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Abstract

In the meta-analytic surrogate evaluation framework, the trial-level coefficient

of determination R2
trial

� �
quantifies the strength of the association between the

expected causal treatment effects on the surrogate (S) and the true (T) end-

points. Burzykowski and Buyse supplemented this metric of surrogacy with

the surrogate threshold effect (STE), which is defined as the minimum value

of the causal treatment effect on S for which the predicted causal treatment

effect on T exceeds zero. The STE supplements R2
trial with a more direct clini-

cally interpretable metric of surrogacy. Alonso et al. proposed to evaluate sur-

rogacy based on the strength of the association between the individual (rather

than expected) causal treatment effects on S and T. In the current paper, the

individual-level surrogate threshold effect (ISTE) is introduced in the setting

where S and T are normally distributed variables. ISTE is defined as the mini-

mum value of the individual causal treatment effect on S for which the lower

limit of the prediction interval around the individual causal treatment effect

on T exceeds zero. The newly proposed methodology is applied in a case study,

and it is illustrated that ISTE has an appealing clinical interpretation. The R

package surrogate implements the methodology and a web appendix

(supporting information) that details how the analyses can be conducted in

practice is provided.
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1 | INTRODUCTION

The duration, complexity and cost of a clinical trial are substantially affected by the endpoints that are used to assess
treatment efficacy.1–4 The most credible indicator of the response to the new treatment (the so-called true endpoint)
may be distant in time (e.g., survival time in early cancer stages), rare (e.g., pregnancy in severe luteinizing hormone
deficiency), ethically challenging (e.g., procedures that involve a non-negligible health risk), or expensive (e.g., imaging
data). An appealing strategy in these circumstances is to substitute the true endpoint by a ‘replacement endpoint’ that
can be measured earlier, occurs more frequently, is more ethically acceptable, and/or is cheaper. If such a replacement
endpoint allows for the accurate prediction of the treatment effect on the true endpoint, it is called a surrogate end-
point.5–8
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The statistical evaluation of a candidate surrogate is not a trivial endeavour, and different strategies have been
developed for this purpose. In the meta-analytic framework, Buyse and Molenberghs6 proposed to quantify surrogacy
based on two metrics. The trial-level coefficient of determination R2

trial

� �
quantifies the strength of the association

between the expected causal treatment effects on the true (T) and the surrogate (S) endpoints across different clinical
trials. The individual-level coefficient of determination R2

ind

� �
quantifies the strength of the association between S and

T across different patients after adjustment for trial- and treatment-effects. Burzykowski and Buyse3 supplemented
these metrics of surrogacy with the surrogate threshold effect (STE), which is defined as the minimum value of the
treatment effect on S for which the predicted treatment effect on T is significantly different from zero. The STE is an
appealing metric of surrogacy that is complementary to R2

trial, in the sense that it allows for a more direct clinical evalua-
tion of the appropriateness of a candidate surrogate endpoint.

Several authors have argued that understanding the association between individual (rather than expected) causal
treatment effects on S and T is critical to assess surrogacy.1,9,10 To this end, Alonso et al.1 introduced the individual
causal association (ICA), which is defined as the correlation between the individual causal treatment effects on S and
T (in the setting where both S and T are normally distributed endpoints). In the current paper, an STE-like metric of
surrogacy is introduced in the single-trial causal-inference framework. The so-called individual-level STE (ISTE) will be
defined as the minimum value of the individual causal treatment effect on S for which the lower limit of the prediction
interval around the individual causal treatment effect on T exceeds zero. Similarly as what is the case with the STE, the
ISTE allows for a more direct assessment of the clinical usefulness of the candidate S that supplements ICA. Notice that
ISTE and the STE differ in terms of their data requirements, that is, one clinical trial is sufficient to compute ISTE
whereas multiple clinical trials are needed to compute STE.

The remainder of this paper is organised as follows. In section 2, Rubin's causal-inference model11 is introduced. In
sections 3 and 4, the ISTE is defined and related concepts are explored. In section 5, the identifiability issues that are
encountered in estimating ISTE are discussed. In section 6, the newly developed methodology is exemplified in a case
study. In section 7, a simulation study is conducted. Finally, some critical comments regarding the newly proposed
methodology are given in section 8. The methodology is implemented into the R package surrogate (available for down-
load at CRAN), and a web appendix S1 that accompanies this paper shows how the package can be used to conduct the
analyses in practice.

2 | CAUSAL-INFERENCE MODEL AND THE INDIVIDUAL CAUSAL
ASSOCIATION

It will be assumed throughout this paper that data were collected on the surrogate (S) and the true endpoint (T) for
N patients in a single clinical trial where two treatments are evaluated in a parallel study design. No sub-index
for patients will be used to simplify the notation.

Rubin's model for causal inference11 assumes that each patient has two potential outcomes for T: an outcome T0

that would be observed under the control treatment (Z = 0), and an outcome T1 that would be observed under the
experimental treatment (Z = 1). T0 and T1 are potential outcomes in the sense that they represent the outcomes of
the patient had he or she received the control or the experimental treatment, respectively. Similarly, it is assumed that
each patient has two potential outcomes for S, that is, S0 and S1. The four-dimensional vector of potential outcomes is
then defined as Y = (T0,T1, S0, S1)

0
and the corresponding vector of individual causal treatment effects Δ = (ΔT,ΔS)

0
,

where ΔT = T1�T0 and ΔS = S1� S0.
The expected (or average) causal treatment effects on S and T in the population of interest can be estimated as E

(Δ) = (β, α), where β = E(ΔT) and α = E(ΔS). Rosenbaum and Rubin12 provided three identifiability conditions under
which it is possible to obtain consistent estimators of the expected causal treatment effects. If Y denotes the response of
interest and Yz the potential outcome associated with Z = z then the three identifiability conditions are: (1) Consistency:
If Z = z for a given subject then Yz = Y for that subject, (2) Conditional exchangeability: There is no unmeasured con-
founding given the data on baseline covariates L, that is, Yz⊥Z j L = l for each possible value z of Z and l of L and
(3) Positivity: If fL(l)≠ 0 then fZ jL(z| l) > 0.13 It can easily be shown that in randomised clinical trials all conditions hold
and the expected causal treatment effects can be estimated as β = E(T|Z = 1)�E(T|Z = 0) and α = E(S|Z = 1)�E
(S|Z = 0), where the conditional expectations are estimated using the observed means in the control and treated
groups. The distribution of the vector of potential outcomes Y plays an important role in the surrogate evaluation con-
text. In the following, it will be further assumed that Y�N(μ,Σ), where μ¼ μT0

,μT1
,μS0 ,μS1

� �0
and:
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Σ¼

σT0T0 σT0T1 σT0S0 σT0S1

σT0T1 σT1T1 σT1S0 σT1S1

σT0S0 σT1S0 σS0S0 σS0S1
σT0S1 σT1S1 σS0S1 σS1S1

0
BBB@

1
CCCA:

In spite of being a powerful theoretical tool, the concept of potential outcomes raises some important methodologi-
cal challenges. For example, even though the joint distribution of the subvector (Tz, Sz) is identifiable, these marginals
do not fully determine the joint distribution of Y and thus the multivariate normality assumption Y�N(μ,Σ) is not ver-
ifiable. Notwithstanding this issue, several authors have already used the multivariate normal distribution to model
potential outcomes.1,10,14 Further, it has been established in information theory that the normal distribution has the
maximum entropy among all distributions with a specified mean and covariance, and consequently the assumption of
normality imposes minimal prior structural constraints beyond these moments.15 So unless there is strong evidence
against the use of the normal model (based on e.g., major violations of bivariate normality for (Tz, Sz) in the dataset at
hand), the normality assumption seems to be a sensible choice as it is the least restrictive from all the possible
unverifiable distributional assumptions one can chose from.

Given the aforementioned distributional assumptions, the following holds for the vector of individual causal treat-
ment effects:

Δ¼AY ¼ T1�T0

S1�S0

� �
�N μΔ,ΣΔð Þ,whereA¼ �1 1 0 0

0 0 �1 1

� �
,

ΣΔ = AΣA
0
, μΔ = (β, α)

0
with β¼E ΔTð Þ¼ μT1

�μT0
and α¼E ΔSð Þ¼ μS1 �μS0 . It has been argued that if S is a good sur-

rogate for T, then ΔS should convey a substantial amount of information about ΔT.1 The amount of uncertainty in ΔT
that is expected to be removed when the value of ΔS becomes known is referred to as the mutual information. In the
normal setting the concepts of mutual information and correlation are equivalent. In line with these developments,
Alonso et al.1 proposed the use of the ICA to assess surrogacy:

ρΔ ¼ corr ΔT,ΔSð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σT0T0σS0S0

p
ρT0S0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σT1T1σS1S1

p
ρT1S1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σT1T1σS0S0

p
ρT1S0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σT0T0σS1S1

p
ρT0S1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σT0T0 þσT1T1 �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σT0T0σT1T1

p
ρT0T1

� �
σS0S0 þσS1S1 �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σS0S0σS1S1

p
ρS0S1

� �q , ð1Þ

where ρXY denotes the correlation between the potential outcomes X and Y.

3 | THE INDIVIDUAL-LEVEL SURROGATE THRESHOLD EFFECT

Based on the causal-inference model detailed in section 2, let us now consider the relation between the expected value
of ΔT and ΔS:

E ΔTjΔSð Þ¼ γ0þ γ1ΔS, ð2Þ

with γ0 = β� γ1 α and γ1 ¼ σΔSΔT
σΔSΔS

, where σΔSΔT ¼ σT1S1 þσT1S0 þσT0S1 þσT0S0 and σΔSΔS¼ σS1S1 þσS0S0 �2σS1S0 . The upper
and lower bounds of the (1� ζ)% prediction interval (PI) around E(ΔT|ΔS) for ΔS0 equal:

l ΔS0ð Þ¼ γ0þ γ1ΔS0� t 1�ζ=2,N�1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE 1þ 1

N
þ ΔS0�αð Þ2
σΔSΔS N�1ð Þ

 !vuut , ð3Þ

u ΔS0ð Þ¼ γ0þ γ1ΔS0þ t 1�ζ=2,N�1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE 1þ 1

N
þ ΔS0�αð Þ2
σΔSΔS N�1ð Þ

 !vuut , ð4Þ
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with ΔS0 is the individual causal treatment effect for a new observation, N is the number of patients in the clinical trial,
t(1� ζ/2,N� 1) is the (1� ζ)� th percentile of a t-distribution with N� 2 degrees of freedom, and

MSE mean squared errorð Þ¼
P

ΔT�E ΔTjΔS0ð Þð Þ
N�2 ¼ N�1

N�2

� �
σΔTΔT � σ2ΔTΔS

σΔSΔS

� �
with σΔTΔT ¼ σT1T1 þσT0T0 �2σT1T0 . The (1� ζ)% PI

corresponds to the interval in which a future observation is expected to fall with the stated level of probability. In the
frequentist framework (which is used in the present paper), this probability relates to (hypothetical) repetitions of the
same experiment or study. Alternatively, a PI could also be formulated in the Bayesian framework, where it would refer
to the interval that contains a future observation with subjective conditional probability (1� ζ)% (for details, see Refer-
ence 16).

The value ΔS0 in Equation (3) for which it holds that l(ΔS0) = 0 is defined as the individual-level surrogate thresh-
old effect (ISTE). The ISTE can be obtained by setting l(ΔS0) equal to 0 in Equation (3) and solving the equation
for ΔS0:

ISTE¼� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�BC

p þD
E

, ð5Þ

where,

A¼ �2N γ0 γ1 σΔSΔSþ2γ0 γ1σΔSΔS�2αMSEt21�ζ=2,N�1ð Þ
� �2

,

B¼ 4 �Nγ21 σΔSΔSþ γ21σΔSΔSþMSEt21�ζ=2,N�1ð Þ
� �

,

C¼�N γ20σΔSΔSþ γ20σΔSΔSþα2MSEt21�ζ=2,N�1ð Þþ

MSEN t21�ζ=2,N�1ð ÞσΔSΔS�
MSEt21�ζ=2,N�1ð ÞσΔSΔS

N
,

D¼ 2N γ0 γ1σΔSΔS�2γ0 γ1σΔSΔSþ2αMSEt21�ζ=2,N�1ð Þ,

and

E¼ 2 �N γ21σΔSΔSþ γ21σΔSΔSþMSEt21�ζ=2,N�1ð Þ
� �

:

Figure 1A graphically illustrates how ISTE is determined, that is, ISTE corresponds to the value ΔS0 for which the
lower bound of the PI l(ΔS0) equals 0 (black arrow in the figure). When ISTE is large, ΔS0 should be large in order to
conclude a non-zero individual causal treatment effect on T. In such a case, the candidate surrogate may not be useful
in practice even though the individual causal treatment effects on S and T are highly correlated (i.e., high ICA). ISTE
can thus supplement ICA with important information regarding the (clinical) usefulness of the surrogate.

Notice that for some true endpoints a higher value is indicative for a poorer outcome (e.g., when T is the intensity
of pain or level of depressive symptoms), and thus a negative ΔT is indicative for a beneficial treatment effect. In such a
situation, ISTE corresponds to the value ΔS0 for which it holds that u(ΔS0) = 0, that is, ISTE¼

ffiffiffiffiffiffiffiffiffiffi
A�BC

p þD
E .

4 | RELATED CONCEPTS

4.1 | Average causal necessity and sufficiency

Based on the principal stratification approach proposed by Frangakis and Rubin,17 average causal necessity and suffi-
ciency were defined in the following way18:

VAN DER ELST ET AL. 1219

 15391612, 2021, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pst.2141 by U

niversiteit H
asselt, W

iley O
nline L

ibrary on [24/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Average causal necessity :E ΔTjΔS0 ¼ 0ð Þ¼ 0,

Average causal sufficiency : There exists a constant w such thatE ΔTjΔS0 >wð Þ>0:

Average causal necessity states that in groups of patients who have no individual causal treatment effect on S, the
expected causal treatment effect on T should be zero. If average causal necessity holds, γ0 in Equation (2) is zero.14

The average causal necessity definition is appealing but may also be restrictive. Indeed, it was shown that even when
ICA = 1 (i.e., ΔS and ΔT are deterministically related), average causal necessity may not hold unless further assump-
tions are made (for details, see Reference 1).

The average causal sufficiency definition states that there is a minimum individual causal treatment effect w on
S that guarantees a positive expected causal treatment effect on T. Alonso et al.1 showed that w exists when ICA is posi-
tive. In the above notation and assuming that ICA is positive, w corresponds to � γ0

γ1
(see Equation 2). Importantly, even

when ICA is positive, there may be individual patients for whom the treatment has no significant impact or even has a
negative effect on T.1 Indeed, the treatment can be expected to be harmful for patients who have an individual causal
treatment effect on S for which it holds that u(ΔS0) < 0 (see Equation 4). Notice that w is always closer to 0 than ISTE
because the latter metric considers the prediction error around the expected value of ΔT. This is illustrated in Figure 1B
(black arrow). Observe also that average causal necessity does not hold in the example shown in Figure 1, because E
(ΔT|ΔS0 = 0)≠ 0 (see grey arrow).

4.2 | The surrogate predicted function

In the setting where both S and T are binary endpoints, Alonso et al.19 proposed the surrogate predictive function (SPF).
The SPF essentially allows for the determination of the most likely outcome of ΔT for a given value of ΔS = {�1,0,1}. A
similar idea can be used in the current setting, that is, the expected ΔT value can be computed for a given value of ΔS0
to get a better understanding of the relation between both (see section 6).

4.3 | The relative effect

ISTE is also connected to the relative effect (RE) that was proposed by Buyse and Molenberghs.5 The RE is essentially
the slope of a regression line between the expected (trial-level) causal treatment effects on T and S, that is, RE¼ β

α .

(A) ISTE

�S0

E
(�

T
|�

S
0
)

u(�S0)

E(�T|�S0)

l(�S0)

ISTE

0

0

(B) Average causal necessity and sufficiency

�S0

E
(�

T
|�

S
0
)

u(�S0)

E(�T|�S0)

l(�S0)

0

0 �

FIGURE 1 Expected ΔT as a function of ΔS0 (black solid line) and (1� ζ)% PIs (black dashed lines). Panel (A) shows how the ISTE is

determined, that is, ISTE is the value ΔS0 for which it holds that the lower bound of the prediction interval l(ΔS0) equals 0 (black arrow).

(B) shows w, which is the value ΔS0 for which it holds that E(ΔT|ΔS0) = 0 (black arrow). Notice that average causal necessity does not hold

in this example because E(ΔT|ΔS0 = 0)≠ 0 (grey arrow)
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Similarly, the γ1 parameter in Equation (2) reflects the change in E(ΔT|ΔS0) when ΔS0 increases by one unit. When
average causal sufficiency holds (i.e, when γ0 in Equation (2) equals 0), the RE corresponds to γ1.

5 | ESTIMATING ISTE

The so-called fundamental problem of causal-inference states that only one of the potential outcomes associated with T
and S are observed in practice. As the correlations ρT0T1

, ρT0S1 , ρT1S0 and ρS0S1 in Σ cannot be estimated, the ISTE is not
identifiable either. To deal with these identifiability issues, a simulation-based sensitivity analysis can be conducted in
which the ISTE is estimated across a set of plausible values for the unidentifiable parameters in Σ. Van der Elst et al.10

proposed an algorithm in which one first specifies a distribution for the unidentified correlations, say G� unif(�1, 1).
The use of the latter distribution can be justified based on Laplace's principle of indifference, which essentially states
that k possible outcomes should be assigned equal probabilities when no other information is available.15 That is, if
there are no data available suggesting that one outcome is more likely than another one, then each possibility should
be assigned a probability equal to 1/k. In a Bayesian framework, this would correspond to a non-informative prior.
Alternatively, the use of the uniform distribution G� unif(�1, 1) can also be justified based on information-theoretic
principles, as the uniform distribution on the interval (a, b) is the maximum entropy distribution among all continuous
distributions which are supported in the interval (a, b).

In the next step of the algorithm, several covariance matrices Σ are generated by sampling the unidentifiable corre-
lations randomly and independently from G. Under the identifiability conditions described above, the identifiable
parameters can be estimated using the data from the control and experimental treatment groups. In the subsequent
steps the identifiable parameters are fixed at their estimated values. From the previous matrices only those that are pos-
itive definite are retained to calculate the ISTE. The so-obtained vector of values quantifies the ISTE across many plau-
sible ‘realities,’ that is, across many different scenarios where the assumptions that are made for the unidentified
correlations are compatible with the observed data. The general behaviour of ISTE can subsequently be examined, for
example, by quantifying the variability and the range of its estimates. In this way, the sensitivity of the results with
respect to the unverifiable assumptions (uncertainty) can be evaluated.

In some situations, biological or substantive knowledge may impose reasonable restrictions on the grid G that is
considered for the unidentifiable correlations in the algorithm. For example, it might be biologically-sound to assume
that some of the unidentified correlations are positive (e.g., see References 10 and 14). In such cases, Laplace's principle
of indifference would no longer apply and the grid G� unif(�1, 1) would be replaced by G�unif(0, 1) to appropriately
reflect the biological or scientific knowledge when carrying out the sensitivity analysis. The simulation-based approach
allows for a straightforward incorporation of such knowledge when it is available. Importantly, any such assumptions
are not verifiable based on the data because they relate to unidentified parameters, and thus caution is needed when
making these assumptions (see also the results of the simulation study that are described in section 7).

5.1 | Accounting for estimation error

In the approach detailed above, all identifiable quantities are fixed to their estimated values and thus the sampling vari-
ability in the estimated parameters is not accounted for. To account for the sampling variability, one can specify distribu-
tions for the identifiable parameters—instead of fixing them at their estimated values. For example, uniform distributions
can be specified for the identifiable parameters with [min,max] values equal to their estimated upper and lower 95% con-
fidence interval bounds,20 or alternatively bootstrapped distributions can be used.15,21 Then random values are drawn
from the specified distributions in each run of the algorithm (rather than fixing them to the point estimate).

6 | CASE STUDY: THE RISPERDAL STUDY

6.1 | The dataset

This dataset combines the data that were collected in five double-blind randomised clinical trials. In these trials, the
objective was to examine the efficacy of risperidone to treat schizophrenia. Schizophrenia is a mental disease that is
hallmarked by hallucinations and delusions.22

VAN DER ELST ET AL. 1221
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In each trial, the brief psychiatric rating scale (BPRS)23 and positive and negative syndrome scale (PANSS)24

were administered. These instruments are clinical rating scales that are routinely used to assess symptom severity
in patients with schizophrenia.25 The patients in the different trials were administered the experimental treatment
risperidone or an active control treatment (e.g., haloperidol, levomepromazine, or perphenazine) for 4 to 8 weeks.
The main endpoints of interest were S is the change in the BPRS score (= BPRS score at the end of the treatment
� BPRS score at the start of the treatment), and T = the change in the PANSS score. A total of 2128 patients par-
ticipated in the five trials, of whom 1591 patients received risperidone and 537 patients were given an active
control.

6.2 | Analysis

To compute ICA and ISTE, a sensitivity analysis is conducted using the grids G = {�1,�0.999,…, 1} for all
unidentified correlations. To account for estimation error, the identifiable parameters were sampled from uniform
distributions with [min, max] bounds that equalled the 95% confidence intervals around their estimated values.
These 95% CIs corresponded to [0.952,0.966] for ρT0S0 , [0.961,0.968] for ρT1S1 , [484.462,616.082] for σT0T0 ,
[514.279,591.062] for σT1T1 , [160.811,204.501] for σS0S0 , [168.989,194.219] for σS1S1 , [�13.455,�9.489] for E(T0),
[�17.170,�14.860] for E(T1), [�7.789,�5.503] for E(S0), and [�9.600,�8.276] for E(S1). In the computation of ISTE,
95% PIs were used.

6.3 | ICA

Figure 2A (left panel) shows a histogram of ICA. As can be seen, ICA is high with mean = 0.9500, median =

0.9655, and 95% of the ICA values exceeding 0.8568. Thus ΔT and ΔS are strongly positively associated, which
suggests that S is a good surrogate for T. However, ICA has no direct clinical interpretation and it is thus useful to
supplement this metric of surrogacy with the ISTE. For example, ICA does not reflect how large the individual
causal treatment effect on S should be to conclude a non-zero individual causal treatment effect on T. In practical
terms, one would hope to get values of the individual causal treatment effect on S that can realistically be
achieved, given the range of treatment effects on S that are considered to be feasible by medical experts in the
field. If the individual causal treatment effects on S that are needed to conclude non-zero individual causal treat-
ment effects on T are too high, the practical usefulness of the candidate surrogate would be low even when ICA is
very high.
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FIGURE 2 Risperdal study. Histogram of (A) ICA (left panel) and (B) ISTE (right panel) across all realities compatible with the

observed data
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6.4 | ISTE

The analysis is conducted using 1000 runs of the algorithm described in section 5. Figure 3 illustrates the procedure
graphically for the first run of the algorithm, where the black solid line shows E(ΔT|ΔS0), the black dashed lines are
the 95% PI around the prediction, and the black arrow identifies the ISTE. Here, ISTE = 10.3534. Thus in the first ‘real-
ity’ that is compatible with the observed data (i.e., the results obtained in the first run of the algorithm), patients who
have ΔS0≥ 10.3534 are expected to have a significant positive individual causal treatment effect on T. Figure 2 further
shows that the treatment is expected to be harmful (i.e., negative ΔT) for patients who have ΔS0≤ � 9.1598, and that
the treatment is not expected to have a significant impact on ΔT (positive or negative) for patients who have
�9.1598<ΔS0 < 10.3534.

Figure 2B shows the histogram of the ISTE values that are obtained in all 1000 runs of the algorithm. The ISTE
values range between 0.1480 and 62.4699, with mean ISTE = 10.6019 and median = 10.6893. This implies that
(on average) an individual causal treatment effect of about 10.5 units on S is expected to result in a significant positive
individual causal treatment effect on T. Further, 95% of the ISTE values are below 15.7135 and thus an individual
causal treatment effect on S that equals about 16 units (or less) is associated with a significant positive individual causal
treatment effect on T in most scenarios that are compatible with the observed data. Whether or not it is realistic to have
ΔS values of this magnitude for the treatment at hand can be discussed with medical experts in the field. Note that the
use of a uniform distribution G�unif(�1, 1) for the unidentified correlations in the sensitivity analysis is similar to
assuming a uniform prior in a Bayesian framework, and thus Figure 2B can also be considered an approximation of the
posterior ISTE distribution.

6.5 | Average causal necessity and sufficiency

Average causal necessity holds when E(ΔT|ΔS0 = 0) = 0. Figure 4A shows the histogram of the E(ΔT|ΔS0 = 0) values
that are obtained in the 1000 runs of the algorithm. The mean E(ΔT|ΔS0 = 0) equalled �0.8427, and the figure further
shows that E(ΔT|ΔS = 0) is relatively close to zero in most cases. The average causal necessity condition thus holds
approximately in most realities that are compatible with the observed data.

It was furthermore shown that the constant w in E(ΔT|ΔS0 >w) > 0 exists when ICA is positive1 (as is the case
here). Figure 3B shows the histogram of the w values that are obtained in the different runs of the algorithm. As can
be seen, the individual causal treatment effect on T can be expected to exceed 0 for patients who have an individual
causal treatment effect on S that ranges between about �2 and 4. Observe that the values of w (Figure 4B) are closer
to zero compared to the values of ISTE (see Figure 2B). This is expected because w does not account for prediction
error.
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FIGURE 3 Risperdal study. Expected ΔT as a function of ΔS0
(black solid line) and 95% prediction intervals (black dashed lines)

in run 1 of the algorithm. The ISTE in run 1 of the algorithm equals

10.3534 (black arrow)
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6.6 | The surrogate predictive function

To get a better understanding of the relation between the individual causal treatment effects on S and T, it is insightful to
compute the expected value of ΔT for a given ΔS0 (or a set of values). By means of illustration, consider Figure 4C, which
shows the expected ΔT for ΔS0 = 10. As can be seen, a patient who has an individual causal treatment effect on S that
equals 10 is expected to have an individual causal treatment effect on T that ranges between about 5 and 25 units.

6.7 | The relative effect

The estimated expected (trial-level) causal treatment effects on S and T equal α̂¼�1:1461 and β̂¼�2:2716 , respec-
tively. The RE thus equals 1.9820, with 95% confidence interval (approximated using the Delta method) =

[1.6610,2.3029]. Figure 4D shows the histogram of the obtained γ1 values in the sensitivity analysis. The γ1 parameter
reflects the expected change in E(ΔT|ΔS0) when ΔS0 increases by one unit, and it thus has a similar interpretation as
RE. If average causal necessity holds (which is approximately the case here, see above), RE corresponds to γ1. The mean
γ1 = 1.6705 here, which is indeed close to the RE.
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FIGURE 4 Risperdal study. Histograms of (A) E(ΔT|ΔS0 = 0) (upper left panel), (B) w for which E(ΔT|ΔS0 >w) = 0 (upper right

panel), (C) E(ΔT jΔS0 = 10 (bottom left panel), and (D) γ1 (bottom right panel)
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6.8 | Setting biologically plausible constraints

In the above analyses, the grid G = {�1,�0.999,…, 1} was used for all the unidentified correlations in the sensitivity
analysis. As noted in section 5, restrictions on G can be imposed when biological or substantive knowledge is avail-
able.10,14 For example, suppose that experts in the field consider it biologically plausible that all identified correlations
are positive, that ρS0T1

< ρS1T1
, and that ρS0T1

< ρS0S1 . When the sensitivity analysis is repeated under these constraints
(using 1000 runs of the algorithm), the range of ISTE narrows down from [0.1480, 62.4699] (when no assumptions are
made) to [0.1480, 37.6450] (when biologically plausible assumptions are made). As expected, the range
(i.e., uncertainty) of ISTE is thus reduced when biological information is incorporated in the sensitivity analysis.

Web appendix S1 in Part I of the web appendix, it is exemplified how the case study analyses can be conducted in
the surrogate R package. In the current analysis the sampling variability in the estimated parameters was accounted for
by sampling from uniform distributions. In the web appendix S1, an alternative bootstrap-based approach to account
for sampling variability was used as well. The results of both approaches were essentially the same. Further, a partial
check of the multivariate normality assumption was conducted by evaluating the bivariate normality of (Sz,Tz) and its
univariate marginals. The latter analysis indicated that there were no major violations of normality.

7 | SIMULATION STUDY

In practice, it is desired to have a surrogate with an ISTE that is as low as possible. ISTE is a complex function of several
identifiable and unidentifiable parameters. A simulation study was conducted (1) to identify the conditions under
which a low ISTE is obtained, (2) to explore the relation between ICA and ISTE, and (3) to evaluate the coverage of the
l = [minISTE,maxISTE] interval obtained from the sensitivity analysis (i.e., the percentage of cases in which the true
ISTE was included in l).

7.1 | Simulation scenarios

Data were generated based on the theoretical model introduced in section 2, that is, assuming Y�N(μ,Σ). For μ, it was
assumed that μT0

¼ 0,1f g, μT1
¼ 0,1f g, μS0 ¼ 0,1f g, and μS1 ¼ 0,1f g. For Σ, it was assumed that σS0S0 = σS1S1 = {1, 2},

σT0T0 = σT1T1 = {1, 2}, ρT0S0 = ρT1S1 = {0.5,0.7,0.9}, and the grid G�unif(�1, 1) was used for all unidentified correla-
tions. Only scenario's for which the expected causal treatment effects are non-negative are considered here
(i.e., scenario's in which it holds that α = {0, 1} and β = {0, 1}). In each of the 108 simulation scenarios, a total of 100 pos-
itive definite Σ were identified. For each of these, a matrix Ck that contains the counterfactuals T0, T1, S0 and S1 for a
total of 1000 patients was generated based on draws from a multivariate normal. Next, the vectors with the treatment
indicators Zk were independently sampled from a binomial distribution with success probability 50%. Finally, based on
Ck and Zk, a total of 10,800 datasets Fk were constructed that contained the observable variables S, T and Z for each
patient. Based on these datasets, the sensitivity analysis detailed in section 5 was conducted to estimate ISTE and ICA
using 100 runs of the algorithm. The identifiable parameters were sampled from uniform distributions with [min,max]
values equal to their estimated upper and lower 95% confidence interval bounds. The median ISTE and ICA of the
100 runs for each of the 10,800 generated datasets were retained as the main outcome metrics (that will be referred to
as ISTEM and ICAM, respectively). The true ISTE was computed based on Ck to evaluate coverage.

7.2 | Results

7.2.1 | Factors that impact ISTEM

Table 1 shows the mean (SD) of the ISTEM values in the different simulation scenarios. The results show that a low
ISTEM is mainly obtained in settings (1) where the candidate surrogate is highly correlated with T, (2) where the
expected causal treatment effect on S (i.e., α) is smaller than the expected causal treatment effect on T (i.e., β), and
(3) where S and T have a small variance in both the treatment conditions.
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7.2.2 | Relation between ISTEM and ICAM

Figure 5 shows the ICAM against the ISTEM in the 10,800 generated datasets across the different simulation scenarios.
It can be readily observed that there is a strong negative correlation between ISTEM and ICAM, that is, corr(ICA_M,
ISTE_M) = �0.765. Thus, a high (or low) ICAM is typically associated with a low (or high) ISTEM. This result is in
line with expectations, as the PI around E(ΔT|ΔS) will be more narrow if ICAM is higher. Importantly, the simulation
also shows that there is substantial variability in the ISTEM values for a given fixed value of ICAM. For example, when
ICAM≈ 0.90, the ISTEM values range between about 0 and 3. High ISTEM values are typically obtained in scenarios
where the expected causal treatment effect on S is substantially larger than the expected causal treatment effect on T
(i.e., α = 1 and β = 0). Similarly, higher (or lower) ρT0S0 and ρT1S1 are also indicative for a lower (or higher) ISTEM.
These findings corroborate the earlier claim that a high ICA (or a high identifiable correlation between S and T) does
not necessarily implies that the candidate surrogate will be useful in practice, as the individual causal treatment effect
on ΔS that is needed to conclude a significant individual causal treatment effect on ΔT may not be practically
feasible.

7.2.3 | Coverage

Table 2 shows the percentage of cases in which the true ISTE was included in the l = [min,max] ISTE interval obtained
in the sensitivity analysis. As can be seen, coverage is at least 94% across the different simulation scenarios. The overall
(averaged) coverage is 97.9%.

7.2.4 | Accounting for uncertainty in the identifiable quantities

In line with Reference 20 the sampling variability in the estimated parameters was accounted for by sampling from uni-
form distributions with [min,max] values equal to the estimated upper and lower 95% confidence interval bounds.
Alternative approaches are viable as well, for example, sampling the identifiable parameters from their bootstrapped
distributions.15,21 In the web appendix S1, the simulation study is repeated using this bootstrap-based approach to
account for sampling variability. All results were very similar to the ones that were presented here (for details, see Part
II of the web appendix S1).

7.2.5 | Impact of making correct and wrong assumptions for the unidentifiable correlations

The unidentifiable correlations were sampled from G� unif(�1, 1), but in some situations biological knowledge may be
available. For example, if it is biologically plausible that an unidentified correlation is positive, then the grid G�unif
(0, 1) can be used in the sensitivity analysis to reflect this knowledge (see section 5). To further examine the impact of
making such assumptions on coverage, the simulation study was extended by considering two additional settings in
which either correct or wrong assumptions are made with respect to the unidentifiable correlations. In the first setting,
G�unif(0, 1) or G� unif(�1, 0) are used in the sensitivity analysis for true unidentified correlation(s) in Σ that are pos-
itive or negative, respectively (so correct assumptions are used in the sensitivity analysis). In the second setting, G�
unif(0, 1) and G�unif(�1, 0) are used in the sensitivity analysis for true unidentified correlation(s) in Σ that are nega-
tive or positive, respectively (so wrong assumptions are used). The results showed that coverage was substantially
impacted by the validity of the assumptions that were made for the unidentifiable correlations in the sensitivity analy-
sis, that is, overall coverage = 83.3% versus 98.9% when wrong and correct assumptions are made, respectively. These
results thus indicate that the incorporation of biological knowledge can ameliorate the identifiability issues and
improve coverage—but this is only the case when the assumptions that are made are correct. Of course, in real life it is
not possible to evaluate the validity of these assumptions empirically based on the data at hand (as they relate to
unidentifiable parameters), and thus a careful reflection on the plausibility of any such assumptions used in the sensi-
tivity analysis is needed. Further details with respect to these additional simulations can be found in the web
appendix S1 Part II.
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8 | DISCUSSION

In the meta-analytic framework, Burzykowski and Buyse2 defined the STE as the minimum value of the expected
causal treatment effect on S (i.e., α) that leads to a significant positive expected causal treatment effect on T (i.e., β).
The aim of the current paper was to introduce a similar concept in a causal-inference single-trial setting for normally
distributed endpoints. The ISTE corresponds to the minimum value of ΔS0 for which the lower limit of the PI around
ΔT exceeds zero. The ISTE and the STE differ (1) in terms of the level at which they operate (ISTE: level of individual
patients, STE: level of the clinical trial), and (2) in terms of the data requirements (ISTE: one clinical trial is sufficient,
STE: multiple clinical trials are needed), but they are similar in the sense that they supplement metrics of surrogacy
that are based on the strength of the association between (individual or expected) causal treatment effects on S and T
with a more clinically interpretable metric of surrogacy.

Further, the connections between ISTE and the average causal necessity and sufficiency concepts were discussed. In
fact, the sensitivity-based approach for ISTE that was proposed in section 5 can also be used (1) to informally evaluate
the plausibility of the average causal necessity assumption in a clinical trial, and (2) to obtain the range of w values for
which it holds that E(ΔT|ΔS0 >w) = 0 (as was illustrated in the case study, see Figure 4A,B).

Some critical comments and suggestions for future research can be given. First, a Monte Carlo procedure was pro-
posed to address the identifiability problems that occur in the estimation of the ISTE. It is important to point out that
this Monte Carlo procedure is not designed to estimate the unidentifiable ISTE, but rather to offer a sensitivity analysis.
Basically, the vector of ISTE values that is obtained from the procedure assesses the ISTE across ‘plausible realities,’
that is, across realities that are compatible with the data at hand. Similar ideas were proposed by References 26 and 27,
who used the ‘region of ignorance’ and ‘uncertainty region’ concepts in a missing data context. The region of ignorance
corresponds to the range of the point estimates for the metric of interest that is obtained under different plausible miss-
ing data mechanisms. The uncertainty region includes the sampling uncertainty in addition to the lack of knowledge
that is associated with the missing data. Similarly, ISTE can be estimated across different realities that are compatible
with the data at hand, with or without accounting for sampling variability. When sampling variability is not accounted
for, the sensitivity analysis is conducted by fixing the identifiable quantities to their estimated values. When sampling
variability is accounted for (as was done in the case study and the simulation study), the identifiable quantities are sam-
pled from a distribution rather than a fixed value (e.g., a uniform or bootstrapped distribution). Note that the results
that were obtained using uniform and bootstrapped distributions in the case study and simulations were very similar,
but more extensive simulations are needed to further evaluate the conditions under which both approaches yield com-
parable results. For example, it is possible that the differences in the results are more substantial when the sample size

TABLE 1 Simulation study

Identifiable
correlations

Expected causal
treatment
effects

σT0T0 = σT1T1 = 1
σS0S0 = σS1S1 = 1

σT0T0 = σT1T1 = 1
σS0S0 = σS1S1 = 2

σT0T0 = σT1T1 = 2
σS0S0 = σS1S1 = 1

σT0T0 = σT1T1 = 2
σS0S0 = σS1S1 = 2

ρT0S0 = ρT1S1 = 0.5 α = 0, β = 0 4.0347 (0.4064) 5.7200 (0.6266) 4.0585 (0.4080) 5.7213 (0.6011)

α = 0, β = 1 2.1677 (0.3047) 3.0974 (0.4432) 2.7247 (0.3535) 2.2970 (0.4642)

α = 1, β = 0 5.0248 (0.4583) 6.7614 (0.6470) 5.0542 (0.4011) 6.7858 (0.6075)

α = 1, β = 1 3.1567 (0.2814) 4.1654 (0.4399) 3.6296 (0.3351) 4.8813 (0.4526)

ρT0S0 = ρT1S1 = 0.7 α = 0, β = 0 2.6532 (0.4064) 3.7511 (0.6266) 2.6419 (0.4080) 3.7349 (0.6011)

α = 0, β = 1 1.2159 (0.3047) 1.6860 (0.4432) 1.6232 (0.3535) 2.2970 (0.4642)

α = 1, β = 0 3.6312 (0.4583) 4.7488 (0.6470) 3.6168 (0.4011) 4.7782 (0.6075)

α = 1, β = 1 2.2152 (0.2814) 2.7624 (0.4399) 2.6145 (0.3351) 3.2596 (0.4526)

ρT0S0 = ρT1S1 = 0.9 α = 0, β = 0 1.2714 (0.4064) 1.8041 (0.6266) 1.2857 (0.4080) 1.8054 (0.6011)

α = 0, β = 1 0.1449 (0.3037) 0.2045 (0.4432) 0.4749 (0.3535) 0.6597 (0.4642)

α = 1, β = 0 2.2808 (0.4583) 2.8128 (0.6470) 2.2756 (0.4011) 2.8026 (0.6075)

α = 1, β = 1 1.1386 (0.2814) 1.1983 (0.4399) 1.4686 (0.3351) 1.6680 (0.4526)

Note: Mean (SD) of ISTEM values in the different scenarios.
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is small. The latter issue may, for example, arise when a surrogate endpoint is being evaluated in a rare disease context
where the available clinical trial data are sparse.4

On a related note, ISTE was estimated across a set of plausible values for the unidentifiable parameters in Σ in the
sensitivity-based approach. In situations where no biological information is available, the use of G�unif(�1, 1) was

FIGURE 5 Simulation study. Scatter plots of the ICAM against the ISTEM
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proposed based on Laplace's principle of indifference and information-theoretic ideas. The use of Laplace's principle of
indifference (or similarly, the use of a uniform prior in a Bayesian context) has been the topic of heated debate in statis-
tics for at least a century.28 For example, Fisher rejected the use of a uniform prior because if it were used for a different
parametrisation, the inference would change as well.29 A detailed discussion of this topic is beyond the scope of the pre-
sent paper, but from a more practical perspective the use of G�unif(�1, 1) seems to be a sensible choice because the
simulation study (see section 7) showed good coverage of ISTE for G�unif(�1, 1). In situations where there is biologi-
cal or substantive information available for the unidentified correlations, Laplace's principle of indifference no longer
applies and the use of a more narrow grid G can be justifiable. In line with this claim, the simulation study showed that
the use of a more narrow G leads to better coverage of ISTE—but this is only the case when the assumptions that are
made are in fact correct. When the wrong assumptions are made (e.g., G�unif(0, 1) is assumed but the true uni-
dentified correlation is negative), coverage of ISTE is adversely affected. As the biological assumptions that are made in
the sensitivity analysis are not verifiable based on the data, caution is thus needed when restricting G.

Second, depending on the disease area and the true endpoint at hand, it is possible that the individual causal treat-
ment effect on T should significantly exceed a threshold value that is higher than 0 to be considered clinically meaning-
ful. In such a scenario, one would be interested in identifying the value ΔS0 for which it holds that l(ΔS0) = τ (with τ=
some threshold value higher than 0). This value can be obtained in the same way as ISTE (i.e., by setting l(ΔS0) equal
to τ in Equation (3) and solving the equation for ΔS0). An example is provided in section 3 of Part I of the web
appendix S1, and this procedure is also implemented in the R package surrogate.

Third, surrogate endpoint evaluation methods are typically applied to clinical trial data. In such studies, the
identifiability conditions that were described in section 2 are expected to hold ‘by design.’ For example, the (uncondi-
tional) exchangability assumption is plausible by virtue of the randomisation procedure that is used to allocate treat-
ments to patients. As a result, a simple linear regression model like (2) is appropriate to study the relation between ΔS
and ΔT, and identifiable parameters like α = E(Δ(S)) that are needed to compute ISTE can be estimated consistently.
This is however not the case in observational studies, where baseline confounders might be present (e.g., the distribu-
tion of prognostic factors for S and/or T may be different in the treated and untreated groups). In such settings, expert
knowledge is needed such that exchangeability can be achieved conditional on these confounders. In the latter scenario,
the simple linear regression model (2) has to be extended to a mediation-type of model that accounts for the relevant
confounders. Such an approach is beyond the scope of the present paper (as it is assumed here that data were collected
in a parallel group randomised clinical trial), but extensions of the causal-inference framework to settings where one or
more confounders are present have been developed by other authors.30

Fourth, missing data issues frequently arise in a surrogate evaluation setting (i.e., the measurement of T is often ‘dif-
ficult’ in some way, otherwise there would be no need for a surrogate), and the question rises how this can be dealt
with in practice. A possible strategy was outlined by References 19 and 31, who used multiple imputation (MI) to
impute the missing S and T in the dataset at hand. Next, Rubin's rules can be applied to the multiply imputed datasets

TABLE 2 Coverage in the different simulation scenarios

Identifiable
correlations

Expected causal
treatment effects

σT0T0 = σT1T1 = 1
σS0S0 = σS1S1 = 1

σT0T0 = σT1T1 = 1
σS0S0 = σS1S1 = 2

σT0T0 = σT1T1 = 2
σS0S0 = σS1S1 = 1

σT0T0 = σT1T1 = 2
σS0S0 = σS1S1 = 2

ρT0S0 = ρT1S1 = 0.5 α = 0, β = 0 98.5% 98.3% 97.5% 98.8%

α = 0, β = 1 94.5% 96.5% 95.5% 97.0%

α = 1, β = 0 98.0% 98.5% 96.0% 100.0%

α = 1, β = 1 94.0% 96.0% 98.0% 98.0%

ρT0S0 = ρT1S1 = 0.7 α = 0, β = 0 96.0% 96.8% 98.3% 98.8%

α = 0, β = 1 98.0% 96.5% 99.0% 97.5%

α = 1, β = 0 97.0% 99.0% 98.5% 100.0%

α = 1, β = 1 97.0% 98.0% 98.0% 98.0%

ρT0S0 = ρT1S1 = 0.9 α = 0, β = 0 99.0% 98.8% 98.5% 98.0%

α = 0, β = 1 99.0% 98.0% 99.5% 98.5%

α = 1, β = 0 99.5% 98.5% 97.5% 98.5%

α = 1, β = 1 99.0% 97.0% 99.0% 100.0%
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to obtain the identifiable quantities that are needed to estimate ISTE (e.g., the variances and covariances between S and
T in the two treatment conditions). The latter estimates are then passed to the algorithm that carries out the sensitivity
analysis. Notice that MI requires the assumption of a missing at random (MAR) mechanism, that is, the probability of
an observation being missing should be conditionally independent of the unobserved outcomes given the observed out-
comes.26 Thus any known and measured covariates or outcomes that are related to the missingness should be included
in the imputation model (together with S, T and Z). Observe that the MAR and conditional exchangability assumptions
are related in the sense (1) that both assume that there are no unmeasured confounders, and (2) that both are
unverifiable assumptions that cannot be demonstrated empirically but rather have to be justified based on substantive
knowledge.26,32

It should be emphasised that the MI procedure is not intended to deal with the ‘missingness’ of the potential out-
comes themselves.19 Indeed, potential outcomes like T0 and T1 are never simultaneously observed and consequently
the data at hand do not contain any information with respect to the unidentifiable correlation ρT0T1—and the same
holds for all other unidentifiable quantities in the causal-inference model. Therefore, any information about the uni-
dentified parameters in the imputed data sets comes from the imputation model itself. So basically one would need to
impute the data using several imputation models that assume different values for the unidentified quantities to account
for this.19 Such an approach would be similar to the sensitivity analysis that was used in the current paper.

Finally, the methodology that is described in the current paper is based on the multivariate normality assumption
for the potential outcomes, which can only partially be evaluated based on the observable data (i.e., normality can only
be evaluated for the distributions of S and T in both treatment groups and for the joint distributions of S and T in both
treatment groups). The question may rise to what extent the results are impacted by violations of the unverifiable multi-
variate normality assumption. To this end, an additional simulation study was conducted in which data were generated
(1) using a multivariate uniform distribution (based on the method proposed by Reference 33) and (2) using a multivar-
iate normal distribution. It was of main interest to compare the coverage rates of the [minISTE,maxISTE] intervals in
the simulation settings where the multivariate normality assumption is valid or not. Only a summary of the results is
given here, more details on the simulation study are available in the web appendix S1 (see section 3 of Part II).

Overall, the results showed that coverage was only marginally lower when the multivariate normality assumption
was invalid, with coverage rates equal to 95.75% and 97.23% in the settings where the multivariate normality assump-
tion was invalid and valid, respectively. However, in situations where the identifiable correlations were close to zero,
the impact of erroneously assuming multivariate normality was larger. For example, when ρT0S0 = ρT1S1 = 0, the cover-
age rates were 91.3% and 96.7% in the scenarios where the multivariate normality assumption was invalid and valid,
respectively. The results thus indicate that the methodology is quite robust against violations of the multivariate nor-
mality assumption (unless ρT0S0 = ρT1S1 is low), but more suitable methods to deal with non-normally distributed data
have been developed (based on e.g., using Gaussian copula models, see References 2 and 34). The use of such
approaches is recommended when the multivariate normality assumption is implausible.

SUPPLEMENTARY MATERIALS

The methodology that is proposed in this manuscript is implemented in the R package surrogate. A web appendix S1
that details the analysis of the case study using this package is available. The web appendix S1 also contains some addi-
tional simulation results.
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Data are available in R package Surrogate which is available for download at CRAN (see https://CRAN.R-project.org/
package=Surrogate).
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