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Abstract: Missing data is almost inevitable in correlated-data studies. For non-

Gaussian outcomes with moderate to large sequences, direct-likelihood methods can

involve complex, hard-to-manipulate likelihoods. Popular alternative approaches,

like generalized estimating equations, that are frequently used to circumvent the
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computational complexity of full likelihood, are less suitable when scientific interest,

at least in part, is placed on the association structure; pseudo-likelihood methods are

then a viable alternative. When the missing data are missing at random, Molenberghs

et al. (2011) proposed a suite of corrections to the standard form of pseudo-likelihood,

taking the form of singly and doubly robust estimators. They provided the basis, and

exemplified it in insightful yet primarily illustrative examples. We here consider the

important case of marginal models for hierarchical binary data, provide an effective

implementation and illustrate it using data from an analgesic trial. Our doubly

robust estimator is more convenient than the classical doubly robust estimators. The

ideas are illustrated using a marginal model for a binary response, more specifically

a Bahadur model.

Key words: Bahadur model; double robustness; inverse probability weighting;

missing at random; pairwise likelihood; pseudo-likelihood

1 Introduction

Incomplete data has become an important concern for applied statisticians, especially

in longitudinal and otherwise hierarchical outcome data. When the vector Y i of

planned measurements may contain missing values, the process behind these, as well

as its impact on inference, needs to be addressed.

The choice of inferential framework for analyzing incomplete data will depend largely

upon the nature of missingness. Conventionally, the process driving the latter is

classified according to the terminology of Little and Rubin (2002, Chap. 6). When
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missingness is independent of both the observed and unobserved outcomes, it is called

missing completely at random (MCAR), while when the missingness is independent

of the unobserved measurements, conditional on the observed ones, the process is said

to be missing at random (MAR). When neither MCAR nor MAR holds, missingness

is termed missing not at random (MNAR).

Very commonly, direct likelihood is used as the basis for analyzing correlated out-

comes under MAR. The unified modeling framework provided by the linear mixed

model, yielding both random-effects as well as marginally interpretable regression

parameters, is the dominant choice for Gaussian outcomes, while generalized linear

mixed models remain popular for non-Gaussian outcomes, though marginalization

is not always straightforward. Other likelihood-based options for marginal inference

exist, such as the Bahadur (1961) model and the multivariate Dale or global odds

ratio model (Molenberghs and Lesaffre, 1994, 1999) for binary data, but these involve

complex likelihoods, can be computationally prohibitive in moderate to large studies,

and are vulnerable to misspecification.

These issues have motivated the development of alternatives to likelihood, perhaps

the most popular of which being generalized estimating equations or GEE (Liang

and Zeger, 1986; Diggle et al., 2002; Molenberghs and Verbeke, 2005), along with

variations or extensions such as GEE2 (Liang et al., 1992) and alternating logistic

regressions (Carey et al., 1993), when association parameters are also of scientific

interest. Standard GEE is valid only under MCAR, but a weighted version (WGEE;

Robins et al., 1995) has been developed, using Horvitz-Thompson ideas (Cochran,

1977), to allow valid use of GEE under MAR. The WGEE approach, however, tends

to be biased when the model for the weights is misspecified (Beunckens et al., 2008;
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Molenberghs and Kenward, 2007). To this end, doubly robust approaches (Scharfstein

et al., 1999; Van der Laan and Robins, 2003; Bang and Robins, 2005; Rotnitzky, 2009;

Birhanu et al., 2011), which further supplement the use of weights with a predictive

model for the unobserved responses, given the observed ones, have been constructed.

This not only removes or at least alleviates bias, but also increases efficiency.

Pseudo-likelihood (PL) methods (le Cessie and van Houwelingen, 1991; Geys et al.,

1998, 1999; Aerts et al., 2002) comprise yet another alternative to full likelihood.

While the term ‘pseudo-likelihood’ has various meanings in the literature, we take

it here to mean the replacement of a likelihood function by a simpler function that

still allows a consistent and asymptotically normal estimator of the model parameter

vector, albeit with potentially reduced precision (Arnold and Strauss, 1991). This is

in contrast to GEE methods, where the score equations are replaced with alternative,

simpler functions.

Pseudo-likelihood is different to full likelihood and is therefore not guaranteed to be

valid under MAR. Rubin (1976) provided conditions for ignorability that are sufficient

but not always necessary. Yi et al. (2011) provide an example, using a pairwise

(pseudo-)likelihood method for incomplete longitudinal binary data, that is ignorable

under MAR, even though it is not a full likelihood approach. Molenberghs et al.

(2011), on the other hand, propose a suite of corrections to pseudo-likelihood in

its standard form, also to ensure its validity under MAR. These corrections hold for

pseudo-likelihood in general and follow both single and double robustness ideas. They

showed that, in contrast to the GEE case and in particular for both robust versions,

PL-based estimating equations admit very convenient simplifications.

Molenberghs et al. (2011) applied the methodology to multivariate Gaussian responses
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and to a conditional model for clustered binary data. They provided a general outline

with predominantly illustrative examples using normal and binary data. However,

the marginal modeling of longitudinal binary data is very common in practice. Molen-

berghs et al. (2011) only sketched the methodology using a marginal Bahadur model

for the binary responses; they did not pursue it in detail. The further development of

doubly robust pseudo-likelihood for incomplete hierarchical binary data under MAR

is the central theme of this paper.

The theoretical part, estimating equations and precision estimators, are calculated

and reported for the first time Application is shown through a case study and easy-

to-use SAS code is provided.

It should be clear that we are not fitting the full Bahadur model. In fact, we use

its first and second moments only, because this allows us to describe the marginal

mean function, whilst providing the vehicle to take correlations and incompleteness

into account. Note that there is a similar connection between standard and weighted

GEE for binary data on the one hand and the Bahadur model on the other. The

latter connection was studied in detail by Molenberghs and Kenward (2010). Note

that apart from very simple settings, the Bahadur model is prohibitive to fit (Aerts

et al., 2002).

The rest of the paper is organized as follows. Section 2 introduces the necessary

background and concepts from PL and incomplete data. Our contribution, i.e., PL

based on the Bahadur model, is the subject of Section 3. Analysis of the case study

can be found in Section 4
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2 Background on Pseudo-likelihood and Incomplete

Data

Let the random variable Yij denote the response for the ith study subject at the jth

occasion (i = 1, . . . , N ; j = 1, . . . , ni). Independence across subjects is assumed. We

group the outcomes into a vector Y i = (yi1, . . . , yini
)′. Throughout, we will allow for

covariates; where possible, they will be suppressed from notation. Let f(yi|θ) be a

posited model. We will focus on binary responses.

The principal idea behind pseudo-likelihood is to replace a numerically challenging

joint density (and hence likelihood) by a simpler function assembled from suitable

factors. Arnold and Strauss (1991) gave a formal, general definition and studied its

statistical properties.

Our attention will be confined to so-called pairwise marginal likelihood, in which the

conventional log-likelihood

ℓ(θ) =

N∑

i=1

f(yi1, . . . , yini
|θ),

is replaced by

pℓ(θ) =
N∑

i=1

∑

1≤j<k≤ni

f(yij, yik|θ). (2.1)

Maximization of Eq. (2.1) can be done, subject to adequate regularity conditions, by

solving the pseudo-likelihood (score) equations, which are obtained by differentiating

the logarithmic pseudo-likelihood and equating the resulting derivative to zero. Sup-

pose that θ is the true parameter. Under suitable regularity conditions (Arnold and

Strauss, 1991; Geys et al., 1999; Aerts et al., 2002), it can be shown that maximiz-

ing the log of the pseudo-likelihood produces a consistent and asymptotically normal
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estimator θ̃ so that
√
N(θ̃N − θ) converges in distribution to

Np

[
0 , I0(θ)

−1I1(θ)I0(θ)
−1
]
. (2.2)

Where I0 and I1 are information matrices based on the first (I1) and second (I0)

derivatives of the estimating equation. However, in the case of incomplete data, PL

is valid when the missingness is MCAR, but this validity does not generally extend to

MAR mechanisms. Therefore, Molenberghs et al. (2011) developed general forms of

estimating equations for incomplete data, applied these to the specific case of PL, and

established their validity. They did not, however, consider in full detail the important

case of marginal models for repeated binary data, which is the focus of this paper.

3 Pseudo-likelihood for Incomplete Binary Data

3.1 General Formulation

We begin this section by introducing some further notation. The response vector Y i

is divided into its observed (Y o
i ) and missing (Y m

i ) components. We further define

a vector of missingness indicators Ri = (Ri1, Ri2, . . . , Rini
)′, with Rij = 1 if Yij is

observed and 0 otherwise. In the specific case of dropout in longitudinal studies, the

vector Ri can be replaced by the dropout indicator Di = 1+
∑ni

j=1Rij , denoting the

time at which subject i drops out.

Molenberghs et al. (2011) considered three classes of estimating equations for pairwise

likelihood, respectively naive, singly robust (‘sr’), and doubly robust (‘dr’). For each

of these three, the original authors further considered: complete cases (CC; using

only subjects will all planned measurements observed), complete pairs (CP; where
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all complete pairs from incomplete sequences are also added), and available cases

(AC; where additionally single observations from incomplete pairs are used), leading

to nine sets of estimating equations. The word ‘naive’ refers to the fact that these

estimating equations would generally lead to biased estimators under MAR. Here

only the response is modelled with a Bahadur model. For the single robust setting a

weight model is introduced, using a logistic structure. For the double robust version

the model was further extended with a predictive model for the unobserved outcomes

using again a Bahadur model. All these estimating equations are presented in Table 1.

In this table, R̃i = 1 if subject i is fully observed and 0 otherwise. In the robust

cases, the probability for subject i to be completely observed and to be observed up

to and including occasion j are respectively denoted as

πi =

ni∏

ℓ=2

(1− piℓ) and πij =

j∏

ℓ=2

(1− piℓ),

where piℓ = P (Di = ℓ|Di ≥ ℓ,yiℓ,xiℓ) are the component probabilities of dropping

out at occasion ℓ, given the subject is still in the study, the covariate history xiℓ and

the outcome history yiℓ. piℓ can be modeled using a logistic regression. Further, Rijk

and πijk are the indicator and probability, respectively, for observing both Yij and

Yik. Note that for the case of dropout, whenever j < k,

Rijk ≡ Rik and πijk ≡ πik =
k∏

ℓ=2

(1− piℓ),

in which case, e.g. the single robust version of the CP estimating equation can be

re-expressed as:

UCP,sr =

N∑

i=1

∑

j<k<di

Rik

πik
U i(yij, yik).

An important result is that all three doubly robust versions coincide (Molenberghs
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Table 1: Estimating equations for pairwise pseudo-likelihood. Abbreviations used: CC: complete cases; CP: complete pairs; AC:

available pairs; sr: singly robust; dr: doubly robust.

type U ∗,naive U ∗,sr U ∗,dr

UCC,∗

N∑

i=1

R̃i

∑

j<k

U i(yij , yik)
N∑

i=1

R̃i

πi

∑

j<k

U i(yij, yik)
N∑

i=1

∑

j<k

[
R̃i

πi
U i(yij, yik) +

(
1− R̃i

πi

)
EY

m
|yoU i(yij, yik)

]

UCP,∗

∑N

i=1

∑
j<k<di

U i(yij, yik)

N∑

i=1

∑

j<k<di

Rijk

πijk
U i(yij, yik)

N∑

i=1

∑

j<k<ni

[
Rijk

πijk
U i(yij, yik)

+

(
1− Rijk

πijk

)
EY

m
|yoU i(yij, yik)

]

UAC,∗

N∑

i=1

[
∑

j<k<di

U i(yij, yik)

N∑

i=1

[
di−1∑

j=1

Rij

πij
U i(yij)

N∑

i=1

[
∑

j<k

Rik

πik
U i(yik|yij) +

di−1∑

j=1

Rij

πij
U i(yij)

+

di−1∑

j=1

(ni − di + 1)U i(yij)

]
+
∑

j<k

Rik

πik
U i(yik|yij)

]
+
∑

j<k

(
1− Rik

πik

)
EY

m
|yoU i(yik|yij)

+

di−1∑

j=1

(
1− Rij

πij

)
EY

m
|yoU i(yij)

]
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et al., 2011), i.e.,

UCC,dr = UCP,dr = UAC,dr =

=

N∑

i=1

{
∑

j<k<di

U i(yij, yik) +

di−1∑

j=1

(ni − di + 1)U i(yij)

+
∑

j<di≤k

E [U i(yik|yij)] +
∑

di≤j<k

E [U i(yij, yik)]

}
. (3.1)

It is thus not necessary to explicitly model the missing-data mechanism. Further,

under exchangeability, Molenberghs et al. (2011) showed that the expectations in

UAC,dr vanish, making Eq. (3.1) essentially equivalent to UAC,naive, which is very

convenient for implementation, as this reduces to an observed data analysis. More

information on this can be found in Appendix 1.1.

3.2 Full Bahadur Model

To introduce the Bahadur model (Bahadur, 1961) we follow the developments in

Molenberghs et al. (2011). Denote νij = P (Yij = 1), νijk = P (Yij = 1, Yik = 1), and

νik|j = P (Yik = 1|yij = ℓ)(ℓ = 0, 1). Pairwise Bahadur probabilities take the form

νijk = νijνik

[
1 + ρijk

1− νij√
νij(1− νij)

1− νik√
νik(1− νik)

]
. (3.2)

The multivariate Bahadur probabilities are f(yi) = f1(yi)c(yi), with:

f1(yi) =

ni∏

j=1

ν
yij
ij (1− νij)

1−yij , (3.3)

c(yi) = 1 +
∑

j1<j2

ρij1j2eij1eij2 +
∑

j1<j2<j3

ρij1j2j3eij1eij2eij3 +

· · ·+ ρij1j2...jni
eij1eij2 · · · eijni

, (3.4)

where eij =
yij − νij√
νij (1− νij)

.
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3.3 Pairwise Bahadur Model for the Outcome

Based on the definitions made in Section 3.2 the log-likelihood terms from a pairwise

Bahadur model take the following form:

pℓijk = yijyik ln νijk + yij(1− yik) ln(νij − νijk) + (1− yij)yik ln(νik − νijk)

+ (1− yij)(1− yik) ln(1− νij − νik + νijk). (3.5)

Starting from pseudo-likelihood contribution (3.5), pairwise and conditional contri-

butions to the score equation take the form as follows

U ijk =
yijyik

νijk

∂

∂θ
νijk +

yij(1− yik)

νij − νijk

∂

∂θ
(νij − νijk) +

(1− yij)yik
νik − νijk

∂

∂θ
(νik − νijk)

+
(1− yij)(1− yik)

1− νij − νik + νijk

∂

∂θ
(1− νij − νik + νijk), (3.6)

U ik|j =
yijyikνij

νijk

∂

∂θ

(
νijk

νij

)
+
yij(1− yik)νij
νij − νijk

∂

∂θ

(
νij − νijk

νij

)

+
(1− yij)yik(1− νij)

νik − νijk

∂

∂θ

(
νik − νijk

1− νij

)

+
(1− yij)(1− yik)(1− νij)

1− νij − νik + νijk

∂

∂θ

(
1− νij − νik + νijk

1− νij

)
, (3.7)

where θ = (β′,α′)′, and νij = νij(β) and the association parameters are functions of

α. Hence, νijk = νijk(β,α).

The expectations of these over the conditional distribution of the unobserved out-

comes given the observed ones are further required. Evidently, because Eqs. (3.6)–

(3.7) are linear in the triplet yij, yik and yijyik, it suffices to calculate the expectations

over these. Their corresponding probabilities are

νij|d =
νidj

νid
and νijk|d =

νidjk

νid
, (3.8)

where d refers to the set of indices (1, 2, . . . , d − 1), corresponding to the observed

portion of y.
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Combining Eqs. (3.6) and (3.7) with Eq. (3.8) leads to

E(U ijk) =
νidjk

νidνijk

∂

∂θ
νijk +

νidj − νidjk

νid(νij − νijk)

∂

∂θ
(νij − νijk)

+
νidk − νidjk

νid(νik − νijk)

∂

∂θ
(νik − νijk)

+
νid − νidj − νidk + νidjk

νid(1− νij − νik + νijk)

∂

∂θ
(1− νij − νik + νijk) (3.9)

and

E(U ik|j) =
yijνidkνij

νidνijk

∂

∂θ

(
νijk

νij

)
+

yij(νid − νidk)νij
νid(νij − νijk)

∂

∂θ

(
νij − νijk

νij

)

+
(1− yij)νidk(1− νij)

νid(νik − νijk)

∂

∂θ

(
νik − νijk

1− νij

)

+
(1− yij)(νid − νidk)(1− νij)

νid(1− νij − νik + νijk)

∂

∂θ

(
1− νij − νik + νijk

1− νij

)
. (3.10)

3.4 Predictive Bahadur model in the Doubly Robust Esti-

mating Equations

Many of the probabilities in the predictive model, i.e., the ones involving d, in (3.9)–

(3.10) are of dimension 3 or higher. The calculation of the probabilities in the mul-

tivariate Bahadur model is cumbersome because of the very constrained parameter

space. Pairwise PL is used exactly to circumvent this problem. In the spirit of, among

others, Bang and Robins (2005), we follow a more pragmatic route and propose a con-

venient and sufficiently rich predictive model. An attractive option is the pairwise

Bahadur model, pertaining to response at occasions j and k, but where the history,
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corresponding to d, is included as a set of predictor variables. This amounts to using

E(U ijk) ≡ E [U i(yij, yik)]

=

1∑

yij=0

1∑

yik=0

U i(yij, yik)q(yij, yik), (3.11)

E(U ik|j) ≡ E [U i(yik|yij)] =
1∑

yik=0

U i(yik|yij)q(yik|yij), (3.12)

where q(yij, yik) = P (Yij = yij, Yik = yik|Yid = yid) and U i(yij, yik) and U i(yik|yij) are

as defined in Eqs. (3.6) and (3.7). Evidently, modeling the q(·) terms, will imply the

need for an additional parameter vector, φ, say.

3.5 Precision Estimation

In the naive case, uncertainty stems from the θ parameter only. The asymptotic

variance-covariance matrix in Eq. (2.2) can then be consistently estimated by Î −1
0 Î1Î

−1
0 ,

with

I0 =
1

N

N∑

i=1

∂V i

∂θ
and I1 =

1

N

N∑

i=1

Si(θ̂)S
′
i(θ̂), (3.13)

where U =
∑N

i=1 V i(θ) and Si(θ̂) = V i is the corresponding estimating function,

i.e., shorthand notation for the formulas in Table 1.

In the singly robust case, we must also take into account uncertainty coming from

estimating the ψ parameters in the weight model. The entire score for subject i

is Si = (V ′
i,W

′
i)
′, with W =

∑N

i=1W i(ψ) the estimating equations coming from

the weight model, and the asymptotic variance-covariance is based on the following
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matrices:

I0 =
1

N

N∑

i=1




∂V i

∂θ

∂V i

∂ψ

0
∂W i

∂ψ


 and I1 =

1

N

N∑

i=1

Si(θ̂, ψ̂)S
′
i(θ̂, ψ̂). (3.14)

In the doubly robust case, for the general expression, the weight model is comple-

mented with a predictive model. The score function for this conditional Bahadur

model is T (φ), with an extra set of parameters φ. The precision of the parameters

can be estimated using the matrices as follows:

I0 =
1

N

N∑

i=1




∂V i

∂θ

∂V i

∂ψ

∂V i

∂φ

0
∂W i

∂ψ
0

0 0
∂T i

∂φ




and I1 =
1

N

N∑

i=1

Si(θ̂, ψ̂, φ̂)S
′
i(θ̂, ψ̂, φ̂),

(3.15)

From Eq. (3.1), (3.15) can be simplified to the following expressions

I0 =
1

N

N∑

i=1




∂V i

∂θ

∂V i

∂φ

0
∂T i

∂φ


 and I1 =

1

N

N∑

i=1

Si(θ̂, φ̂)S
′
i(θ̂, φ̂). (3.16)

More detailed calculations and complete formulas can be found in Appendix B. See

also Bang and Robins (2005) and Rotnitzky (2009).
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4 Results

In this section, we apply the proposed methodology to data from a clinical trial

designed to investigate an analgesic drug. All analyses have been performed with

SAS (version 9.4). First, the Bahadur model, using three different estimating equa-

tions for CC, CP and AC, was fitted with an NLMIXED procedure. To make use

of NLMIXED’s functionality, an objective function is formulated of which the first

derivative coincides with the estimating function under consideration. For optimiza-

tion, the default Quasi-Newton technique was applied. Further, to estimate the pre-

cision, a sandwich-type robust variance estimator was used and, to perform the cal-

culations, the IML procedure was implemented. The Bahadur model, based on the

full likelihood, was again fitted in an NLMIXED procedure with similar settings. For

more details, see Appendix C.

4.1 Analgesic Clinical Trial

The analgesic trial was a single-arm clinical trial involving 395 patients who were given

analgesic treatment for pain caused by chronic non-malignant disease. Treatment

was to be administered for 12 months and assessed by means of a five-point ‘Global

Satisfaction Assessment’ (GSA) scale: (1) very good; (2) good; (3) indifferent; (4) bad;

(5) very bad. As it is frequently of interest to physicians to classify a patient’s status as

either improving or worsening, some analyses have considered a dichotomized version,

GSABIN, which is 1 if GSA ≤ 3 and 0 otherwise; this outcome will be adopted for

our analysis as well. Apart from the outcome of interest, a number of covariates are

available, such as age, sex, weight, duration of pain in years prior to the start of the

study, type of pain, physical functioning, psychiatric condition, respiratory problems,
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Table 2: The Analgesic Trial. Absolute and relative frequencies of the five GSA

categories for each of the four follow-up times.

GSA Month 3 Month 6 Month 9 Month 12

1 55 14.3% 38 12.6% 40 17.6% 30 13.5%

2 112 29.1% 84 27.8% 67 29.5% 66 29.6%

3 151 39.2% 115 38.1% 76 33.5% 97 43.5%

4 52 13.5% 51 16.9% 33 14.5% 27 12.1%

5 15 3.9% 14 4.6% 11 4.9% 3 1.4%

Total 385 302 227 223

etc.

GSA was rated by each person four times during the trial: at months 3, 6, 9, and 12.

An overview of the frequencies per follow-up time is given in Table 2. Inspection of

Table 2 reveals varying totals per column, due to missingness. At three months, 10

subjects lack a measure, with these numbers being 93, 168, and 172 at subsequent

times.

An overview of the extent of missingness (Table 3) indicates that only around 40%

of the subjects have complete data. Both dropout and intermittent patterns of miss-

ingness occur – the former amounting to roughly 40%, with less than 20% for the

latter.
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Table 3: The Analgesic Trial. Overview of missingness patterns and the frequencies

with which they occur. ‘O’ indicates observed and ‘M’ indicates missing.

Measurement Occasion
N %

Month 3 Month 6 Month 9 Month 12

Completers O O O O 163 41.2

Dropouts

O O O M 51 12.91

O O M M 51 12.91

O M M M 63 15.95

O O M O 30 7.59

O M O O 7 1.77

Non-Monotone

O M O M 2 0.51

Missingness

O M M O 18 4.56

M O O O 2 0.51

M O O M 1 0.25

M O M O 1 0.25

M O M M 3 0.76

4.2 Analysis of the Case Study

For all ensuing analyses of the analgesic trial data, we consider only completers and

dropouts, i.e., a subset of 328 patients from the original data set, and the dichotomized

outcome (GSABIN). We first build a logistic regression for the dropout indicator, in

terms of the previous outcome (yi,j−1) and pain control assessment at baseline (xi),

i.e.,

logit P (Di = j|Di ≥ j, xi, yi,j−1) = ψ0 + ψxxi + ψprevyi,j−1.
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The highly significant p-value (p < .0001) for the parameter ψprev corresponding to

the previous outcome provides evidence against MCAR in favor of MAR. Weights are

then calculated based on predicted probabilities from this logistic model.

Preliminary analyses have indicated that, among a set of potential covariates, the

linear and quadratic effects of time tij , as well as the effect of baseline pain control

assessment (PCA0, denoted xi) are of importance. The marginal regression model for

the dichotomized GSA score, GSABIN, denoted as Y , is thus specified as

logit P (Yij = 1|tij, xi) = β0 + β1tij + β2t
2
ij + β3xi. (4.1)

For the correlation across the within-subject outcomes, we posit a Toeplitz type

correlation structure: 


1 ρ(1) ρ(2) ρ(3)

ρ(1) 1 ρ(1) ρ(2)

ρ(2) ρ(1) 1 ρ(2)

ρ(3) ρ(2) ρ(1) 1




, (4.2)

where ρ(k), k = 1, 2, 3 denotes the correlation between outcomes that are k time

points apart. Hence, the Bahadur density is f(yi) = f1(yi)c(yi), with f1(yi) as in

Eq. (3.3) with ni = 4 and Eq. (3.4) taking the specific form:

c(yi) = 1 +
∑

j1<j2;j2−j1=k

ρ
(k)
ij1j2

eij1eij2,

= 1 + ρ(1) (ei1ei2 + ei2ei3 + ei3ei4) + ρ(2) (ei1ei3 + ei2ei4) + ρ(3)ei1ei4.

The resulting parameter estimates, along with corresponding standard errors, for

model specification Eq. (4.1), with a Toeplitz correlation structure (Eq. 4.2), using

full likelihood and estimating equations from Table 1 are presented in Table 4. The

variability of the estimated weights, or additionally the variability of the estimated
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parameters of the predictive model, is incorporated in the computation of the standard

errors. The high degree of similarity with the results of full likelihood indicate that

the extra variability induced by the weights, or additionally by the parameters of the

predictive model, does not seem to have a large impact on either the estimates or

their standard errors.

Similar results are observed throughout the whole table, but in particular for the pa-

rameter estimates under full likelihood, naive AC and the doubly robust cases. More-

over, substantial efficiency over full likelihood seems to be gained under the naive AC

and doubly robust approaches. Whereas these observations are not surprising for the

doubly robust case, precisely because of their property, the relatively good perfor-

mance of the naive AC case seems counterintuitive. However, under exchangeability,

as shown before, the naive AC can be seen as a doubly robust estimator, given that

then the expectation in these estimation equations can be removed because observed

and unobserved components from a subject’s history are interchangeable. To this ef-

fect, we assessed the plausibility of the Toeplitz correlation structure of the analgesic

trial data, using full likelihood (approximate F-test in NLMIXED), and determined

that the three correlation parameters ρ(k), k = 1, 2, 3, were not significantly different

(p = 0.9078), which implies that the underlying correlation structure might very well

be exchangeable. This explains the excellent behaviour of the naive AC estimator.

Next, we consider the CP versions, both single and doubly robust. The estimates for

the parameters seem reasonably close to those under full likelihood. In addition, the

standard errors under the singly robust case seem comparable, but those of the doubly

robust case are generally larger than those from full likelihood, a result that could

be attributed to the fact of single robustness. The estimates for the β parameters
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Table 4: Analgesic Trial. Parameter estimates (empirically-corrected standard errors)

for naive, singly and doubly robust pairwise likelihood and for full likelihood.

Effect Par. UCC,naive UCP,naive UAC,naive U full.lik.

Inter. β0 3.131 (0.678) 2.962 (0.563) 2.590 (0.493) 2.626 (0.509)

Time β1 -0.913 (0.492) -0.908 (0.401) -0.675 (0.354) -0.602 (0.362)

Time2 β2 0.170 (0.096) 0.177 (0.081) 0.151 (0.074) 0.120 (0.076)

PCA0 β3 -0.130 (0.132) -0.125 (0.113) -0.186 (0.099) -0.209 (0.106)

corr1 ρ(1) 0.217 (0.069) 0.244 (0.055) 0.259 (0.057) 0.297 (0.063)

corr2 ρ(2) 0.199 (0.075) 0.234 (0.068) 0.250 (0.069) 0.293 (0.074)

corr3 ρ(3) 0.224 (0.102) 0.232 (0.104) 0.240 (0.104) 0.337 (0.117)

Effect Par. UCC,sr UCP,sr UAC,sr

Inter. β0 3.090 (0.637) 2.712 (0.552) 1.718 (0.560)

Time β1 -0.997 (0.468) -0.775 (0.389) -0.280 (0.347)

Time2 β2 0.193 (0.090) 0.151 (0.078) 0.092 (0.070)

PCA0 β3 -0.195 (0.133) -0.167 (0.113) -0.196 (0.115)

corr1 ρ(1) 0.263 (0.079) 0.295 (0.062) 0.333 (0.064)

corr2 ρ(2) 0.257 (0.086) 0.273 (0.076) 0.303 (0.076)

corr3 ρ(3) 0.295 (0.115) 0.298 (0.112) 0.299 (0.108)

Effect Par. UCC,dr UCP,dr UAC,dr

Inter. β0 3.577 (1.136) 2.736 (0.874) 1.533 (0.692)

Time β1 -1.333 (0.851) -0.785 (0.647) -0.104 (0.480)

Time2 β2 0.241 (0.164) 0.149 (0.132) 0.052 (0.108)

PCA0 β3 -0.196 (0.220) -0.153 (0.193) -0.197 (0.147)

corr1 ρ(1) 0.255 (0.118) 0.305 (0.088) 0.366 (0.108)

corr2 ρ(2) 0.247 (0.165) 0.281 (0.139) 0.338 (0.158)

corr3 ρ(3) 0.305 (0.276) 0.329 (0.275) 0.350 (0.243)
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from the CC cases are somewhat higher, whereas those from the AC cases are lower

than those for full likelihood. The CP results seem to fall in between the CC and AC

results, suggesting a comprise between the latter two. This can be inferred from the

incremental nature of the contributions in expressions in Table 1. However, as AC

case uses more information than the CP case, this one is generally to be preferred.

5 Discussion

Pseudo-likelihood approaches have become a practical alternative to full likelihood

methods, particularly for applications involving complex likelihood forms. In view of

the various issues arising from marginally modelling incomplete non-Gaussian longitu-

dinal data, we move away from conditional pseudo-likelihood, and focus on marginal

pseudo-likelihood, considering the specific case of incomplete longitudinal binary data,

as proposed in Molenberghs et al. (2011). While the numerical and computational

issues accompanying the likelihood expressions of the marginal model for the binary

longitudinal responses are circumvented by means of substituting pairwise pseudo-

likelihood expressions for their full likelihood counterparts, the incompleteness in

the data is addressed using concepts of inverse probability weighting and predictive

terms in the form of expectations, thereby yielding singly and doubly robust estima-

tors. This expands the set of tools available for fitting marginal models to incomplete

non-Gaussian longitudinal data.

In this paper, we assessed the performance of pseudo-likelihood approaches proposed

in Molenberghs et al. (2011), in order to provide practical insight into alternative

strategies for marginal models for non-Gaussian incomplete longitudinal data. The



22 Lisa Hermans et al.

analysis of the case study demonstrates the feasibility and adequacy of the proposed

methodology. Singly robust estimators with correctly specified dropout model and

our doubly robust estimators were found to be at least as efficient as direct likelihood

methods. Moreover, under full or near exchangeability, the naive available case version

is as efficient as the doubly robust estimators, allowing one to invoke double robustness

without having to use weights or expectations.

While the situation examined in this paper focuses on dropout, in principle, the gen-

eral methodology applies for non-monotone missingness as well; one then has to pay

particular attention to the construction of both weights and predictions, and some

non-trivial algebraic challenges will emerge. Other possibilities include imputing all

missing cases or imputing only non-monotone missing cases to render the missingness

monotone and subsequently using pseudo-likelihood on the imputed data sets. Also,

while multiple imputation approaches generally prescribe Gaussian type data, vari-

ations for non-Gaussian data can be utilized and seem reasonably stable even with

model misspecification; see, for instance, Beunckens et al. (2008).

Supplementary Materials

More detailed information on calculations, data and SAS code can be found in the ac-

companying Supplementary Materials through the link: http://www.statmod.org/smij/archive.html.
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