channel ECG or derived heart rate 
(HR) and discontinuous monitoring. AF indicates atrial fibrillation; BP, blood pressure; BrS, Brugada pattern; HF, heart failure; ILR, implantable 
loop recorder; and LQT, long QT.D
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94% of the patients preferring the patch over the Holter 
(Barrett 2014).29 In addition to the validation studies, the 
feasibility of 2-week continuous monitoring to identify AF 
in an at-risk patient population has been examined by 
Turakhia et al32 (2015). It has also been used success-
fully to determine the prevalence of subclinical AF in the 
general population (Rooney 2019).33

Newer patch-based systems add near-real-time ana-
lytics and by transmitting data continuously to the cloud. 
This may facilitate more rapid data collection and diag-
nosis. Multiparametric monitoring may be enabled with a 
patch worn for up to 3 months (Stehlik 2020).34

2.2.1.3. Biotextiles
Textile-based systems for ECG monitoring were initially 
designed to ensure patients’ comfort during daily activi-
ties and address the needs of active patients. These 
vests and elastic bands adapt easily to patients’ move-
ments that is particularly important for those performing 
physical activities that might be limited by the presence 
of wires. These biomedical devices capture the electro-
cardiographic signal via electrodes integrated into the 
garment that enables noninvasive acquisition of ECG 
signal up to 30 days. Single/multilead selection (up to 

full 12 leads) and event activation are available. ECG sig-
nals can be stored in memory cards and analyzed after-
ward, as well as transmitted in real time via Bluetooth to a 
smartphone (and from there to a cloud-based platform), 
along with other signals including accelerometer and 
global positioning signal. Other than ECG, some devices 
provide data on activity intensity, respiratory function, and 
sleep quality. Automatic analysis with manual verification 
is possible. Several systems for ECG monitoring based 
on electrodes incorporated into garments have been 
introduced into market. Some of them acquire signal 
from chest belts. Maintaining power presents a challenge. 
These systems have been tested in athletes, in patients 
with cryptogenic stroke, and in those with pacemaker-
detected atrial high-rate episodes (Eliot 2019, Eysenck 
2019, Fabregat 2014, Feito 2019, Pagola 2018).35–39

The wearable cardioverter-defibrillator transmits 
2-channel ECG data to an online patient management 
database allowing for RM of high-risk patients. Recent 
incorporation of heart sound evaluation that may pre-
dict HF decompensation will be tested in a prospective 
trial (HEARIT-Reg trial [Heart Sounds Registry]; https://
www.clinicaltrials.gov; unique identifier: NCT03203629).

Table 2. Exemplary Validation Studies for Various Mobile Health Technologies

 Device Author n Setting Comparator Sensitivity, % Specificity, %

Requires 
ECG con-
firmation

 Pulse palpation Cooke 200619 2385 meta-analysis 12- lead ECG 94 72 +

Handheld devices Zenicor Doliwa 200911 100 Outpatient cardi-
ology clinic

12-lead ECG 
interpreted by car-
diologist

96 92  

 MyDiagnostick Tieleman 201421 192 Outpatient cardi-
ology clinic

12-lead ECG 
interpreted by car-
diologist

100 96  

 Omron HCG-801 Kearley 201422 999 Primary care 
practices

12-lead ECG 
interpreted by car-
diologist

94.4 94.6  

 Merlin ECG event 
recorders

Kearley 201422 999 Primary care 
practices

12-lead ECG 
interpreted by car-
diologist

93.9 90.1  

Smartphone ECG 
device

AliveCor Kardia 
mobile

Lau 201323 204 Recruited pa-
tients

12-lead ECG 
interpreted by car-
diologist

98 97  

Smartphone device-
PPG

CardioRhythm 
iPhone

Chan 201624 1013 Primary care 
clinic

Single-lead Alive-
Cor ECG

93 98 +

 PULSE-SMART 
app

McManus 201625 219 Patients undergo-
ing cardioversion

12-lead ECG or 
3-channel telemetry

97 94 +

 FibriCheck app Proesmans 201926 223 Primary care 
practices

12-lead ECG 95 97 +

Smartwatch ECG KardiaBand auto-
mated algorithm

Bumgarner 201827 112 Patients undergo-
ing cardioversion

12-lead ECG 93 84  

BP device Microlife Wiesel 200928 405 Cardiology out-
patients

12-lead ECG 95, 97 for 1 
or 3 measure-
ments, respec-
tively

86, 89 for 
1 or 3 mea-
surements, 
respectively

+

BP indicates blood pressure; and PPG, photoplethysmography.
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2.2.1.4. Smartphone- and Smartwatch-Based Devices
More recently, nonwearable solutions coupled to 
the smartphone have emerged. These devices (eg, 
Table 219–28; Varma 202040) allow the user to perform a 
spot-check single-lead ECG strip, usually of up to ≥30 
seconds by placing a finger of each hand on the two 
electrodes, usually located on the phone case or exter-
nal card (Figure 3). The ECG electrical signal is trans-
mitted wirelessly to a smartphone with an integrated 

interpretation app. The tracings can be reviewed on 
the smartphone, electronically stored or transmitted 
for review by the user’s provider if desired. These have 
been directed largely to AF.

Automated algorithms can label the recording as pos-
sible AF on the basis of criteria for the presence and 
absence of a P wave and the irregularity of the RR interval; 
normal or sinus rhythm and unreadable when the detector 
indicates there was too much interference for an adequate 

Figure 3. ECG mobile applications.
Left, Fingertip recordings. Right, Card pressed to the chest.

Figure 4. Apple watch.
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recording, whether from too much movement or poor con-
tact between the electrodes and the patient’s skin. Sev-
eral versions of the AliveCor’s automated algorithms have 
been evaluated (Chan 2016, Chan 2017, Desteghe 2017, 
Lowres 2014, Tarakji 2015),24,41–44 and the device has 
been tested as a screening tool in at-risk populations (Hal-
cox 2017, Lowres 2014).43,45 In Apple watch, the algorithm 
is effective when the heart rate (HR) is between 50 and 
150 beats per minute; there are no or very few abnormal 
beats; and the shape, timing, and duration of each beat is 
considered normal for the patient (Figure 4).

Sensitivity and specificity depend on the software 
(which can be calibrated to higher sensitivity or higher 
specificity), the population studied (eg, elderly have more 
tremor or difficulty in holding the device, leading to more 
unreadable tracings), and the prevalence of AF in the pop-
ulation. It indicates that use of such device always requires 
proper evaluation for every intended use case. There is 
also an accessory band for a smartwatch to allow ECG 
recording. The single-lead ECG with automatic AF detec-
tion is recorded by touching the band’s integrated sensors 
that transmit data to a watch application. Recently, a new 
6-lead case has been developed, allowing for 30-second 
recording of all 6 limb leads by touching each of the three 
electrodes. Also the QT interval may be derived from this 
(https://cardiacrhythmnews.com/kardiamobile-6L-can-
be-used-to-measure-qt-duration-in-covid-19-patients/; 
Chung 2015, Garabelli 2016).46–48 Information is limited, 
however, on how parameters such as QTc measured on 
a single- (or limited number) lead ECG can reliably sub-
stitute for 12-lead ECG information. In one study, QT 
was underestimated by smartphone single-lead ECG 
(Koltowski 2019).49 Preliminary data indicate the ability for 
ST monitoring for ischemia (Figure 3; Section 4.1).

Such devices may be used by clinicians as a point-
of-care device to obtain an interpretable rhythm strip in 
place of a 12-lead ECG. In addition, patients may use 
these devices for ad hoc or routine evaluation of their 
rhythm in a home environment. The ECG data can be 
instantaneously transmitted for automated interpretation 
with the ability of the consumer to request a physician 
overread for a surcharge.

Limitations
• Single-lead devices, particularly when used by an 

active person who may not be recumbent, relaxed, 
or still, may lead to substantial electrical or motion 
artifact. Noise-free tracing my be more difficult for 
older patients or those with physical limitations 
(tremor, stroke, etc).

• Although the interpretation algorithms typically 
have received regulatory oversight, these algo-
rithms can frequently misclassify rhythms, calling 
sinus rhythm AF and vice versa, which could lead 
to potential harm without confirmation by a clini-
cian. For example, in a recent study of a consumer 

ECG device to detect AF, a third of ECGs were 
unclassifiable by the device but could be classified 
by experts (Bumgarner 2018).27 Therefore, some 
devices have limitations placed on them for diag-
nostic assessment. For example, the Apple Watch is 
unable to assess the ECG for AF if the HR is above 
150 or below 50 beats per minute (https://www.
apple.com/healthcare/docs/site/Apple_Watch_
Arrhythmia_Detection.pdf)50 and is cleared by the 
Food and Drug Administration (FDA) only for use in 
people without a diagnosis of AF (Figure 4; https://
support.apple.com/en-us/HT20893151; Section 6).

• For consumer watches, ECG diagnosis is considered 
a prediagnostic pending medical verification and not 
designed to be acted on without clinician review.

• ECG classification of other arrhythmias (prema-
ture ventricular complexes [PVCs], premature atrial 
complexes, and ventricular tachycardia) is currently 
unavailable

2.2.2. Non–ECG Based

2.2.2.1. Photoplethysmography
Consumer devices such as smartphones and smartwatches 
require accessories and often extra cost for conversion into 
rhythm-monitoring tools. In contrast, the photoplethysmog-
raphy technologies allow for the detection of arrhythmias 
using hardware already present on most consumer devices 
(smartwatches and fitness bands) through a downloadable 
application. Photoplethysmography is an optical technique 
that can be used to detect AF by measuring and analyzing 
a peripheral pulse waveform. Using a light source and a 
photodetector, the pulse waveform can be measured by 
detecting changes in the light intensity, which reflects the 
tissue blood volume of a skin surface such as the finger-
tip, earlobe, or face (Conroy 2017, McManus 2013).52,53 An 
automated algorithm can subsequently analyze the gener-
ated pulse waveform to detect AF. Photoplethysmography 
avoids the instability and motion artifacts of ECG sensors 
and can be passively and opportunistically measured.

Applications 
This technology has been applied for use with smart-
phones using the phone’s camera to measure a fin-
gertip pulse waveform. Rapid irregularly conducted AF 
may produce variable pulse pressures that challenge 
detection (Choi 2017).54 The performance of algorithms 
interpreting these photoplethysmography signals has 
been proven to be in high agreement with ECG rhythm 
strips (McManus 2013, McManus 2016, Proesmans 
2019).53,55,56 The smartphone-based photoplethysmog-
raphy applications have been utilized in at-risk popula-
tion to detect AF and as a screening tool in the general 
population (Verbrugge 201957; Section 6).

The photoplethysmography technology has also 
been incorporated in smartwatches to measure HR and 
rhythm (Dorr 2019, Guo 2019).58,59 Some have developed 
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prototypes of a band that includes a single-channel ECG, 
multiwavelength photoplethysmography, and triaxial accel-
erometry recording simultaneously at 128 Hz (Nemati 
2016),60 and others use a deep neural network based 
on photoplethysmography sensors to detect AF (https://
www.mobihealthnews.com/content/study-apple-watch-
paired-deep-neural-network-detects-atrial-fibrillation-
97-percent-accuracy; https:mrhythmstudy.org).61,62 If 
photoplethysmography or optical sensors and detection 
algorithms can match the performance of ECG-based 
rhythm assessment, delivery of AF care may be expected to 
change substantially and drive a radical departure from rely-
ing on an office or ambulatory ECG for ascertainment of AF.

2.2.2.2. Oscillometry
Blood pressure (BP) measurements can be erratic when 
the pulse is irregular. This characteristic is utilized by 
automatic oscillometric BP monitors that derive heart 
rhythm regularity algorithmically (Chen 2017).63 Auto-
mated BP monitors have been used for opportunistic 
AF detection. Studies have shown that 6 devices from 2 
manufacturers were reliable with sensitivities and speci-
ficities >85% (Kane 2016).64 These studies suggested 
that BP devices with embedded algorithms for detect-
ing arrhythmias show promise as screening tools for AF, 
comparing favorably with manual pulse palpation. Such 
capability could be added to continuous BP recording 
devices (Kario 2016).65 One device identifies possible 
AF when at least 2 of 3 consecutive measurements 
show pulse irregularity. Several studies addressed the 
diagnostic accuracy (Chan 2017, Chen 2017, Gandolfo 
2015, Kearley 2014, Marazzi 2012, Stergiou 2009, Wie-
sel 2009, Wiesel 2014)63,66–72 and the feasibility of this 
device as a screening tool (Chan 2017, Omboni 2016, 
Wiesel 2017).66,72,73

The following have undergone preliminary study.

2.2.2.3. Mechanocardiography
Mechanocardiography uses accelerometers and gyro-
scopes to sense the mechanical activity of the heart. 
The accuracy of this technology to detect AF using a 
smartphone’s built-in accelerometer and gyroscope sen-
sors was assessed in a proof-of-concept study (Jaakkola 
2018).74 A smartwatch (Sony Experia) was placed on the 
chest in supine patients to detect micromovements of 
the chest. Possibly, carrying this device in a pocket may 
have utility but is likely to be confounded by movement 
(eg, walking) artifacts.

2.2.2.4. Contactless Video Plethysmography
Noncontact video monitoring of respiration and HR has 
been developed <15 years ago (Takano 2007, Verk-
ruysse 2008).75,76 In 2014, a pioneering article described 
the concept of contactless video-based detection of AF 
(Couderc 2015).77 Deep learning of a video of a person’s 
face can identify AF by examining irregularity of pulsatile 
facial perfusion (Yan 2018).78 It is a monitoring technique 

extracting the photoplethysmography-like signals from a 
standard digital RGB video recording of the human skin 
and specifically of an individual’s face. The videoplethys-
mographic signal describes the absorption peak of ambi-
ent light by the hemoglobin from the facial skin. Several 
studies have been performed to develop a method that is 
sensitive enough to detect each cardiac pulse and pro-
vide insights into variability on pulse on a beat-to-beat 
basis. The HealthKam works using HUE color space 
from video cameras (Dautov 2018, Tsouri 2015)79,80 and 
can easily be integrated to any portable computer device 
with a camera (smartphone, tablet, etc). By using mobile 
devices with cameras, the deployment of the technology 
is easy and scalable since it does not require the use and 
distribution of any physical devices. Such a system may 
change the approach to AF screening, which currently is 
only 1 patient at a time. High-throughput AF detection 
from multiple patients concurrently using a single digital 
camera and a pretrained deep convolutional neural net-
work was feasible in a pilot study (Yan 2020).81

Limitations
One requirement for these technologies is steady focus: 
thus moving subjects present a challenge. It is impor-
tant to avoid recording, sending, or communicating any 
video of the patient, thus protecting privacy and dignity. 
Video-based technologies in telemedicine have raised a 
new set of societal and ethical concerns that are being 
continuously reevaluated such as during the coronavirus 
disease 2019 (COVID-19) pandemic. Issues regard-
ing privacy, confidentiality, and legal and ethical obliga-
tion to treat are crucial factors to be considered when 
these technologies are deployed at larger scale (Turakhia 
2019).82

2.2.2.5 Smart Speakers
There are preliminary reports on using commodity smart 
devices to identify agonal breathing (Chan 2019, Wang 
2019).83,84 Identification of abnormal HR patterns may 
be made possible by converting smart speakers into a 
sonar device with emission of inaudible-frequency sound 
waves and receiving them to detect motion. These are not 
in consumer domain but potentially have wide scalability.
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3. mHEALTH APPLICATIONS FOR 
ARRHYTHMIAS
Typically, most patients with palpitations and dizziness 
are evaluated using the various technologies reviewed 
in Section 2.1 (Steinberg 2017).1 Devices capable 
of recording at least 1 ECG lead allow the interpret-
ing clinician to distinguish between wide- and narrow-
complex rhythms, bradycardia, and tachycardia and 
thus distinguish between the various causative rhythms. 
Smart devices may be useful in pediatric patients (Gro-
pler 2018).2

3.1. Atrial Fibrillation
The disease is often intermittent and asymptomatic, 
which may delay diagnosis (McCabe 2016, Strickberger 
2005, Verma 2013),3–5 lead to incorrect estimation of 
AF burden (Boriani 2015, Garimella 2015),6,7 and pose 
management challenges to health care services, thereby 
exposing the patient to the consequences of untreated 
AF. New digital health and sensor technologies have 
the potential for early identification of AF, opening up 
opportunities for screening, which then can be tied to 
evidence-based management. These may be directed to 
several broad groups: for screening the general popu-
lation or managing the already diagnosed, for following 
responses to treatment, and increasingly to managing 
comorbidities and lifestyle modification (Section 4; Fig-
ure 5). mHealth mechanisms may facilitate understand-
ing the relation between AF burden, its progression, and 
cardiovascular risk (Wong 2018).8

3.1.1. Undiagnosed AF Identification
Classical epidemiological data point to the notion that 
early identification of AF has the potential to improve mor-
bidity and possibly mortality. (1) AF is associated with a 
5-fold increased risk of stroke (Wolf 1991)9 and doubled 

mortality (Kirchhof 2016)10; (2) the prevalence of undiag-
nosed AF is at least 1.5% for patients >65 years of age 
(Orchard 2018)11; (3) in about a quarter of all AF-related 
strokes, stroke is the first manifestation of the arrhythmia 
(Friberg 2014)12 while other patients with AF present 
first with congestive HF; (4) stroke risk is independent of 
symptoms (Xiong 2015)13; (5) diagnosis often requires 
repeated or prolonged ECG monitoring; and (6) oral anti-
coagulants (OACs) are highly effective in reducing the risk 
of cardioembolic stroke, mortality, and possibly dementia 
in the setting of AF (Ding 2018, Friberg 2018).14,15

AF identification depends on factors having to do with 
the arrhythmia itself, that is, the combination of AF preva-
lence and density (Charitos 2012),16 and factors associ-
ated with detection such as the frequency and duration 
of monitoring and diagnostic test performance (Ramku-
mar 2018).17 Several studies including patients with vari-
able stroke risk factors have used mHealth technologies 
to identify undiagnosed AF (Table 218–27; Table 320,28–44), 
but these may require gold standard ECG confirmation.

Accuracy
The positive predictive value of an AF event will differ 
according to pretest probability of AF in a given popu-
lation (eg, those with an established diagnosis or ≥1 
risk factors). This is especially relevant to healthy con-
sumers. Many technologies to identify AF are readily 
available directly to those without defined disease and 
are not deployed as individual or public health interven-
tions. Rather, consumers who possess these technolo-
gies, such as smartwatches or smartphone-connected 
ECG recorders, opt into the use of these technologies. 
Therefore, consumer-driven AF identification is not 
the same as health care–initiated AF screening. AF 
identification by these devices requires confirmation, 
since these AF screening tools have variable specific-
ity (Table 218–27), raising the potential of a high false-
positive rate in a low-prevalence population, and risks 
of unnecessary treatment.

There have been almost 500 studies assess-
ing accuracy of mHealth devices for AF detection, as 
described in recent systematic reviews (Giebel 2019, 
Lowres 2019, O’Sullivan 2020).45–47 Their capabilities 
varied according to technologies utilized, settings, and 
study populations. Two large-scale screening trials were 
reported recently (Section 6).

Outcomes
No large outcome trial of screen detected AF and hard 
end points of stroke and death has been conducted 
as yet.

Although an incidental diagnosis of AF seems to be 
associated with increased risk of stroke and protec-
tion by OAC therapy (Freedman 2016, Martinez 2014, 
Tsivgoulis 2019),48–50 clinical trials to determine any ben-
efit for opportunistically detected AF have not yet been 
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completed but are underway (Gudmundsdottir 2020, 
Steinhubl 2018, Svennberg 2015; Heartline Study: www.
heartline.com).29,31,36,51 This effort addresses the concern 
that AF detected by screening may identify inherently 
lower risk patients so that the efficacy of anticoagula-
tion (and its risk/benefit ratio) requires recalibration. This 
is necessary before issuance of any recommendations 
(currently, no consensus exists yet on how to treat these 
arrhythmias, even in those with high CHA2DS2-VASc 
scores).

The European and American guidelines do recommend 
opportunistic screening for early identification of undiag-
nosed AF in patients aged ≥65 years (Freedman 2017, 
January 2019, Kirchhof 2016).10,52,53 On the contrary, the 
US Preventative Services Task Force has presently given 
an insufficient recommendation for systematic screening 
for AF with electrocardiograms (Jonas 2018).54

3.1.2. Targeted Identification in High-Risk 
Individuals
Cryptogenic Stroke/TIA
Up to one-third of ischemic strokes are attributed to 
AF-mediated embolism to the brain (Hannon 2010).55 
Further, the risk of recurrent thromboembolism is high if 
AF is left undetected and untreated (Furie 2012, Kolo-
minsky-Rabas 2001).56,57 Hence, prolonged monitoring 
for AF poststroke has been recommended in recent 
guidelines (January 2019, Kirchhof 2016, Schnabel 
2019).10,53,58 Detection of AF poststroke depends not 
only on the monitoring device used and the duration of 
the monitoring period but also on stroke type and patient 
selection; thus, the results of AF detection have been 
heterogenous (Kishore 2014, Sanna 2014, Zungson-
tiporn 2018).59–61 A meta-analysis showed that a step-
wise approach to AF detection in poststroke patients led 
to AF detection in 23.7% of patients (Sposato 2015)62 
while a combined analysis of 2 randomized and 2 obser-
vational studies showed a 55% reduction in recurrent 
stroke following prolonged cardiac monitoring (Tsivgoulis 
2019).50 However, the optimal AF duration threshold for 
initiating anticoagulation is currently unknown and may 
be lower in a poststroke population compared with those 
with fewer cardiovascular risk factors (Kaplan 2019).63

The risk of undiagnosed AF and other sources of 
thrombi has been considered high in embolic strokes of 
unknown source (ESUS), prompting studies that evalu-
ated whether empirical novel oral anticoagulant therapy 
is more effective than antiplatelet therapy without a 
requirement of AF detection. Two of these studies, NAVI-
GATE ESUS (Rivaroxaban Versus Aspirin in Secondary 
Prevention of Stroke and Prevention of Systemic Embo-
lism in Patients With Recent Embolic Stroke of Unde-
termined Source; Hart 2018)64 and RESPECT-ESUS 
(Dabigatran Etexilate for Secondary Stroke Preven-
tion in Patients With Embolic Stroke of Undetermined 
Source; Diener 2018)65 have not shown a reduction in 

recurrent stroke in patients receiving novel oral antico-
agulants. It should be emphasized that the mere detec-
tion of AF after ESUS is not necessarily proof of positive 
causation. A third study is ongoing, including patients 
with suggested atrial myopathy (enlarged atria, increased 
levels of NT-proBNP [N-terminal pro-B-type natriuretic 
peptide], or enlarged P waves; Kamel 2019).66

These findings underscore the need for AF detection 
before initiation of OAC therapy in patients with crypto-
genic stroke, ESUS, or ischemic stroke of known origin, 
and mHealth devices can ease the process of detection 
(Zungsontiporn 2018).61 The threshold of AF burden 
may differ in patients who have had a suspected cardio-
embolic event and those who have not (Kaplan 2019).63

Other High-Risk Individuals
The key to making AF identification feasible, efficient, 
and clinically valuable is the selection of patients with 
an increased likelihood of harboring undiagnosed AF, 
rather than general screening in unselected populations. 
mHealth ECG recorders can facilitate frequent brief (eg, 
30 seconds) recordings over prolonged periods of time 
by the ubiquity of devices (including smartphone-based 
apps or watches). These devices are particularly well 
suited to capture intermittent or nonpersistent arrhyth-
mias; however, it is likely that frequent sampling would 
be necessary to capture infrequent paroxysmal AF, and 
even daily snapshot ECG monitoring may miss half of 
AF episodes (Charitos 2012, Yano 2016).16,67 AF burden, 
increasingly recognized as a powerful independent pre-
dictor of stroke (Chen 2018),68 though accurately mea-
sured by implanted devices (Varma 2005),69 cannot be 
readily calculated from intermittent ECG data. The use 
of smartwatches with passive intermittent surveillance 
using photoplethysmography monitoring plus ECG con-
firmation may be a more effective screening tool and is 
currently being evaluated (Heartline Study).

Formal screening with mHealth ECG recordings 
has yielded meaningful incidences of newly diagnosed 
AF, statistically greater than if diagnosis relied only on 
the office ECG (Table 3).20,28–44 The yield generally is 
enhanced by the presence of risk factors such as older 
age and higher CHA2DS2-VASc scores. Several studies 
(Chan 2017, Chan 2017a, Proietti 2016)70,71 screened 
untargeted populations, and all yielded new AF diagnoses 
at a rate under 1%. By focusing on older patients (75–76 
years of age) at greater risk, Swedish studies identified 
new AF in 3% of study participants and up to 7.4% when 
additional risk factors beyond age were required (Eng-
dahl 2013, Gudmundsdottir 2019, Svennberg 2015).29–31  
Lowres et al in a patient-level meta-analysis found that 
new AF detection rate increased progressively with 
age from 0.34% for <60 years to 2.73% for ≥85 years. 
Importantly, the number of subjects needed to screen to 
discover AF meeting indications for anticoagulation was 
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1089 for subjects <60 but 83 for subjects ≥65 years of 
age.

3.1.3. Diagnostics in People With Established AF
mHealth has important implications for the care of those 
already diagnosed with AF. Several key characteristics of 
AF can be measured with long-term continuous or near-
continuous monitoring, and the information gained may 
provide valuable information for patient management.

Furthermore, while several studies succeeded in 
establishing the sensitivity and specificity of novel devices 
for the detection of AF, no study to date has yet evaluated 
the utility of an mHealth intervention in affecting clinical 
outcomes. The iHEART study (iPhone Helping Evaluate 
Atrial Fibrillation Rhythm Through Technology) is a single-
center, prospective, randomized controlled trial, and the 
Heartline study seeks to accomplish this goal (Caceres 
2020, Hickey 2016; https://www.heartline.com).51,72,73

3.1.4. AF Therapy

AF Burden
Current guidelines for anticoagulation are based princi-
pally on the presence of risk factors and a diagnosis of 
clinical AF, regardless of AF duration, symptomatology, or 
burden (January 2019).53 This applies even if the AF has 
been quiescent for long periods or eliminated altogether 
as the result of rhythm control interventions including 
antiarrhythmic drugs, ablation, or risk factor modification 
(January 2019).53 However, there is increasing recog-
nition that AF burden matters, for example, paroxysmal 
events have less thromboembolic risk than persistent AF 
(Chen 2018).68 This understanding has been extended 
during continuous monitoring from CIEDs, which depict 
AF with high granularity, and first advanced the met-
rics of AF days and burden in terms of cumulative load 
(hours/day) and concentration (density of AF days; 
Varma 2005).69 This measure is likely to be important for 
understanding mHealth-discovered AF.

Cardiovascular Implantable Electronic Devices
AF burden can be characterized as %/time monitored, 
longest duration, and density. Retrieved data provide an 
insight into the natural history and associated sequelae 
(Healey 2012, Kaplan 2019, Van Gelder 2017, Varma 
2005).63,69,74,75 This led to oral anticoagulation interven-
tion trials to determine the ability to reduce stroke on 
the basis of AF duration (Lopes 2017, Martin 2015).76,77 
These suggest that a threshold exists below which the 
risk of thromboembolic stroke is low and risk-benefit 
ratio may not justify chronic administration of OACs. 
For instance, CIED data indicate that short subclini-
cal AF events have lesser risk than more prolonged 
(and, therefore, more likely to be symptomatic) events 
(Al-Turki 2019).78 Device-detected, subclinical, atrial, 
high-rate episodes lasting 6 minutes to 24 hours are 
associated with increased stroke risk, but the absolute 

risk is considerably lower than expected based on risk 
factors alone (Glotzer 2003, Healey 2012, van Gelder 
2017).74,75,79 Whether these require anticoagulation in 
high-risk individuals is the subject of ongoing studies 
(Kirchhof 2017, Lopes 2017, van Gelder 2017).75,76,80 
Importantly, very short AF episodes (episodes in which 
both the onset and offset of AT/AF were present within 
a single electrogram recording) were not associated 
with adverse outcomes (Swiryn 2016),81 which may be 
important for mHealth monitoring.

mHealth
AF detection using digital health tools offers further 
insights in patients without indication for implantable 
devices. mHealth extends AF screening to younger 
patients without cardiovascular disease, and thrombo-
embolic potential may be low. Those with high AF bur-
den (defined by ≥11.4%; mean duration, 11.7 hours) 
detected on a 14-day patch monitor had an increased 
thromboembolic event rate compared with those with 
lower AF burdens (Go 2018).82 There remains signifi-
cant treatment variation in use of OAC, especially for 
device-detected AF (Perino 2019).83 This may be due 
to a large clinical uncertainty regarding the optimal 
cut point, even though observational data indicate that 
OAC is associated with a decreased risk of stroke for 
episodes >24 hours and possibly for episodes 6 to 24 
hours (Perino 2019).83

Currently, there are no prospectively validated cut 
points or risk models that incorporate AF burden into 
decision-making for stroke prevention therapies.

Key Knowledge Gap. Identify characteristics (duration, 
episode number/ density) and risk factors that justify 
anticoagulation for mHealth-detected AF.

Rhythm and Rate Control

Rhythm. While we await data on OAC treatment for 
mHealth-detected AF, the finding of the arrhythmia should 
initiate mHealth monitoring of NSR retention, QT inter-
vals, important for those on some antiarrhythmic drugs 
(Garabelli 2016),84 and discussion of cardiovascular risk 
factor modification and lifestyle changes, since AF coex-
ists with comorbidities that may influence its occurrence 
and natural history (Section 4). Thus, alcohol reduction, 
treatment of OSA, moderate exercise, and weight loss 
have been shown to reduce AF burden (Congrete 2018, 
Kanagala 2003, Pathak 2015, Voskoboinik 2020).85–88

Rate. While the primary goal of rate control is to minimize 
AF-related symptoms, prolonged tachycardia can result in 
effort intolerance or tachycardia-mediated cardiomyopa-
thy while excessively low heart rate targets may increase 
the risk of bradyarrhythmias that result in symptoms and 
device implantation. The European Society of Cardiology 
recommends lenient resting HR targets (<100–110), 
whereas the American College of Cardiology/American 
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Heart Association/HRS guidelines recommend a target 
rate of <80 beats per minute. Often these targets are 
tailored to the individual patient based on symptoms and 
presence or propensity for HF. mHealth technologies 
can be used to assess ventricular rates during AF over 
long time periods and evaluate the effects of rate-control 
therapies (January 2019, Kirchhof 2016).10,53

3.2. Sudden Cardiac Death
Ventricular Arrhythmias
The use of mHealth technology to diagnose ventricu-
lar arrhythmias lags behind its application to AF (Sec-
tions 3.1 and 4.1). Detection of symptomatic ventricular 
tachycardia has been reported using the AliveCor car-
diac monitor (AliveCor, San Francisco, CA) and Smart-
Watch (Ringwald 2019, Waks 2015).89,90 Sophisticated 
automated analysis of a 2-minute photoplethysmogra-
phy recording by the camera of a commercially available 
smartphone (iPhone 4S; Apple) can distinguish between 
AF, premature atrial complexes, and PVCs from sinus 
rhythm, with a sensitivity of 0.733 and specificity of 0.976 
for PVCs (Chong 2015, McManus 2016).24,91 PVCs may 
challenge to photoplethysmography-based systems, as 
many PVCs are nonperfusing (Billet 2019).92 An ECG 
tracing is, therefore, essential to facilitate rhythm diagno-
sis and avoid misclassification of slow photoplethysmog-
raphy pulse rates (bradysphygmia) simply as bradycardia.

Syncope
Syncope presents unique challenges for mHealth applica-
tions. While prolonged ambulatory monitoring using med-
ical-grade devices (wearable and implantable) has been 
the mainstay of cardiac rhythm diagnosis during episodes 
of syncope, user-activated systems must either be acti-
vated by the patient during prodromal symptoms (if pres-
ent and time permits) in anticipation of syncope or else 
incorporate loop recording to allow postsyncope activa-
tion (Steinberg 2017).1 This capability is not incorporated 
in currently popular consumer-grade wearable devices. 
However, a randomized controlled trial of AliveCor versus 
usual care in participants presenting with palpitations or 
presyncope showed a faster and increased rate of detec-
tion of symptomatic arrhythmias in the intervention group, 
suggesting that at least in presyncope, patient-activated 
rhythm detection using a commercially available mHealth 
device is productive (Reed 2019).93 Rhythms reported by 
devices that rely on HRs will likely require validation with 
a medical-grade system to provide an ECG tracing during 
an event to allow determination of the causative rhythm.

There is a significant overlap between transient loss of 
consciousness and mechanical falls due to orthostatic intol-
erance, neurological, or orthopedic problems. This is par-
ticularly disabling in elderly subjects and often unwitnessed 
(Davis 2010, Heinrich 2010).94,95 Mobile applications that 
combine analysis of HR monitoring together with fall detec-
tion, global positioning signal positioning, video recording 
with display of patients’ surroundings, and the capability to 

Figure 5. Mobile health and atrial fibrillation (AF).
Applications include screening for AF in general or high-risk populations, managing comorbidities and lifestyles important for prevention and 
control (see Section 4), as well as managing treatment of known AF. DM indicates diabetes; ESUS, embolic stroke of unknown source; HTN, 
hypertension; and NSR, normal sinus rhythm.
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send alerts either triggered by patients in case of symptoms 
or automatically in case of detected falls may be useful.

Cardiac Arrest
The detection and response to sudden cardiac arrest is 
an area where mHealth applications may prove lifesaving. 

As rapid treatment for cardiac arrest has consistently 
been associated with improved survival, preemptive iden-
tification of at-risk people, detection of cardiac arrests, 
alerting of nearby lay and professional first responders, 
and coaching or quality assurance in the performance of 

Table 3. Selected Screening Studies for Atrial Fibrillation Using Newer Technologies

 Device Author Setting Inclusion criteria n
Mean 
age, y

Duration of 
monitoring

New AF 
detec-
tion, %

Handheld 
ECG device

Zenicor SL Berge 201828 Norway; system-
atic

Age 63.5_ CHADS-
VaSC score ≥2 (M) or 
≥3 (F)

1510 63.9 10 s; twice daily 
for 2 wk

0.9%

 Zenicor SL Svennberg 
201529

Sweden; system-
atic

Age, 75/76 y 7173 75 10 s; twice daily 
for 2 wk

3.0%

 Zenicor SL Engdahl 201330 Sweden; system-
atic

Age 75/76 y+CHADS2 
risk score ≥2

403 75 10 s; twice daily 
for 2 wk

7.4%

 Zenicor SL Kemp Gud-
mundsdottir 
202031

Sweden; system-
atic

Age 75/76 y+NT-proB-
NP ≥125 ng/L

3766 75 10 s; twice daily 
for 2 wk

4.4%

 Zenicor SL Doliwa 201232 Sweden; post-
discharge

Recent ischemic stroke/
TIA and no prior AF

249 72.3 10 s; 30 d 4.8%

 My Diagnostick Tieleman 201420 The Netherlands Influenza vaccination 676 74 1 min 1.6%

 My Diagnostick Kaasenbrood 
202033

The Netherlands; 
primary care; op-
portunistic

Age >65 y 919  1 min 1.43%

 My Diagnostick SL Tavernier 201834 Belgium; geriatric 
ward

Geriatric 252 84 Daily 1 min dur-
ing hospitalization 
(median, 5)

13%

ECG patch ZioPatch iRhythm Turakhia 2015 
(STUDY-AF)35

The United States Men, age ≥65 y and 
≥risk factors

75 69 2 wk continuous 5.3%

 ZioPatch iRhythm Steinhubl 201836 The United States; 
national health 
plan members

Age ≥75 y or M>55/
F>65+risk factors

2659 72.4 Continuous 4 wk 2.4%

 Zio XT Patch Roney 2019 
(ARIC study)37

The United States; 
community surveil-
lance study

No prior AF 386 79 Continuous 2–4 
wk

2.5% (2 
wk); 4% 
(4 wk)

 Zio Patch Heckbert 2018 
(Multi-Ethnic 
Study of Ath-
erosclerosis)38

The United States; 
community surveil-
lance study

No prior AF 804 75 Continuous 2–4 
wk

4% (AF/
AFL)

Smartphone 
ECG based

AliveCor Kardia Mo-
bile SL

Lowres 2014 
(SEARCH-AF)39

Australia; pharma-
cy; opportunistic

Age ≥65 y 1000 76 30 s 1.5%

 AliveCor Kardia Mo-
bile SL

Chan 201640 Hong Kong Out-
patient clinic

Age ≥65 y or HTN/
diabetes

1013 68.4 30 s 0.5%

 AliveCor KardiaMo-
bile SL

Halcox 2017 
(REHEARSE 
AF)41

United Kingdom; 
randomized trial

Age ≥65 y+CHA2DS2-
VASc score ≥2

1001 72.6 30 s; twice 
weekly for 1 y

3.8%

Smartphone 
device-PPG 
based

CardioMobile app Chan 201642 Hong Kong; out-
patient

Age ≥65 y or HTN 1013 68.4 30 s 0.5%

 Huawei wristband 
(Honor Band 4) or 
Huawei watch

Guo 201943 General popula-
tion across China

Age >18 y 187 912 35 y ≥14 d 0.23%

Smartwatch Apple smartwatch, 
iPhone app

Perez 201944 General popula-
tion across the 
United States

Age >22 y 419 297 41 y Median, 117 d 0.52% 
irregular 
heart 
rhythm

AF indicates atrial fibrillation; AFL, atrial flutter; ARIC, Atherosclerosis Risk in Communities; F, female; HTN, hypertension; M, male; NT-proBNP, N-terminal pro-B-type 
natriuretic peptide; REHEARSE AF, Assessment of Remote Heart Rhythm Sampling Using the AliveCor Heart Monitor to Screen for Atrial Fibrillation; SEARCH AF, 
Screening Education and Recognition in Community Pharmacies of Atrial Fibrillation to Prevent Stroke; STUDY-AF, Screening Study for Undiagnosed Atrial Fibrillation; 
TIA, transient ischemic attack; and y, years.
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cardiopulmonary resuscitation (CPR) are ideally suited to 
the mHealth paradigm in societies where mobile smart-
phones are ubiquitous.

Prediction
It is possible that mHealth devices that continuously 
monitor heart rhythm and other physiological data may 
be able to better predict impending sudden cardiac 
arrest, even using measures that have not shown suf-
ficient specificity or sensitivity when measured intermit-
tently, such as HR variability (Lee 2016).96 However, 
such continuous monitoring is present already in CIEDs 
and has not yet proven to be sufficiently predictive to 
be clinically useful (Au-Yeung 2018).97 Therefore, the 
prediction of sudden cardiac arrest by mHealth devices, 
while a tantalizing prospect, remains to be realized.

Notification and Reaction
Once cardiac arrest occurs, rapid identification is essen-
tial to trigger a response by emergency responders. 
Wearable devices that combine physiological monitoring, 
global positioning signal, and a method of communica-
tion with emergency services such as cellular service are 
well positioned to provide almost instantaneous alert, 
as well as location information (Kwon 2019, Praveen 
2019).98,99 An early device using a piezoelectric sensor 
to detect the pulse was capable of transmitting an alert 
to emergency medical system or other responders when 
a pulse was not detected and the watch (and thus the 
wearer) was still (Rickard 2011).100 Preliminary reports 
indicate that smart speakers in commodity smart devices 
may be able to identify agonal breath patterns for sud-
den cardiac death detection (Chan 2019).101 Widespread 
diffusion of such technology to patients at elevated risk 
of sudden cardiac arrest will be necessary before any 
potential benefits can be tested.

The ubiquity of mobile phones in society leads to 
more rapid notification of emergency services and the 
possibility of a dispatcher gathering information from a 
bystander at the patient’s side and delivering instruc-
tions on care, such as CPR. This was associated with 
improved outcomes for a variety of emergencies (Wu 
2012).102 Notification of lay first responders in the vicinity 
of a cardiac arrest is also feasible with current technol-
ogy. A blinded, randomized trial conducted in Stockholm, 
Sweden, demonstrated that such a system improved the 
rate of bystander CPR (Ringh 2015).103 However, almost 
10 000 volunteers were recruited over ≈18 months, dur-
ing which 667 activations occurred, emphasizing the 
large resources needed and the low rate of utilization of 
trained volunteers, even when alerted by mobile phone.

Whether a trained or novice bystander responds, 
mobile devices may be further useful to provide voice 
(or video) instructions from a dispatcher or from the 
device itself. Studies of prerecorded audio, live video, 

and animation-based instruction have shown improve-
ments in some aspects of CPR delivery and automated 
external defibrillator (AED) use, although technology 
continues to evolve (Bolle 2009, Choa 2008, Merchant 
2010, You 2008).104–107 One limitation is that as such 
apps are unregulated, many do not convey current basic 
life support algorithms and may have poor usability (Kalz 
2014).108 In addition, delay in commencing CPR and in 
calling emergency services due to distraction of the res-
cuer by using an app is a concern (Paal 2012).109

AED use in cardiac arrest is associated with improved 
survival, but AED use remains low (Weinsfeldt 2010).110 
Mobile devices have the potential to increase this by 
assisting with the retrieval and use of AEDs. Multiple 
apps have been created to locate AEDs in the vicinity 
of the user, although with perhaps surprisingly mixed 
results in simulations (Sakai 2011, Hatakeyama 2018, 
Neves Briard 2019).111–113 Barriers include the accuracy 
of AED location databases, size of the user base, app 
interface, and the availability of multiple apps instead of 
a single validated regional, national, or international stan-
dard. An emerging approach to circumvent these limita-
tions is the dispatch of an AED via a drone to the location 
of the cardiac arrest, which is expected to reduce time to 
defibrillation, especially in rural areas (Boutilier 2017).114 
Feasibility has been demonstrated (Claesson 2017).115

Clinical Trial
The complete chain from activation of citizen responders 
was tested in the Heartrunner trial (Andelius 2020)116 in 
a region of almost 2 million inhabitants. Results showed 
that citizen responders arrived before emergency ser-
vices in 42% of out-of-hospital cardiac arrests, accom-
panied by a 3-fold increase in bystander defibrillation 
with a trend to improved 30-day survival. Results were 
more pronounced when emergency arrival times were 
longer, for example, in rural areas.
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4. COMORBIDITIES
A large proportion of arrhythmias are influenced by 
coexisting conditions. Their management may directly 
affect arrhythmia recurrence and outcome. Thus, lifestyle 
modifications and management of comorbid conditions 
(Figure 5) is becoming an objective of arrhythmia man-
agement (Chung 2020)1 and received a class 1 recom-
mendation in most recent guidelines (January 2019).2 
mHealth has significant potential for facilitating these 
interventions (Figure 6).

4.1. Ischemic Heart Disease
Early management (eg, primary angioplasty) of acute 
ischemic syndromes may reduce infarct territory and 
ventricular arrhythmias, thereby improving outcome. AF 
after myocardial infarction worsens prognosis (Pizzetti 
2011).3

At Home
ST-segment monitoring technology embedded in con-
ventionally indicated ICDs when tested in a randomized 
crossover study suggested a reduction in the time from 
the onset of ischemia to presentation to hospital (Gibson 
2019, Holmes 2019).4,5 The AngelMed Guardian system 
(Angel Medical Systems, Eatontown, NJ) is approved for 
use in the United States for patients with prior acute coro-
nary syndrome who remain at high risk for recurrent acute 
coronary syndrome. For lower risk patients, mHealth may 
improve symptom recognition and earlier presentation, 
that is, symptom-to-door time (Moser 2006).6

Wearable devices that continuously monitor physiologi-
cal data promise detection, and possibly preemption, of the 
early stages of MI, by alerting patient or health care team 
early. A noninvasive device consisting of a 3-lead ECG 

Figure 6. Digital applications can integrate patient-relayed information of sensor and clinical information with automatic 
remote analysis but also permit patients to receive advice and treatment adjustments from physicians directly.
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linked wirelessly to a dedicated mobile device has recently 
been described (Van Heuverswyn 2019).7 Three-lead ECG 
tracings (as well as derived augmented limb leads) can be 
recorded with commercially available smartwatches (Avila 
2019).8 Limitations of this approach are the need for the 
patient or a bystander to possess the device or app and be 
familiar with its use, before the onset of symptoms.

An emerging technology (www.heartbeam.com) uses 
a credit card–sized device that is pressed against the 
user’s chest (Figure 3). It collects ECG signals using a 
novel 3-dimensional vector approach. The signals are 
sent to the cloud, where they are analyzed and compared 
with the patient’s asymptomatic baseline reading. A pro-
prietary algorithm combines the signal analysis with the 
patient’s history and reported symptoms. This informa-
tion, along with a diagnostic recommendation and ECG 
waveforms, is sent to the patient’s physician, who makes 
a final determination and informs the patient. This system 
is used by patients in the telehealth setting to assess 
whether chest pain is the result of a myocardial infarction.

Emergency Teams
The next step of patient care involved transmission of 
ECGs by emergency responders in the field to hospi-
tals for review and triage and was shown to result in 
shorter door-to-balloon time, lower peak troponin and 

creatine phosphokinase levels, higher postinfarction 
left ventricular ejection fraction, and shorter length of 
stay compared with control patients whose ECGs were 
not transmitted (Clemmensen 2010, Sanchez-Ross 
2011).9,10 This paradigm has now been widely imple-
mented. Technical factors, such as transmission failure 
and lack of network coverage, are the main impedi-
ments to adoption of such systems.

Post-Hospital Care
This is often confusing for patients, who often exhibit 
a poor understanding of their medications, follow-up 
procedures, and future appointments (Horwitz 2013, 
Ziaeian 2012).11,12 This contributes to frequent hospi-
tal readmissions. Mobile technologies may enable indi-
vidualized contact between patients and health care 
providers. Phone calls led to a modest improvement in 
medication adherence in patients with coronary artery 
disease in one large randomized controlled trial (Vollmer 
2014).13 Text messaging was shown to increase medi-
cation adherence and improved cardiovascular risk fac-
tors (Chow 2015, Unal 2018).14,15 Available evidence is 
limited by short-term follow-up and self-reported adher-
ence (Shariful Islam 2019).16 Success may depend on 
personalized messages with tailored advice, the ability 
to respond to texts, timing messages to coincide with 

Table 4. Randomized Trials With Neutral Results Based on External-Device RPM

Study name Sample size, n Study design and tested modality Potential explanation for lack of benefit

TIM-HF (Koehler 2011)23 710 (355 on RPM) Randomized trial of a Bluetooth-enabled device 
designed to follow 3-lead electrocardiography, 
BP, and weight.

Participants had stable HF, so it may be that RM 
is not as effective in lower risk patients.

Tele-HF (Chaudhry 
2010)24

1653 (826 on RPM) Telephone-based interactive voice response 
system with a higher risk population than that in 
the TIM-HF study.

Patient adherence was poor, with <55% of the 
study subjects using the device 3 d per week 
by the end of the study. Interestingly, a smaller 
previous trial had shown benefit; this difference 
in results implies that how a technology is imple-
mented might determine benefit.

BEAT-HF (Ong 2016)25 1437 (715 on RPM) Health-coaching telephone calls with monitoring 
of weight, BP, HR, and symptoms in a high-risk 
population with 50% rehospitalization rate.

Nonadherence was the primary limitation, with 
only 61% of patients more than half adherent in 
the first 30 d.

Mayo Clinic Study (Taka-
hashi 2012)26

205 (102 on RPM) Telemonitoring in a PC panel (various health con-
ditions and not only HF) in the top 10% of Elder 
Risk Assessment Index managed with biometrics 
(BP, HR, weight, pulse oximetry, etc) plus daily 
symptom assessment. Video conference capabil-
ity was present.

Abnormal telehealth data were directed to PC 
providers. It is unclear what action this drove. 
It might have caused the PC provider to direct 
the patient to an emergency department or a 
hospital. Could increased symptom surveillance 
actually increase health care utilization?

TEHAF (Boyne 2012)27 382 (197 on RPM) Electronic device to assess symptoms and 
educate patients with HF. Abnormal symptoms 
directed to a monitoring nurse. Device tailored 
itself to patient’s knowledge.

Excellent adherence with use of the device. 
Planned and unplanned face-to-face HF nurse 
visits were higher in the control group. Event 
rates for both groups were lower than expected. 
Primary limitation appeared to be the excellent 
outcomes in the control group.

LINK-HF 
(Stehlik 2020)28

100 Disposable multisensor chest patch for 3 mo 
linked via smartphone to cloud analytics. Apply 
machine-learning algorithm.

Pilot study, compliance eroded. However, this 
detected precursors of hospitalization for HF 
exacerbation with 76% to 88% sensitivity and 
85% specificity.

BEAT-HF indicates Better Effectiveness After Transition–Heart Failure; BP, blood pressure; HF, heart failure; HR, heart rate; LINK-HF, Multisensor Non-invasive Tele-
monitoring System for Prediction of Heart Failure Exacerbation; PC, primary care; RM, remote monitoring; RPM, remote patient management; TEHAF, Telemonitoring in 
Heart Failure; Tele-HF, Telemonitoring to Improve Heart Failure Outcomes; and TIM-HF, Telemedical Interventional Management in Heart Failure.D
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medication doses, higher frequency of messages, and 
the use of additional apps or websites (Park 2014).17 
Interoperability with the electronic medical record (EMR) 
may facilitate this approach.

Cardiac Rehabilitation
This was shown to improve health outcomes among 
patients with heart disease but is underutilized. The Mil-
lion Hearts Cardiac Rehabilitation Collaborative aims to 
increase participation rates to ≥70% by 2022 (Ritchey 
2020).18 Mobile apps and linked sensors to measure HR, 
respiration rate, and exercise parameters may overcome 
traditional limitations of availability, cost, and conve-
nience and be more acceptable to some patients (Zwisler 
2016).19 A randomized controlled trial center-based and 
mobile rehabilitation found improved uptake, adherence, 
and completion with home-based cardiac rehabilitation in 
postinfarction patients (Varnfield 201420; Section 4.2.2).

4.2. Heart Failure
HF is widely prevalent, costly to manage, and degrades 
patient outcomes (Benjamin 2017, Albert 2019).21,22 
HF may trigger AF and ventricular arrhythmias. Con-
versely, AF may precipitate HF. RM of, for example, 
dietary and medication adherence (Section 4.6.2), 
detection of arrhythmias (Section 3), intercurrent isch-
emia (Section 4.1), orthopnea, changes in HR, activity, 
and sleep (Section 4.5), may enable remote adjustment 
of management to reduce emergency department visits 
and unplanned HF-related hospitalizations. If scalable, 
RM coupled with mobile communication could prove to 
reduce costs associated with HF.

Despite promise, most large, multicenter random-
ized trials failed to demonstrate improved outcomes 
of RM in patients with HF (Table 4; Boyne 2012, 
Chaudhry 2010, Dickinson 2018, Koehler 2011, Ong 
2016, Stehlik 2020, Takahashi 2012).23–29 Combina-
tion algorithms based on multiple parameters may be 
valuable (Ono 2017).30 One trial stands out. The TIM-
HF2 trial (Telemedical Interventional Management 
in Heart Failure II) randomized patients with HF to 
either remote patient management plus usual care or 
to usual care only and was followed up for over a year 
(Koehler 2018).31 The results showed reduction in the 
combined end point of percentage of days lost due 
to unplanned hospitalization and all-cause mortality. 
However, cardiovascular mortality was similar between 
RM and standard care groups. Implanted devices that 
monitor pulmonary arterial pressure may be benefi-
cial in select patients when used in structured pro-
grams (Dickinson 2018).29 The positive findings of 
the CHAMPION trial (CardioMEMS Heart Sensor 
Allows Monitoring of Pressure to Improve Outcomes 
in NYHA Functional Class III Heart Failure Patients) 
and subsequent FDA approval have renewed interest 

in remote patient management for patients with HF 
(Abraham 2016, Carbo 2018, Desai 2017).32–34 This 
requires daily download of hemodynamic data and a 
prespecified medical treatment plan. An app is also 
available that illustrates patient compliance with mon-
itoring, alerts the patient when transmissions are not 
received, shows medication reminders, and allows for 
medication reconciliation and titration.

4.2.1. Mobile Technologies for Managing HF
The concept of coupling RM and mobile cellular technol-
ogies is attractive for the HF community (Carbo 2018, 
Cipresso 2012).33,35 HR (ECG), BP, and weight were 
the most frequently monitored parameters. Sensors that 
detect respiratory rate and pattern by detecting move-
ment of the chest wall via pressure, stretch, or acceler-
ometry may have applications in HF. Detecting breathing 
via microphone (sounds), change in impedance, or pulse 
oximetry are other possible means to monitor respiratory 
function. Some of these modalities could be integrated 
into smart clothing (Molinaro 2018).36

Some trials included also alert reminders of medica-
tion use, voice messages on educational tips, video edu-
cation, and tracking of physical activity (Section 4.6.1). 
Patients were mostly monitored daily and followed for 
an average of 6 months. A reduction was seen in HF-
related hospital days (Carbo 2018).33 High rates of 
patient engagement, acceptance, usage, and adher-
ence have been reported in some trials but not others 
(Chaudhry 2010, Hamilton 2018).37,38

Preliminary results using a disposable multisensor 
chest patch in the LINK-HF study (Multisensor Non-inva-
sive Telemonitoring System for Prediction of Heart Fail-
ure Exacerbation) were encouraging (Stehlik 2020),28 
detecting precursors of hospitalization for HF exacerba-
tion with 76% to 88% sensitivity and 85% specificity, 1 
week before clinical manifestations.

4.2.2. Hybrid Telerehabilitation in Patients With HF
Exercise training is recommended for all stable HF 
patients (Piepoli 2011, Ponikowski 2016).39,40 Hybrid 
cardiac telerehabilitation is a novel approach. Telere-
habilitation is the supervision and performance of 
comprehensive cardiac rehabilitation at a distance, 
encompassing telemonitoring (minimally intrusive, often 
involving sensors), teleassessment (active remote 
assessment), telesupport (supportive televisits by nurses 
and psychological support), teletherapy (actual interac-
tive therapy), telecoaching (support and instruction for 
therapy), teleconsulting, and telesupervision of exercise 
training (Piotrowicz 2016).41 Various devices have been 
described, from HR monitoring (Smart 2005)42 and 
transtelephonic electrocardiographic monitoring (Koudi 
2006)43 to tele-ECG monitoring via a remote device 
(Piotrowicz 2015)44 and real-time ECG and voice trans-
telephonic monitoring (Ades 2000).45
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Home-based telerehabilitation was demonstrated 
to be safe, effective with high adherence among HF 
patients. It improves physical capacity (Piotrowicz 
2015)46 and psychological status (Piotrowicz 2016),47 
with similar quality of life improvement to standard 
rehabilitation (Piotrowicz 2015).48 The first randomized, 
prospective, multicenter study (TELEREH-HF [Telere-
habilitation in Heart Failure Patients]) showed that 
hybrid telerehabilitation and telecare in patients with 
HF was more effective than usual care in improving 
peak Vo2, 6-minute walk distance, and quality of life, 
although not associated with reduction of 24-month 
mortality and hospitalization except in the most experi-
enced centers (Piotrowicz 2020, Piotrowicz 2019).49,50

The recent Scientific Statement from the American 
Association of Cardiovascular and Pulmonary Rehabilita-
tion, the American Heart Association, and the American 
College of Cardiology indicates that home-based reha-
bilitation using telemedicine is a promising new direction 
(Thomas 2019).51

4.3. Diabetes
Diabetes is a strong risk factor for the development of 
morbidity and mortality associated with a range of car-
diovascular diseases. Metabolic syndrome (elevated 
blood glucose and insulin resistance) acts via multiple 
mechanisms resultant in micro- and macrovascular 
complications, development of autonomic neuropathy, 
diastolic dysfunction, renal failure, and AF. Important 
management goals are lifestyle changes (eg, diet and 
activity: see Sections 4.6.1 and 4.6.2) to prevent disease 
development and tight glycemic control, especially for 
type 1 diabetes, which demands lifelong rigorous self-
monitoring (Balakumar 2016, Donnellan 2019, Goudis 
2015, Wang 2019, Wilkinson 2019, Wingerter 2019).52–

57 mHealth modalities for self-management were recom-
mended recently by the European Society of Cardiology 
guidelines on diabetes and cardiovascular diseases to 
(Cosentino 2019).58

Glycemic control may reduce AF development and 
recurrence (Chao 2012, Chang 2014, Gu 2011, Otake 
2009).59–62

Mobile apps can facilitate self-management by 
reminding regular assessment of required parameters 
and medications to take and provide educational tools 
and motivational support. Regular transmission of blood 
glucose levels from patients to their physicians can be 
based on SMS, email, or diverse web-based services. 
Bluetooth-enabled glucose meters are frequently used 
(Andres 2019, Garabedian 2015).63,64 BlueStar (Welldoc, 
Columbia, MD), first to receive the US FDA clearance for 
diabetes management, comes with an app that requires 
a physician prescription and enables patients to titrate 
insulin dosing by using the proprietary insulin calculator. 

The Freestyle LibreLink app (Abbott Laboratories, Abbott 
Park, IL) reads an associated continuous glucose moni-
toring device and displays trends (Fokkert 2017).65

Stand-alone diabetes management apps have recently 
been reviewed (Fleming 2020).66 Short-term measures, 
such as HbA1c (glycated hemoglobin), may be improved 
by such apps in conjunction with clinical support, but many 
have suboptimal usability (Veazie 2018).67 Phone-based 
interventions were associated with improved glycemic 
control as compared with standard care (Liang 2011, 
Pillay 2015, Saffari 2014, Fokkert 2019).68–71 Efficacy 
for improving glycemic control in randomized controlled 
trials has shown mixed results (Agarwal 2019, Quinn 
2011).72,73 Meta-analyses indicate that mobile phone 
interventions for self-management reduced HbA1c mod-
estly by 0.2% to 0.5% over a median of 6-month follow-
up duration, with a greater reduction in patients with type 
2 compared with type 1 diabetes (Pal 2014).74 A signifi-
cant impact on clinical outcomes may affect health care 
expenditures by reducing the need for in-person contact 
with health care providers, preventing hospital admissions 
and improving prognosis. In a retrospective study, the use 
of mHealth technologies was associated with a 21.9% 
reduction in medical spending than a control group during 
the first year (Whaley 2019).75 Key determinants to suc-
cessful uptake of decision support apps will be their user-
friendliness and complexity and the delivery of electronic 
communications and feedback to the patient.

4.4. Hypertension
Hypertension, because of its high prevalence, provides 
the highest attributable risk for the development of AF 
(Huxley 2011).76

mHealth strategies for hypertension comprise a con-
tinuum of solutions, used by consumers or health care 
providers, and include wireless diagnostic and clinical 
decision support (CDS) tools, aiming to monitor health 
status and improve health outcomes. BP telemonitor-
ing is one of the most commonly used strategies and 
includes remote data transmission of BP and clini-
cal information from patients in their home or from a 
community setting to a central service, where they are 
reviewed by a managing physician for treatment adjust-
ments. Several clinical trials have shown that BP tele-
monitoring might be more effective than usual care in 
achieving target BP (Bosworth 2011, Kim 2015, McMa-
nus 2010).77–79 A meta-analysis showed that, compared 
with usual care, BP telemonitoring improved office sys-
tolic BP and diastolic BP by 3.99 mm Hg ([95% CI, 
5.06–2.93] P<0.001) and 1.99 mm Hg ([95% CI, −2.60 
to −1.39] P<0.001), respectively (Duan 2017).80 BP 
telemonitoring nested in a more complex intervention, 
including additional support, as face-to-face counsel-
ing, telecounseling, education, behavioral management, 
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medication management, and adherence contracts, led 
to additional and more sustainable benefit (Duan 2017, 
Tucker 2017).80,81 mHealth has the potential to promote 
patient self-management, as a complement to the doc-
tor’s intervention, and encourage greater participation in 
medical decision-making. Indeed, the TASMINH4 (Tele-
monitoring and/or Self-Monitoring of Blood Pressure 
in Hypertension) unblinded, randomized controlled trial 
showed that patients who used self-monitoring of BP to 
titrate antihypertensives, with or without telemonitoring, 
achieved better BP control than those assigned to usual 
care (McManus 2018).82 The self-monitoring group that 
used telemonitoring achieved lower BP quicker than the 
self-monitoring group not receiving telemonitoring sup-
port, but readings were not significantly different at 1 
year of follow-up. Cost-effectiveness analysis suggests 
that self-monitoring in this context is cost-effective by 
the NICE (National Institute for Health and Care Excel-
lence) criteria, that is, costing well under £20 000 per 
quality-adjusted life year (Monahan 2019).83

Although mHealth options may aid hypertension 
management, technological barriers, high costs, het-
erogeneity of solutions and technologies, and lack of 
standards challenge clinical implementation. The 2019 
European Society of Cardiology guidelines on hyper-
tension stress the importance of self-monitoring and 
underline the potential use of smartphone-based solu-
tions. Nevertheless, they do not recommend the use 
of mobile apps as independent mean of BP measure-
ments (Williams 2018).84

4.5. Disorders Including Sleep Apnea
Sleep disorders are widely prevalent and contribute 
to cardiovascular risk and arrhythmias, especially AF 
(Daghlas 2019, Hirshkowitz 2015, Mehra 2006, May 
2016, May 2017; Institute of Medicine Report: Sleep 
Disorders and Sleep Deprivation: an Unmet Public 
Health Problem, Institute of Medicine (US) Committee 
on Sleep Medicine and Research: www.ncbi.nlm.nih.gov/
books/NBK19961; Section 4.2.1).85–90 This may be 
because sleep disturbance is intimately tied to circadian 
rhythms and sympathovagal balances (Burgess 1997).91 
Standard sleep disorder diagnostics have been validated 
but require technical support for data acquisition and 
scoring. For example, polysomnography has long been 
considered the gold standard for acquisition of rich mul-
timodal cardio-neurorespiratory objective physiological 
data to ascertain sleep architecture, total sleep time, and 
cardiorespiratory abnormalities and is primarily used for 
the diagnosis of obstructive sleep apnea. Actigraphy has 
the advantage of collecting objective data over days and 
nights to characterize sleep-wake patterning and provide 
measures of total sleep time, sleep efficiency, and sleep 

onset latency in addition to surrogate circadian mea-
sures. However, such tests are obtrusive and expensive.

• Treating sleep apnea may reduce AF burden 
(Qureshi 2015, Youssef 2018).92,93

Consumer technology directed to sleep medicine 
may revolutionize the detection and treatment of sleep 
disorders. Since such apps are preinstalled on many 
smartphones, sleep tracking may be among the most 
widely applied facets of mHealth (Khosla 2018).94 Appli-
cations include mobile device applications, wearable 
devices, embedded devices (in the individual’s sleep 
environment), rings (https://bodimetrics.com/product/
circul-sleep-and-fitness-ring), integration of accessory 
diagnostic monitoring (eg, oximetry and ECG monitoring), 
and sleep therapy adherence monitoring. Several com-
mercially available wearable devices measure total sleep 
time accurately but not more detailed parameters such 
as sleep efficiency and different sleep stages (Mantua 
2016).95 Preliminary data suggest that wearable devices 
may be capable of detecting sleep apnea with good 
accuracy compared with gold standard polysomnog-
raphy (Selvaraj 2014)96 and transform the approach to 
sleep disorder screening, diagnosis, and treatment. Sleep 
irregularity diagnosed by 7-day wrist actigraphy was 
linked to risk of cardiovascular events (Huang 2020).97 
Preliminary studies indicated that use of wearables may 
permit behavior modifications that improve sleep qual-
ity (Berryhill 2020).98 In this regard, mHealth applications 
to sleep diagnosis and treatment promise facilitation of 
rhythm control.

4.6. Lifestyle
4.6.1. Physical Activity
Physical activity is any bodily movement from skeletal 
muscle contraction to increase energy expenditure 
above basal level (Figure 5). Athletic activity varies 
from recreational sports to competitive events. There is 
a compelling evidence that regular aerobic exercise at 
the levels recommended by the Physical Activity Guide-
lines Advisory Committee reduces the risk of a vari-
ety of cardiovascular conditions, including AF (Everett 
2011, Mozaffarian 2008, Piercy 2018).99–101 However 
the majority of the population is not engaged in physi-
cal activity at the recommended levels (Piercy 2018).101 
Among patients with cardiovascular disease, patient 
activity measured automatically by ICDs correlated with 
survival following ICD implantation (Kramer 2015).102 
Fitness represents an enormous market for mobile 
technologies and significant opportunity to improve the 
health of a wide range of mHealth consumers. In 2017, 
over 318 000 fitness and health apps were available, 
almost double the number 2 years prior (IQUVIA Insti-
tute, 2017).103 Many of these recreational apps monitor 
daily physical activity and support a healthy lifestyle by 
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counting the number of steps daily, online training, and 
motivation coaching (McConnell 2018).104

• Cardiorespiratory fitness has an inverse relationship 
to AF burden (Faselis 2015).105

• Improvement in exercise capacity of 2 METs in 
overweight individuals may double freedom from 
AF (Pathak 2015).106

Consumer grade fitness technology includes individ-
ual fitness trackers that can stand alone, a fitness tracker 
that is coupled with a companion app, or an app that can 
be downloaded onto a smartphone, which then utilizes 
various features of the smartphone to measure activity 
and sleep. The accuracy of these measurements var-
ies between different products and between measures 
within the same product (Rosenberger 2016).107 Further-
more, while step counting is long established, measur-
ing the intensity of exercise is more complex. Although 
fitness technology has the exciting potential to increase 
physical activity by promoting goal setting and providing 
feedback, its effectiveness in motivating positive behav-
ioral change remains unclear (Sullivan 2017).108

One cautionary tale is the study by Jakicic et al109 that 
examined the effectiveness of a lifestyle intervention with 
or without a fitness tracker (Jakicic 2016). Two groups 
received instruction to promote physical activity and 
dietary restriction. Six months into the intervention, half 
of the participants were provided with an upper arm fit-
ness tracker and web-based support accompanying the 
device. The other half logged and tracked their activity 
and diet on a study website. Of note, the group that wore 
the tracker lost less weight than the group who did not. 
Moreover, changes in physical activity between the two 
groups were not significantly different. These results cast 
doubt on the effectiveness of fitness trackers in promoting 
greater physical activity, and thus, further data are required 
to assess the impact of this approach (Section 5).

Competitive Athletes
These are a unique category. Endurance athletes may 
may have increased AF risk (Abdulla 2009, Anderson 
2013).110,111 Remote evaluation of ECG recordings may 
be useful in countries that perform preparticipation ECG 
screening (Brunetti 2014, Orchard 2019).112,113 Mobile 
devices and apps provide complex data that can be used 
as a self-monitoring tool for managing training (Aroga-
nam 2019, Li 2016, Peake 2018, Peart 2019, Seshadri 
2019).114–118 Exercise load and performance level can be 
accessed on a regular basis by coaches and athletes. 
Training guided by daily monitoring of HRV parameters 
has also been proposed, but data are limited (Coppetti 
2017, Dobbs 2019, Singh 2018).119–121 Mobile devices 
provide the possibility of online real-time monitoring dur-
ing indoor and outdoor training and competitions. Moni-
toring of HR provides both information on performance 
and level of training but can also provide valuable infor-
mation regarding heart rhythm irregularity suggestive of 

arrhythmias. Any kind of paroxysmal arrhythmia related 
to sport participation and detected by mobile devices 
designed merely for HR assessment should trigger fur-
ther cardiological evaluation. Having in mind data indi-
cating that sports participation may be associated with 
higher risk of development of AF mobile devices may 
serve as valuable screening tool for AF detection.

Importantly, mHealth solutions enable easy access 
to athletes’ medical data. The latter approach can be of 
special interest in management of athletes’ health during 
competitions abroad.

4.6.2. Diet
In 2010, the AHA promulgated Life’s Simple 7 as a 
public health strategy to improve cardiovascular health 
with the motto “7 Small Steps to Big Changes. It’s easy 
and simple. Anyone can do it. Start with one or two!” 
Unfortunately, research has shown that this strategy is 
anything but simple: virtually no adults (<1%) are com-
pliant with all recommendations, and 42% are compliant 
with only 0 to 2 recommendations (Folsom 2011).122 
Although there is ample evidence that weight loss and 
maintaining an ideal weight are beneficial in reducing 
AF burden and symptoms, compliance with this recom-
mendation is poor; the reasons include among others 
the inability to track food intake (Abed 2013, Donnellan 
2019, Pathak 2015).123–125

• Weight loss combined with risk factor modification 
is a class 1 (B-R) recommendation in treatment of 
AF (January 2019).2

• More than 10% weight reduction/target BMI <27 
kg/m2 reduces AF burden (Pathak 2015).125

There are currently many consumer-oriented mobile 
phone–based applications designed for tracking food 
intake, but their utility for use in carbohydrate counting is 
limited due to their design (El-Gayar 2013).126 Commonly, 
these consumer-oriented apps require multiple steps. As 
an example, the user types in the food consumed and 
then scrolls through the search results to match with the 
program’s food and nutrient database. Next, after find-
ing a matching food type, the user must estimate and 
enter an amount. These apps require significant user 
input and time burden along with high possibility of error. 
In addition, they are also plagued by uncertain accuracy. 
Recently, research has shown that nutrient calculations 
from leading nutrition tracking apps tended to be lower 
than results from using 24-hour recall with analysis by 
the Nutrition Data System for Research—a research-level 
dietary analysis software (Griffiths 2018).127

By contrast, a visual image–based app such as the 
Technology-Assisted Dietary Assessment (TADA) sys-
tem directly addresses the aforementioned shortcom-
ings (Boushey 2017, Six 2010, Zhu 2010).128–130 This 
is in research phase. The TADA system consists of 2 
main components: (1) a smartphone app that runs on 
either iPhones (iOS) or Android devices: the Mobile Food 
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Record and (2) cloud-based server that communicates 
with the Mobile Food Record, processes, and stores the 
food images. Using the TADA system, a person takes a 
photo of the meal they are planning to eat using their 
smartphone’s camera. The use of geometric models has 
permitted the TADA system to use a single image of a 
meal to estimate portion size to within 15% of the actual 
amount (Fang 2015).131 Hence, smartphone-based tech-
nology such as the TADA system can facilitate tracking 
of food intake, which in turn can potentially help with 
weight management.

Despite the profusion of diet- and weight-related 
apps, and the interest in weight loss in the community, 
there remains a dearth of high-quality evidence that 
these apps are actually effective (Dounavi 2019).132 
There remains a need for further evidence development 
before specific apps or other mHealth technology can be 
recommended or prescribed.
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5. PATIENT SELF-MANAGEMENT–
INTEGRATED CHRONIC CARE
Generally, structured management programs inclusive 
of intensive patient education may improve outcomes 
(Hendriks 2012, USPTF 2014, Angaran 2015).1–3 These 
may be facilitated by mHealth.

5.1. Patient Engagement
mHealth offers the opportunity to reach more patients 
more effectively. It may promote patient engagement 
through ease of access and wider dissemination to 
regions and communities who may not access health 
care through traditional modes due to cost, time, dis-
tance, embarrassment/stigma, marginalized groups, 
health inequities, etc (ventricular arrhythmia document).4 
In this way, mHealth may facilitate information sharing 
and interaction between patients and HCPs without the 
need for an elaborate infrastructure (Chow 2016, Walsh 
20145,6; Figure 6). Apps may aid HCPs to explain the 
condition and treatment options, utilizing videos, avatars, 
and individualized risk scores, enabling greater patient 
understanding, and encouraging a 2-way exchange 
of information to achieve a concordant decision about 
treatment.

Patients’ Access to Their Own Health Data
A recent HRS statement advocates for transparent and 
secure access by patients to their digital data (Slotwiner 
2019).7 This enables active participation and appropriate 
self-management. For instance, many patients with AF 
are interested in seeing their AF burden and physiologi-
cal data, similarly to patients with hypertension tracking 
their BP or patients with diabetes tracking their glucose. 
Recent systematic reviews of technology-based patient-
directed interventions for cardiovascular disease sug-
gest that engaging elements include self-monitoring of 
symptoms and measurements, daily tracking of health 
behaviors, disease education, reminders, and interac-
tion with HCPs (Coorey 2018, Gandhi 2017, Park 2016, 
Phaeffli 2016).8–11 In some cardiovascular conditions, 
self-management (without any HCP input) improved key 
outcomes (Hagglund 2015, Varnfield 2014).12,13

The model requires that patients assume responsibil-
ity and accountability for tracking conditions effectively 
and taking corrective measures. Possibly, this may be 
facilitated by data organization to present salient ele-
ments in a format comprehensible to the lay public. 
Active role of patients in decision-making regarding the 
choice of treatment has been underlined by AF clinical 
guidance documents. Patients with AF are encouraged 
to be involved in decision-taking through better under-
standing of their disease, which helps to improve com-
munication between patients, their families, and doctors 
and improves patients’ adherence to prescribed therapy. 
Two applications in AF—one for patients and the other 
for health care providers—have been developed by 
CATCH ME Consortium (Characterizing Atrial Fibrilla-
tion by Translating Its Causes Into Health Modifiers in 
the Elderly) in collaboration with the European Society 
of Cardiology (Kotecha 2018),14 but these have yet to 
be formally tested. In China, Guo et al15 (2017) demon-
strated that the mobile AF (mAFA) app, incorporating 
decision support, education, and patient engagement, 
significantly improved AF patients’ knowledge, medica-
tion adherence, quality of life, and satisfaction to antico-
agulation compared with usual care.

Limitations Should Be Recognized
• Demands of self-management may be excessive 

for even well-intentioned patients required to be 
facile with setting up their own medical monitoring 
device, assessing frequency of download, interpret-
ing and acting on data when required, and trouble-
shooting. These are not trivial challenges.

5.2. Behavioral Modification
Individual Health Status Has Been Found to Be 
a Strong Independent Predictor of Mortality and 
Cardiovascular Events
mHealth may catalyze positive behavioral change and 
facilitate health care (Rumsfeld 2013).16 An induced 
healthy user effect was likely the basis of survival benefit 
among CIED patients adhering more closely to remote 
management (Varma 2015).17 mHealth may support 
patients with text messaging (Chow 2015)18 or mobile 
applications to remind patients of medication doses and 
times, as well as medical appointments (but synchroniza-
tion with health care providers and EMR is generally lack-
ing). The Just-in-Time adaptive intervention premise is to 
provide the appropriate type and amount of support to 
an individual at the correct time, with the ability to adjust 
depending on the person’s current internal and situational 
factors (Nahum-Shani 2018).19 mHealth technology is an 
ideal platform to facilitate Just-in-Time adaptive inter-
ventions by providing real-time personalized information, 
which can be utilized to inform the intervention delivered. 
Just-in-Time adaptive interventions have been widely used 
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for health promotion and to support behavior change, but 
evidence of their efficacy is limited (Gustafson 2014, Pat-
rick 2009, Riley 2008).20–22 Timing is integral to the per-
ception of benefit, as is receptivity to accept and use the 
support (Nahum-Shani 2015).23 Bespoke, multifaceted 
mHealth tools with motivational messages and incorpo-
rating gamification are most engaging (Coorey 2018, 
Gandhi 2017, Park 2016, Pfaeffli 2016).8–11

Incorporation of gamification strategies (eg, rewards, 
prizes, avatars, performance feedback, leaderboards, 
competitions, and social connection) into mHealth pro-
motes patient engagement and sustains healthy behav-
iors (Blondon 2018, Cugelman 2013, Edwards 2016, 
Johnson 2016, Sardi 2017).24–28 However, a recent sys-
tematic review demonstrated that only 4% (64 of 1680) 
of English language top-rated health apps incorporated 
≥1 gaming feature (Edwards 2016).26 There is limited 
hypothesis-generated data for these mHealth interven-
tions, and their efficacy in this context is as yet unmea-
sured. Self-regulatory behavior change techniques, such 
as feedback and monitoring (including self-monitoring), 
comparison of behavior, rewards, incentives, and threats, 
and social support, are the most common behavior 
change techniques used in gamification apps and are 
frequently utilized in successful nongaming apps target-
ing health promotion and secondary prevention (Conroy 
2014, Direito 2014, Edwards 2016).26,29,30 Engaging 
with apps involving gamification can also improve emo-
tional well-being through feelings of accomplishment 
and social connectivity (Johnson 2016).27

5.3. Patients as Part of a Community
Incorporation of a patient as part of a wider community 
may offer benefits. Social networking is widely used for 
health (Fox 2011).31 Online communities enable individu-
als to meet, share their experiences, discuss treatment, 
and receive and provide support from peers, patient 
organizations, or HCPs (Fox 2011, Swan 2009, Swan 
2012).31–33 While crowdsourcing via the internet and 
social networks allows collective sharing and exchange 
of information from a large number of people, the integrity 
and accuracy of such information remains largely unvet-
ted and as such may be unreliable (Besaleva 2014).34

5.4. Maintaining Patient Engagement
Sustaining healthy behaviors and minimizing intervention 
fatigue is paramount to long-term maintenance. Although 
mHealth may help to maintain motivation, available data 
demonstrate significant attrition with mHealth interven-
tions targeting risk factors and chronic conditions, even 
when people report liking the intervention and have pur-
chased it (Chaudhry 2010, Flores Mateo 2015, Fukuoka 

2015, Morgan 2017, Owen 2015, Simblett 2018, White-
head 2016, Endeavour Partners 2017, Perez 2019).35–43

A representative patient’s experience is described 
below:

“A few years ago (2017) a friend told me about a 
new app that he had installed on his iPhone that 
would allow him to measure his heart rate through a 
fingertip pulse. Having an irregular heartbeat, under 
control through medication, I was very interested to 
try the new app. I thought it would provide me the 
opportunity to know more about myself, specifically 
how my heart operated under stress and at different 
times of day, before, during and after physical exer-
tion of a variety of my favorite sports and pastimes 
like tennis, golf, biking and fly fishing.
At first, I was quite satisfied with the rudimentary 
calculations. Then I noticed during my international 
business travels that the device was often down dur-
ing US nighttime hours during which time I thought 
the ‘hosts’ were making repairs or improvements. I 
also noticed that there were several radically incor-
rect readings especially during early morning hours. 
It simply wasn’t performing up to the standards of 
more traditional monitoring devices. I found as well 
that the host’s increasing attempt to up-sell to pre-
mium packages and other online health manage-
ment tools became quite burdensome.
Before long, I felt almost addicted to the device and 
ultimately quit on it altogether. In retrospect, I believe 
that if I had had a proper introduction to the device 
by a trained medical specialist, I might have had a 
different expectation of this online tool, how to use it 
and how to interpret its data output.”

Understanding the basis for health-protective behavior is 
vital (Dunton 2018).44 Many apps, including those from 
the national heart foundations (websites),45–47 are avail-
able to support healthy lifestyle choices, but their efficacy 
remains largely untested or is limited by design features 
(ie, small sample sizes and selection bias). Cost, service 
connectivity, and credibility of information sources are 
important factors. However, patient engagement may be 
jeopardized by worries about privacy and personal data 
security (Burke 2015, Chow 2016, Kumar 2013, Stein-
hubl 2015).5,48–50

Continued Clinic Support
The level and duration of clinic support needed will likely 
depend on the condition monitored and goals for treat-
ment. Reduction in compulsory routine in-clinic evalua-
tions and reliance on continuous RM improved retention 
to long-term follow-up of patients with CIEDs (Varma 
2014).51 In 1 HF trial, gain was related to the period of 
remote instruction. Whether this indicates that efficacy 
of the active program had peaked and stabilized or that 
it needed to be sustained is unclear (Varma 2020).52 
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Ideally, a training program should be finite in time but its 
effects durable.

5.5. Digital Divide
Although mHealth is highly promising in transforming 
health care, it can potentially exacerbate disparities in 
health care along sociodemographic lines.

Older people are perceived to engage less with 
mHealth. A 2017 Pew Research Center survey found 
that 92% of 18 to 29 year olds and 74% of 50 to 64 
year olds own a smartphone (Pew 2017).53 However, 
the lack of familiarity with the technology and access to 
mobile devices, rather than lack of engagement per se, 
remain the principal barriers (Coorey 2018, Gallagher 
2017, Tarakji 2018).8,54,55 Older users of mHealth prefer 
personalized information, which is clearly presented and 
is easy to navigate (Neubeck 2015).56

There is also disparity across the educational spec-
trum, with smartphone usage in 57% of the population 
with less than high school education and 91% of the 
population who graduated from college.

Smartphone use differs by income, with smartphone 
usage in 67% of the population with annual income 
≤$30 000 and 93% of the population with income 
≥$75 000 (Pew Research Center 2018).57 Limited evi-
dence from the United States suggests that, although 
there is some variation in the mHealth use related to eth-
nicity, Black and Hispanic Americans are not disadvan-
taged (Martin 2012).58 mHealth permits information and 
apps to be tailored appropriately for language, literacy 
levels (including text-to-speech technology), and cultural 
differences to promote engagement (Coorey 2018, Neu-
beck 2017, Redfern 2016).8,59,60

There is heterogeneity of mHealth availability 
among different countries (Varma 2020).52 Even some 
of the best studied and FDA- and CE-approved tech-
nologies described here may be currently unavailable 
due to regulatory or marketing rules or simply unaf-
fordable to either individuals or health care systems in 
many other countries.

As health care systems leverage and incorporate 
smartphone-based technology in their workflow and pro-
cesses, a strategy is needed in parallel to ensure that 
those who do not have access to smartphone-based 
technology will continue to receive appropriate high-
quality care. This critical initiative will require consensus 
and action among all stakeholders including HCPs, hos-
pital systems, insurance providers, and state and federal 
government agencies. Thus enabled, mHealth promises 
improved patient outcomes in resource-limited areas 
(Bhavnani 2017).61
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6. CLINICAL TRIALS
mHealth may have particular impact on trials of heart 
rhythm disorders. Traditionally, clinical trials testing drugs 
and devices for arrhythmias utilized time-to-event outcomes 
and analyses, such as first recurrence of AF after a blanking 
period (Piccini 2017).1 Patients randomized to the control 
and intervention would be monitored intermittently, either 
with ambulatory devices or in-clinic visit. Such monitoring 
had limited sensitivity for recurrent arrhythmias, including 
symptomatic and asymptomatic episodes. Furthermore, 
time-to-first event may not accurately capture reductions 
in arrhythmia burden, which have also been shown to be 
beneficial in recent randomized trials (Andrade 2019).2 
While CIEDs such as pacemakers and defibrillators can be 
leveraged for continuous monitoring (Varma 2005),3 these 
studies do not generalize to broader CIED-free populations. 
Implantable loop recorders may have a potential role but are 
costly and, unless used for clinical indications, difficult to 
justify simply for study event ascertainment.

There are a variety of free-standing handheld ECG 
monitors, some of which have automated AF detection 
(Table 1). However, many do not have cellular or net-
working capability and, therefore, generally cannot trans-
mit data or findings in real time. This is where smart- or 
mobile-connected arrhythmia and pulse detection tech-
nologies have significant promise. These may enhance 
detection and measurement of clinical outcomes while 
also allowing for remote or virtual data collection without 
the need for site-based study visits. Examples include 
remote rhythm assessment with single or multilead 
ECGs from smartphone- or smartwatch-based technolo-
gies and automatic ascertainment of hospitalizations 
using smartphone-based geofencing (Nguyen 2017).4 
These operational enhancements, in turn, can improve 

participant satisfaction, reduce cost, improve study effi-
ciency, and facilitate or expand enrollment. An example is 
the ongoing Health eHeart study—a site-free cardiovas-
cular research study that leverages self-reported data, 
data from wearable sensors, EHRs, and other importable 
big data to enable rapid-cycle, low-cost interventional 
and observational cardiovascular research (https://www.
health-eheartstudy.org/).5

Screening
Two recent large-scale studies highlight the potential 
advantages of mHealth for AF screening and treatment.

The Apple Heart Study
This was a highly pragmatic, single-arm, investigational 
device exemption study designed to test the perfor-
mance and safety of a photoplethysmography-based 
irregular rhythm–detection algorithm on the Apple Watch 
for identification of AF (Perez 2019, Turakhia 2019).6,7 
The study was a siteless bring-your-own-device study, 
such that participants needed their own compatible 
smartphone and watch to enroll online. All study proce-
dures, including eligibility verification, onboarding, enroll-
ment, and data collection, were performed via the study 
app, which could be downloaded from the app store. If 
a participant received an irregular pulse notification, 
then subsequent study visits were done via video con-
ferencing to study physicians directly with the app. The 
study enrolled over 419 000 participants without pre-
existing AF in just an 8-month period, in large part due 
to the pragmatic, virtual design and easy accessibility 
(Figure 4). The algorithm was found to have a positive 
predictive value of simultaneous ECG-confirmed AF of 
0.84 (Perez 2019).6 Only 0.5% of the enrolled popula-
tion received any irregular pulse notification, but 3.2% of 
those aged ≥65 years received notifications. However, 
only 153 of 450 (34%) patients had AF detected by sub-
sequent single ECG patches after the irregular rhythm 
notification was received. This may reflect the paroxys-
mal nature of early-stage AF rather than explicit false 
positives. Because the study only administered ECG 
patch morning to those with irregular rhythm notification 
rather than the entire cohort or to negative controls, the 
negative predictive value was not estimated. It should be 
noticed that the Apple Heart Study was in a population 
without diagnosed AF; test performance and diagnostic 
yield could be considerably different in a population with 
known AF, and this software is not approved for use for 
AF surveillance in established AF.

The Huawei Heart Study
A similar study was performed using smart device-based 
(Huawei fitness band or smartwatch) photoplethys-
mography technology (Guo 2019).7 The algorithm had 
been validated with over 29 485 photoplethysmography 
signals before commencement of the trial. More than 
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246 000 people downloaded the photoplethysmography 
screening app, of whom about 187 000 individuals moni-
tored their pulse rhythm for 7 months. AF was found in 
0.23% (slightly lower than Apple Heart, possibly due to 
a younger and healthier enrolled cohort). Validation was 
achieved in 87% (positive predictive value >90%) com-
pared with 34% in Apple Heart. The results indicated 
that this was a feasible frequent continuous monitoring 
approach for the screening and early detection of AF in 
a large population.

A significant observation was that CDS tools provided 
enabled management decisions, for example, almost 
80% high-risk patients were anticoagulated. Subsequent 
enrollment into the mAFA II trial showed significantly 
reduced risk of rehospitalization and clinical adverse 
events (Guo 2020).8 These trial results encourage incor-
poration of such technology effectively into the AF man-
agement pathways at multiple levels, that is, screening 
and detection of AF, as well as early interventions to 
reduce stroke and other AF-related complications.

The Fitbit Study
Another large-scale virtual study to identify episodes of 
irregular heart rhythm suggestive of AF was announced 
by Fitbit in May 2020 (HRS 2020, held on May 7, 2020).9

Point of Care
The next step beyond parameterizing safety could be 
to actionably guide therapy at the point of care (Fig-
ure 6).10 For example, patients could obtain ECGs before 
and after taking pill-in-the-pocket antiarrhythmic drug 
therapy such as flecainide to confirm AF, ensure no QRS 
widening, and confirm restoration of sinus rhythm. A 
similar approach has been proposed for rhythm-guided 
use of direct OACs in lower risk AF patients with infre-
quent episodes either spontaneously or as the result of a 
rhythm control intervention including drugs and ablation; 
a randomized trial is in development (Passman 2016).11 
The use of smartwatch-guided rate control as a treat-
ment strategy could also be tested, as this may provide 
a more personalized approach rather than prior random-
ized trials of lenient versus strict rate control that used 
population level rather than personalized HR treatment 
thresholds (Van Gelder 2010).12

Questions
Generalizability
This is key to application of results from trials. mHealth is 
widely available and often simple to apply and wear.

• Older individuals and those with low health literacy 
may find technologies difficult to use (Section 5.5), 
and this may be compounded by disease state, for 
example, previous stroke.

• Cost and service plans associated with smart-
phones and smartwatches may preclude their 
use in lower socioeconomic populations who are 
already underrepresented in clinical trials and in 
many geographies.

Thus patients who volunteer in mHealth studies in the 
United States are more likely to be White/non-Hispanic, 
more educated, and less likely to have disease.

Adherence
mHealth-based evaluation of clinical end points may be 
confounded if adherence is low, particularly if there are no 
secondary means of end point assessments (Guo 2017).13 
Virtual designs may be more susceptible to the loss of par-
ticipant engagement. For example, if monitoring is com-
pletely reliant upon mHealth technology and there are no 
traditional measures or in-person visits to assess arrhyth-
mia, then significant missing data due to low adherence 
may become a major limitation that could imperil the valid-
ity and generalizability of the findings. For example, among 
2161 of the 419 297 patients who received an irregular 
pulse notification in the Apple Heart Study, only 945 com-
pleted a subsequent protocoled first study visit. Of these 
658 ambulatory ECG patches shipped, there were only 
450 with returned and analyzable data (Perez 2019).6

Development of effective strategies to increase reten-
tion and maintain high engagement remains an unmet 
need and is an area ripe for more research.

Outcomes
These are key to adoption and reimbursement. More 
specifically, the clinical and prognostic impact of new 
outcome measures based on mHealth technologies may 
not be clear.

This is important for AF. For example, how do changes 
in AF burden compare to reductions in time to symptom-
atic sustained AF? Should AF identified on near-contin-
uous smartwatch monitoring be considered equivalent 
to AF diagnosed at hospitalization or in clinic? There is 
a growing body of literature that the dose of AF bur-
den matters for a variety of important clinical end points, 
including stroke, HF, and death (Section 3.1.3; Chen 
2018, Glotzer 2009, Kaplan 2019, Piccini 2019, Wong 
2018).14–18 Does pill-in-the-pocket direct oral anticoagu-
lant treatment of paroxysmal atrial fibrillation adequately 
cover the risk of stroke? Some measures remain less 
well studied, like the occurrence of irregularity with a 
wearable pulse-based monitor system, particularly with-
out ECG confirmation.

Since these mHealth prediagnostic or diagnostic tools 
may then be directly tied to initiation or termination of 
treatment, rigorous evaluation of clinical safety and effi-
cacy will be required and in some cases, warrant a com-
bined drug-device regulatory approval.

Despite these challenges, there is enormous poten-
tial for patients to use these technologies to self-monitor 
their arrhythmia treatment and extend this to manage 
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comorbidities (Section 4). The process of data trans-
parency and accessibility to the patient may improve 
the patient’s engagement with their overall care, even if 
the data are not directly actionable by the patient. The 
restriction to clinic access during the SARS-CoV-2 pan-
demic has accelerated the adoption of mHealth solutions 
(Varma 2020).10 ECGs for clinical trials were recorded 
by smart devices and assessed at virtual visits instead of 
routine in-person evaluations. In some cases, the entire 
management of clinical trials went online.
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7. OPERATIONAL CHALLENGES
7.1. Health Care System—eHealth Monitoring 
and Hospital Ecosystem
Transmission
A fundamental but as yet unresolved challenge of incor-
porating mHealth into clinical practice is the channel of 
data communication between patient and provider. This 
may differ depending upon whether the data are physi-
cian facing (eg, for CIEDs) or patient facing (consumer 
digital health products, eg, the Apple Watch; Apple, Inc, 
Cupertino, CA).

CIEDs
Experience with CIEDs provides a framework. CIEDs 
generate voluminous quantities of eHealth data. In 
a single patient, this may be generated from distinct 
sources, that is, RM and in-person interrogations. Trans-
mission from RM has been well worked out: data flow 
from the CIED to the remote transceiver and then to the 
manufacturer’s server for access by individual practices. 
Unfortunately, this is usually retrieved in an image for-
mat rendering the granular data uninterpretable by the 
practice’s EHR. When shared with the patient, the image 
file is posted on the EHR’s patient portal. These files are 
difficult for physicians to interpret and practically unin-
terpretable by the lay public. To engage patients and 
caregivers, the data will need to be provided in a format 
that enables the lay public to get a high-level summary of 
key features (such as battery status and remote monitor 
function status) with explanations and the ability to drill 
down to the more granular details for those individuals 
who wish to do so.

Consumer Digital Health Product Data
Consumers are rapidly adopting products to monitor their 
health status for early detection of abnormalities and for 
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managing chronic diseases. These tools empower and 
engage patients in managing their health, but the basic 
task of sharing the data with their health care provider 
presents challenges. From a technical standpoint, many 
EHR portals do not permit patients to send attachments. 
Therefore, the patient and provider are left using email, 
which is not considered secure or HIPPA or GDPR (Gen-
eral Data Protection Regulation) compliant. Even if the 
EHR portal accepts attachments, incorporating the digi-
tal health data into the EHR remains ad hoc and incon-
sistent. The logistical and practical concerns frighten 
many care providers into discouraging their patients from 
using these devices. Concerns among providers include 
the fear of being inundated with unnecessary transmis-
sions to review, as well as the concern that patients may 
send inappropriate data, for example, BP or glucose 
monitoring data, to their electrophysiologist. Cloud-based 
storage may avoid some of these challenges.

Interoperability—Lack of Organized Infrastructure to 
Receive Incoming the Data
Assimilating the data obtained from digital health tools, 
whether implantable or wearable, is proving to be one of 
the greatest clinical challenges. Clinicians feel increas-
ingly burdened as both the volume of data and the 
sources of data increase. Creating the nomenclature 
and data models that would enable the information to 
be incorporated in the EMR is less a technical challenge 
but more a political challenge. It requires a consensus 
from the clinical community regarding definitions of the 
terminology and agreement on what data are required. 
For example, for pacemakers, there must be agreement 
on the definition of battery longevity, pacing thresholds, 
mode switch, etc. For CIEDs, this work has been done 
(https://www.iso.org/standard/63904.html; Slotwiner 
2019).1,2 The next step is for EHR vendors to support 
the agreed-upon nomenclature and the data standard 
in which it is communicated. With these two building 
blocks, digital health data can be assimilated into the 
clinical workflow, enabling health care providers to 
review, manage, and document clinical impressions and 
recommendations within the environment of their EHR. 
This work is ongoing in the domain of CIEDs but has 
not started for wearable devices. It requires a coalition 
of clinicians, engineers, regulatory agencies, as well as 
regulatory and financial incentives for vendors. A high 
efficient computerized system with huge storage is 
necessary infrastructure and may provide the platform 
for predictive analytics.

Interoperability—Lack of Organized Infrastructure to 
Transmit Data and Instructions
There is interest in mHealth to support patients with 
text messaging (Chow 2015)3 or mobile applications to 
remind patients of medication doses and times or medi-
cal appointments. To be effective, this requires synchro-
nization with health care providers, ideally by integration 

with the EMR, allowing changes in medications and 
doses, as well as appointments, to flow between patients 
and clinicians in an accurate and bidirectional manner 
(Spaulding 2019).4 However, EMR systems software 
is lacking such functionality and interoperability at this 
point (Ratwani 2018).5

7.2. Cybersecurity Guidance for mHealth 
Devices
Interconnection of medical devices and clinical data 
promises facilitation of clinical care but also creates 
opportunities for intrusions by maleficent actors (ie, hack-
ers) to disable systems or access private health infor-
mation (Jalali 2019, Kruse 2017).6,7 The motivation is 
largely financial. Health care facilities and medical device 
companies present attractive targets because a number 
of attack strategies can yield large financial rewards:

1. Ransomware: a hospital’s systems can be locked 
out (eg, data may be encrypted) until the attacker 
is paid (Mansfield-Devine 2016, Network Security 
2016).8,9

2. Theft and sale of patient data (ie, private health 
information).

3. Company attack: a hacker may identify flaws in a 
system or device, short the company’s stock, and 
then make the flaws public. Alternatively, a malefi-
cent user may try to harvest insider information 
from a breached company’s network. Attackers 
may compromise a company but not take any 
of the above actions. Instead, they may sell their 
methods or credentials to another group who will 
use them (Perkalis 2014).10

Scenarios where a cyber attack results in the deaths 
of individuals or groups (eg, by corrupting the firmware 
of a pacemaker or insulin pump) can be easily imagined 
and have been demonstrated by researchers (Klonoff 
2015),11 but to date, no such attack is known to have 
occurred in the real world. It is possible that that this is 
because attacks against organizations are more profit-
able than attacks against individuals.

It is essential, therefore, to establish best practice 
methods to maintain patient safety and privacy in this 
new ecosystem of remotely managed devices and mass 
data collection.

7.2.1. Hacking Strategies and Methods in mHealth 
Technologies
Often times, attackers will not directly compromise the 
system that they are after; they will instead start by 
compromising a weaker link. For example, if the goal 
is to obtain private health information about a specific 
patient, they may attempt to get the patient (or a staff 
member) to install a malicious app, compromising the 
rest of the phone, including email and other creden-
tials. From this point, the attacker is in a better position 
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to attack the actual target. The process of chaining 
exploits to work through a system is called pivoting. 
Each pivot or hop enables new privileges that bring the 
hacker closer to desired goals.

The easiest thing to exploit is often a person with 
phishing campaigns. A compromised email account 
can be used to reset passwords for other services and 
to distribute more realistic phishing messages. More 
technical attack pathways are used to compromise the 
RM components of a health care system, for example, 
wireless links (Bluetooth, Wi-Fi, etc), internet, and local 
network communications or servers (databases, web 
frontends, file servers, etc).

7.2.2. Recommendations to the Manufacturer
It is not possible to create systems that canot be hacked. 
However, systems/devices should be designed to fail 
gracefully in conjunction with a plan. This enables rapid 
correction in the event of intrusion.

Business decisions (eg, budget, timeline) should not 
override security, which should be the priority. Attempting 
to close or obscure devices/protocols is not a solution and 
the so called security through obscurity, as a defensive 
measure, has long been rejected as inadequate (Shanon 
1949).12 A balance between usability and security has 
to be struck carefully. Securing devices against attack-
ers while keeping them open to clinicians is a difficult 
task. In mHealth, this difficulty can be amplified by the 
dependence on the patient’s devices (eg, smartphone) 
and practices, which are outside the control of a health 
care IT system. An example of an engineering compro-
mise in implantable cardiac devices is the requirement 
for important wireless communications to only work at 
very short ranges. These communications could be made 
more secure but less usable (eg, requiring wires) or less 
secure but more usable (eg, using Bluetooth).

7.2.3. Recommendations to Clinicians and 
Administrators
The organization should be designed with security in lay-
ers (also called defense in depth), where each system 
is protected with >1 layer of security. Hence, a breach 
in 1 layer will not necessarily result in total compromise. 
For example, a database may (1) require a password, 
(2) only grant a minimum level of access to each user, 
and (3) only accept internal connections. Thus, if a user’s 
password is compromised (1 failed), an attacker still can-
not use it remotely. If the server is accidentally opened 
to remote access (3 failed), the attacker can still only 
access that one user’s data. Other innovative solutions 
include delegating security to a personal base station to 
use a novel radio design that can act as a jammer-cum-
receiver (Gollakotta 2015).13

When recommending devices for patients, it is 
important to consider the potential privacy/security 
weaknesses compared with alternatives, ensure the 
patient is informed about these trade-offs, and review 

how the manufacturer has responded to security inci-
dents in the past (Saxon 2018).14 However, the lack 
of outcome data, combined with the lack of docu-
mented real-world instances of actual cybersecurity 
intrusions to these devices or to peripheral products 
that support device connectivity (programmer, home 
communicator, database, and communication proto-
cols), poses a difficult risk-benefit assessment for cli-
nicians and patients alike.

Regulatory frameworks around cybersecurity are 
changing rapidly (Voelker 2018).15 The FDA (as well 
as other regulatory agencies worldwide) now includes 
security as a part of device safety/efficacy checks, 
and we encourage readers to report security issues to 
manufacturers and the government (eg, through FDA 
Medwatch; Shuren 2018).16

7.2.4. Recommendations to Patients
Clear advice to patients concerning cybersecurity should 
be followed by a formal patient informed consent.

7.3. Reimbursement
Reimbursement is a powerful driver of adoption of new 
clinical pathways and typically instituted once an inter-
vention has been proven scientifically valid and cost-
effective (Treskes 2016).17 This process has only just 
started in mHealth and may be more complex to mea-
sure given the wide scope of telemedicine.

Reduced Costs
This technology may promote an effective means for 
early diagnosis and treatment of arrhythmias and associ-
ated comorbidities, leading to benefits of screening, pre-
vention, and early treatment, thereby reducing adverse 
effects related to delayed therapy and utilization of costly 
health care resources (eg, ER visits or hospitalizations). 
mHealth may help individuals adhere to health recom-
mendations, empower active participation in lifestyle 
changes to modify cardiovascular risk profile, and pro-
mote adherence to medical therapy (Feldman 2018).18 
Together, these may reduce the burden of chronic dis-
ease and associated long-term disability. However, 
assessment of these longer term cost advantages is 
challenging, and value will vary according to country and 
health care system.

Increased Costs
Conversely, there are costs associated with administer-
ing mHealth programs. The widespread availability of 
smartphones and other commercially available mobile 
devices will generate a significant amount of inconclusive 
or false-positive findings, which will in turn lead to addi-
tional testing for validation, thereby increasing utilization 
of health care resources. Widespread implementation of 
screening programs would require additional consider-
ation of costs related to detection of arrhythmias in cur-
rently unscreened populations. Health care providers will 
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also be required to spend time reviewing and interpret-
ing potentially voluminous results (and associated phone 
calls) before making additional evaluation and manage-
ment decisions. This requires financial compensation to 
maintain a viable practice.

RM of Implanted Devices
This provides valuable experience. Randomized clinical 
trials conducted over many years that demonstrated 
safe and effective replacement of traditional in-clinic 
evaluations and more effective discovery of asymptom-
atic clinical events (Varma 2010).19 Health-economic 
studies like EuroEco (ICD patients) showed that clinic 
time needed for checking web-based information, tele-
phone contacts, and in-clinic discussion when required 
was balanced by fewer planned in-office visits with RM, 
resulting in a similar cost for hospitals versus purely 
in-office follow-up (Heidbuchel 2014).20 From a payer 
perspective, there was a trend for cost-saving given 
fewer and shorter hospitalizations, seen also in other 
trials (Crossley 2011, Guedon-Moreau 2014, Hin-
dricks 2014, Mabo 2012).21–24 However, in systems 
with fee-for-service reimbursement, less in-office visits 
(and hospitalizations) will lead to less income for the 
providers (ie, physicians and hospitals) without adap-
tion of the new RM paradigm. This illustrates the com-
plexities in reimbursement.

Currently, RM reimbursement (eg, the United States, 
Germany, France, and the United Kingdom) is imple-
mented in a discrete way following the protocols of 
randomized trials like TRUST (Lumos-T Safely Reduces 
Routine Office Device Follow-Up) or IN-TIME (Implant-
Based Multiparameter Telemonitoring of Patients With 
Heart Failure) (Hindricks 2014, Varma 2010, Varma 
2010),19,25,26 with billing after demonstration of a remote 
contact, with a maximum number per year. Given the 
technological trend toward more continuous transmis-
sions and decision support server systems that alert 
health care providers of potentially relevant information, 
possibly a subscription-based system providing a lump 
sum per year per followed patient may be more effective. 
This should cover costs of hardware, software, and other 
services (like potential use of third-party data monitoring 
centers) and would result in a much better prospective 
budgeting for both health care insurers and providers. 
This scheme may be apt for mobile technology.

It is anticipated that mHealth technology may provide 
a more efficient and cost-effective approach to health 
care delivery that could improve clinical workflow and 
enhance clinical care when integrated into clinical prac-
tice (Jiang 2019).27 Linking this to improved outcome will 
be an important driver of reimbursement, for example, for 
a process leading to an arrhythmia management deci-
sion (but not when monitoring the large asymptomatic 
population without risk factors). Ongoing studies evaluat-
ing mobile technology, such as use of a smartphone ECG 

for AF screening in the AF SMART II study (Atrial Fibrilla-
tion Screen, Management and Guideline Recommended 
Therapy), include a cost-effectiveness analysis (Orchard 
2018).28 Responsibilities for reimbursement may extend 
beyond traditional parties in health care and drive novel 
pathways. Mobile device companies are clearly interested 
in reimbursement issues, evidenced by contact between 
Apple health executives and insurance companies (Bru-
ining 2014).29 Initiatives undertaken in the United States 
are described in Appendix.

7.4. Regulatory Landscape for mHealth Devices
The pace of changes and improvement of digital tech-
nology is furiously fast. With the release and spread of 
the 5G cellular technology, this growth will probably be 
strengthened, and new frontiers around data streaming 
and associated analytics will be crossed. Unfortunately, 
this growth has been slower in the field of digital tech-
nologies, particularly in the United States. The reasons 
are probably linked to the unique relationship between 
the government and its health care system. In the United 
States, mHealth technologies are primarily led by pri-
vate organizations operating under constraints linked 
to financial incentives (Centers for Medicare and Med-
icaid Services [CMS] reimbursement guidelines), patient 
privacy (Health Insurance Portability and Accountability 
Act), and patient safety (FDA). These constraints have 
become obsolete with the development of the digital 
health technologies and novel mHealth devices, and a 
new regulatory paradigm is being formed.

The FDA released an entirely new section under the 
Medical Device category called Digital Health, which is 
managed by the Center for Devices and Radiological 
Health (Shuren 2018, Center for Devices 2019).30,31 
This development was triggered and supported by the 
21st Century Cures Act signed into law on December 
13, 2016. It is designed to help accelerate medical 
product development and bring new innovations and 
advances to patients. The FDA Digital Health policy is 
currently defined under 3 main categories: General Well-
ness, Mobile Medical Apps, and CDS Systems. mHealth 
devices are present in these 3 categories, which are 
defined as follows:

A wellness device is developed “for maintaining or 
encouraging a healthy lifestyle and is unrelated to the 
diagnosis, cure, mitigation, prevention, or treatment of a 
disease or condition” (21st Century Cures Act, Section 
3060 (a)(o)(1)(B)). The FDA regulated Mobile Medical 
Apps on the other hand, as software that is focusing on 
traditionally regulated health functionalities and is cat-
egorized as software as a medical device (SaMD). The 
SaMD must be developed under well-defined frame-
works involving specific software development life cycles 
(IEC-62304), risk assessment, reliability demonstration, 
and safety that includes cybersecurity. The CDS systems 
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may rely on mHeath devices or be included in mHeath 
devices. The definitions of a CDS are provided in the 
21 CCA, Section 520 (o)(1)(E). Briefly, they involve the 
presentation of medical data, recommendations to physi-
cians about the prevention, diagnosis, or treatment of a 
condition or disease. It is not the intent that the HCP pri-
marily relies on this information to make a clinical diag-
nosis or treatment decisions. If wellness devices do not 
require FDA approval to be commercialized, both SaMD 
and CDS do.

The regulatory policies are changing and adapting 
over time to fit the technology development of mHeath 
devices. But today, the time required for approving new 
technologies is significantly longer than the pace of 
change of the mHealth technologies. Hence, streamlin-
ing the regulatory submission process is of great inter-
est to many stakeholders. One of the recent initiatives in 
the United States designed to address this challenge is 
the FDA’s digital health Software Precertification (Pre-
CERT) program (Lee 2018).32,33 The Pre-CERT is devel-
oped to shift the current paradigm of SaMD submission. 
The program is ambitious and proposes to expedite 
regulatory review for the companies that can demon-
strate a series of components that includes process 
certification, postmarket review, and real-world evidence 
(among others). It is expected that a company gaining 
FDA Pre-CERT could ultimately eliminate or streamline 
their regulatory submission process depending on the 
risk associated with their SaMD technologies. Started in 
2019, this initiative currently involves international com-
panies that are pushing their wellness technologies into 
the clinical realm. This type of new regulatory framework 
will certainly help corporate America to accelerate the 
commercialization of their products, but the Pre-CERT 
might be much more difficult to reach by smaller compa-
nies that do not have the resources to demonstrate the 
level of trust and to implement the level of verification 
and transparency Pre-CERT requires.
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8. PREDICTIVE ANALYTICS
AI is a broad term that describes any computational pro-
grams that normally require human intelligence such as 
image perception, pattern recognition, inference, or pre-
diction (www.oed.com; Kagiyama 2019).1,2 Most com-
monly, AI is implemented using analytical methods of 
machine learning or deep learning. These methods are 
well suited for pattern classifications, such as images, 
including ECG.

The potential synergy between AI and mHealth 
has excited the health care community since this may 
enable solutions to improve patient outcomes and 
increase efficiency with reduced costs in health care 
(Davenport 2019, Marcolino 2018).3,4 Smartphone 
apps and wearable devices generate a huge amount 
of data that exceed the human capacity of integration 
and interpretation (Steinhubl 2015).5 Biometric datas-
ets of astronomical proportions may be compiled. This 
knowledge may be directed to treat an individual or 
understand populations. For instance, 6 billion nights of 
surrogate sleep data reflecting global sleep deprivation 
may potentially inform public health initiatives (https://
aasm.org/fitbit-scientists-reveal-results-analysis-6-bil-
lion-nights-sleep-data).6 mHealth with internet con-
nection enables cloud-based predictive analytics from 
individual-level information (Bumgarner 2018, Nasci-
mento 2018, Ribeiro 2019).7–9

Cardiology has been an early area of investigation in 
AI due to the abundance of data well suited for classifica-
tion and prediction (Seetharam 2019).10 Neural networks 

have been tested, trained, and successfully validated to 
be at least as accurate, if not more, than physicians in 
diagnosis or classification of 12-lead ECGs and recogni-
tion of arrhythmias in rhythm strips and ambulatory ECG 
recordings (Hannun 2019, Ribeiro 2019, Smith 2019).11–

13 They have also been shown to successfully estimate 
ejection fraction, identify left ventricular dysfunction, and 
even diagnose diseases such as hypertrophic cardiomy-
opathy from the echocardiogram (Zhang 2018).14 More 
recently, neural networks have also aided in gathering 
new dimensions of information, such as identifying left 
ventricular dysfunction (Attia 2019).15 These methods 
have the potential for a point-of-use diagnosis of a wear-
able sensor or consumer device and without delays of 
requiring clinical conformation, although rigorous safety 
assessments of unsupervised use will be necessary. 
More recently, AI methods have also been applied to pre-
diction, not just classification, for example, using 12-lead 
ECG to predict the risk of AF from a sinus rhythm ECG 
(Attia 2019).16

Already, AI has been embedded in mHealth applica-
tions, such as smartwatch and smartphone-connect ECG 
for semiautomated diagnosis of arrhythmias (Bumgarner 
2018, Halcox 2017).7,17 These diagnoses are intended 
to serve as prediagnostics rather than supplanting a 
physician interpretation. Application of AI techniques to 
point-of-care ultrasound in the development of machine-
learning systems may aid in the optimization of acqui-
sition and interpretation of a high volume of images, 
reduce variability, and improve diagnostic accuracy 
(Chamsi-Pasha 2017).18 AI-based prediction models 
have been developed for HF and AF, although some-
times the accuracy of the AI-derived models seems to 
be rather limited or not superior than those derived from 
conventional methods (Awan 2019, Clifton 2015, Friz-
zel 2017, Goto 2019, Safavi 2019, Tripoliti 2019).19–24 
mHealth-specific investigations are few. Results from the 
LINK-HF study were encouraging. A cloud-based ana-
lytics platform used a general machine-learning method 
of similarity-based modeling, which models the behav-
ior of complex systems (eg, aircraft engines) to create a 
predictive algorithm for HF decompensation, using data 
streamed from a chest patch sensor.

Several limitations should be considered and roadblocks 
removed before AI-based mHealth strategies become rou-
tinely incorporated in clinical practice (Kagiyama 2019, 
Powell 2019, Ribeiro 2019, Steinhubl 2015).2,25–27 Studies 
on AI are still scarce and based on observational studies 
and secondary datasets. Validation in other clinical set-
tings and a deeper evaluation of their meaning in every day 
practice are generally lacking. Thus, high-quality evidence 
that supports the adoption of many new technologies is 
not available. Most algorithms work with the black-box prin-
ciple, without allowing the user to know the reasons why a 
diagnosis or recommendation was generated, which can 
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be a problem, especially if the algorithms were designed 
for a different environment than the one that the current 
patient is inserted (Weng 2017, Ribeiro 2019).12,28 Issues 
regarding cost-effectiveness, implementation, ethics, pri-
vacy, and safety are still unsolved.
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9. FUTURE DIRECTIONS
mHealth is disruptive at multiple levels of health care but 
requires significant investment in validation, demonstration 
of clinical utility, and value. Stakeholders, each with indepen-
dent concerns and constraints (Table 5), lack consensus or 
coordination with design, use cases, and implementation 
(Figure 7). Thus, formal recommendations for integration 
of mHealth into clinical practice cannot be made at this 
time. This is exemplified by the US Preventative Services 
Task Forces statement that “evidence is insufficient to initi-
ate therapy for AF detected by mHealth,” despite the fact 
that AF has been an early use case with strong patient and 
clinician interest (Curry 2018).1 Thus, mHealth devices are 
currently nonprescription devices marketed directly to con-
sumers to track data without enabling interventions.

Some of the steps needed to standardize mHealth 
applications are outlined below.

1. Validation
Promote Standards and Create Tools for the 
Comparative Assessment of Functionality, Relative 
to a Medical Use Device
Results from different devices applied to the same condition 
may not match: for example, the diagnosis of AF by ECG- or 
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photoplethysmography-based systems is made differently. 
This has significant implications for medical decisions.

2. Identify Clinical Care Pathways
Screening

• Assess value according to the population addressed.
• Establish a uniform set of criteria for clinical action-

ability (Slotwiner 2019).2

Screening should be medically directed and not driven 
by commercial interests. Caution should be exercised 
in extrapolating management strategies learned from 

cohorts with clinically diagnosed AF (usually from health 
care system data, trials, or inpatient registries) to AF 
detected with mHealth technologies (healthy consum-
ers). Data from low-risk populations carry a relatively high 
risk of false positives, which may generate additional tests 
with resultant clinical risk to patient (even inducing anxi-
ety rather than reassurance), risk from overtreatment, and 
costs to the payor. There is a risk that unless directed to 
a higher risk population, screening for AF using mHealth 
technologies may fail and follow the trajectory of many 
medical screening programs throughout history.

Table 5. Conditions, Stakeholders, and Expectations

 Applications/conditions Opportunities Challenges to resolve

Biosignals monitored Diverse Multiparametric trending Lack of validation; transmission 
frequency

Contactless screening Ethics

Target condition Arrhythmias Screening Lack of outcome data

Treatment Prevention

Follow-up Facilitate management

Rehabilitation  

Lifestyle modification  

Chronic disease  

Users Healthy consumers Increase use by patients Managing the worried well

Patient expectations Confidence Data access Data access

Engagement Real-time treatment Driven by popular press

Education Self-management Excessive focus on data without 
clinical context

  Digital divide

  Lack of internet access

Physician expectations Versatility Validation Absence of FDA approval

Improve patient outcome Lack of outcome data

Reduce in-clinic visits Establish transmission frequency

Real-time patient treatment Define clinical actionability

Predictive analytics Manage false positives

Precision medicine Standardize data flow

 Manage data overload

 Interoperability with EMR

 Mechanism for feedback to pa-
tients for treatment decisions

 Assurance of patient adherence

 Physician or manufacturer?

 Reimbursement

 Legal responsibility

Hospital Improve efficiencies Predictive analytics Lack of outcome data

Improve access Interoperability Value impact

 Cybersecurity Legal responsibility

 Reimbursement  

Technology/manufacturer Direct to consumer Patient care Learn treatment pathways

Sales Community care Partner with clinic

  Legal responsibility

  Predictive analytics

Payor Reduce costs Cost-benefit analysis  

Improve outcome

EMR indicates electronic medical record; and FDA, Food and Drug Administration.
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Key Knowledge Gap
Identify characteristics (duration, episode number/ 
density) and risk factors that justify anticoagulation for 
mHealth-detected AF.

Disease Management
• Identify conditions and schedules for home-based 

therapeutic strategies that may reduce dependency 
on clinic evaluations (as shown for CIEDs).

• Identify signals that predict decompensation and 
design preemptive interventions.

• Assess efficacy of therapies.

Outcomes
Evidence for benefit of mHealth directed

• arrhythmia treatment
• management of modulating factors (eg, comorbidi-

ties and lifestyle modifications).

3. Implementation
Cost Effectiveness

1. For example, impact of improved clinical workflow 
and enhance clinical care, according to condition 
(Jiang 2019).3

2. Impact on health care system and reimbursement.
3. Impact on costs to patient or consumer.

Public Health and Professional Society Initiatives
1. Education, awareness
2. Bring together stakeholders
3. Guidelines

4. Patient Self-Management
Patients control the intensity of monitoring and act on 
patient-facing data. Frequency of data acquisition is spo-
radic determined by, for example, convenience, or following 
symptoms, or recreational. This strategy is likely insensitive 
for events and rarely delivers rapid clinical actionability for 
life-threatening conditions. What is required is

• education on which data are clinically actionable in 
individual’s clinical context and

• tailor monitoring schedule accordingly
• proof of safety
One recent example illustrates an on-demand use. The 

Fibricheck app was utilized by patients to monitor rate 
and rhythm for a week before teleconsultations during 
the COVID-19 pandemic to enable remote assessment 

Figure 7. Connectivity and questions.
Multiple levels of cooperation among a variety of stakeholders are needed to capitalize fully on the vast potential of mobile health (mHealth), 
but many questions remain unanswered. Healthy consumers (increasing) predominate among mHealth users. Only a minority of patients are 
prescribed these digital tools. Potential health benefits of mHealth may be realized when manufacturer participates with clinic for validation 
in defined disease states. Parties responsible for data control, and thereby predictive analytics, need to be defined. Ultimately, the payor and 
physician need to be convinced of benefits before digital tools are firmly embedded in clinical practice.
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of the disease state and support treatment decisions. 
This was regulated by a time-limited prescription to use 
the app for a predefined period, avoiding unnecessary 
data load and additional follow-up patient contacts (Pluy-
maekers 2020).4

• Patients’ legal right to their medical data to include 
data collected from nonmedical (ie, consumer) 
products.

5. Manufacturer
mHealth introduces the manufacturer as a party with 
significant responsibilities. mHealth tools largely 
have been developed as consumer-facing technolo-
gies accessible to a broader market through retail 
channels rather than through established medical 
supply channels. This may make business sense for 
the technology supplier, given the high community 
penetration of wearable, smart-technology devices (1 
in 10 Americans [30 million total]). However, a direct-
to-consumer health care delivery bypasses both the 
clinician, health care system, and insurer, without 
addressing the needs of health professionals, who 
remain responsible for clinical decision-making on 
acquired data. Any advance toward medical applica-
tion (beyond toys for the worried well/wealthy well) 
will require manufacturers to

• facilitate accessibility and affordability
• engage with clinicians to engineer devices accord-

ing to clinical needs and partner in validation. This 
is vital, since physician carries ultimate responsibil-
ity for medical decisions and is best positioned to 
guide development and application

• define role as data controllers (eg, GDPR in Europe).

6. Assign Responsibilities
• Identify parties (manufacturer, hospital, or third 

party) responsible for cybersecurity, data protection, 
and liability for misdiagnosis or missed diagnosis

• Define standard of care for clinic response time 
according to condition

This assumes greater significance as clinical decisions 
become enabled in real-time using cloud-processing 
resources linked to enhanced data transmission rates 
(5G) and InternetofThings and scalability increases.

• Ethical and societal issues with multiple screening 
(Yan 2019, Turakhia 2020).5,6

7. Health Care Delivery
Interconnectedness between individual applications and 
with existing health care architectures may reshape the 
current environment.

• Exception-based ambulatory care, that is, see 
patients as they need to be seen.

• Centralized (cloud)-based processing to forward 
only clinically relevant data to physician/clinic.

• Identify at-risk patients early (even before symptoms 
develop) and permit preemptive care (Boehmer 
2017, Rosier 2016).7,8

• Pooled population screening, altering the para-
digm of individual screening (Yan 2019, Turakhia 
2020).5,6

• Extend the role of wearables from ambulatory to in-
hospital care, for example, replace traditional wired 
monitoring of single parameters for individual analy-
sis to wireless monitoring of multiple parameters.

For example, a waterproof ring technology (BodiMet-
rics) was used for multiparametric monitoring (HR, 
sleep, oxygen desaturation index, steps, and calo-
ries burned) in intensive care unit management for 
COVID-19 patients. The ring links to a smartphone or 
centralized hub in hospitals and permits data sharing 
and cooperative treatment (https://bodimetrics.com/
product/circul-sleep-and-fitness-ring/).9

• Extend function from monitoring only to intervention.
	○ Enable remote programming of therapeutic 
implantable devices

For example, CIEDs, emerging wearable cardioverter-
defibrillators, are incorporating smartphone Bluetooth 
Low Energy–based connectivity for the transmission, 
display, and interpretation of transmitted data by patients 
and their clinicians. This may permit reprogramming of 
parameters like diagnostic data, detection zones, clear-
ing counters; AV delays/post-ventricular atrial refractory 
period adjustment, upper rate and lower rate adjust-
ments, reprogram amplitude adjustments; magnetic res-
onance imaging mode, and enable emergency therapies 
or disable inappropriate therapies due to lead fracture/
incessant supraventricular tachycardia/double counting.

• Enable interventional procedures, for example, 
telerobotic ablation models, which could improve 
access to patients living in remote areas with 
highly skilled EPs operating remotely (Choi 2018, 
Haidegger 2011, Shinoda 2020).10–12

• Enable precision medicine by incorporation of 
the wider range of mobile signals seamlessly into 
genetic and clinical profile, with environmental and 
lifestyle data (big data; https://ghr.nlm.nih.gov/
primer/precisionmedicine/initiative).13

Concluding Remarks
mHealth application is at different stages of evolution 
around the world. Few of the technologies described are 
universally approved and affordable in all countries. As 
a result, this document reflects largely US perspectives. 
The experience described may serve to guide other mem-
bers of the international professional bodies endorsing 
this consensus statement. The World Health Organiza-
tion envisioned that increasing the capacity to implement 
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and scale up cost-effective innovative digital health could 
play a major role toward achieving universal health cov-
erage and ensuring access to quality health services, 
at the same time recognizing barriers similar to those 
discussed here. Some of these can be resolved rapidly, 
as seen in response to the recent SARS-CoV-2 global 
pandemic, which forced a need for contactless monitor-
ing and thereby adoption of digital tools (U.S. Depart-
ment of Health & Human Services 2020, U.S. Food & 
Drug Administration 2020, Varma 2020).14–16 Regulatory 
bodies were responsive, approving technologies, relax-
ing rules confining the use of telehealth services within 
borders and to certain patient populations, and creating 
a reimbursement structure, illustrating that appropriate 
solutions can be created when necessary.

Demonstration of the clinical utility of mHealth has the 
potential to revolutionize how populations interact with 
health services, worldwide.
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APPENDIX

In the United States, reimbursement for medical services 
is guided primarily by the Centers for Medicare and Med-
icaid Services (CMS). The American Medical Association 
Current Procedural Terminology (CPT) Committee devel-
ops descriptive codes for each medical service and as-
signs a CPT code. Each CPT code is then referred to the 
association’s Relative Value Update Committee to devel-
op a recommended relative value unit, which determines 
reimbursement. CMS usually accepts the recommenda-
tions from the American Medical Association. Presently, 
the CPT Committee is developing codes to represent the 
clinical work involved in managing mobile health data. 
These codes will then be evaluated and assigned relative 
value unit values. If accepted by CMS, these will be in-
cluded in the Medicare Fee Schedule and go into clinical 
use. This process typically takes 2 years. Once the codes 
and services are approved by CMS and published in the 
Fee Schedule, other insurers typically accept them as 
well (at the time of writing, CPT 99091 and CPT 99457 
had received approval). In 2015, the CMS in the United 
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States initiated a new chronic care management code 
that reimburses primary care practices for non–face-to-
face care for chronic care management payment. In No-
vember 2018, CMS finalized plans to reimburse health 
care providers for certain remote patient monitoring and 
telehealth services. These changes focused on 3 new 
CPT codes that separate remote patient management 
services from telehealth services (ref 8 web-based De-
partment of Health).1 The new CPT codes include No. 
99453, 99454, and 99457. The first 2 codes describe 
RM of physiological parameters but do not specifically 
include ECG monitoring. The third code provides man-
agement services, 20 minutes or more of clinical staff/
physician/other qualified health care professional time 
in a calendar month requiring interactive communication 
with the patient/caregiver during the month; however, it 
is not clear that this code could be utilized for ECG moni-
toring services through mobile devices. The preexisting 
CPT code 93040 (used for reporting on a rhythm ECG, 
1–3 leads, without interpretation and report) would not 
be appropriate for patientinitiated mobile device events 
as this would require an order that is triggered by an 
event followed by a separate signed and retrievable re-
port. CMS has also proposed establishing a new virtual 
service HCPCS (Healthcare Common Procedure Coding 

System) code, GRAS1, for “Remote Evaluation of Pre-
Recorded Patient Information,” which would reimburse 
for a provider’s asynchronous review of “recorded video 
and/or images captured by a patient in order to evaluate 
the patient’s condition” and determine whether or not an 
office visit is necessary (ref 9 web-based Telemedicine 
and Health).2 This code could be billed separately if there 
was not an E/M visit within the previous 7 days. CMS 
finalized separate payment for CPT code 99091 (col-
lection and interpretation of physiological data; eg, ECG, 
BP, and glucose monitoring) digitally stored or transmit-
ted by the patient or caregiver to the physician or other 
qualified health care professional, qualified by education, 
training, licensure/regulation, requiring a minimum of 30 
minutes of time (ref 8 web based).1 However, there must 
be a clinically relevant reason for the physician to need 
to review the data each month.
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