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Abstract
This paper presents a model order reduction scheme (MOR) for the forced response of 2D infinite periodic
media in the Shift-Cell Operator Method framework. The proposed scheme is based on a multiparamter
moment matching technique and is applied to the computation of the sound transmission loss of 2D periodic
structures. To that end, a novel technique combining the Shift-Cell Operator Method and the Wave Based
Method is developed, enabling the use of the proposed MOR scheme in that context. Both the new modeling
technique and proposed MOR scheme are applied to a homogeneous structure and validated by comparison
to the Hybrid-WFEM method. They are subsequently applied to a complex doubly stiffened panel for which
good reduction factors are obtained, thus demonstrating the efficiency of the proposed modeling strategy.

1 Introduction

Owing to the impact of noise pollution on public health [1, 2], the vibroacoustic performance of panels
and compact lightweight material systems is of prime importance for many applications in the automotive,
aerospace, building construction and machine design industries. However, noise reduction is traditionally
achieved by increasing the weight and volume of structures and vibroacoutic packages which runs contrary
to technological trends and economic considerations. The tension between these two imperatives has mo-
tivated much research about so called metamaterials, often periodic in design, that exhibit sound insulation
properties that go beyond the mass law. For that reason, a number of numerical methods have been developed
to predict their vibroacoustics properties. Parinello’s et al. [3, 4] transfer matrix method, the Hybrid-WFEM
method [5, 6] and Christen et al. method [7] are all techniques enabling the prediction of the sound transmis-
sions loss (STL) and absorption of periodic metamaterial solutions. They rely on the Wave Finite Element
Method (WFEM) framework [8, 9, 10, 11] that combines finite element (FE) modeling and Floquet-Bloch
theory [12, 13] to compute the response of a periodic medium to acoustic plane waves. In particular, the use
of Floquet-Bloch boundary conditions at the interfaces of a unit cell (UC) of the periodic medium allows
to restrict the computational domain to that single UC. This strategy can be carried over to more complex
loads, e.g. diffuse acoustic fields, provided they are decomposed into plane waves first. The response to each
plane wave is evaluated separately and the global response is obtained by superposition of the individual
responses. The downside of that method, is that thousands of matrix inversion may be needed to compute,
the diffuse field STL at a given frequency making the method ill suited to study the properties of complex
UCs that require fine FE models with a high number of dofs. While reducing the number of matrix inversions
required is not feasible, it is possible to reduce the computational cost of those operations by using model



order reduction. In this paper, a model order reduction (MOR) technique based on multiparameter moment
matching is used in conjunction to a modified version of the Hybrid-WFEM method [5, 6] whereby the
WFEM is replaced by the Shift-Cell Operator Method [14]. With this modification, the subspaces spanned
by the rows of the fluid-structure coupling matrices become wavenumber invariant which both facilitate the
moment matching process and is conjectured to lead to smaller Reduced Order Models (ROMs).

The rest of this paper is organised as follows. In Section 2, a brief overview of the Shift-Cell Operator
Method is given along with its combination with the novel variant of the Hybrid-WFEM method. Section
3 details the multiparameter moment matching technique used and the proposed MOR scheme. Finally,
the performance of the proposed scheme is evaluated in Section 4 while Section 5 summarizes the main
conclusions.

2 Fluid-Structure Coupling for The Shift Cell Operator Method

In this section, the proposed variant of the Hybrid-WFEM [5, 6] is detailed. In subsection 2.1 a brief overview
of the classical FEM formalism for solids is given, introducing concepts that come to use in subsections 2.2
and 2.3. In subsection 2.2, the Shift-Cell Operator Method used for the modeling of periodic structures is
presented. Finally, subsection 2.3 discusses how a shift-cell based modeling can be coupled to Wave Based
acoustics modeling [15].

2.1 A brief overview of the classical finite element method

We first consider the problem of linear elasticity for a displacement field u, a volume load f and density ρ
on a domain Ω with Neumann boundary conditions at its boundary ∂Ω:

{
div(σ) + f = ρü onΩ

σ.~n = σ0 on ∂Ω
(1)

The stress tensor σ is linked to the linear strain tensor ε by a forth order symmetric tensor C representing
Hooke’s law of elasticity as per equation (2) in which Einstein’s notation is used:

σij = Cijklεkl (2)

Equation (2) is put in vector form by focusing on the 6 independent components of the strain and stress
tensors. The following notations are introduced:{

εv = [ε11, ε22, ε33, 2ε23, 2ε13, 2ε12]
T

σv = [σ11, σ22, σ33, σ23, σ13, σ12]
T

(3)

Leading to the vector form of equation (2):
σv = Cmεv (4)

With Cm a 6 by 6 symmetric matrix representing Hooke’s law. In order to completely rewrite equation (1)
in a FEM friendly way, two differential operators are introduced:
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Because of their differential nature, these operators can only be used to left multiply when doing matrix
operations. It should also be noticed that: {

εv = Du

div(σ) = DTσv
(6)

The first part of equation (1) is then rewritten as:

DTCmDu+ f = ρü (7)

Introducing a vector test function w belonging to the relevant space S, the weak form of equation (7) is
derived:

∀w ∈ S,
∫∫∫

wTDTCmDu+

∫∫∫
wT f =

∫∫∫
wTρü (8)

Integrating by part and using the boundary conditions, equation (9) is derived:

∀w ∈ S,
∫∫∫

wT f +

∫∫
wTσ0 =

∫∫∫
(Dw)TCmDu+

∫∫∫
wTρü (9)

With σ0 defined in equation (1). Appropriate shape functions can then be chosen for w and u leading to a
FEM discretatization. In most cases the same shape functions are used for w and u which leads to symmetric
mass and stiffness matrices.

2.2 The Shift Cell Operator Method

The Shift Cell Operator Method [14] was invented to compute the dispersion curves of 2D periodic media in
any direction, which was not possible using the WFEM. The method works mostly like FEM with a simple
difference: A change of variables is operated in the displacement variable u and the equation of motion is
rewritten for functions v and g such that:{

u(x, y, z, t) = v(x, y, z, t)e−i(kxx+kyy)

f(x, y, z, t) = g(x, y, z, t)e−i(kxx+kyy)
(10)

Equation (7) is then rewritten using v and g:{
(DT

xyCmDxyv + g)e−i(kxx+kyy) = ρve−i(kxx+kyy)

Dxy = D − ikxDx − ikyDy

(11)

With Dx and Dy matrices, and not differential operators, defined in equation (12):

Dx =


1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0

 and Dy =


0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0

 (12)

They account for the fact that derivatives of the product of a function with an exponential follow the pattern
of equation (13):

∀q ∈ C1(R),
∂

∂x
(q(x)e−ikxx) =

(
∂

∂x
q(x)− ikxq(x)

)
e−ikxx (13)



Taking the weak form of equation (11), and integrating by part, equation (14) is derived:∫∫∫
wT g +

∫∫
wTσ0 e

i(kxx+kyy) =

∫∫∫
(Dw)TCmDv +

∫∫∫
wTρv̈

+ k2x

∫∫∫
(Dxw)TCmDxv + k2y

∫∫∫
(Dyw)TCmDyv

+ kxky

∫∫∫
(Dxw)TCmDyv + (Dyw)TCmDxv

− ikx
∫∫∫

(Dw)TCmDxv − (Dxw)TCmDv

− iky
∫∫∫

(Dw)TCmDyv − (Dyw)TCmDv

(14)

Which leads to the discretization described in equation (15).

(K + sC + s2M − ikxLx − ikyLy + k2xHxx + k2yHyy + kxkyHxy)U = DssU = F (15)

WhereK,M , andC are the classical mass, stiffness and damping matrices. The additionalH andLmatrices
are respectively symmetric and antisymmetric and account for modulation in equation (10). The interest of
this discretaization is two fold. Firstly, one can impose Floquet-Bloch boundary conditions by imposing
periodicity boundary conditions and choosing values for kx and ky [14]. Secondly, because the load and
Neumann boundary conditions needs to be multiplied by ei(kxx+kyy), a plane wave load can be made to look
constant by choosing matching wavenumbers in the structure. This last property is exploited in subsection
2.3.

2.3 Hybrid coupling with the shift cell operator method

This subsection describes how to modify the Hybrid-WFEM method [5, 6] and apply it to the Shift-Cell
Operator Method framework to compute the sound transmission loss of a periodic structure excited by an
incident plane wave. The idea is to couple an infinite 2D periodic structure occupying the region space
0 ≤ z ≤ h to two semi-infinite acoustic domains corresponding to the regions of space z < 0 and z > h.
An incident acoustic field pi is present in the half-space z < 0 which by fluid-structure coupling leads to a
structural response, a reflected pressure field pr, and a transmitted field pt in the half-space z > h. In order
to simplify the equations, the assumption that the structure considered is weakly periodic is made. This
means higher order modes in the reflected and transmitted pressure fields caused by periodic diffraction can
be ignored. Thus, the acoustic fields in both half spaces take the respective forms:{

p− = pie
−i(kxx+kyy+kzz) + pre

−i(kxx+kyy−kzz)

p+ = pte
−i(kxx+kyy+kzz)

(16)

The fluid-structure coupling equations are given in equation (17) and are valid on Γ− the z = 0 plane and
Γ+, the z = h plane: 

1

ρf

∂p

∂n
+
∂2u

∂t2
.~n = 0

σ.~n+ p~n = 0

(17)

In equation (17), ρf is the fluid’s density, u the structural displacement, σ the stress tensor, p the fluid’s
pressure and ~n, the outward normal of the solid. The first line of the equation expresses the continuity of
the normal acceleration while the second lines specifies how the fluid’s pressure acts as a force on the solid
(Neumann boundary condition). As such, the first equation gives rise to two matrices Kff and Mfs while
the second equation only gives rise to a single coupling matrix Ksf as it interpreted as a boundary condition.
The weak form corresponding to each matrix when discretized for the Shift-Cell-Operator Method are given



in equation (18): 

Kff ↔
1

ρf

∫∫
w∗f

∂p

∂n
ei(kxx+ky)

Mfs ↔
∫∫

w∗f
∂2v

∂t2
.~n

Ksf ↔
∫∫

(ws~n)pei(kxx+kyy)

(18)

The shape functions for v and the usual FEM shape functions are identical to the test functions ws while
the shape functions for the pressure p are chosen according to equation (16). Finally the test functions wf

are chosen as the product of the pressure shape functions with ei(kxx+kyy). With these choices, the terms in
ei(kxx+ky) vanish from both the pressure and solid the shape functions such that the matrices depend only of
kz . Specifically, Kff scales with |kz|2, Mfs scales with eikzz0 (z0 being the z coordinate of the interface)
and Ksf with e−ikzz0 . Additionally, Ksf = MH

fs with the H exponent indicating the Hermitian transpose.
Because of these properties, the subspace spanned by the columns ofKfs is independent of the wavenumbers
kx, ky and kz . This property still holds when higher order modes are added to the transmitted and reflected
fields though it is less obvious. The coupled system can now be considered and takes the form:[

Dss Ksf

−ω2Msf Kff

] [
U
p

]
=

[
0
Fp

]
(19)

With Dss the matrix of equation (15). The transmission loss τ(kx, ky, kz, ω) is computed by applying pe-
riodic boundary conditions on the structural part of equation (19) and imposing the value of the incident
pressure pi. After solving the system the transmission loss is obtained:

τ(kx, ky, kz, ω) =
|pt|2

|pi|2
(20)

The diffuse field transmission loss τd(ω) can be computed by averaging the transmission loss τ(kx, ky, kz, ω)
for acoustic wave coming from all incident directions. The detailed process can be found in [7, 3, 16].

3 Model Order Reduction Scheme

This section details the model order reduction scheme used in section 4. An overview of the underlying
multiparameter moment matching method is given in subsection 3.1. Finally, the details of the proposed
MOR algorithm are discussed in subsection 3.2.

3.1 Multiparameter moment matching

The proposed MOR method is based on the moment matching concept which seeks to match the transfer
function of the full order model (FOM) by replicating the first terms of its power series around an expansion
point (see equation (22)). Herein, this method is applied to the structural part of the Hybrid-Shift-Cell
modeling of the transmission reflection problem and can be considered a particular case of the technique
presented in [17]. The staring point is the discretized equation of motion obtained via the shift-cell operator
method:

(K + sC + s2M − ikxLx − ikyLy + k2xHxx + k2yHyy + kxkyHxy)U = F (21)

In equation (21) s is the Laplace variable for the time domain, kx and ky are the wavenumbers of the shift-cell
operator method, U is the structural displacement matrix and F a matrix whose columns span the subspace
of inputs. A development of U into a multiparamter series is realised at the (0, 0, 0) expansion point:

U =
∑

(p,q,r)∈N3

Up,q,rk
p
xk

q
ys

r (22)



In order compute the moments Up,q,r a recurrence relationship is established between them. First, equation
(21) is rewritten in a more practical form:

[In +K−1(sC + s2M − ikxLx − ikyLy + k2xHxx + k2yHyy + kxkyHxy)]U = (K−1F ) (23)

Finally, by replacing U with the series of equation (22), the following recurrence relationship is obtained for
its moments:

Up,q,r = K−1(iLxUp−1,q,r + iLyUp,q−1,r − CUp,q,r−1

−HxxUp−2,q,r −HyyUp,q−2,r −MUp,q,r−2 −HxyUp−1,q−1,r)
(24)

With the initial condition:
U0,0,0 = K−1F (25)

This makes it possible to match the moments of U in a classical manner. Because of the multiple parameters,
the number of moments of order n, moments for which p+ q + r = n, is equal to:

m0 =
(n+ 1)(n+ 2)

2
(26)

While the number of moments of orders inferior or equal to n is:

m1 =
n3 + 6n2 + 11n+ 6

6
(27)

Thus, the growth is polynomial which is acceptable. However, matching the moments of U as per equation
(24) may not be numerically stable as the moments of the system are computed explicitly without any orthog-
onalisation process [18]. An implicit and stable moment matching process is proposed in [19] but it would
change the vector growth rate from O(n3) to O(7n). As such, its computational cost becomes prohibitive
before instabilities appear in the proposed algorithm. It should also be noted that the above method can
be applied to compute moments around another expansion point (k0x, k

0
y, s0) by replacing (kx, ky, s) with

(k0x + kx, k
0
y + ky, s0 + s). Hence, numerical stability issues can also be mitigated by working with multiple

expansion points.

3.2 MOR strategy

The proposed MOR strategy works by producing a projection basis P ∈ Cn that spans the subspace of the
moments of the displacement matrix at one or several expansion points. From the matrix P the ROM’s
matrices are produced via Galerkine projection:

Kr = PHKP

Cr = PHCP

M r = PHMP

Lr
x = PHLxP

Lr
y = PHLyP

Hr
xx = PHHxxP

Hr
xy = PHHxyP

Hr
yy = PHHyyP

(28)



The assessment of the quality of the ROM is done via residuals as defined in equation (29) which avoids the
direct computation of the FOM response:

Ur = (Kr + sCr + s2M r − ikxLr
x − ikyLr

y + k2xH
r
xx + k2yH

r
yy + kxkyH

r
xy)−1(PHF )

Fa = (K + sC + s2M − ikxLx − ikyLy + k2xHxx + k2yHyy + kxkyHxy)(PUr)

res(kx, ky, s) =
‖Fa − F‖
‖F‖

(29)

The proposed algorithm iteratively produces ROMs of higher dimensions by increasing the number of mo-
ments matched and expansion points until a ROM of sufficient quality is generated. In practice, this is
achieved if the residuals of all points of a validation set V0 are below a threshold ε. Both V0 and ε must be
supplied by the user in addition to a decay rate α < 1. The details of when and where new expansion points
are generated are the following. At each iteration, the expansion order at all expansion points is increased.
Then, a ROM is produced and an error criterion rj is computed as per equation (30):

rja =
1

|V0|
∑
p∈V0

res(p)

rjm = max{res(p), p ∈ V0}

rj =

√
rjmr

j
a

(30)

If rj ≥ αrj−1 a new expansion point is created at the point of maximal residual. Otherwise, the iterative
process continues normally with increasing the order of active expansion points. The algorithm stops when
rjm ≤ ε.

4 Numerical Results

In this section, the proposed modeling technique and model order reduction scheme are applied to two
examples. First, the proposed modeling strategy is compared to the Hybrid-WFEM method and validated in
subsection 4.1. It is then applied to the full 3D FEM modeling of a doubly stiffened panel previously studied
in [20, 21] via asymptotic homogenisation.

4.1 Validation Case

In this subsection, both the new hybrid variant and the proposed MOR scheme are applied to a 3mm thick ho-
mogeneous aluminum plate and compared to the classical Hybrid-WFEM modeling. All numerical methods,
including the WFEM and the Shift-Cell Operator Method, are implemented on Matlab. The UC of the plate
is modeled using classical 3D Lagrange Q1 elements with 10 perfectly cubic elements in the thickness of
the plate. For the MOR scheme the frequency range [0Hz, 10000Hz] is considered with a maximal residual
value ε chosen equal to 10−4. After application of the periodic or Floquet-Bloch boundary conditions the
original model has 32dofs. Using the proposed MOR scheme a 4 dofs model is obtained. For the diffuse
field computations, 3000 polar angles are used with only 1 azimuthal angle owing to the fact that the critical
frequency is within the frequency range of interest and that the structure is isotropic. The diffuse field trans-
mission loss obtained via both methods are presented in Figure 1. Both methods are in perfect agreement
which validates the implementation of the Hybrid Shift-Cell and the proposed MOR scheme.

4.2 Doubly stiffened plate

In this subsection, the novel Hybrid-Shift-Cell modeling of section 2 is combined to the MOR scheme
of section 3 to analyse a doubly stiffened panel. The panel was first introduced in [20, 21] and studied via
asymptotic homogenization because of the high material property contrast between its stiffeners (Aluminum)
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Figure 1: Diffuse field transmission loss of the aluminum plate

Figure 2: Mesh of the unit cell of the doubly stiffened panel. Aluminum is purple and Perspex is green

and base panel (Perspex/PPMA). This contrast leads to the appearance of full and partial resonant band-gaps
for flexural and torsional waves generated by local modes of the stiffened structure. For our study, the main
reason this case is considered is the fact that while the structure posses resonant band-gaps, the resonant
part of the structure is also its radiating part. As such, its sound insulation properties should be non trivial.
For the diffuse field computations, 500 polar angles are used with 9 azimuthal angles (since the structure is
highly symmetric). Both the Shift-Cell Operator Method and of the Hybrid coupling are implemented on
Matlab with standard 3D quadratic Serendipity Elements. The mesh of the structural part is presented in
Figure 2. The original model had 57915 dofs and is reduced to 364 dofs using the proposed MOR scheme
for a maximal residual setting ε of 10−3 on the [0Hz, 1000Hz] frequency range. Hence the time needed
to compute the transmission loss for one incidence angle is divided by a factor 104. Thanks to this, the
sound transmission loss of the structure can be computed in a few hours instead of months assuming the
same discretization would be used for FOM computations. The obtained diffuse field transmission loss and
absorption are presented in Figure 3. Unsurprisingly, the multiple TL peaks do coincide with the band-gaps
predicted in [21], however, the obtained absorption levels are rather high for a structure at that frequency
range. This could be explained by the conjunction of resonance mechanism with the highly dissipative
properties of perspex, effectively focusing vibration energy in the disspative part of the structure.

5 Concluding Remarks

In this paper, a novel method to evaluate the sound transmission loss of 2D infinite periodic structure was
presented. The proposed method is largely based on the Hybrid-WFEM but uses the Shift-Cell Operator
Method instead of the WFEM. This methodological shift renders the subspace spanned by the columns of
the fluid-structure coupling matrices wavenumber invariant and enables the use of classical multiparameter
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Figure 3: Transmission loss and absorption of the doubly stiffened panel

moment matching techniques to perform model order reduction. The proposed framework was validated on
a simple homogeneous case and used to evaluate the STL of a complex 2D periodic structure in reasonable
time. In the future, the proposed MOR scheme could also be applied to the computation of the Green’s
function of periodic media by using the Floquet-Bloch transform. A comparison to WFEM based modeling
strategies and MOR schemes would also be valuable.
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