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1. Introduction and Motivation

Recent climate changes are increasingly leading to extreme meteorological weather phe-
nomena. These situations have impact on water supply and water quality, for example,
due to the influence of the salty sea on rivers, which can have a negative impact on the
water and surrounding land area. Monitoring water quality and quantity is becoming
more and more relevant. In Belgium, the “Internet of Water” project1 (IoW) aims at
enhancing monitoring and governance of the Flemish waterways. This project plans to
deploy 2,500 sensors along the Flemish river system. These will allow, for example, to
trigger a warning if certain measurements pass over pre-defined thresholds. A second ex-
ample is, if a pollution problem is detected by a sensor at a certain location, the state at
downstream locations could be predicted in order to take timely appropriate action. Also,
typical data analysis tasks can be performed using the enormous amount of data that
will be produced. All of the above requires appropriate modelling, storing and querying
of such data. Normally, this would be done using relational databases. Nowadays, graph
databases also appear as good candidates for these tasks, as the following discussion
suggests.

Property graphs (Robinson et al. 2013), that is, graphs whose nodes and edges are
annotated with properties, are typically used to model networks (e.g., social networks,
sensor networks) to perform data analysis. The property graph data model is an ab-
straction that can also be used to represent rivers in a natural way. For example, using
this model, the river segments can be represented as nodes in a graph, and an edge
would go from one segment to another, if they are consecutive in the direction of the
flow. In addition, spatio-temporal coordinates can be included as properties, as well as
other characteristics of the river segments. Also, hierarchical contextual data could be
defined, which would allow representing the graph at different granularities, for analyti-
cal querying involving data summarisation. Modelling rivers using graphs allows storing
them in a natural way, using graph databases (Angles 2012, 2018), rather than relational
databases, preventing the “impedance mismatch” problem, that arises when the natural
network structure is split into many records of a relational table. For example, when a
river network is stored as a graph, and represented as indicated above, finding a path
between river segments is straightforward using a native graph database2. On the other
hand, using a relational database, segments would be represented as rows in a table,
therefore, finding a path requires self-joining the table as many times as the length of the
path requires. In particular, in this paper, the Neo4j graph database3 is used. Besides
its popularity, the Neo4j community has developed several libraries of functions, that
are easily added to the database as plugins. These libraries include a powerful machin-
ery of algorithms for finding paths in graphs, handling many different data types and
performing usual data science tasks. There is also a spatial library4, which can enhance
the analysis possibilities. Last, but not least, Neo4j comes with a high-level graph query
language, Cypher.

This paper proposes the use of graph databases for facilitating the work of hydrologists
along two main dimensions: On the one hand, certain queries of interest can be expressed
intuitively by non-expert professionals; On the other hand, more involved queries may,

1https://www.internetofwater.be/en/what-is-internet-or-water/
2Graph databases are called native if they use specialised data structures for storing data. On the contrary, if they
provide interface for other kind of storage, e.g., relational databases, they are called non-native.
3http://www.neo4j.com
4https://github.com/neo4j-contrib/spatial-algorithms/releases/tag/0.2.3-neo4j-4.1.3
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sometimes, run faster over the graph database than over the relational alternative, thanks
to specialised native data structures that allow efficient path traversal. Concretely, the
work tackles the following questions: (a) Can graph databases be successfully used to
model, store, and query river flows? (b) If so, which are the kinds of queries that could
benefit the most from this approach? (c) Is it more intuitive and simple for a non-expert
user, to express queries using high-level graph query languages than writing SQL queries
over a relational database? To answer this questions, the Flemish river system is studied
and discussed in depth. Further, the process of transforming the source data into a format
suitable for querying is also addressed in this work.

In summary, the contributions of this paper are:

(1) The definition of a property graph data model for representing river systems,
that can be extended to other kinds of transportation networks.

(2) A real-world case study of this proposal, using the complete Flanders river system.
(3) A description of the data acquisition and transformation processes, that take the

river system data from a shapefile into a relational database, create a graph, and
store this graph using graph databases.

(4) A definition and analysis of a collection of queries, expressed in Cypher and
SQL, and executed over the Neo4j and the PostgreSQL databases, respectively.
The queries are run and the results discussed and reported.

It follows, from the experiments and the analysis that, in most of the cases, queries
over the graph database show better performance (with a few exceptions) than their
relational equivalent, particularly in the queries asking for paths. Also, in many cases,
queries are more easily and naturally expressed in Cypher than in SQL. However, for
some queries, good performance is achieved at the expense of writing more complex
Cypher expressions, which are not very intuitive.

The remainder of this paper is organised as follows: in Section 2 related work is dis-
cussed. The problem of acquiring and preparing the river data is discussed in Section 3,
and in Section 4, the relational and graph storage are described and discussed. A case
study is presented in Section 5 where a collection of queries, to analyse the data in rela-
tional and graph databases, are proposed. An experimental evaluation of these queries,
over Neo4j and PostgreSQL, is reported and discussed in Section 6. Finally, Section 7
concludes the paper, also addressing future work and open problems.

2. Related Work

This section studies related work, starting from a description of the context of the prob-
lem, namely the rivers in the Flanders region in Belgium. Then, graph databases are
discussed. Finally, a brief comparison between relational and graph databases is pre-
sented.

2.1. Data-driven approaches for studying flows in river systems

The region of Flanders is located in the northern part of Belgium. In spite of encom-
passing a relatively small area, watersheds within Flanders exhibit a wide range of
regimes which require localised parameterisations, for more accurate hydrological mod-
elling (Heuvelmans et al. 2004). In recent decades, the chance of extreme meteorological
events has increased in Belgium. This includes the occurrence of heavy storms and fre-
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Figure 1. Overview of the Flemish river system.

quent heatwaves, which results in increased floods and drought periods (Brouwers et al.
2015). Drier periods, specifically, have a dual impact in the region, as less rainwater runoff
causes higher risks of seawater intrusion from the North Sea resulting in salinisation of
groundwater and soils. As more than 50% of the area in Flanders is used for agricul-
ture, such events severely impact the country’s socio-economic status (Gobin 2012). The
implementation of a dense sensor network over a hydrologically complicated and envi-
ronmentally vulnerable region, allows building an integrated geospatial data-driven river
system. To put the problem in context, Figure 1 depicts an overview of the Flemish river
system, using QGIS1 over an OpenStreetMap background. The vast amount of river
branches can be clearly seen in Figure 1.

Physical process-based modelling described above, although necessary, does not suffice
for the current vast amounts of data from various sources for real-time applications.
Additionally, commonly used spatially distributed hydrologic models still rely, to some
extent, on empirical parameterisations and extensive calibration. The implementation
of complementary data-driven approaches have become increasingly popular and have
successfully represented hydrological processes (Ahani et al. 2018, Solomatine and Ostfeld
2008) Data-driven approaches allow for additional insights based on classifications or
clustering of regions with similar input and output relationships at varying spatial or
temporal resolutions, a task not easily implementable in traditional process-based models.

Typically, relational databases are considered as the standard systems for storing data
like the one needed for the study introduced above. However, as argued in Section 1,
graph databases appear as natural candidates for that task, since the river topology can
be modelled as a graph, and stored in native data structures, appropriate to answer
the required queries efficiently. (Demir and Szczepanek 2017) extensively discuss graph
data models as a natural way of representing river networks. In fact, they simplify the
analysis, arguing that a tree representation would suffice to cover a hydrologist interest.
The present paper shows (see Section 5, Query 5.7) that this simplification is not very
realistic. Also, benchmarking was performed over a small tree containing one thousand
nodes, and using PostgreSQL to store the graph data model. That is, the approach does

1https://www.qgis.org
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not tackle the discrepancy between the conceptual and physical data models. The work
by (Daltio and Medeiros 2015) addresses this issue, proposing using Neo4j for storing a
river network. They present “Hydrograph”, a tool to explore geographic data in graph
databases. The graph data model adopted in this works is a binary tree. However, the
work does not report implementation details, or queries over the river system.

We note that both cases discussed above simplify the problem adopting a tree rep-
resentation. Opposite to this, in the present paper an actual graph representation is
assumed, which, as will be discussed below, is much more demanding, since it increases
the number of possible paths, but, on the other hand, realistically represents the river
flow. In addition, no tests on graph databases are reported in such efforts. In this paper,
relational databases (in this case, PostgreSQL) and graph databases (Neo4j) are tested
under a collection of typical queries required in river analysis and parameter prediction.

Relational database technology is mature and well-known, while graph databases are
relatively new, therefore a brief description is provided next.

2.2. Graph Databases

In the context of graph databases, two models are used in practice:

(a) Models based on RDF1, oriented to the Semantic Web; and
(b) Models based on property graphs.

Models of type (a) represent data as sets of triples where each triple consists of three
elements that are referred to as the subject, the predicate, and the object of the triple.
These triples allow describing arbitrary objects in terms of their attributes and their
relationships to other objects. Informally, a collection of RDF triples is an RDF graph.
In models of type (b) (Angles et al. 2017), nodes and edges are labelled with a sequence
of attribute-value pairs. It is an extension of classical graph database models, frequently
used for implementations in practical applications. The main reason for storing attributes
in nodes and edges is speeding up the retrieval of the data directly related to a certain
node. For an extensive and comprehensive bibliography on graph database models, the
interested reader is referred to (Angles and Gutierrez 2008, Angles 2018). Although the
models of type (a) have a general scope, the structure of RDF makes them not as efficient
as the other models, which are aimed at reaching a local scope. An important feature
of RDF-base graph models, however, is that they follow a standard, which is not yet
the case for the other graph databases, therefore they are typically used for metadata
representation. Many works have proposed RDF to annotate trajectories with semantic
information (Fileto et al. 2015, da Silva et al. 2015, Ruback et al. 2016). Hartig (Hartig
2014) proposes a formal way of reconciling both models formally, through a collection
of well-defined transformations between property graphs and RDF graphs. He shows
that property graphs could, in the end, be queried using SPARQL,2 the standard query
language for the Semantic Web. The model used in the next sections to represent and
query trajectory data is based on the concept of property graphs.

Several data models to perform analytical queries on graphs have been proposed.
GraphOLAP (Chen et al. 2009), conceptually, is a framework for online analytical pro-
cessing (OLAP) on a set of homogeneous graphs, based on splitting the graph into a

1https://www.w3.org/RDF/
2https://www.w3.org/TR/rdf-sparql-query/
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collection of snapshots that are aggregated in two ways, called Informational and Topo-
logical OLAP aggregations. GraphCube (Zhao et al. 2011) provides a framework for com-
putation and analysis on OLAP cubes using the different levels of aggregation of a graph.
Gómez et al. (Gómez et al. 2019) use graph databases to represent semantic trajectory
data based on places of interest (PoIs), that is, a collection of trajectories represented as
routes between context-defined PoIs rather than actual geographic points (Parent et al.
2013).

2.3. Graph and Relational Databases

The comparison between relational databases and graph databases has been studied to
a limited extent, given that graph database technology is relatively novel. Vicknair et
al. (Vicknair et al. 2010) compare MySQL against Neo4j through a simple database
schema and relatively simple queries. A similar study was carried out by Batra and
Tyagi (Batra and Tyagi 2012), also using MySQL and early versions of Neo4j. Both
studies, however, discuss very simple queries. Regarding spatiotemporal data, Makris et
al. (Makris et al. 2019) compare MongoDB, a document NoSQL database against Post-
greSQL, not only for querying but also for data preparation tasks. Gómez et al. (Gómez
et al. 2019) compare graph and relational databases for storing and querying trajectory
data, concluding that in most of the queries, the former perform better because they
take advantage of the native data storage, in particular for path traversal. The latter
is the only study that compares both models for queries that can exploit the natural
representation of the model at hand. The present paper works along the same lines, since
the river system representation is naturally a network, which can benefit from the native
graph data storage of Neo4j in particular, and graph databases, in general. The study is
presented in Section 4.

3. Data Acquisition and Pre-processing

This section details the data sources used in the paper, and the pre-processing work
carried out in order to get the data ready to be exploited. The process includes several
non-trivial steps that are worth discussing. First, the data sources are described. Then,
the process that transforms the data into a graph containing the river system information
is studied in detail.

3.1. Data sources

The Flemish environmental agency (whose acronym in Dutch is VMM), produces the
“Vlaamse Hydrografische Atlas” (VHA), a data set comprised of shapefiles containing
all the rivers in Flanders, and the watersheds the rivers are part of. This data set does not
contain ponds and other water bodies. The VHA is maintained by the VMM, and new
versions are released every three months. The data set contains geometric data where
the rivers in Flanders are represented as line segments, and includes the flow direction of
each segment. The main attributes in the data set are (the names of the properties are
in Dutch):

• Vhas, a unique number that each river segment gets assigned by VMM. This number
can be seen and used as an ID of the segment.
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• Catc, the category to which the segment belongs. All rivers are divided into categories,
which range from 0 up to 9, with 0 representing the biggest waterways and 9 the
smallest ones.

• Lengte, the (precomputed) length of the segment.

• Geom, the geometry of the river segment. Most of the the time, it is a multi-line
(polygonal) geometry.

• Naam, the name of the river

• Strmgeb, the name of catchment area

• Beknaam, the name of an administrative sub area of the catchment. It can be seen as
a broad drainage area.

• Lblkwal, the intended quality of the water in the segment, for example “drinkable
water”.

The VHA data set includes more properties of the segments, not included here for the
sake of space, but included in the databases that are created for this work. All properties
and their description can be found the documentation supplied along with the shape-
files. Additionally, the OpenStreetMap information is used, since it is considered here as
correct and up to date, in general, for Belgium.1.

Specifically, for the tests reported here, the VHA data set from 7 August 2020 is used.2

3.2. Preparing the data set

The VHA described in the previous section must be processed to produce data that can
be used for analysis and prediction. This process is comprised of two steps: (a) Create
the relationships between river segments and (b) Fix the errors that may have occurred.

3.2.1. Creating relationships between river segments

The representation of the overall water flow must be added to the data set, since the
data contains the flow direction within each segment, but not over multiple segments.
A new relation is defined encoding this overall flow information. The terminology of the
segments needs to be defined first. When water is flowing from one segment to the next
one, the two segments involved are called source and target, respectively. The former
is the segment where the water is coming from; the target segment is the one where the
water is flowing to. In other words, it can be said that the the target segment follows
the source segment for downstream flows. Now that the naming for the two segments
involved is known, a relation flows-to(A,B), can be defined as a binary relation where
A and B are the IDs of the segments. The relation consists of all tuples (a, b) where a is
a source segment ID and b is a corresponding target segment ID.

In order to create this relation, each segment has to be matched with all the other
segments, to check whether or not the water flows directly from one segment to the
other. The main idea is that the endpoint of the line geometry of the source segment
is taken, if there is a starting point of another segment’s line geometry that matches
the endpoint, the second segment is a target segment for the source one. These pair of
segments can then be added to the flows-to relation. This is done for all segments in
the VHA, after which the flows-to relation represents the complete system flow.

1https://openstreetmap.be/en/
2http://www.geopunt.be/catalogus/datasetfolder/020a452d-8cd2-41b7-9c64-2be367668837
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It is worth noting that not every segment has a follow-up segment3. For example, there
are segments that end up in the sea, or just stop in some special cases. This does not
always mean that a river stops at the end of that segment; the river can, for example,
cross the Flemish border and subsequently not have any follow-up segment in the data
set. Also, segments do not always have exactly one follow-up segment, since a river can
split into two or more rivers that all flow on and, possibly, join again. In this situation, the
endpoint of the segments will fall together with more than one starting point. Therefore,
the flows-to relation can contain multiple tuples for a specific segment and this should
be taken into account when devising algorithms for the search of flow paths, and also for
the creation of the database itself.

We remark that, in general, the flows-to-graph of a river system is acyclic, since
naturally flowing water cannot flow from one location via some path to that same location
(if the river system includes pumps, this might be different). Therefore, a flows-to-graph
is a directed acyclic graph (or DAG).

It has been mentioned that the VHA data set is delivered as a shapefile where all
segments and their properties are stored. In order to add the flow information, the file is
loaded into a spatial relational database, namely PostgreSQL, equipped with the PostGIS
extension1. This table is denoted wlas. From it, the flows-to table is created as:

1 CREATE TABLE

2 flows_to(source_segment bigint , target_segment bigint );

The new table can be filled using:

1 INSERT INTO flows_to(source_segment , target_segment)

2 SELECT a.vhas , b.vhas

3 FROM wlas a, wlas b

4 WHERE ST_StartPoint(b.geom) = ST_EndPoint(a.geom);

This query cannot be directly executed over the VHA data set after it is imported
into the Postgres database. The reason for that is that the geometries in the VHA
shapefile, and thus in the database, are multi-line geometries and the ST StartPoint() or
the ST EndPoint() functions cannot take a multi-geometry as input. Therefore, the multi-
line geometries must be converted to a single line geometry. The following statements
create a new column geomS in the table wlas, with type line geometry defined using
the map projection 31370 (which is the “Belgian Lambert 72” projection), and then
convert each multi-line segment into a single line segment. After this pre-processing of
the VHA data, the query above can be executed. We note that the usage of “b.geom”
and “a.geom” needs to be replaced with the name of the newly created column, in this
example“b.geomS” and “a.geomS”.

1 ALTER TABLE wlas

2 ADD COLUMN geomS geometry(LineString , 31370);

3 UPDATE wlas SET geomS = ST_LineMerge(geom);

3.2.2. Fixing errors

Some errors encountered during the creation of the data set need to be fixed, to obtain
a usable database. These are discussed next.

3For a given segment, source, the corresponding targets are considered to be follow-up segments.
1https://postgis.net
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Figure 2. An example of a group of segments where the endpoint does not match exactly with
other segments start or end points.

Figure 3. An example of two segments colliding in the VHA caused by and incorrect direction.
The blue arrows indicate the direction encoded in the VHA.

Segments that do not match Up until now two segments were defined as source and
target segments if their ending and starting points coincide. However, if the difference
between the two points is relatively small, they may still represent the same physical
location (see Figure 2). To overcome such small mismatches, the comparison of the points
needs to be relaxed, allowing a tolerance for considering two points to be the same. This
can be addressed as follows for the original flows-to relation:

1 WHERE ST_StartPoint(b.geom) = ST_EndPoint(a.geom) OR

2 ST_DWithin(ST_StartPoint(b.geomS),ST_EndPoint(a.geomS ),1);

Here, the tolerance is set to one meter (the “Belgian Lambert 72” reference system
implies meters). The value of the tolerance that is allowed depends on the problem.
For the VHA data set, one meter is adopted, based on empirical tests with different
values. Using a tolerance also entails that there is a higher possibility of encountering
false positives, meaning that two segments could appear to be matching although this is
not the case. However, with the adopted value this is kept to a reasonable chance.

Incorrect directions In the real world, rivers often have a direction associated with
them. A direction incorrectly encoded may lead to colliding segments or non-matching
starting and ending points, as illustrated in Figure 3.

The solution entails the following steps:

(1) Execute the standard flows-to relation.
(2) Find all unmatched segments and select the ones that have incorrect-direction

issue.
(3) Store these segments in a temporary table, revert the direction, and add the

information back to the created relation.
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Incomplete or unexpected data Two further issues must be mentioned:

• Isolated lines or segments; and

• Border crossing and re-entering.

The first one is rather unexpected in a data set that represents rivers or water streams. In
the case of the VHA, it can happen that one line geometry or a small set of line geometries
do not connect to the rest of the segments in the data set. Those isolated segments form
a static water body, like a small pond, where mainly runoff water is captured until it
drains into the ground. By definition, the VHA only charts bodies of water or streams
that have a flowing character. The segments, therefore, are unexpected data in the VHA
data set. The influence of those cases is negligible on the overall data set because they
only influence the results if a query, asking for a certain path (discussed in Section 5),
starts in one such segment. Furthermore, this occurs with the smallest segments.

Border crossing segments occur because there are administrative boundaries to a region
which do not match to the natural boundaries existing in the landscape. The VHA data
set contains the rivers, brooks and ditches of the region Flanders. However, the data set,
does not include the parts that are outside the region of Flanders. The so-called border
segments are the segments that leave the charted area and may re-enter further down
the stream. The border segments do not have any downstream segments in the flows-to
relationship because such a segment does not exist, according to the assumptions made.
The problem created by this gap at the border (the water that leaves the border segments,
ends up in another segment) is not captured by the present solutions. The distance
between those segments can be a few meters but also a few kilometres. In this paper,
it is assumed that the water that leaves the region does not re-enter in another stream.
This entails that the information of the overall water flow in those cases is lost for good
and cannot be captured in the final data set.

4. Storing the River Graph in Relational and Graph Databases

In this section, relational and graph databases are analysed with respect to their func-
tional and modelling dimensions. First, since the analysis of rivers involves spatial data,
capability to handle these data is discussed first. Then, the representation of the problem
using the relational and graph data models is studied. Finally, typical recursive queries
over the graph and relational database representations are discussed next along two di-
mensions: intuitiveness and performance. In this sense, the questions to answer are: how
easy and intuitive would be to write typical queries, and how fast will they run? Query
performance is studied in Sections 5 and 6.

4.1. Handling spatial and non-spatial data

The data used in this paper are mainly based on the VHA, which is distributed using
shapefiles. Each version of the VHA is a new shapefile including the complete VHA and
thus all geometries of the rivers in Flanders. Data are imported into the database and
then converted to a suitable representation for querying.

Neither PostgreSQL nor Neo4j are geographical databases, which means that they
do not have out-of-the-box support for geometric data like the one in the VHA data



May 23, 2021 11:49 Transactions in GIS 2021-TGIS-Rivers-final

Towards the Internet of Water: Using Graph Databases for Hydrological Analysis 11

set. However, this support can be added to them through extensions. In the case of
PostgreSQL, PostGIS is the extension that adds support for geometric data, through a
wide range of geometric functions1. PostGIS also provides functions allowing importing a
shapefile through the shp2pgsql functionality2. At the time of writing this work, Neo4j re-
leases do not provide functionalities to import shapefiles. Like in PostgreSQL, the overall
flow information must be created after the data are imported (although, in PostgreSQL,
PostGIS and pgRouting3 provide topology creation functions to facilitates this process).
There is also a software library that provides interaction with OpenStreetMaps (OSM)4,
and includes a scalable importer which takes advantage of Neo4j spatial indices, and
also provides some functions for routing analysis. In addition, a new spatial library men-
tioned above, contains algorithms for spatial analysis5, although to a much lesser extent,
compared with the functionality provided by PostGIS. Finally, the APOC library, that
comes with the current Neo4j versions (4.x at the time of writing)6 contains functions for
geodecoding over OSM (other map services can be configured). In summary, compared
to Postgres, Neo4j so far, lacks a wide range of spatial functionality.

4.2. Data model

The typical way of performing routing or path-finding analysis would be to store data
in relational databases, over which SQL queries could be run. These queries are aimed
at finding paths is the network, aggregating data with respect to some dimensions (e.g.,
time, river category, and so on), or querying data with respect to some geographical
feature, location, or point of interest (PoI). A problem with this approach, particularly
with the huge volumes of data available nowadays, is the difference between the way in
which data are modelled and stored (this was called “impedance mismatch” above). Given
that the river topology can be considered a graph, storing river data using relations may
seem unnatural. Especially, since current database technology provides solutions that
allow storing graphs in native form, as mentioned in Section 2. Relational and graph
data models also come with high-level query languages.

For the problem under study, rivers are modelled as a sequence of segments, connected
to each other. This is the typical case of recursive relationships, extensively studied in
database conceptual modelling. (Dullea and Song 1999) give a taxonomy of this kind
of relationships. The translation of recursive relationships to the relational model is
straightforward and also well-studied. Thus, following traditional database theory, the
river system is represented as follows. There is a table to store the segments information,
such as ID and properties:

wlas(vhas, name, ...).

The attribute vhas is used as the identifier of the segment, and called ID. There is also
a table containing the binary relation flows-to is used, as discussed in Section 3.2.1,

1https://postgis.net/docs/PostGIS Special Functions Index.html
2https://postgis.net/docs/manual-1.4/ch04.html#id419979
3http://pgrouting.org
4https://github.com/neo4j-contrib/osm
5https://github.com/neo4j-contrib/spatial-algorithms
6https://github.com/neo4j-contrib/neo4j-apoc-procedures
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where for each segment the follow-up segments are stored:

flowsto(source, target).

The source and target columns contain the IDs of the segments (vhas).

In Neo4j, segments are represented as nodes, with label :Segment (and their corre-
sponding properties), and the relation between the nodes is called :flowsTo, defined as
follows: there is a relation :flowsTo from node A to node B if the water is able to flow
to segment B from segment A.

We note that in both models, the reverse flow can be addressed when querying, there-
fore adding the inverse relation, namely :comesFrom, is not actually needed to indicate
a flow from node B to node A.

4.3. Expressing Recursive Queries over Relational and Graph
Databases

Typical queries required by the problem under study are of the form: “Where can the
water flow to?” (downstream query) and “Where does the water come from?” (upstream
query). Based on these queries, other computations can be performed, like height and
speed of the flow, pollution spread models, and many more. We note that these are re-
cursive queries, which are computationally expensive, since they often require computing
the transitive closure of the underlying graph, a well-known problem in database theory
(For example, see the classic works by (Bancilhon and Ramakrishnan 1986), and (Li
and Ross 1993)). Actually, the worst-case time complexity for computing the transitive
closure of a directed graph is O(n · e), where n is the number of the nodes, and e is
the number of the edges. The space complexity is O(n2). As an example, a classic algo-
rithm is proposed by (Schmitz 1983). It follows that this is also a hard problem in graph
databases. However, this paper shows that the graph representation would better take
advantage of the structure of the river system in order to query the database efficiently.

With the layout of the data defined in Section 4.2, the SQL downstream query from
a starting segment, with ID id startsegment, can be written as (the upstream query is
analogous, and omitted due to space restrictions):

1 WITH RECURSIVE outcome(source , target) AS (

2 (SELECT source , target

3 FROM flowsto

4 WHERE source = id_startsegment)

5 UNION

6 SELECT flowsto.source , flowsto.target

7 FROM outcome , flowsto

8 WHERE flowsto.source = outcome.target)

9 SELECT DISTINCT target FROM outcome;

Cypher is, like SQL, a high-level, declarative, programming language. It is specifically
designed for graph structures, and is the language that comes with the Neo4j database.
It uses nodes and relations as first-class citizens, although the output to a query can
be a graphs or a set of tuples. The Cypher query that computes the downstream query
showed in SQL above, reads:
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1 MATCH (N:Segment )-[: flowsTo*]->(M:Segment)

2 WHERE N.vhas = id_startsegment

3 RETURN DISTINCT M.vhas;

Note that both are recursive queries computing the transitive closure of the graph, and
returning the nodes in the graph that can be reached starting from a given one. That is,
the queries do not output the paths, but just the reachable segments. In the case of SQL,
listing the paths would be even more complex. For example, the query below computes
the paths to each reachable segment:

1 WITH RECURSIVE outcome(source , target , path) AS (

2 (SELECT flowsto.source , flowsto.target ,

3 ARRAY[flowsto.target]

4 FROM flowsto

5 WHERE flowsto.target = id_startsegment)

6 UNION

7 SELECT flowsto.source , flowsto.target ,

8 outcome.path || Array[flowsto.target]

9 FROM outcome , flowsto

10 WHERE flowsto.target = outcome.source

11 AND flowsto.target <> All(path))

12 SELECT DISTINCT path FROM outcome;

In the case of Cypher, to compute and list the paths, it suffices to write:

1 MATCH path= (N:Segment {vhas:id_startsegment })-

2 -[:flowsTo *]->(M:Segment)

3 RETURN DISTINCT path;

It can be seen that the structure of the Cypher query is far less complicated and more
intuitive than its SQL counterpart, since it takes advantage of the graph structure. In this
case, a basic MATCH .. WHERE .. RETURN structure suffices to express a recursive query.
This is mainly because Cypher is developed as a query language for graphs and recursion
is typical in these cases. The (N:segment)-[:flowsTo*]→(M:segment) pattern selects
all nodes M that are reachable by following one or more edges in the graph, traversing
the graph using the :flowsTo relation. In addition, the APOC library contains many
functions that can be used to compute the query above in a more efficient way, using
breadth-first and depth-first algorithms for expanding the nodes. An example of such a
query is is:

1 MATCH (n:Segment {vhas :6033614})

2 CALL apoc.path.expandConfig(n,

3 {relationshipFilter: "flowsTo >", minLevel: 1})

4 YIELD path AS path

5 RETURN path;

The expandConfig function expands the nodes of a graph, computing all the paths
between a node and all the other ones in the graph. Moreover, most of the time, the
structure of the river system is a tree (recall that the hydrological models introduced
in Section 2, consider a river system as a tree rather than a graph). This allows using
functions that compute the (directed) spanning tree of the starting node, which is even
more efficient. This function expands a spanning tree reachable from the start node
following a relationship up to a certain level adhering to the label filters indicated as
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arguments. The nodes returned, collectively, form a spanning tree. This is studied in
detail in the next section.

5. Querying the River Database

This section discusses a collection of queries over the rivers database. The collection
of queries was composed after consultation of several hydrologists. The queries are de-
signed as a starting point for real life challenges as ”Where does an observed pollution
come from?”, ”Where will an observed pollution go to? When will it arrive there?” etc.
These queries are are then run over Neo4j and PostgreSQL, and the results reported
in Section 6. The queries are expressed in Cypher and SQL, respectively. However, for
the sake of space, only the former are shown here, since SQL is a well-known language,
and the work is focused on graph databases. Nevertheless, the SQL queries are included
in Appendix 7. For clarity, the queries are organised into classes that account for their
main characteristics. To allow an adequate comparison of Cypher and SQL queries, the
required output formats are indicated for each query.

Queries of Type 1 [Aggregation and similarity queries] The queries in this class
are typical à la graph OLAP (Gómez et al. 2020) kind of aggregate queries. Aggregations
are performed over different properties used as categories and metrics. For example,
Query 5.1 just uses the segment’s length as a metric, while Query 5.2 aggregates this
metric by segment category. Query 5.3 takes the length of the segments and compares
them against the length of a given node, in order to obtain segments with similar lengths.
The output formats are: for Query 5.1 a float number, for Query 5.2, a tuple of the form
(key, length), and for Query 5.3, a list of (ID, length) pairs.

Query 5.1 Compute the average segment length.

1 MATCH (n:Segment)

2 RETURN avg(n.lengte) AS avglength

Query 5.2 Compute the average segment length by segment category.

1 MATCH (n:Segment)

2 RETURN n.catc as category , avg(n.lengte)

3 AS avglength order by category asc

Query 5.3 Find all segments that have a length within a 10% margin of the length of
segment with ID 6020612.

1 MATCH (n:Segment {vhas :6020612})

2 WITH n.lengte as length

3 MATCH (m:Segment)

4 WHERE m.lengte < length *1.1 and m.lengte > length *0.9

5 RETURN m.vhas , m.lengte;
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Queries of Type 2 [Network Topology]
This class of queries addresses the computation of metrics of the river network con-

figuration. Although the queries include aggregation (like the ones of Type 1), they are
included in this class, according with their main functional meaning.

Query 5.4 For each segment find the number of incoming and outgoing segments.

The output of this query is a set of tuples of the form (ID, #in, #out). The query
reads in Cypher as follows:

1 MATCH (src:Segment )-[: flowsTo]->(n:Segment )-[: flowsTo]

2 ->(target:Segment)

3 RETURN n.vhas as nodenbr , COUNT(DISTINCT src) as segIn ,

4 COUNT (DISTINCT target) as segOut

Query 5.5 Find the segments with the maximum number of incoming segments.

The output of this query is a list of segment IDs and an integer representing the
maximum number of incoming segments.

1 MATCH (n:Segment)

2 OPTIONAL MATCH (src:Segment )-[: flowsTo]->(n)

3 WITH n, COUNT(distinct src) as indegree

4 WITH COLLECT ([n, indegree ]) as tuples ,

5 MAX(indegree) as max

6 RETURN [t in tuples WHERE t[1] = max |t]

The OPTIONAL statement works like a relational outer join. The COLLECT statement
aggregates the results in a list of pairs, to which list comprehension functions are then
applied. The elements in the list, with values equal to the maximum are returned.

Query 5.6 Find the number of splits in the downstream path of segment 6020612.

The output of this query is an integer number indicating the number of splits found.

1 MATCH (n:Segment {vhas :6020612})

2 CALL apoc.path.spanningTree(n,{ relationshipFilter:

3 "flowsTo >", minLevel: 1}) YIELD path AS pp

4 UNWIND NODES(pp) as p

5 MATCH (p)-[: flowsTo]->(r:Segment)

6 WITH p, count(DISTINCT r) as co WHERE co > 1

7 RETURN count(p)

Here, the spanningTree function from the APOC library is used. This function computes
all simple paths that can be reached starting from a node in the graph, using breath-first
search by default. This is done visiting nodes only once. The relationshipfilter is
"flowsTo>", indicating that the path must traverse only this relation, in downstream
direction. The function can be parametrised in many ways, for example, indicating the
minimum an maximum levels in the path (here, the latter is omitted). A collection of
paths is returned (pp), which is then flattened as a table with the UNWIND statement.
All reachable nodes are obtained. For each node in this table, it is tested if this node
has more than one outgoing segments. If this is the case, there is a split. The node with
vhas:6020612 is chosen for the test because it is one of the farthest from the sea, thus
its flow downstream is one of the longest ones.
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Query 5.7 Find the number of in-flowing segments in the downstream path of segment
6020612.

The output of the query is an integer giving the number of in-flowing segments found.
An in-flowing segment is a segment that ends on the downstream path, but which is not
a part of the path itself. That is, a segment that contributes to the flow of a given one.

1 MATCH (n:Segment {vhas :6020612})

2 CALL apoc.path.spanningTree(n,{ relationshipFilter:

3 "flowsTo >", minLevel: 1}) YIELD path AS pp

4 WITH [p in NODES(pp) | p.vhas] as ids

5 UNWIND ids as id

6 WITH collect(DISTINCT id) as ids

7 MATCH (s:Segment )-[: flowsTo]->(p)

8 WHERE NOT s.vhas in ids AND p.vhas <> 6020612

9 AND p.vhas in ids

10 RETURN count(DISTINCT s) as inflows

This query is similar to Query 5.6, also using the spanningTree function. List compre-
hension is used to obtain the node identifiers.

Query 5.8 Determine if there is a loop in the downstream path of segment 6031518.

Sometimes, when the level of the sea turns higher than normal, the sea may get into the
river flow and reverse its direction. Moreover, anthropogenic influences, such as barriers,
dams and sluices, can create loops in the system. From a modelling point of view, in
these cases, the graph will contain a cycle. This query finds out if this is the case in
the graph under study. This also shows that, in order to get a realistic modelling, the
tree representation does not suffice, and a model like the one proposed in this paper is
needed. The output of the query is a Boolean.

1 MATCH (n:Segment {vhas :6031518})

2 CALL apoc.path.spanningTree(n, {relationshipFilter:

3 "flowsTo >", minLevel: 1}) YIELD path AS pp

4 WITH [p in NODES(pp) | p] as nodelist

5 UNWIND nodelist as p

6 CALL apoc.path.expandConfig(p,

7 {relationshipFilter:"flowsTo >", minLevel: 1,

8 terminatorNodes :[p], whitelistNodes:nodelist })

9 yield path as loop

10 RETURN count(loop) >0 as loops

This query needs some explanation, that will also be used later. In this case, not only
the spanningTree function is used, but also the expandConfig function. The left-hand
side of Figure 4 shows the representation of the river as segments. Each edge represents
a river segment, starting in one node and ending in another one. The representation that
was chosen for the graph is depicted on the right-hand side. Here, a segment becomes a
node, for example, the segment c, running from nodes 3 to 4, becomes the node c. It can
be seen that segment g, for instance, receives flow from two incoming segments, namely
e and f. If, for example, a is the starting segment, the spanningTree function would
only capture one of the paths, the one which is first found by the algorithm. On the
other hand, the expandConfig function finds all the paths. In a tree representation this
problem would not appear, and the second CALL would not be needed, greatly simplifying
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Figure 4. Nodes with more than one incoming flows.

the query. This function has a high computational cost, and should be used only if needed.
For example, when the user only needs to obtain the nodes that can be reached from a
certain one, spanningTree should be used, since it is very efficient.

Remark 1 : Discussion on expressiveness. The Cypher queries above are, in general,
simpler than their SQL equivalent (shown in Appendix 7), in particular for Queries 5.5
through 5.8. Writing the SQL code for the latter requires an expert knowledge, while,
even though the Cypher equivalents are not trivial, they basically require to know the
existence of the right functions. Further, when the expandConfig function is not required,
the queries turn out to be very simple. In the case of SQL, the queries basically do not
change under for the two situations above.

Queries of Type 3 [Path aggregation] The queries in this class aggregate a metric
along a path. The length of a segment is used here, although for this scenario, the average
flow, or of any parameter reported by a sensor, could be used.

Query 5.9 Find all paths downstream from the given start segment.

There is no aggregate function in this query, the aggregation is given by the output,
consisting in the IDs of the segments that can be reached from a given one, and the list
of IDs of the corresponding paths.

1 PROFILE

2 MATCH (n:Segment {vhas :6020612})

3 CALL apoc.path.expandConfig(n, {relationshipFilter:

4 "flowsTo >", minLevel: 1}) YIELD path AS pp

5 UNWIND NODES(pp) as p

6 MATCH (p)-[: flowsTo]->(r:Segment)

7 WITH r, count(DISTINCT p) as co WHERE co > 1

8 WITH collect(r) as pc

9 MATCH (n:Segment {vhas :6020612})

10 CALL apoc.path.expandConfig(n,{ relationshipFilter:

11 "flowsTo >", minLevel:1,endNodes:pc}) YIELD path AS pp



May 23, 2021 11:49 Transactions in GIS 2021-TGIS-Rivers-final

18

12 WITH [p in NODES(pp) |p.vhas] AS nodelist

13 WHERE size(nodelist) > 0

14 RETURN nodelist[size(nodelist )-1] as id , nodelist

15

16 UNION ALL

17

18 MATCH (n:Segment {vhas :6020612})

19 CALL apoc.path.spanningTree(n,{ relationshipFilter:

20 "flowsTo >", minLevel: 1}) YIELD path AS pp

21 UNWIND NODES(pp) as p

22 MATCH (p)-[: flowsTo]->(r:Segment)

23 WITH r, count(DISTINCT p) as co WHERE co = 1

24 WITH collect(r) as pc

25 MATCH (n:Segment {vhas :6020612})

26 CALL apoc.path.spanningTree(n,{ relationshipFilter:

27 "flowsTo >", minLevel:1,endNodes:pc}) YIELD path AS pp

28 WITH [p in NODES(pp)|p.vhas] AS nodelist

29 RETURN nodelist[size(nodelist )-1] as id , nodelist;

This query requires a trick, to make it possible to run in standard hardware. Since
the expandConfig function is extremely costly, and the spanningTree function is very
efficient for reachability, the former is only applied to compute the paths were there
is more than one possible path for reaching a segments. This is computed in the up-
per subquery. The parameter endNodes:pc in the functions tell the algorithm to only
expand the nodes in this list. The lower subquery uses the spanningTree function to
compute the paths where there is only one way to reach the segment. The terms UNION

and UNION ALL return the union of the results, without and with duplicates, respectively.
This solution would probably not be efficient in a highly interconnected social network,
since the expandConfig function computes all the paths between a node and all the
other ones in the graph, which is computationally very expensive. On the other hand,
the spanningTree function stops when it finds a path between the node being expanded
and each other one. However, it is assumed that river networks are much less intercon-
nected than a typical social network, and therefore it should work well, as shown in the
experiments reported in Section 6.

Query 5.10 Find the branches of downstream flow starting at a given position (identified
by a segment’s vhas), together with the length and number of segments of each branch.

The output is a collection of tuples of the form: (target segment ID, # of hops, length).

1 MATCH (n:Segment {vhas :6020612})

2 CALL apoc.path.spanningTree(n,{ relationshipFilter:

3 "flowsTo >", minLevel: 1}) YIELD path AS pp

4 UNWIND NODES(pp) as p

5 MATCH (p)-[: flowsTo]->(r:Segment)

6 WITH r, count(DISTINCT p) as co WHERE co = 1

7 WITH collect(r) as pc

8 MATCH (n:Segment {vhas :6020612})

9 CALL apoc.path.spanningTree(n,{} relationshipFilter:

10 "flowsTo >", minLevel: 1,endNodes:pc}) YIELD path AS pp

11 WITH [p in NODES(pp) |p.vhas] AS nodelist ,

12 reduce(longi= tofloat (0),n IN nodes(pp)| longi+n.lengte)
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13 AS segLen ,

14 reduce(longi= 1,n IN nodes(pp)| longi + 1) AS nbrSeg

15 RETURN nodelist[size(nodelist )-1] as id , nbrSeg , segLen;

16

17 UNION

18

19 MATCH (n:Segment {vhas :6020612})

20 CALL apoc.path.spanningTree(n, {relationshipFilter:

21 "flowsTo >", minLevel: 1}) YIELD path AS pp

22 UNWIND NODES(pp) as p

23 MATCH (p)-[: flowsTo]->(r:Segment)

24 WITH r, count(DISTINCT p) as co WHERE co > 1

25 WITH collect(r) as pc

26 MATCH (n:Segment {vhas :6020612})

27 CALL apoc.path.expandConfig(n,{ relationshipFilter:

28 "flowsTo >", minLevel:1,endNodes:pc}) YIELD path AS pp

29 WITH [p in NODES(pp) |p.vhas] AS nodelist ,

30 reduce(longi = tofloat (0),n IN nodes(pp)| longi+n.lengte)

31 AS segLen ,

32 reduce(longi = 1,n IN nodes(pp)| longi + 1) AS nbrSeg

33 RETURN nodelist[size(nodelist )-1] as id , nbrSeg , segLen;

This is similar to the previous query, except for the aggregation of the lengths and
number of segments. The reduce function computes the value resulting from the appli-
cation of an expression on each successive element in a list, and accumulates these results
as it proceeds. This allows computing the length of each branch (using, in this case, the
property lengte) and the number of hops.

Query 5.11 Find the length, the number of segments and the IDs of the segments, of the
longest branch of upstream flow starting from a given segment.

The output is a set of triples of the form (ID, length, # of segments). In this case the
length is returned in meters.

1 PROFILE

2 MATCH (n:Segment {vhas :6020612})

3 CALL apoc.path.expandConfig(n,{ relationshipFilter:

4 "<flowsTo", minLevel: 1}) YIELD path AS pp

5 WITH reduce(longi= tofloat (0), n IN nodes(pp)| longi

6 + tofloat(n.lengte )) AS blength , Length(pp) as

7 alength , [p in NODES(pp) |p.vhas] AS nodelist

8 WITH blength , alength , nodelist[size(nodelist )-1] as id

9 WITH id, max(blength) as ml ,

10 collect ([id ,blength ,alength ]) as coll

11 WITH id, ml, [p in coll WHERE p[0]= id

12 AND p[1]=ml|p[2]] AS lhops

13 UNWIND lhops as hops

14 RETURN id ,ml ,hops order by id desc;

In this case, the upstream flow is requested. Therefore, the relationship filter now is
"<flowsTo", indicating that the direction is reversed. This is why there is no need to
specify and create the reversed flows-to, comes-from, relation in the graph. The tricky
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part in this query is to solve the cases where the longest physical branch is not the
one with the maximum number of hops arriving to the same segment. The function
expandConfig is used to compute all the alternative paths, and then reduce is used to
compute the length of each branch. List comprehension is finally used to keep only the
tuples that correspond to the branch of maximum length.

Query 5.12 How many paths exist between two given segments X and Y?

The output is an integer indicating the number of paths. This case is illustrated by
the flow between segments c and g in Figure 4. To capture this case, again, the function
expandConfig must be used.

1 MATCH (n:Segment {vhas :6020612}) ,

2 (m:Segment {vhas: 7036554})

3 CALL apoc.path.expandConfig(n,

4 {relationshipFilter:"<flowsTo", minLevel: 1,

5 terminatorNodes :[m]}) yield path as pp

6 RETURN count(pp) as paths

Remark 2 : Discussion on expressiveness. Queries in this class are quite complex to
write, in both, Cypher and SQL, except Query 5.12, which in Cypher only requires a
function call. For the rest of the queries, complexity arises mainly from the situation
depicted in Figure 4, which is a very particular case. Otherwise the queries become
simpler (although not trivial, of course).

Queries of Type 4 [Queries with conditions over paths] These queries only tra-
verse certain branches of the rivers, indicated by conditions over properties of the paths
or segments.

Query 5.13 Find all branches starting at a given segment, reachable traversing the river
Scheldt.

The output is the ID of each final segment, and all the paths that lead to it.

1 PROFILE

2 MATCH (n:Segment {vhas :6020612})

3 CALL apoc.path.expandConfig(n,{ relationshipFilter:

4 "flowsTo >", minLevel: 1}) YIELD path AS pp

5 UNWIND NODES(pp) as p

6 MATCH (p)-[: flowsTo]->(r:Segment)

7 WITH r, count(DISTINCT p) as co

8 WHERE co > 1

9 WITH collect(r) as pc

10 MATCH (n:Segment {vhas :6020612})

11 CALL apoc.path.expandConfig(n, {relationshipFilter:

12 "flowsTo >", minLevel:1,endNodes:pc}) YIELD path AS pp

13 WITH [p in NODES(pp) WHERE p.strmgeb ="Schelde" |p.vhas]

14 AS nodelist WHERE size(nodelist) > 0

15 RETURN nodelist[size(nodelist )-1] as id , nodelist

16

17 UNION ALL

18
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19 MATCH (n:Segment {vhas :6020612})

20 CALL apoc.path.spanningTree(n,{ relationshipFilter:

21 "flowsTo >", minLevel: 1}) YIELD path AS pp

22 UNWIND NODES(pp) as p

23 MATCH (p)-[: flowsTo]->(r:Segment)

24 WITH r, count(DISTINCT p) as co

25 WHERE co = 1

26 WITH collect(r) as pc

27 MATCH (n:Segment {vhas :6020612})

28 CALL apoc.path.spanningTree(n,{ relationshipFilter:

29 "flowsTo >",minLevel: 1,endNodes:pc})

30 YIELD path AS pp

31 WITH [p in NODES(pp) WHERE p.strmgeb ="Schelde"|p.vhas]

32 AS nodelist

33 RETURN nodelist[size(nodelist )-1] as id , nodelist;

34

35

Since the query asks for all the paths, and not only for the segments, again, the
spanningTree function is not enough, and expandConfig must be used. The statement “
[p in NODES(pp) WHERE p.strmgeb ="Schelde" |p.vhas]” keeps only the branches
of the selected river. Experiments (not reported here, for the sake of space) have proven
that this option is more efficient than including a parameter indicating a whitelist of the
segments to be traversed.

Query 5.14 List the length, the number of segments and the IDs of the segments of the
the branches starting from a given segment, that are part of the river Scheldt.

The output are the triples (ID, length, # of segments) for each segment (only the
shortest path information). The query is similar to Query 5.13, except for the final part.
The computation of the paths is done analogously to the previous query. Thus, for the
sake of space only the final part is shown.

1 MATCH (n:Segment {vhas:’6020612 ’})

2 CALL apoc.path.spanningTree(n,{ relationshipFilter:

3 "flowsTo >", minLevel: 1}) YIELD path as pp

4 .....

5 WITH [p in NODES(pp) WHERE p.strmgeb ="Schelde" |p.vhas]

6 AS nodelist , reduce(longi= tofloat (0),n IN nodes(pp)|

7 CASE WHEN n.strmgeb ="Schelde" THEN longi + n.lengte

8 ELSE longi END) AS length , reduce(longi= 1,n

9 IN nodes(pp)|CASE WHEN n.strmgeb ="Schelde"

10 THEN longi + 1 ELSE longi END) AS segCount

11 RETURN nodelist[size(nodelist )-1] as id , segCount , length

12

The reduce statements compute the lengths of the segments and the number of seg-
ments in each path. The statement “CASE WHEN n.strmgeb ="Schelde" THEN longi +

tofloat(n.lengte) ELSE longi END” is used to aggregate only the requested branches
in the reduce statement. We note that this solution captures all the alternative paths
when there is more than one way of reaching a certain node.

Remark 3 : Discussion on expressiveness. Queries in this class are, as it could be seen,
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very complex. Query 5.13, in SQL is much simpler, but Query 5.14 requires a deep
knowledge of SQL programming.

Queries of Type 5 [Spatial queries]
Finally, a class of queries including spatial data are proposed.

Query 5.15 Find all segments reachable from the segment closest to the Antwerpen Groen-
plaats1.

The output is a list of segment IDs, no path information is required.

1 CALL apoc.spatial.geocodeOnce(’Groenplaats

2 Antwerpen Flanders Belgium ’)

3 YIELD location as ini

4 MATCH (n:Segment)

5 WITH n, ini ,distance(

6 point ({ longitude:n.source_long , latitude:n.source_lat }),

7 point ({ longitude:ini.longitude , latitude:ini.latitude })

8 ) as d

9 WITH n, d order by d asc limit 1

10 CALL apoc.path.spanningTree(n,

11 {relationshipFilter:"flowsTo >", minLevel: 1})

12 YIELD path as pp

13 UNWIND NODES(pp) as p

14 RETURN p.vhas;

Here, the APOC function geocodeOnce is used to find the staring point, from which
the reachable segments are computed. Antwerpen’s Groenplaats is taken as the reference.
Then, Cypher’s built-in distance function computes the distance between Groenplaats
and the closest river segment. The rest, is analogous to the previous queries.

Query 5.16 Find the segments that belong to the downstream path and that are at most
at 3 km of the start segment, together with the minimum distance from the start to the
segment.

The output is a list of segment IDs, and the length of the shortest path, in meters.
Since the minimum distance is required, again, the expandConfig function must be used.
Only the portion of the query related with the computation of the distance is shown, the
rest is analogous to the previous queries.

1 MATCH (n:Segment {vhas :6020612})

2 CALL apoc.path.spanningTree(n, {relationshipFilter:

3 "flowsTo >", minLevel: 1})

4 YIELD path AS pp

5 ...

6 ...

7 CALL apoc.path.expandConfig(n, {relationshipFilter:

8 "flowsTo >", minLevel:1,endNodes:pc}) YIELD path AS pp

9 UNWIND NODES(pp) AS p

10 WITH distance(point({ longitude:n.source_long ,

1The “Groenplaats” is the main square in the city of Antwerp.
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11 latitude:n.source_lat }), point ({ longitude:p.source_long ,

12 latitude:p.source_lat })) as dist , p WHERE dist < 3000

13 RETURN DISTINCT p.vhas , min(dist)

14

15 UNION

16 ...

17 ...

18 MATCH (n:Segment {vhas :6020612})

19 CALL apoc.path.spanningTree(n,{ relationshipFilter:

20 "flowsTo >", minLevel: 1,endNodes:pc}) YIELD path AS pp

21 UNWIND NODES(pp) AS p

22 WITH distance(point ({ longitude:n.source_long ,

23 latitude: n.source_lat }), point ({ longitude:

24 p.source_long , latitude: p.source_lat }))

25 as dist , p WHERE dist < 3000

26 RETURN DISTINCT p.vhas , min(dist);

In this case, the distance function is used to compute which segments are at less than
3 km from the starting point.

Remark 4 : Discussion on expressiveness. Here, comparing the Cypher queries against
the SQL and PostGIS queries in Appendix 7, it appears clear that the degree of maturity
of spatial capabilities of PostGIS gives SQL a clear edge over the graph alternative.
Spatial support is still needed in graph databases.

6. Experimental Evaluation

The queries in Section 5 are run over the Neo4j database which is designed and populated
as described in Section 4.2. Furthermore, in order to compare performance against the
relational alternative, the queries are written in the SQL language, and executed over
a PostgreSQL database. For the fairness of the comparison, the type of the output, as
well as the results of the SQL queries, are the same as the ones corresponding to the
Cypher queries in Section 5. Both databases are fully indexed in order to obtain the best
possible query performance. Indices are created over all attributes that are mentioned
in the queries (the segment identifiers, strmgeb, lengte, catc, etc.). Neo4j provides two
classes of indices: Native B-tree and full-text search indices. In this work, native B-tree
indices are used. Figure 5 shows the index congfiguration used for Neo4j.

In PostgreSQL, the tables and indices are stores in the same tablespace. The index
type is the default B-tree for all indices. For example, for the source attribute in the wlas
and flowsto tables:

1 CREATE INDEX edgesour

2 ON public.wlas USING btree

3 (source ASC NULLS LAST)

4 TABLESPACE pg_default;

1 CREATE INDEX flowsto_source_idx

2 ON public.flowsto USING btree

3 (source ASC NULLS LAST)

4 TABLESPACE pg_default;
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Figure 5. Neo4j index configuration.

Table 1.: Number of nodes and edges in the Rivers graph database.
Type Name Size (#)
Node Segment 61,777
Edge flowsTo 65,428
Total # Objects 126,205

The starting node reporting in this study is chosen as follows. For downstream flows, the
starting segment is chosen close to the start of the flow. For queries analysing upstream
flow, starting segments close to the end of the flow are chosen. Although several segments
were considered as candidates, only a representative one is reported in this work.

6.1. Experiments setup

For the Neo4j database, the number of nodes and edges are given in Table 1. For the
PostgresSQL database, the table from where the edges age obtained, called: wlas, has
61,777 tuples, and the table flowsto, containing overall flow information, 65,428 tuples.
The queries are run on a machine with a i7 7700 processor at 2.8GHz, with 32 GB of
RAM and a 1 TB disk. The execution times reported are the averages of five runs of
each experiment.

6.2. Discussion

Table 2 summarises the test results. The last column on the right gives the ratio between
the execution times on Neo4j and PostgreSQL. The best execution times for each query
have been highlighted in bold font. When the value is set to∞ this means that the query
ran for more than 10 minutes without finishing. The discussion that follows is organised
considering the query classes defined in Section 5.

The results show that almost all queries run much faster in Neo4j. Although these
results could be expected for transitive-closure like queries, surprisingly, queries of Type
1 (aggregate queries) written in Cypher also outperformed SQL queries, except for
Query 5.2. For topological queries (Type 2), Cypher clearly outperforms SQL except
for two of the queries. Likewise, performance is, in some cases, orders of magnitude bet-
ter in Cypher for queries of Types 3 and 4, that means, path queries, which encode the
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Table 2.: Execution times for the example queries.
3 4

Type of Query Query Neo4j (msec) Postgres (msec) 3 / 4
Aggregation & similarity 5.1 79 94 0.84
Aggregation & similarity 5.2 111 103 1.07
Aggregation & similarity 5.3 96 116 0.83
Network Topology & pattern 5.4 14 258 0.05
Network Topology& pattern 5.5 184 193 0.95
Network Topology& pattern 5.6 35 51 0.69
Network Topology& pattern 5.7 319 47 6.79
Network Topology& pattern 5.8 663 2200 0.30
Path Aggregation & pattern 5.9 1740 ∞ N/A
Path Aggregation & pattern 5.10 1820 ∞ N/A
Path Aggregation & pattern 5.11 711 47000 0.015
Path Aggregation & pattern 5.12 1 47 0.02
Conditions over paths 5.13 1914 11300 0.17
Conditions over paths 5.14 1596 ∞ N/A
Spatial 5.15 388 613 0.55
Spatial 5.16 26038 48 542

computation of the reachability in the graph and conditions and/or aggregations over
the paths. Also surprising is the result for queries of Type 5, where spatial functions
are used. In this case, however, it is necessary to point out that spatial capabilities for
Neo4j are not even close to the ones of PotGIS, as it was already commented earlier.
Nevertheless, results are quite good (although of course, far from conclusive). Also in this
case, we note that in Query 5.15 the coordinates are computed with the build-in OSM
service whereas in PostgreSQL they are hardcoded into the query, and even in this case,
performance in better for Neo4j.

Another point that is worth a discussion, is the comparison between using the
spanningTree function to compute the nodes reachable from a given one, against the
simple Cyphers’s built-in transitive closure computation (the ‘*’ function). The latter is
orders of magnitude worse. However, the expandConfig function, which is needed when
all the paths must be returned, and not just the nodes reachable from a certain one, is
not as efficient, since it computes all the paths in the transitive closure.

Also, the analysis of the queries in Section 5 suggests that, in general, expressing
queries in a graph-based high-level language, results in simpler, more concise, and more
intuitive expressions than their SQL equivalent. However, there are situations, typical in
NoSQL databases, where the way in which a query is written impacts on the performance.
This particularly occurs when all the paths must be computed, and the river system is
modelled as a graph. When only a segment’s reachability is required, or the river system
can be modelled as a tree, or alternative paths are not needed, the Cypher expressions
can be highly simplified, while SQL queries still require computing the transitive closure
of the relation.

7. Conclusion and Future Work

This paper uses a real-world case, based on the Flemish river system, to study the plau-
sibility of using graph databases to represent, store, and query river data. The work
also presents a traditional relational database implementation, and compares both al-
ternatives. The data preparation tasks are described, as well as the data models used.
Finally, a collection of queries are defined, and executed over the PostgreSQL and Neo4j
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databases, expressed in SQL and in Cypher, the high-level query languages for both
databases, respectively. The queries are run and the results discussed and reported.

The study suggests that river systems, and other kinds of transportation networks, can
be modelled as a graph, and implemented using graph databases, over which queries are,
in general, more easily expressed using high-level graph query languages, in this particular
case, Cypher. The results also show that queries involving path computation run overall
faster over graph databases, since their underlying data structures are designed to achieve
fast path traversal. Opposite to this, a relational representation requires writing recursive
queries to compute the transitive closure of the graph, which impacts on query efficiency,
since the relational representation does not capture the graph structure appropriately, a
problem known in database modelling as “impedance mismatch”. Five types of queries
were studied, including aggregate, path, and spatial queries. Only three out of sixteen
queries delivered better performance in the relational version. In particular, in path
computation, where the graph representation is crucial, the difference reaches orders
of magnitude in favour of Cypher. However, it is worth noting that these results were
obtained through the algorithms provided in Neo4j libraries, not with Cypher’s built-in
transitive closure computation. Nevertheless, long path traversals like the ones required
in this problem, are clearly not appropriately handled by the relational model, since
they require multiple self-joins of the table containing the relationships between the
river segments. It must be mentioned that intensive, advanced SQL query tuning was
not the scope of this work. Rather it was the intention to investigate the feasibility of
using graph databases to model river networks. In summary, the results obtained in this
work suggest that graph databases can become a good alternative for analysing large
volumes of river data, like the ones in the IoW project.

Future work is mainly oriented at scaling this problem for larger volumes, for which
parallel processing may be needed. There are many parallel processing graph databases
(e.g., GraphFrames1, Janusgraph2) that may take advantage of the characteristics of
graphs like the ones studied here. Even Neo4j has recently presented a scalable version
in the cloud. Other future work consists in a generalization to other transportation
networks like road networks, computer networks, sewage networks, heat networks, among
other ones.
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Appendix A

SQL Queries

Query 5.1 Compute the average segment length.

1 SELECT avg(lengte) AS avglength

2 FROM edges;

Query 5.2 Compute the average segment length by segment category.

1 SELECT catc AS category , avg(lengte) AS avglength

2 FROM wlas

3 GROUP BY catc;

Query 5.3 Find all segments that have a length within a 10% margin of the length of
segment with ID 6020612.

1 SELECT vhas , lengte

2 FROM wlas

3 WHERE lengte <= 1.1*

4 (SELECT lengte from edges WHERE vhas =6020612)

5 AND lengte >= 0.9*( SELECT lengte

6 FROM edges

7 WHERE vhas =6020612)

8

Query 5.4 For each segment find the number of incoming and outgoing segments.

1 SELECT segments.vhas , count(DISTINCT flowstoB.source) AS segIn ,

2 count(DISTINCT flowstoA.target) AS segOut

3 FROM wlas as segments , flowsto as
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4 flowstoA , flowsto as flowstoB

5 WHERE segments.vhas = flowstoA.source

6 AND segments.vhas = flowstoB.target

7 GROUP BY segments.vhas;

Query 5.5 Find the segments with the maximum number of incoming segments.

1 SELECT target as vhas , segIn FROM

2 (SELECT target , count(flowsto.source) AS segIn

3 FROM flowsto

4 GROUP BY flowsto.target) AS myTable

5 WHERE segIn = (SELECT max(segIn) FROM

6 (SELECT flowsto.target ,

7 count(flowsto.source) AS segIn

8 FROM flowsto

9 GROUP BY flowsto.target) AS tt);

Query 5.6 Find the number of splits in the downstream path of segment 6020612.

1 SELECT count(source) FROM

2 (WITH RECURSIVE outcome(source , target) AS (

3 (SELECT source , target

4 FROM flowsto

5 WHERE source = 6020612)

6 UNION

7 SELECT flowsto.source , flowsto.target

8 FROM outcome , flowsto

9 WHERE flowsto.source = outcome.target )

10 SELECT source , count(target) AS segOut

11 FROM outcome

12 GROUP BY source) AS myTable

13 WHERE segOut > 1;

Query 5.7 Find the number of in-flowing segments in the downstream path of segment
6020612.

1 SELECT sum(diff)

2 FROM (

3 SELECT myTable.target , count(source)-segIn as diff

4 FROM

5 (WITH RECURSIVE outcome(source , target) AS (

6 (SELECT source , target

7 FROM flowsto

8 WHERE source = 6020612)

9 UNION

10 SELECT flowsto.source , flowsto.target

11 FROM outcome , flowsto

12 WHERE flowsto.source = outcome.target )

13 SELECT target , count(source) AS segIn

14 FROM outcome

15 GROUP BY target) AS myTable , flowsto

16 WHERE myTable.target = flowsto.target

17 GROUP BY myTable.target , segIn) AS secTable;
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Query 5.8 Determine if there is a loop in the downstream path of segment 6031518.

1 WITH RECURSIVE outcome(source , target , again , path) AS (

2 (SELECT source , target , 0, ARRAY[source]

3 FROM flowsto

4 WHERE source = 6031518)

5 UNION

6 SELECT flowsto.source , flowsto.target ,

7 CASE WHEN flowsto.source <> All(path) THEN 0

8 ELSE 1 END , outcome.path|| Array[flowsto.source]

9 FROM outcome , flowsto

10 WHERE flowsto.source = outcome.target AND

11 outcome.again <> 1)

12 SELECT count(source)>0 FROM outcome where again =1;

Query 5.9 Find all paths downstream from the given start segment.

1 WITH RECURSIVE outcome(source , target , path) AS (

2 (SELECT flowsto.source , flowsto.target ,

3 ARRAY[flowsto.source]

4 FROM flowsto

5 WHERE flowsto.source = 6020612)

6 UNION

7 SELECT flowsto.source , flowsto.target , outcome.path

8 || Array[flowsto.source]

9 FROM outcome , flowsto , wlas

10 WHERE flowsto.source = outcome.target AND

11 flowsto.source <> All(path))

12 SELECT json_agg(array_to_json(outcome.path)) AS paths

13 FROM outcome

14 WHERE 0=( SELECT count(target)

15 FROM outcome as cin

16 WHERE outcome.target=cin.source)

17 GROUP BY outcome.target;

Query 5.10 Find the branches of downstream flow starting at a given position (identified
by a segment’s vhas ID), together with the length and number of segments of each branch.

1 WITH RECURSIVE outcome(source , target , path , length , segCount)

2 AS (

3 SELECT flowsto.source , flowsto.target , ARRAY[flowsto.source],

4 w1.lengte + w2.lengte , 1

5 FROM flowsto , wlas as w1 , wlas as w2

6 WHERE flowsto.source = 6020612 and flowsto.source = w1.vhas

7 and flowsto.target = w2.vhas

8 UNION

9 SELECT flowsto.source , flowsto.target , outcome.path

10 || Array[flowsto.source], outcome.length + wlas.lengte ,

11 outcome.segCount + 1

12 FROM outcome , flowsto , wlas

13 WHERE flowsto.source = outcome.target AND

14 wlas.vhas = flowsto.target AND flowsto.source <> All(path))
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15 SELECT target , path , length , segCount FROM outcome

16 WHERE 0=( SELECT count(target) FROM outcome as cin

17 WHERE outcome.target=cin.source );

Query 5.11 Find the length, the number of segments and the IDs of the segments, of
the longest branch of upstream flow starting from a given segment.

1 WITH RECURSIVE outcome(source , target , path ,

2 length , segCount) AS (

3 (SELECT flowsto.source , flowsto.target ,

4 ARRAY[flowsto.target], w1.lengte

5 + w2.lengte , 1

6 FROM flowsto , wlas as w1, wlas as w2

7 WHERE flowsto.target = 6020612 AND

8 flowsto.source = w1.vhas AND

9 flowsto.target = w2.vhas)

10 UNION

11 SELECT flowsto.source , flowsto.target ,

12 outcome.path || Array[flowsto.target],

13 outcome.length + wlas.lengte ,

14 outcome.segCount + 1

15 FROM outcome , flowsto , wlas

16 WHERE flowsto.target = outcome.source

17 AND wlas.vhas = flowsto.source

18 AND flowsto.target <> All(path))

19 SELECT source , min(length), min(segCount)

20 FROM outcome

21 GROUP BY outcome.source;

Query 5.12 How many paths are there between two given segments X and Y?

1 WITH RECURSIVE outcome(source , target , path) AS (

2 (SELECT flowsto.source , flowsto.target ,

3 ARRAY[flowsto.target]

4 FROM flowsto

5 WHERE flowsto.target = 6020612)

6 UNION

7 SELECT flowsto.source , flowsto.target , outcome.path

8 || Array[flowsto.target]

9 FROM outcome , flowsto

10 WHERE flowsto.target = outcome.source AND

11 flowsto.target <> All(path) AND 7036554 <> All(path))

12 SELECT count(DISTINCT path)

13 FROM outcome

14 WHERE 7036554 = Any(path);

Query 5.13 Find all branches starting at a given segment, reachable traversing the river
Scheldt.

1 WITH RECURSIVE outcome(source , target , path) AS (

2 (SELECT flowsto.source , flowsto.target ,

3 ARRAY[flowsto.source]

4 FROM flowsto
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5 WHERE flowsto.source = 6020612)

6 UNION

7 SELECT flowsto.source , flowsto.target , outcome.path

8 || Array[flowsto.source]

9 FROM outcome , flowsto , wlas

10 WHERE flowsto.source = outcome.target AND flowsto.source

11 <> All(path) AND wlas.vhas = flowsto.source

12 AND strmgeb = ’Schelde ’)

13 SELECT outcome.target , json_agg(array_to_json(path))

14 FROM outcome

15 GROUP BY outcome.target;

Query 5.14 List the length, the number of segments and the IDs of the segments of the
the branches starting from a given segment, that are part of the river Scheldt.

1 WITH RECURSIVE outcome(source , target , path ,

2 length , segCount) AS (

3 (SELECT flowsto.source , flowsto.target ,

4 ARRAY[flowsto.source], w1.lengte + w2.lengte ,1

5 FROM flowsto , wlas as w1 , wlas as w2

6 WHERE flowsto.source = 6020612 and flowsto.source =

7 w1.vhas and flowsto.target = w2.vhas)

8 UNION

9 SELECT flowsto.source , flowsto.target ,

10 outcome.path || Array[flowsto.source],

11 outcome.length + wlas.lengte , outcome.segCount +1

12 FROM outcome , flowsto , wlas

13 WHERE flowsto.source = outcome.target AND

14 flowsto.source <> All(path) AND wlas.vhas =

15 flowsto.target AND strmgeb = ’Schelde ’)

16 SELECT DISTINCT outA.target , outA.length , outB.segCount

17 FROM outcome as outA , outcome as outB

18 WHERE outA.target = outB.target AND

19 outA.length =( SELECT min(length)

20 FROM outcome as c2 WHERE c2.target=outA.target)

21 AND outB.segCount= (SELECT min(segCount)

22 FROM outcome as c3

23 WHERE c3.target=outB.target );

Query 5.15 Find all segments reachable from the segment closest to the Antwerpen
Groenplaats.

1 WITH RECURSIVE outcome(vhas) AS (

2 (SELECT wlas.vhas

3 FROM wlas

4 ORDER BY ST_Distance(ST_Point(source_long , source_lat),

5 ST_Point (4.4016 , 51.2192)) LIMIT 1)

6 -- 51.2192 , 4.4016 are coordinates of Groenplaats Antwerpen

7 UNION

8 SELECT flowsto.target

9 FROM outcome , flowsto

10 WHERE outcome.vhas = flowsto.source)
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11 SELECT DISTINCT vhas FROM outcome;

Query 5.16 Find the segments that belong to the downstream path and that are at most
at 3 km of the start segment, together with the minimum distance from the start to the
segment.

1 WITH RECURSIVE outcome(vhas , path , dist , geom) AS (

2 (SELECT wlas.vhas , ARRAY[vhas], 0.0:: double precision , geom

3 FROM wlas

4 WHERE vhas = 6020612)

5 UNION ALL

6 SELECT flowsto.target , outcome.path || Array[flowsto.target],

7 ST_Distance(ST_StartPoint(ST_LineMerge(wlas.geom)),

8 ST_StartPoint(ST_LineMerge(outcome.geom))), outcome.geom

9 FROM outcome , flowsto , wlas

10 WHERE outcome.vhas = flowsto.source AND

11 flowsto.target = wlas.vhas

12 AND flowsto.target <> All(path) AND

13 ST_Distance(ST_StartPoint(ST_LineMerge(wlas.geom)),

14 ST_StartPoint(ST_LineMerge(outcome.geom ))) < 3000)

15 SELECT vhas , dist FROM outcome;


