
Made available by Hasselt University Library in https://documentserver.uhasselt.be

A model and query language for temporal graph databases

Peer-reviewed author version

Debrouvier, Ariel; Parodi, Eliseo; Perazzo, Matías; SOLIANI, Valeria & VAISMAN,

Alejandro (2021) A model and query language for temporal graph databases. In:

VLDB JOURNAL, 30(5), p. 825-858.

DOI: 10.1007/s00778-021-00675-4

Handle: http://hdl.handle.net/1942/34583

VLDB Journal manuscript No.
(will be inserted by the editor)

A Model and Query Language for Temporal Graph
Databases

Ariel Debrouvier · Eliseo Parodi · Mat́ıas Perazzo · Valeria Soliani ·
Alejandro Vaisman

Received: date / Accepted: date

Abstract Graph databases are becoming increasingly

popular for modeling different kinds of networks for

data analysis. They are built over the property graph

data model, where nodes and edges are annotated with

property-value pairs. Most existing work in the field is

based on graphs were the temporal dimension is not

considered. However, time is present in most real-world

problems. Many different kinds of changes may occur in

a graph as the world it represents evolves across time.

For instance, edges, nodes, and properties can be added

and/or deleted, and property values can be updated.

This paper addresses the problem of modeling, storing,

and querying temporal property graphs, allowing keep-

ing the history of a graph database.

This paper introduces a temporal graph data model,

where nodes and relationships contain attributes (prop-

erties) timestamped with a validity interval. Graphs in

this model can be heterogeneous, that is, relationships

may be of different kinds. Associated with the model,

a high-level graph query language, denoted T-GQL, is

presented, together with a collection of algorithms for

computing different kinds of temporal paths in a graph,

capturing different temporal path semantics. T-GQL

can express queries like “Give me the friends of the

friends of Mary, who lived in Brussels at the same time

than her, and also give me the periods when this hap-

pened”. As a proof-of-concept, a Neo4j-based implemen-

tation of the above is also presented, and a client-side

Ariel Debrouvier, Eliseo Parodi, Mat́ıas Perazzo, Valeria So-
liani, Alejandro Vaisman
Department of Information Engineering, Instituto Tec-
nológico de Buenos Aires Lavardén 315, C1437FBG, Ciudad
Autónoma de Buenos Aires, Argentina
Tel.: +5411-3754-4864
E-mail: {ndebrouvier,eparodi,maperazzo,vsoliani,avaisman
}@itba.edu.ar

interface allows submitting queries in T-GQL to a Neo4j

server. Finally, experiments were carried out over syn-

thetic and real-world data sets, with a two-fold goal: on

the one hand, to show the plausibility of the approach;

on the other hand, to analyze the factors that affect

performance, like the length of the paths mentioned in

the query, and the size of the graph.

Keywords Temporal Graph Databases · Neo4j ·
Query Languages · Cypher Query Language · Graph

databases

1 Introduction and Motivation

Property Graphs [4,28,44] have been increasingly gain-

ing popularity, especially for modeling and analyzing

different kinds of networks. The property graph data

model underlies most graph databases in the market-

place [2]. Examples of graph databases based on this

model are Neo4j1, Janusgraph2, and GraphFrames [16].

Typically, the work of researchers and practitioners is

based on graphs were the temporal dimension is not

considered, called static graphs hereon. However, time

is present in most real-world applications, and graphs

are not the exception. Many different kinds of changes

may occur in a property graph as the world they rep-

resent evolves over time: edges, nodes and properties

can be added and/or deleted, and property values can

be updated, to mention the most relevant ones. For in-

stance:

– (a) In a phone call network, where each vertex rep-

resents a person (or a phone number), and an edge

(u, v, t, λ) tells that u calls v at time t, with duration

1 http://www.neo4j.com
2 http://janusgraph.org/

2 Ariel Debrouvier et al.

λ, new nodes and edges are added frequently, and

also the properties of u or v may change over time.

– (b) In social networks (e.g., Facebook, Twitter), each

vertex models a person (or an organization, etc.),

and an edge (u, v, t, λ) represents a relationship be-

tween two persons u and v (e.g., u follows v, u is a

friend of v) at time t which lasts λ (u was a friend

of v during an interval whose duration is λ).

– (c) In transportation networks, each vertex repre-

sents a location, and an edge (u, v, t, λ) represents a

road segment, a street, or a highway segment, from

u to v, existing since time t, and whose interval of

existence is λ.

– (d) In transportation schedules, each vertex in a

graph represents a location, and an edge (u, v, t, λ)

is a trip (flight, bus, etc.) from u to v departing at

time t, whose duration is λ.

Ignoring the time dimension could lead to incorrect

results, or prevent interesting analysis possibilities. For

example, in case (b), it may be relevant to know the

interval of the relationships that occur in a social net-

work, to weight their strength, or to find out chains

of relationships that occurred simultaneously. As an-

other example, a user may be interested in asking for

“People who were still being Nutella fans while they

were living outside Italy,” or “Friends of Mary while she

was working at the University of Antwerp.” Those are

queries that could not be answered without accounting

for time. As another kind of problem, note that in case

(c) above, the shortest (or fastest) way to reach one city

from another one, varies with time, since a segment be-

longing to the shortest path may have not existed in the

past. Thus, for example, a transportation analyst may

ask for the “Time saved for going from Buenos Aires

to Pinamar after the construction of Highway Num-

ber 11.” Further, this can be stated as a hypothetical

query [7,22], asking for the fastest way to reach a city

in case a new highway is built.

Literature in temporal graphs is relatively limited,

and basically oriented to address path problems partic-

ularly for scenarios like (a) and (d) above. As far as the

authors are aware of, problems tackling scenarios like

(b) and (c), which require an approach over property

graphs along the lines of the temporal databases the-

ory [48] have not been addressed yet, with some partial

exceptions discussed in Section 2. Temporal property

graph-based data models, query languages, algorithms,

and even, a study of the problems that can be solved

with this approach, are still open fields of study, and

this work tackles them.

1.1 Contributions

This paper studies how temporal databases concepts

can be applied to graph databases, in order to be able

to model, store, and query temporal graphs, in other

words, to keep the history of a graph database. The

work presented here is based on the property graph data

model. This is not the case of most existing work on the

topic (e.g., [52,54]), where only edges are timestamped

with the initial time of the relationship they represent,

and the duration of such relationship. Further, those

works address homogeneous graphs (i.e., graphs were

only one kind of relationship exists). In the model pre-

sented here, nodes, relationships, and node properties

are timestamped with their temporal validity interval,

and graphs are heterogeneous, that means, relation-

ships may be of different kinds. These graphs are called

Interval-labeled Property Graphs in this paper. This

allows richer queries, like “Give me the friends of the

friends of Mary, who lived in Brussels at the same time

than her”. Nevertheless, the model presented in this pa-

per also captures the semantics of the mentioned works.

For this, two path semantics are supported: Continu-

ous path semantics, defined along the lines of the work

by Rizzolo and Vaisman [43], and Consecutive Path Se-

mantics. Both semantics, and their implementation, are

discussed in detail. More concretely, the contributions

of this work are:

– A temporal graph data model for property graphs,

which allows keeping the history of nodes, edges,

and properties.

– A high-level graph query language, denoted T-GQL,

based on GQL[24] (standing for Graph Query Lan-

guage), the standard language for property graph

databases being defined by the graph database com-

munity at the time of writing this paper.

– A collection of algorithms for computing different

kinds of temporal paths in a graph, capturing dif-

ferent temporal path semantics.

– A Neo4j-based implementation of the above, and a

client interface for querying Neo4j graphs.

– A collection of experiments over the implementa-

tion, over two use cases which capture the two se-

mantics studied in this work: a synthetic data set of

a social network, and a real-world data set of flights

between airports.

1.2 Paper Organization

This paper is organized as follows. Section 2 reviews

related work, in order to put the present work in con-

text. Section 3 introduces the temporal property graph

A Model and Query Language for Temporal Graph Databases 3

data model that will be used in the paper, and Sec-

tion 4 presents and discusses T-GQL, the high-level

data language proposed for the model, and Section 5

presents the implementation details. Section 6 reports

preliminary experimental results. Section 7 studies how

query performance can be enhanced indexing the dif-

ferent kinds of paths defined in the paper. Section 8

concludes the paper.

2 Related Work

There is a large corpus of work in the field of tempo-

ral relational databases, over which the present work

builds [48,19]. TSQL2 [47] is the temporal extension

to SQL, proposed to the international standardization

committees, and some of its features are included in

the SQL:2011 standard [38]. Further, the temporal re-

lational model has inspired temporal extensions for dif-

ferent data models [13], like XML [1,14,43]. Given that

this literature is well known, this section addresses work

related with graph models, starting from traditional

(non-temporal) property graphs, and then moving on

to the few existing work on temporal graphs. These

existing proposals are compared against the work pre-

sented here.

2.1 Graph database models

There is an extensive bibliography on graph database

models, comprehensively studied in [2,5]. The inter-

ested reader is referred to these works for details. Multi-

ple native graph indexing methods and query languages

(e.g., GraphQL [31]) were developed to efficiently an-

swer graph-oriented queries. In real-world practice, two

graph database models are used:

(a) Models based on RDF,3 oriented to the Semantic

Web.

(b) Models based on Property Graphs.

Models of type (a) represent data as sets of triples where

each triple consists of three elements that are referred

to as the subject, the predicate, and the object of the

triple. These triples allow describing arbitrary objects

in terms of their attributes and their relationships to

other objects. Informally, a collection of RDF triples is

an RDF graph. Although the models in (a) have a gen-

eral scope, RDF graphs aim at representing metadata

on the Web. Therefore, an important feature of RDF-

base graph models is that they follow a standard, which

is not yet the case for the other graph databases.

3 https://www.w3.org/RDF/

Temporal extensions for RDF have been proposed.

Gutiérrez et al. introduced time in RDF [25,26] by

means of timestamping RDF triples with their validity

intervals, using the notion of reification. Over this work,

extensions to SPARQL, the RDF’s standard query lan-

guage, were proposed [49,23].

In the property graph data model [3,4], nodes and

edges are labeled with a collection of (attribute, value)-

pairs. Property graphs extend traditional graph models,

and are the usual choice in modern graph databases

used in real-world practice. Hartig [28,29] proposes a

formal way of reconciling both models, through a col-

lection of well-defined transformations between prop-

erty graphs and RDF graphs. He shows that property

graphs could, in the end, be queried using SPARQL.

This is also studied in [6,51].

Since the problem studied in this paper is based on

the property graph model, the review presented next

only addresses this graph data model.

2.2 Data models for temporal graphs

Data models in the temporal graphs literature can be

classified in three groups:

– (a) Duration-labeled temporal graphs (DLTG)

– (b) Interval-labeled temporal graphs (ILTG)

– (c) Snapshot-based temporal graphs (SBTG)

Graphs of type (a) are typically proposed for the

phone calls and travel scheduling problems described

above. Graphs of type (b) are more appropriate than

the former ones, to capture the history of the relation-

ships in social networks. Graphs of type (c) are based

on the notion of snapshot temporal databases, where a

temporal database is seen either as a sequence of snap-

shots, or a sequence composed of an initial database

and a sequence of incremental updates. These models

are discussed next.

2.2.1 Duration-labeled temporal graphs

These kinds of graphs are studied by Wu et al. [52].

In these graphs, a node is represented as a string (i.e.,

nodes are not annotated with properties), and the edges

are labeled with a value representing the duration of the

relationship between two nodes. Based on this work, the

same authors have elaborated different proposals [32,

53–56]. All of them address the previously mentioned

kinds of graphs. Definition 1 formally explains the above

description.

Definition 1 (Duration-labeled graphs (cf. [52]))

Let Gd = (V,E) be a temporal graph, where V is the

set of vertices, and E is the set of edges in G.

4 Ariel Debrouvier et al.

– Each edge e = (u, v, t, λ) ∈ E is a temporal edge rep-

resenting a relationship from a vertex u to another

vertex v starting at time t, with a duration λ. For

any two temporal edges (u, v, t1, λ1) and (u, v, t2, λ2),

t1 ≤ t2.
– Each node v ∈ V is active when there is a temporal

edge that starts or ends at v.

– d(u, v) : the number of temporal edges from u to v

in Gd.

– E(u, v): the set of temporal edges from u to v in G,

i.e., E(u, v) = {(u, v, t1), (u, v, t2), ..., (u, v, td(u, v))}.
– Nout(v) or Nin(v) : the set of out-neighbours or in-

neighbours of v in Gd, i.e., Nout(v) = {u : (v, u, t) ∈
E} and Nin(v) = {u : (u, v, t) ∈ E}.

– dout(v) or din(v): the temporal out-degree or in-

degree of v ∈ Gd, dout(v) =
∑

u∈Nout(v)
d(v, u) and

din(v) =
∑

u∈Nin(v)
d(u, v).

Graphs defined in this way are called Duration Labeled.

The left-hand side of Figure 1 shows an example, where,

for simplicity, λ = 1. ut

As mentioned, the main use of this kind of tem-

poral graphs is, for example, for scheduling problems,

where usually some sort of shortest path must be com-

puted. Therefore, the works around this model pro-

pose ‘temporal’ variants of the well-known Dijkstra’s

algorithm [17]. In [52] (and the sequels of this work,

referred above), the authors also define four different

forms of ‘shortest’ paths. These are called here min-

imum temporal paths, and account for different mea-

sures: (1) Earliest-arrival path, defined as a path that

results in the earliest arrival time starting from a source

x to a target y; (2) Latest-departure path, defined as a

path that gives the latest departure time starting from

x in order to reach y at a given time; (3) Fastest path,

defined as the path that goes from x to y in the min-

imum elapsed time ; and (4) Shortest path, defined as

the path that is shortest from x to y in terms of overall

traversal time along the edges.

2.2.2 Interval-labeled temporal graphs

Two main approaches exist in the temporal databases

literature [48], for keeping the history of a database: tu-

ple or attribute-timestamping, where a temporal label

is defined over the database objects; or database ver-

sioning, where different versions of a database are cre-

ated at different time instants. The latter is described

below in this section. The former is discussed next. Def-

inition 2 below, characterizes interval-labeled temporal

graphs (ILPG). From this general definition, different

constraints can be stated, leading to different models,

as the one introduced below in this paper, based on

the work by Campos et al [10] (see Section 3), the

first approach to apply the ILTG notion to property

graphs. Transaction time is considered in the remain-

der, that is, the time where the information is stored in

the database, opposite to valid time, which reflects the

time where the data is valid in the real world. This will

make the presentation simpler, particularly when dis-

cussing updates (Section 3.4) However, as it is discussed

later, a limited form of retroactive updates is also al-

lowed, which means that the model supports both kinds

of times up to a certain extent.

Definition 2 (Interval-labeled temporal graphs)

Let Gd = (V,E) be a temporal graph, where V is the

set of vertices, and E is the set of edges in G. A Dura-

tion Labeled Temporal Graph. is a temporal graph where

each edge e = (u, v, I) ∈ E is a temporal edge repre-

senting a relationship from a vertex u to another vertex

v, valid during a time interval I = [ts, te]. ut
The right-hand side of Figure 1 shows a graph equiv-

alent to the one on the left of such figure, but where

edges are labeled with their validity interval instead of

a timestamp representing a duration. In the ILTG on

the right-hand side of Figure 1, for example, the edge

between nodes b and g is labeled with the interval [3, 4].

This is due to the fact that the same edge, on the left-

hand side of the same figure is labeled 3, representing

the initial time of the edge, with a duration of 1. That

means, if the graph represents a bus schedule, the bus

leaves from b at time instant 3, and the trip between b

and g takes one time unit.

Example 1 The path traversal times in Section 2.2.1 are

also valid in this representation. Consider for example,

the computation of the earliest arrival time from node

a to every node in the graph, in the interval [1, 4]. The

algorithm proposed in [52] gives as a result eat(b) = 2,

eat(g) = 4, eat(h) = 4, and eat(f) = 4. Obviously, this

can also be computed with the interval-labeled graph.

It it easy to see that, for instance, eat(g) = 4, with path

〈(a, b, [1, 2]), (b, g, [3, 4])〉, since 〈(a, b, [2, 3]), (b, g, [3, 4])〉
cannot be used since the arrival time at b is equal to

the departure time from b to g. ut
The discussion above gives the intuition that ILTGs

and DLTGs are equivalent, in the sense that both al-

low representing the same information using different

encodings for time (the proof is outside the scope of

this paper). ILTGs appear to be, at first sight, more

appropriate than DLTGs to support classic temporal

queries, for example, the ones asking for the history

of relationships in a social network. At the same time,

travel schedules and mobility data can also be mod-

eled in this way, as Example 1 shows. Moreover, cur-

rent graph databases are based on the property graph

A Model and Query Language for Temporal Graph Databases 5

k

g

b

j

a

c

h

l

i

f

1

2
4 3 10

8
9

7

33

62
7

6 5

k

g

b

j

a

c

h

l

i

f

[1,2]

[4,5]
[3,4] [10,11]

[8,9]
[9,10]

[7,8]

[3,4][3,4]

[6,7][2,3]

[7,8]

[2,3]

[5,6]
[6,7]

Fig. 1 Left: A duration-labeled temporal graph (cf. [52]); Right: An Interval-labeled temporal graph for the graph on the left.

data model, which are not supported in the work by

Wu et al. Therefore, the data model in the present pa-

per along with its the accompanying query language,

are based on interval-labeled property graphs.

2.2.3 Temporal graphs as a sequence of snapshots

The work by Semertzidis and Pitoura [46] aims at find-

ing the most persistent matches of an input pattern in

the evolution of graph networks. The authors assume

that the history of a node-labeled graph is given in

the form of graph snapshots corresponding to the state

of the graph at different time instants. Given a query

graph pattern P, the work addresses the problem of ef-

ficiently finding those matches of P in the graph history

that persist over time, that is, those matches that exist

for the longest time. These queries are called graph pat-

tern queries. Locating durable matches in the evolution

of large graphs has many applications, like for example,

long-term collaborations between researchers, durable

relationships in social networks, and so on. In [46], a

temporal graph is defined as follows, which defines the

third category of temporal graphs introduced above.

Definition 3 (Snapshot temporal graph

(cf. [46])) A temporal graph G[ti, tj] in a time

interval [ti, tj], is a sequence {Gti , Gti+1 , ..., Gtj} of

graph snapshots.

Huo and Tsotras [33] study the problem of efficiently

computing shortest-paths on evolving social graphs. The

authors define a temporal graph as an initial snapshot,

followed by updates. The traditional Dijkstra’s algo-

rithm [17] is extended, to compute shortest-path dis-

tance(s) for a time-point or a time-interval, within a

social graph’s evolving history. Temporal queries are

thus issued on certain historical graph snapshot(s). For

example, temporal shortest-path queries in a social net-

work can discover how close two given users were in the

past and how their closeness evolved over time. Finally,

several different kinds of path queries are defined. For

example, a time point shortest path query returns the

shortest-path p from a source node vs to a target node

vt, such that both are temporally valid at query time

tq (all edges in p are valid at query time tq).

2.2.4 Other work on temporal graphs

Catutto et al. [11,12] present a temporal data model

where temporal data are organized in so-called frames,

namely the finest unit of temporal aggregation. A frame

is associated with a time interval and allows retrieving

the status of the social network during such interval.

This model does not support changes in the attributes

of the nodes. Also, frame nodes may become associated

with a large number of edges. Redundant data are also a

problem since each frame is connected to all the existing

data, so a frequently changing graph would become full

of redundant connections.

Khurana and Deshpande [35,36] study methods to

efficiently query historical graphs. They focus on the

particular problem of querying the state of a network

as of a certain point (snapshot) in time. The work is

based on versioning. Basically, the current graph and a

series of deltas containing the graph variation over time

are stored. Among other works related with temporal

graphs, Han et al. [27] present an engine for tempo-

ral graph mining, and Kostakos [37] shows the use of

temporal graphs to represent dynamic events.

Johnson et al. [34] introduce Nepal, standing for

Network Path Language, specifically oriented to time-

travel path queries over communication networks that

can change their state over time. The authors define

a temporal inventory, a structure where changes over

nodes and edges in the network are recorded. Using a

notion similar to the one of continuous paths, a valid

pathway at time t is defined as a pathway whose nodes

6 Ariel Debrouvier et al.

and edges are all valid at time t. In this way, the sta-

tus of a network at a given time can be obtained. An

SQL-like query language is described through exam-

ples. For query evaluation, queries are translated to a

so-called pathway algebra. The idea is that a pathway

is the first-class citizen in this language, and operators

are basically conditions over these pathways. However,

many issues arising in temporal databases are not ad-

dressed (e.g., granularity and complex temporal opera-

tions). Further, no implementation is reported.

Lazarevic [40] shows how the versions of a graph

can be maintained and queried in Neo4j using Cypher,

Neo4j’s high-level query language [21]. Although inter-

esting from a practical point of view, the proposal is ad-

hoc rather than an effort to produce a temporal graph

database. Path queries are not discussed in this work.

Byun et al. [8,9] address the problem of comput-

ing path traversals in large temporal graphs. In [9] the

authors introduce ChronoGraph, a system that per-

forms path traversals satisfying temporal constraints on

paths. ChronoGraph reconciles point-based and interval-

based semantics, in the sense of the notion of telic and

atelic temporal data [50]. This is also the case of the

model and language presented in this paper (as fol-

lows from Sections 2.2.1 and 2.2.2). The paper presents

three kinds of temporal path traversal algorithms, im-

plemented on top of ChronoGraph: temporal breadth-

first search, temporal depth-first search, and temporal

single source shortest path. In these algorithms, tempo-

ral paths are traversed considering the temporal labels

of the graph’s edges. A prototype implementation of

ChronoGraph on top of the Tinkerpop framework is

also presented. An extension of Gremlin [45] is used as

the query language, that is, ChronoGraph’s language

is imperative (which makes sense, since the system is

aimed at path traversal). On the contrary, the model

presented here defines its own declarative high-level

query language, T-GQL, designed along the lines of tra-

ditional temporal databases languages. Also, in [9], each

node in the temporal graph is associated with a collec-

tion of static (property, value) pairs. Conversely, in the

model of Section 3 property evolution is supported.

2.2.5 Data Models Comparison

This section discusses the main differences between the

model proposed in this paper, and the works commented

above.

First, the works in [32,52–56] address unlabelled

homogeneous graphs. The same applies to the snapshot-

based models discussed in Section 2.2.3. Opposite to

the former, the model proposed in the present paper is

based on the property graph data model, and supports

heterogeneous graphs. Also, computing the temporal

paths presented in this paper over the snapshot-based

models would be computationally expensive.

Second, in the work by Byun et al. [8,9], tempo-

ral properties defined over the nodes are represented as

a collection of static (property, value) pairs, while in

the model introduced in Section 3, temporal properties

are first-class citizens. Further, the temporal query lan-

guage associated with the former is based on Gremlin,

a procedural language appropriate for path traversals,

while the present paper introduces T-GQL, a high-level

declarative language built along the lines of classic tem-

poral database semantics. This is not a minor differ-

ence, since, as follows from the discussion in Section 5.4

below, generalizing Gremlin to address continuous and

consecutive temporal paths is not a trivial task.

Third, although the model proposed in [34] sup-

ports the notion of continuous path, the work does not

dive into many problems arising in temporal databases,

and also does not report an implementation or prac-

tical results. Moreover, the query language is limited

to so-called pathway queries. On the other hand, the

model and query language presented in this paper sup-

port three different path semantics, namely continuous,

pairwise continuous, and consecutive (see Section 3), as

well as a wider spectrum of temporal queries.

To close this section, it is worth mentioning that

the works discussed in this section do not tackle prob-

lems that are typical in a temporal database context,

since those works are mainly focused on the problem of

computing path traversals. For example, temporal con-

straints are implicit in the data models supporting the

works above, while the temporal data model presented

in Section 3 states such constraints explicitly (Defini-

tion 6). In addition, the temporal database approach

allows the model to support queries that mention time

granularities that differ from the ones in the database

(Section 4.4). The approach also allows T-GQL to ex-

press path queries of different kinds, as well as a rich

variety of temporal queries (see Section 4) which other

temporal graph data models do not support. For exam-

ple, queries that ask for paths valid in an interval de-

fined explicitly (using the BETWEEN clause) or deter-

mined by a condition (through the WHEN clause), like

in the query “Who were friends of Mary while she was

living in Antwerp?”. Further, queries returning a graph

as of a certain instant using the SNAPSHOT clause can

also be expressed. To the best of the present paper au-

thors’ knowledge, no temporal graph data model sup-

ports these kinds of queries together with the features

presented in this section.

A Model and Query Language for Temporal Graph Databases 7

3 A Data Model for Interval-labeled Property

Graphs

Property graphs are graphs such that their nodes and

edges are labeled with a collection of (property,value)

pairs. These properties can evolve over time. Therefore,

in order to keep the history of the graph, the data model

must not only account for the changes in the relation-

ships and the nodes, but also for the changes in the

properties. A first approach for this was presented by

Campos et al. [10]. Definition 4 builds on that work.

Definition 4 (Temporal property graph) A tem-

poral property graph is a structure G(No, Na, Nv, E)

where G is the name of the graph, E is a set of edges,

and No, Na, and Nv are sets of nodes, denoted object

nodes, attribute nodes, and value nodes, respectively.

Every object and attribute node, and every edge in the

graph are associated with a tuple (name,interval). The

name represents the content of the node (or the name of

the relationship), and the interval represents the pe-

riod(s) during which the node is (was) valid, and it is a

temporal element (i.e., a set of intervals). Analogously,

value nodes are associated with a (name,interval) pair.

For any node n, the elements in its associated pair

are referred to as n.name, n.interval, and (for value

nodes) n.value. In addition, nodes and edges in G sat-

isfy the constraints in Definition 6 below. As usual in

temporal databases, a special value Now is used to tell

that the node is valid at the current time (see Sec-

tion 3.4 for more details on this). All nodes also have

an identifier, denoted id. ut

In Definition 4, object nodes represent entities (e.g.,

Person), edges represent relationships between object

nodes (e.g., LivesIn, FriendOf), attribute nodes describe

entities (e.g., Name); Finally, value nodes represent the

value of an attribute (e.g., Mary). To illustrate this more

in detail, the first running example that will be used in

this paper is presented next.

Example 2 (Data model) The model in Definition 4 is

used to represent the social network depicted in Fig-

ure 2. There are three kinds of object nodes, namely

Person, City, and Brand. There are also three types of

temporal relationships: LivedIn, Friend, and Fan. The

first one is labeled with the periods when someone lived

somewhere. The second one is labeled with the periods

when two people were friends. The temporal semantics

of the relationship Fan is similar. For example, there is

an edge of type Fan, joining nodes 14 (a Person node)

and 70 (a Fan node), indicating that Mary Smith is a

Samsung fan since 1982. The attribute node Name rep-

resents the name associated with a Person node, and it

is also temporal. The actual value of the attribute node

is represented as a value node (represented as ellipses

in Figure 2), e.g., the node in green with id=34 and

value “Mary Smith”. Note that this value changes to

“Mary Smith-Taylor”, showing the temporality of the

attribute node Name. Finally, for clarity, if a node is

valid throughout the complete history, the temporal la-

bels are omitted. ut

Note that edges could also have properties. How-

ever, for simplicity, they are assumed to remain con-

stant throughout their lifespan, that is, they cannot

change. Although this is of course a limitation of the

model, this assumption is reasonable for most cases, and

contributes to readability, without keeping out any fun-

damental issue. Further, it is worth pointing out that

this proposal is implemented at this stage over Neo4j,

and this database does not allow indexing edge proper-

ties.

Before introducing the temporal graph’s constraints,

some notation is needed. In Definition 6 below, an edge

is denoted by e{na, nb} where na and nb are nodes con-

nected by the edge e. An attribute node will be repre-

sented as na{n} where n is the object node connected

to na. A value node is denoted nv{na} where na is the

attribute node connected to nv. Also, the following def-

inition is needed.

Definition 5 (Lifespan of an edge) Consider a node

n, and a collection of k edges outgoing from n, Eouti , i =

1, . . . , k such that Outi.name is the same for all Eouti .

Also, let Einj
, j = 1, . . . ,m be the set of m edges with

the same name incoming to node n. The union of the

temporal labels of all these edges is called the lifespan
of n, denoted l(n). ut

Definition 6 (Constraints) For the graph in Defini-

tion 4, the following constraints hold:

1. ∀n, n′ ∈ No, n = n′ ∨ n.id 6= n′.id

2. ∀n, n′ ∈ Na, n = n′ ∨ n.id 6= n′.id

3. ∀n, n′ ∈ Nv, n = n′ ∨ n.id 6= n′.id

4. ∀nv{na}, n′v{na} ∈ Nv, nv = n′v ∨ nv.value 6=
n′v.value

5. ∀ei{n, n′}, ej{n, n′} ∈ E ∧ ei.name = ej .name,

ei = ej ∨ ei.name 6= ej .name

6. ∀n ∈ No, e{n, n′} ∈ E ⇒ n′ ∈ No

⋃
Na

7. ∀n ∈ Na, e{n, n′} ∈ E ⇒ n′ ∈ No

⋃
Nv

8. ∀n ∈ Nv, e{n, n′} ∈ E ⇒ n′ ∈ Nv

9. ∀n ∈ Na(∃ no ∈ No ∃e ∈ E (e(no, n) ∧ (6 ∃n′ ∈
(Na

⋃
Nv

⋃
No) ∧ e′ ∈ E ∧ e′{n′, n})))

10. ∀n ∈ Nv (e{n′, n} ∧ n′ ∈ Na) ⇒6 ∃n′′ ∈ (Na

⋃
Nv⋃

No) (e′′{n′′, n} ∈ E ∨ e′′{n, n′′} ∈ E)

11. ∀ne{n, n′} ∈ Ne, ne.interval ⊂ n.interval ∩
n′.interval

8 Ariel Debrouvier et al.

Person

Mary Smith
[1937-1959]

Friend[20
15-2018

]

Person

New York

Name

Antwerp

Daniel
Yang

[1995-Now]

Name

Person

London

Name

City
City

City

Person

Person

Mary Smith
-Taylor

[1960-Now]

Li
ve
dI
n[
19
90
-N
ow
]

Name

Peter
Burton

[1960-Now]

Li
ve
dI
n[
19
95
-N
ow
]

Li
ve
dI
n[
19
61
-N
ow
]

Friend[1993-Now]

Name

Name

Name

Pauline
Boutler

[1978-Now]

Friend[2010-201
8]

Cathy Van
Bourne

[1960-Now]

Paris

City

Name

Name

Person

Name

Sandra
Carter

[1967-Now]

City

Name

Brussels

LivedIn[1978-2003]

Lived
In[20

04-N
ow]

LivedIn[1967-Now]

LivedIn[1980-2000]

Brand

Brand

Name

Name

LG
[1958-Now]

Samsung
[1938-Now]Fan[1982-Now]

Fan[2001-Now]

Fan[2005-2008]

Fan[1995-2000]

Fa
n[
19
98
-N
ow
]

LivedIn[1979-1989]

Li
ve
dI
n[
20
01
-N
ow
]

Friend[1995-Now]

Friend[2005-Now]

Friend[2002-2017]

Fig. 2 A temporal graph and its different kinds of nodes.

12. ∀na{n} ∈ Na, na.interval ⊂ n.interval
13. ∀nv{na} ∈ Nv, nv.interval ⊂ nv.interval
14. ∀nv{na}, n′v{na}, nv 6= n′v, nv.interval ∩

n′v.interval = ∅

Constraints 1 through 3 state that all nodes in the

graph have a different id. Constraint 4 requires coa-

lescing all nodes with the same value associated with

the same attribute node; thus, the interval becomes a

temporal element which includes all periods where the

node had such value. Analogously, Constraint 5 applies

to edges: all edges with the same name (i.e, representing

the same relationship type), between the same pair of

nodes, are coalesced. Constraints 6 through 8 state how

the nodes must be connected, namely: (a) An Object

node can only be connected to an attribute node or to

another object node; (b) Attribute nodes can only be

connected to non-attribute nodes; and (c) Value nodes

can only be connected to attribute nodes. The cardi-

nalities of these connections are stated by Constraints

9 through 10, which tell that attribute nodes must be

connected by only one edge to an object node, and value

nodes must only be connected to one attribute node

with one edge. Finally, Constraints 11 to 14 restrict the

values of the interval property. ut

3.1 Continuous Path

In ILTGs, it is usually the case when queries ask for

paths that are valid continuously during a certain in-

terval. This requirement is captured by the notion of

continuous path [43], introduced in Definition 7.

Definition 7 (Continuous Path) Given a temporal

property graph G (interval-labeled), a continuous path

(cp) with interval T from node n1 to node nk, travers-

ing a relationship r, is a sequence (n1, . . . , nk, r, T) of

k nodes and an interval T such that there is a se-

quence of consecutive edges of the form e1(n1, n2, r, T1),

e2(n2, n3, r, T2), . . . , ek(nk−1, nk, r, Tk), T =
⋂

i=1,k Ti.

ut

Example 3 (Continuous Path) Consider the graph in

Figure 3, where e1(n1, n2, friend, [1, 9]]), e2(n2, n3,

friend, [2, 3]), e3(n3, n4, friend, [1, 10]), e4(n1, n5,

friend, [2, 8]), and e5(n5, n4, friend, [4, 7]). There are

two continuous paths, (n1, n2, n3, n4, friend, [2, 3]) and

(n1, n5, n4, friend, [4, 7]). That is, n4 can be reached

traversing the edges labeled friend from n1 during the

interval [2, 3] with a path of length 3, and during the in-

terval [4, 7] with a path of length 2. The interval when

A Model and Query Language for Temporal Graph Databases 9

n1

(friend,[2,8])

(friend,[1,9])

(friend,[4,7])

(friend,[2,3])

n2

n3

n4 n5

(friend,[1,10])

Fig. 3 Continuous paths.

n4 is continuously reachable from n1, is obtained by

taking the union of both intervals, that is [2, 7]. ut

3.2 Pairwise Continuous Path

Requiring a path to be valid throughout a time interval

is a strong condition for a graph query. In many cases,

querying temporal graphs requires a weaker notion of

temporal path. Consider for example the case of a social

network like the one in Figure 2. Also assume that there

are friendship relationships between a person p1 and a

person p2, in an interval [2, 7]. Also, p2 was a friend

of p3 during the interval [6, 12], and p3 was a friend of

p4 during the interval [10, Now]. It can be seen that

there is no continuous path from p1 to p4. However,

the user may be interested in a transitive friendship

relationship such that there is an intersection in the in-

terval of two consecutive edges. In the example above

such intersection exists, e.g., there is an overlap be-

tween (p1, p2, friend, [2, 7]) and (p2, p3, friend, [6, 12]),

and between the latter and (p3, p4, friend, [10, Now]).

That means, although there is not a continuous path

between p1 and p4, there is a consecutive chain of pair-

wise temporal relationships. This is formalized by the

notion of pairwise continuous path.

Definition 8 (Pairwise Continuous Path) Given a

temporal property graph G, a pairwise continuous path

between two nodes n1, nk, through a relationship r, is a

sequence of edges e1(n1, n2, r, [ts1 , tf1]), . . . , ek(nk−1, nk,

[tsk−1
, tfk]), such that (ts1 ≤ ts2 ≤ tf1 ∨ ts2 ≤ tf1 ≤

tf2)∧ . . . ∧ (tsk−1
≤ tsk ≤ tfk−1

∨ tsk ≤ tfk−1
≤ tfk). ut

3.3 Consecutive Paths

Figure 1 shows that DLTGs can also be represented

as ILTGs. Therefore, the queries in Section 2.2.1, e.g.,

asking for earliest or fastest arrival times in a DLTG,

require a different temporal semantics than the ones in

Sections 3.1 and 3.2. Definition 9 introduces the notion

of consecutive path.

Definition 9 A consecutive path Pc traversing a rela-

tionship r in a temporal property G is a sequence of

edges P = (e1, e2, r, [t1, t2]) . . . , (ek−1, ek, r, [tk−1, tk]))

where (ni, ni+1, r, [ti, ti+1]) is the i-th temporal edge in

P for 1 ≤ i ≤ k, and ti−1 < ti for 1 ≤ i ≤ k. Instant tk
is the ending time of P , denoted end(P), and t1 is the

starting time of P , denoted start(P). The duration of

P is defined as dura(P) = end(P)− start(P), and the

distance of P as dist(P) = k. ut
With the notion of consecutive path, several dif-

ferent temporal paths can be defined, analogously to

the paths for DLTGs described by Wu et al. in [52].

The ones studied in this paper are introduced in Defi-

nition 10.

Definition 10 (Types of consecutive paths) Let G

be a temporal property graph G, a relationship r in G,

a source node ns, and a target node nt, both in G; there

is also a time interval [ts, te]. Let P(ns, nt, r, [ts, te]) =

{P | P is a consecutive path from x to y such that

start(P) ≥ ts, end(P) ≤ te}. The following paths can

be defined:

The earliest-arrival path (EAP) is the path that can be

completed in a given interval such that the ending time

of the path is minimum. Formally,

EAP: P ∈ P(ns, nt, r, [ts, te]) such that end(P) =

min{end(P ′) : P ′ ∈ P(ns, nt, r, [ts, te])}.
The latest-departure path (LDP) is the path that can

be completed in a given interval such that the starting

time of the path is maximum. Formally,

LDP: P ∈ P(x, y, [ts, te]) such that start(P) = max

{start(P ′) : P ′ ∈ P(ns, nt, r, [ts, te])}.
The fastest (FP) is the path that can be completed in a

given interval such that its duration is minimum. For-

mally,

FP: P ∈ P(ns, nt, r, [ts, te]) such that dura(P) = min

{dura(P ′) : P ′ ∈ P(ns, nt, r, [ts, te])}.
The shortest path (SP) is the path that can be com-

pleted in a given interval such that its length is mini-

mum. Formally,

SP: P ∈ P(ns, nt, r, [ts, te]) such that dist(P) = min

{dist(P ′) : P ′ ∈ P(ns, nt, r, [ts, te])}. ut
Based on Definition 10, more kinds of paths can be

defined to address practical problems. For example, for

scheduling, a fastest path can be defined restricted to

the paths such that there is a minimum ‘waiting’ time

between two consecutive edges. Or, for phone fraud

analysis, a path such that the time between two consec-

utive edges is below a given threshold, can be computed.

10 Ariel Debrouvier et al.

3.4 Updating the graph

A graph like the one in Figure 2 could be updated at

any time. These updates may involve the addition or

deletion of a node of any kind, and the addition or dele-

tion of an edge. In addition, it is assumed that updates

are performed over a consistent document (cf. Defini-

tion 6), and must leave the graph in a consistent state.

Before discussing updates in more detail, the semantics

of time must be further explained.

3.4.1 The semantics of time

In temporal databases, using a current time variable

has several implications which require the definition of

a precise semantics [15]. When using the transaction

time approach, like in this work, the problems arising

from the use of Now to represent a moving current time

are considerably reduced compared with a valid time

data model, because in valid time databases, times-

tamps are provided by the user, while in transaction

time ones, these values are usually handled by the un-

derlying database system. The semantics adopted for

the current time variable Now in this work, is the one

in [15], that is, if the ending point of an interval is

Now, the edge is valid until the timestamped element

is updated, yielding the so-called until changed seman-

tics. As a consequence, the start instant of an interval

can never be Now. In what follows, the attributes rep-

resenting the start and end times of a time interval are

denoted FROM and TO, respectively.

3.4.2 Node and edge updates

The addition of a node is straightforward. Adding an

object node has no constraint. To add an attribute

node, the corresponding object node must previously

exist. Analogously, in the case of a value node, an at-

tribute node must preexist. In all cases, the temporal

constraints in Definition 6 require that, for example,

the lifespan of an attribute node does not fall outside

the lifespan of its associated object node, and the same

for a value node with respect to an attribute node.

A deletion of a node or edge is performed in the

temporal database sense. That means, only currently

existing objects can be deleted. Informally, when delet-

ing a node n at time td, Now is replaced by td in in-
terval.TO. Analogously, updating an attribute or value

node at time tu implies deleting the current node at tu,

and creating a new one, where interval.FROM= tu+1,

where tu+1 is the instant immediately following the up-

dating time in the node’s granularity. The left-hand side

of Figure 4 depicts an example. It shows that the name

of Mary Smith was changed to Mary Smith-Taylor at

time tc. Now, assume that the complete Person node

number 14 must be deleted at time td. This implies

setting interval.TO= td in nodes 14, 24, and 35. Thus,

deleting an object node at time td also implies deleting

in the temporal database sense, the related attribute

and value nodes, that means, setting all Now values to

td. Since consistency must be maintained, all currently

incoming and outgoing edges must be ‘deleted’ too.

Adding or deleting an edge is a little bit more in-

volved, since it impacts on the paths defined in Sec-

tions 3.1 through 3.3. The example on the right-hand

side of Figure 4 shows that, for instance, the edge in

dashed line can be inserted at any time, provided that

the temporal constraints are satisfied. That means, in

this example, that the edge interval could be anyone

starting in 1998, the start time of the interval of Node

90. This shows that the model supports also a restricted

form of valid time, since these kinds of retroactive up-

dates are also allowed. Note, however, that this new

edge produces a new continuous path with interval [2006,

Now]. Now, assume that the person with id=14 stops

following the person with id=55 at time td. Since edge

deletion is also logical rather than physical, the interval

of the edge between the two nodes becomes [2005, td],

and all continuous paths must be modified, since the

edge ceases to exist. However, the continuous paths ex-

isting prior to td must remain. This impacts the indices

that may exist over the paths (see Section 7). Also,

note that if this person, after some time, starts follow-

ing again the same person with id=55, at time ti, a

new interval must be added to the same edge, which

becomes {[2005, td], [ti, Now]}.

4 T-GQL Syntax and Semantics

This section introduces T-GQL, a high-level query lan-

guage for graph databases. The language has a slight

SQL flavor, although it is based on Cypher4, Neo4j’s

high-level query language. Cypher’s formal semantics

can be found in [20,21]. T-GQL also extends Cypher

with a collection of functions, whose implementation is

explained in Section 5.

4.1 Basic Statements

The syntax of the language has the typical SELECT-
MATCH-WHERE form. The SELECT clause performs a

selection over variables defined in the MATCH clause

(aliases are allowed). The MATCH clause may contain

4 https://neo4j.com/docs/cypher-manual/current/

A Model and Query Language for Temporal Graph Databases 11

Fig. 4 Left: Updating nodes; Right: Updating edges.

one or more path patterns (of fixed or variable length)

and function calls. The result of the query is a tem-

poral graph. This can be modified by the SNAPSHOT
operator, which allows retrieving the state of the graph

at a certain point in time. The basic syntax and se-

mantics will be introduced using the social network in

Figure 2. Path functions implementing the consecutive

path semantics will be covered using a flight scheduling

example.

Consider the query: “List the friends of the friends

of Mary Smith-Taylor”. This does not include tempo-

ral features, but allows introducing the basic T-GQL

syntax.

SELECT p2

MATCH (p1:Person) - [:Friend*2] -> (p2:Person)

WHERE p1.Name = 'Mary Smith-Taylor'

Note that this query just returns the object nodes (re-

call the model of Definition 4), which, for a final user,

would not be useful. A variant to the query above would

select the name of the friends of friends of Mary as fol-

lows (an alias is used in the query):

SELECT p2.Name as friend_name

MATCH (p1:Person) - [:Friend*2] -> (p2:Person)

WHERE p1.Name = 'Mary Smith-Taylor'

For returning all the paths, the wildcard operator ‘*’ is

used. The expression below returns the three paths of

length 2 from the node representing Mary.

SELECT *

MATCH (p1:Person) - [:Friend*2] -> (:Person)

WHERE p1.Name = 'Mary Smith-Taylor'

The T-GQL language supports the three path seman-

tics explained in previous sections: (a) Continuous path

semantics; (b) Pairwise continuous path semantics; (c)

Consecutive path semantics. These semantics are imple-

mented by means of functions, which are included in a

library of Neo4j plugins. To compute temporal paths,

two types of functions are defined: Coexisting and Con-
secutive. Both receive two nodes as arguments. These

are explained in the following sections.

Remark 1 Functions computing continuous and pair-

wise paths, do not accept the wildcard ‘*’. That is, the

length of the paths must be constrained by the user. On

the contrary, temporal functions computing consecutive

paths (earliest, fastest, etc.), do not support a limited

search, therefore ‘*’ must be used.

4.2 Continuous Path Queries

Query 1 requires the computation of all continuous paths

of length 2, over the social network running example.

As Remark 1 mentions, the length of the continuous

paths in a query must be explicitly specified.

Query 1 Compute the friends of the friends of each

person, and the period such that the relationship oc-

curred through all the path.

In Figure 2, for example, Cathy (person node 12) was

a friend of Pauline (person node 11) between 2002 and

2017. Also, Pauline was a friend of Mary (person node

14) between 2010 and 2018. Thus, the path (Mary →
Pauline→ Cathy, [2010, 2017]) will be in the answer to

Query 1, since the whole path was valid in this interval

(Definition 7). The query reads in T-GQL:

SELECT path

MATCH (n:Person), path = cPath((n)-[:Friend*2]

-> (:Person))

In this case, a record is returned for each path. The

modifiers SKIP and LIMIT can be used, as in Cypher,

to get a specific path or a range. For example, to get

the third path in the answer:

SELECT path

MATCH (n:Person), path = cPath((n)-[:Friend*2]

-> (:Person))

SKIP 2

LIMIT 1

12 Ariel Debrouvier et al.

A continuous path search between two specific persons

can also be performed, as Query 2 shows.

Query 2 Find the continuous paths between Mary Smith

Taylor and Peter Burton with a minimum length of two

and a maximum length of three.

SELECT paths

MATCH (p1:Person), (p2:Person),

paths = cPath((p1) - [:Friend*2..3] -> (p2))

WHERE p1.Name = 'Mary Smith-Taylor'

and p2.Name = 'Peter Burton'

The cpath function computes the continuous path. The

result is a single path of length three (the other pos-

sible path, with length one, is discarded). The path is

an array of the object nodes traversed together with

their interval, attributes, id and title. The interval of

the result is the intersection of the intervals of the ob-

ject nodes in the path.

The figure below shows the format of the result. It

can be seen that attribute and value nodes are embed-

ded in the answer in an inline fashion, to facilitate their

search (as mentioned previously, object nodes are not

likely to be useful for a final user). Note that the value

node “Mary Smith” is ignored since its interval [1937-

1959] does not intersect with the continuous path’s in-

terval [2010 − 2017]. Also note that the value node re-

turned has the interval [2010 − 2017], which is the in-

tersection of the intervals [1960 − Now] (the interval

of the value) and [2010 − 2017]. Finally, the interval

of the continuous path is [2010 − 2017], which is the

result of the intersection between the traversed edges

([2010− 2018], [2002− 2017], [1995−Now]).

paths
{

"path": [

{ "interval": ["1937-Now"],

"attributes": {

"Name": [

{"value": "Mary Smith-Taylor",

"interval": "[2010 - 2017]" }]

},

"id": 8,

"title": "Person"

},

{

...

}

],

"interval": "2010-2017"

}

The cPath function is overloaded to return a Boolean

value, like Query3 shows.

Query 3 Find the names of the persons such that there

is a continuous path from them to Peter Burton.

SELECT p1.Name

MATCH (p1:Person), (p2:Person)

WHERE p2.Name = 'Peter Burton'

and cPath((p1) - [:Friend*2..3] -> (p2))

In this case the function call is located in the WHERE
clause, and the parser decides from the context that the

Boolean procedure must be used.

Pairwise continuous paths (Definition 3.2) can be

also computed, using the pairCPath function. An exam-

ple is shown below.

Query 4 Find the pairwise continuous paths between

Mary Smith Taylor and Peter Burton with a minimum

length of two and a maximum length of three.

SELECT paths

MATCH (p1:Person), (p2:Person),

paths = pairCPath((p1)-[:Friend*2..3]->(p2))

WHERE p1.Name = 'Mary Smith-Taylor'

and p2.Name = 'Peter Burton'

The intermediate results of a query can be filtered by

an interval I, provided by the user. This filters out the

paths whose interval does not intersect with I. The

granularity of the starting and ending instants of the

interval must be the same. Query 5 illustrates this.

Query 5 Compute all the continuous paths of friends

between Mary Smith Taylor and Peter Burton, in the

interval [2018, 2020], with a minimum length of 2 and

maximum length of three.

In the running example, there are two possible paths be-

tween Mary and Peter: one of length 3 and the other of

length 1 (which is thus, discarded). Therefore, the only

continuous path obtained would beMary → Pauline→
Cathy → Peter, [2010, 2017]. However, the path will

be filtered out of the result set, since [2018, 2020] ∩
[2018, 2020] = ∅. The query is expressed as:

SELECT paths

MATCH (p1:Person), (p2:Person),

paths = cPath((p1) - [:Friend*2..3] -> (p2),

'2018', '2020')

WHERE p1.Name = 'Mary Smith-Taylor'

and p2.Name = 'Peter Burton'

The properties of the returned structure can also be

retrieved. For example, if only the interval of the path

is needed in Query 2, the query would read:

SELECT paths.interval as interval

MATCH (p1:Person), (p2:Person),

A Model and Query Language for Temporal Graph Databases 13

paths = cPath((p1) - [:Friend*2..3] -> (p2))

WHERE p1.Name = 'Mary Smith-Taylor' and

p2.Name = 'Peter Burton'

Furthermore the attributes in the path can be retrieved

as in the following query, where the names of the per-

sons in the starting and in the the third position in the

resulting paths are requested.

SELECT paths.path[0].attributes.Name

as start_node,

paths.path[3].attributes.Name as

end_node

MATCH (p1:Person), (p2:Person),

paths = cPath((p1) - [:Friend*2..3] -> (p2))

WHERE p1.Name = 'Mary Smith-Taylor' and

p2.Name = 'Peter Burton'

The head() and last() path methods can be used as

follows.

SELECT head(paths.path).attributes.Name as

start_node, last(paths.path).attributes.Name

as end_node

MATCH (p1:Person), (p2:Person),

paths = cPath((p1)-[:Friend*2..3]->(p2))

WHERE p1.Name = 'Mary Smith-Taylor' and

p2.Name = 'Peter Burton'

If more than one path were returned, the head() and

last() functions will be applied to each one.

4.3 Consecutive path queries

To illustrate consecutive path semantics (Definitions 9

and 10), a second running example is introduced, de-

picted in Figure 5. In this example, there are two ob-

ject nodes, namely Airport and City. There are also two

temporal relationships, Flight and LocatedAt. The for-

mer is labeled with the interval [td, ta], where td is the

departure time of a flight from an airport, and ta is the

arrival time at the destination airport. Airport nodes

are labeled with the period during which an airport be-

longs to a city (not shown in the figure, for clarity).

Note here the flexibility that the ILTG model provides,

allowing representing cases that are typically modeled

using DLTGs. It is worth remarking that, of course, this

does not intend to be a real-world example of a flight

scheduling graph, but a simplified portion of it.

Consecutive path semantics is implemented through

functions that are called from T-GQL. Four functions

are currently supported: fastestPath, earliestPath, short-
estPath, and latestDeparturePath. The first three ones

receive two nodes as arguments. The latter also receives

a time instant. The queries below illustrate their syntax

and semantics.

Query 6 How can we go from Tokyo to Buenos Aires

as soon as possible?

Recalling Definition 10, Query 6 refers to the earliest-

arrival path from Tokyo to Buenos Aires. Note that

this query uses the consecutive path semantics of Defi-

nition 9. Here, the difference with the continuous path

semantics is clear: a path in the solution must be such

that the intervals of the edges are pairwise disjoint. The

T-GQL query is written as follows:

SELECT path

MATCH (c1:City)-[:LocatedAt]->(a1:Airport),

(c2:City)-[:LocatedAt]->(a2:Airport),

path = fastestPath((a1)-[:Flight*]->(a2))

WHERE c1.Name = 'Buenos Aires' AND

c2.Name = 'Tokyo'

Opposite to the earliest-arrival path function, the lat-
estDeparturePath function needs a threshold parameter

as argument. As an example, consider Query 7 below.

Query 7 How can we go from Tokyo to Buenos Aires,

leaving as late as possible and arriving before July 15

at 8 pm?

SELECT path

MATCH (c1:City)-[:LocatedAt]->(a1:Airport),

(c2:City)-[:LocatedAt]->(a2:Airport),

path = latestDeparturePath((a1)-[:Flight*]->

(a2),'2019-07-15 20:20')

WHERE c1.Name='Buenos Aires' AND

c2.Name='Tokyo'

4.4 Handling Temporal Granularity

The reader may have noticed that all time intervals in

the social network example are given in the Year time

granularity; for the flight example, granularity is Date-
time. However, queries may mention a granularity dif-

ferent to the one in the graph’s objects. This time gran-

ularity problem has been extensively studied in tempo-

ral database theory, and it is common to all kinds of

queries. When a query includes a temporal condition

with a temporal granularity tg different than the one of

an object in the graph og, two cases may occur:

– tg is finer than og. In this case, both granulari-

ties are identified, in a way such that the finer one

is transformed into the coarser one. For example,

if og.interval = [2010, 2012], and the condition is

t IN og.interval, where t = 2/10/2012, then, the in-

terval is transformed into the interval og.interval =

[1/1/2010, 31/12/2012].

14 Ariel Debrouvier et al.

Airport

Bariloche

LocatedAt Airport

Sao
Paolo

code

BRC

LocatedAt

code

GRU

code

Flight [BA246] (2020/03/07 15:30, 2020/03/08 06:55)
Airport

London

BRC

LocatedAt

LHR

code

Flight [AR2020] (2020/03/07 17:00, 2020/03/07 21:35)
City

City

City

Fig. 5 A temporal graph for flight scheduling analysis.

– tg is coarser than og. In this case, one time in-

stant in the granularity of og is chosen. For exam-

ple, if og.interval = [15/10/2010, 23/12/2010], and

the condition is 2010 IN og.interval, the semantics

would imply that the condition is satisfied.

Since in the social network example, the granularity

used is Year, and the example queries are given using

this granularity, no problem arises in this sense. How-

ever, if a query asks for Cathy’s friends on October

10th, 2018, it would not be possible to give a precise an-

swer, and the query must use the semantics explained

above. T-GQL supports the following granularities (ex-

amples will be presented in the next sections):

– Year: yyyy
– YearMonth: yyyy-MM
– Date: yyyy-MM-dd
– Datetime: yyyy-MM-dd HH:mm

4.5 Temporal Operators

Some kinds of T-GQL queries require temporal oper-

ators and filters, explained in this section. To begin

with, the SNAPSHOT operator returns the state of the

graph at a certain point in time. Therefore, along the

lines of temporal database notions, the answer is a non-

temporal graph, like in Query 8 below.

Query 8 Who where the friends of the friends of Cathy

in 2018?

SELECT p2.Name as friend_name

MATCH (p1:Person) - [:Friend*2] -> (p2:Person)

WHERE p1.Name = 'Cathy Van Bourne'

SNAPSHOT '2018'

Exactly one value is allowed to be used in the SNAP-
SHOT clause. The following non-temporal result is re-

turned:

p2.Name
{

"value": "Mary Smith Taylor"

}

The relationship with Pauline is filtered out since it was

valid during the interval [2002, 2017]. Therefore, there

is only one object node reached, which has two possibles

values for the Name attribute. The value ”Mary Smith”

is discarded because it was not valid in 2018.

The BETWEEN operator performs an intersection of

the graph intervals with a given interval. Exactly one

interval is allowed. The granularity of both intervals

must be the same, like in Query 9 below.

Query 9 Where did the friends of Pauline live between

2000 and 2004?

This query returns the cities where the friends of
Pauline lived during the given interval. The temporal

semantics adopted also applies the condition on the re-

lationship interval. That means, for example, that the

relationship with Sandra will not be considered, since

the interval of the relationship is [2005, Now], thus, it

does not intersect with the given interval. The T-GQL

query is written as follows:

SELECT c.Name

MATCH (p1:Person) - [:Friend] -> (p2:Person),

(p2) - [:LivedIn] -> (c:City)

WHERE p1.Name = 'Pauline Boutler'

BETWEEN '2000' and '2004'

Only the Friend relationship with Cathy Van Bourne

was valid during the interval used above, and the query

returns Brussels and Paris, the cities where she lived

during the intervals [1980, 2000], and [2001, Now], the

ones that intersect [2000, 2004].

Finally, the WHEN clause is useful for answering

parallel-period queries, which follows the SQL inner

A Model and Query Language for Temporal Graph Databases 15

query idea. The syntax has the form MATCH-WHERE-
WHEN, and the inner query can have references to vari-

ables in the outer query. Function calls are not allowed

within this clause, and it can only handle exactly one

two-node path in the inner MATCH clause.

Query 10 Who were friends of Mary while she was

living in Antwerp?

Mary lived in Antwerp between [1990-Now], thus, any

person that was a friend of Mary at any instant of that

interval would be in the result.

SELECT p2.Name as friend_name

MATCH (p1:Person) - [:Friend] -> (p2:Person)

WHERE p1.Name = 'Mary Smith-Taylor'

WHEN

MATCH (p1) - [e:LivedIn] -> (c:City)

WHERE c.Name = 'Antwerp'

For WHEN queries, the wildcard selection can only be

performed on the nodes of the outer query (the MATCH
clause). In a nutshell, the inner query returns a collec-

tion of intervals, and the WHEN clause performs a BE-
TWEEN operation with these intervals. Query 11 shows

an even more involved example.

Query 11 Where did Cathy live when she and Sandra

followed the same brands?

Cathy and Sandra both followed the brand LG. San-

dra, during the interval [1995, 2000], and Cathy, in

the interval [1998-2000]. The query language allows ex-

pressing a graph traversal to the node that indicates

where did Cathy live from 1998 to 2000. In this case, it

would be the city of Brussels. For this, the query must

compute the intersection of the intervals. Note that the
former two queries would be much difficult and unnat-

ural to express with a duration-labeled representation.

SELECT c.Name as city, b1.Name as brand

MATCH (p1:Person) - [:LivedIn] -> (c:City),

(p1) - [:Fan] -> (b1:Brand)

WHERE p1.Name = 'Cathy Van Bourne'

WHEN

MATCH (p2:Person) - [f:Fan] -> (b2:Brand)

WHERE p2.Name = 'Sandra Carter' and

b1.Name = b2.Name

5 Implementation

This section describes a proof-of-concept implementa-

tion of this proposal. First, the general system archi-

tecture is presented. Then, the parsing process and the

translation of a T-GQL query to Cypher are explained.

Finally, the algorithms for computing the temporal op-

erators and the different kinds of paths are discussed.

Fig. 6 General architecture.

5.1 Architecture

The model and language described in this paper were

implemented over the open source Java-based graph

database Neo4j. Neo4j allows extending its function-

ality with user-defined procedures, which can be easily

added as plugins, packed in a .jar file. These procedures

can then be used in Cypher queries as any of the other

built-in functions that this language offers.

The T-GQL language grammar was implemented

using ANTLR.5 With this tool, T-GQL queries are trans-

lated into Cypher, Neo4j’s high-level query language,

so it can be executed over the Neo4j database. Figure 6

sketches the system’s architecture. To edit and execute

T-GQL queries, a web application interface was devel-

oped, also coded in Java, using the Javalin framework.6

The application exposes a page where the queries can

be executed from an endpoint. The parser translates

the users’ queries into Cypher and executes them on a

Neo4j server that contains the plugins to run the tem-

poral operators and path algorithms.

In addition, for populating the social network run-

ning example database (and also for the experiments

reported in the next section), a data set generator was

developed. Parameters for this generator allow indicat-

ing the number of relationships and nodes, and number

of intervals that each edge can have, among other ones.

The application communicates directly with a running

Neo4j server through the Bolt protocol, and automat-

ically populates the database by executing the corre-

sponding Cypher queries.

5 https://www.antlr.org/
6 http://javalin.io

16 Ariel Debrouvier et al.

Fig. 7 Social network metamodel.

5.2 Parsing and Query Translation

The parser was developed using ANTLR4, a parser gen-

erator that reads a grammar and produces a recognizer

for it. It is important to keep in mind that the query

language hides the actual data structure of the graph.

Recall that the model explained in Section 3 is com-

posed of three kinds of nodes, namely object, attribute,

and value nodes, but the user writes her queries ab-

stracting from these elements. Consider for instance,

the metamodel of the social network example, depicted

in Figure 7. It can be seen that Person, City, and Brand
are object nodes, connected by different kinds of rela-

tionships. These object nodes are associated with at-

tribute and value nodes through a single kind of edge,

denoted Edge (also not visible to the user). Thus, in

the implementation, Person is actually a property (de-

noted title) of the object node, the Name of a person is

a property (also denoted title) of an attribute node, and

the actual name of the person is stored as a property

of a value node, denoted value. All of these elements,

again, are not perceived by the user, but stored in the

Neo4j database, as shown in Figure 8. In the figure it

can be seen that there is an edge labelled Edge outgo-

ing from an object node labeled Person (which is the

value of the property title of the object node). That

edge reaches the attribute node Name (again, Name is

a property of the attribute node), and finally another

Edge links that node with a value node with value =
‘New York’. Note that all of these nodes and edges are

associated with intervals, not shown in the figure. The

translation, then, must not only rewrite the query in

terms of the Cypher language, and bridge the gap be-

tween the structure exposed to the user, and the model

actually stored in Neo4j.

To illustrate the parsing process, consider the query:

SELECT p

MATCH (p:Person)

WHERE p.Name = 'John Smith'

Figure 9 depicts the parse tree. The start rule is

highlighted in blue, non-terminal nodes are indicated

in yellow, and terminal nodes in green. For the sake

of simplicity, not all the nodes needed for evaluating

this query are expanded and represented in the tree.

Once the tree has been generated, it must be traversed.

ANTLR’s default method is represented in the figure

in dashed line. First, all the tokens in the SELECT
clause are recognized, followed by the MATCH clause,

and finally the WHERE clause. When the tree is fully

traversed, the Cypher query is generated. The query

translation process is explained next.

The object nodes in the MATCH clause are trans-

lated as {alias:Object {title: ‘Name’}}, since, as ex-

plained above, this property contains the entity type

that the user refers to. For example “(p:Person)” would

be translated to {p:Object {title: ‘Person’}}. The edges

do not need to be translated, since the grammar for the

edges matches the Cypher’s grammar. If a function call

is found, the corresponding procedure is called, with the

given arguments (an example of this is shown later). For

each attribute in the SELECT clause, a three-node path

(Object - Attribute - Value) is produced from the object

node. For example “p.Name as name” would generate

the following path:

OPTIONAL MATCH(p)-->(internal_n:Attribute

{title:'Name'})-->(name:Value)

Recall that title is a property of the attribute node.

In this case, OPTIONAL MATCH is used to allow re-

placing the missing values in the SELECT clause with

a NULL value, and to return the row instead of dis-

carding it. Variables starting with ‘internal’ are gen-

erated internally by the parser, and are reserved. For

the conditions in the WHERE clause, the attributes are

expanded as explained above, and the constants are

translated without changing them. Finally, for each at-

tribute, the access to the value property of the value

node, is added. For example, the condition “p.Name =

‘John’ and p.Age = 18” is translated as:

MATCH (p)-->(internal_n:Attribute{title:

'Name'})-->(internal_v:Value)

MATCH (p)-->(internal_a:Attribute{title:

'Age'})-->(internal_v1:Value)

WHERE internal_v.value = 'John' and

internal_v1.value = 18

Queries mentioning functions are explained next.

Consider the continuous path query:

SELECT p.path as path, p.interval as interval

A Model and Query Language for Temporal Graph Databases 17

Fig. 8 Social network model for the metamodel in Figure 7.

Fig. 9 Example parse tree.

MATCH (p1:Person), (p2:Person), p=cPath((p1)-

[:Friend*2..3]->(p2),'2016','2018')

WHERE p1.Name = 'Mary Smith-Taylor'

The query is translated into Cypher as:

MATCH (p1:Object{title:'Person'}),(p2:Object

{title:'Person'})

MATCH (p1)-->(internal_n0:Attribute{title:

'Name'})-->(internal_v0:Value)

WHERE internal_v0.value = 'Mary Smith-Taylor'

CALL coexisting.coTemporalPaths(p1,p2,2,3

{edgesLabel:'Friend',nodesLabel:'Person',

between:'2016-2018',direction:'outgoing'})

YIELD path as internal_p1, interval as

internal_i1

WITH {path:internal_p1,interval:internal_i1}

as p

RETURN p.path as 'path', p.interval as

'interval'

Temporal procedures are described in Section 5.3.

Note that after calling these path procedures, the query

may ask for just one of the computed paths. For exam-

ple, the following query asks for the fastest path be-

tween airports located in the cities of London, UK and

Bariloche, Argentina, both with more than one airport.

SELECT path

MATCH (c1:City)<-[:LocatedAt]-(a1:Airport),

(c2:City)<-[:LocatedAt]-(a2:Airport),

path=fastestPath((a1)-[:Flight*]->(a2))

WHERE c1.Name='London' AND c2.Name='Bariloche'

This is translated to:

MATCH (c1:Object{title:'City'})<-[internal_l0:

LocatedAt]-(a1:Object{title:'Airport'}),

(c2:Object{title:'City'})<-[internal_l1:

LocatedAt]-(a2:Object{title:'Airport'})

MATCH (c1)-->(internal_n0:Attribute{title:

'Name'})-->(internal_v0:Value)

MATCH (c2)-->(internal_n1:Attribute{title:

'Name'})-->(internal_v1:Value)

WHERE internal_v0.value='London' AND

internal_v1.value='Bariloche'

CALL consecutive.fastest(a1,a2,1,

{edgesLabel:'Flight',direction:'outgoing'})

YIELD path as internal_p0, interval as

internal_i0

WITH paths.intervals.fastest({path:internal_p0,

interval:internal_i0}) as path

RETURN path

18 Ariel Debrouvier et al.

To evaluate this Cypher query, the engine will look

for all the airports in London and Bariloche, and all

the combinations from airports in London to airports

in Bariloche. The paths.intervals.fastest aggrega-

tion function is called to retrieve the fastest path. It

receives all the paths and returns only the fastest ones,

according to Definition 10.

5.3 Temporal Procedures Algorithms

It was already explained that the Neo4j database was

extended with temporal capabilities by means of a col-

lection of procedures. Implementing the procedures on

the server side allows calling the procedures directly

from the Cypher Language. Besides, a client-side im-

plementation would require retrieving a large portion

of the graph to execute the queries, which would not

scale for large graphs. Thus, the algorithms will use less

resources running on the server side, since nodes and

relationships are obtained directly from the database.

Procedures can be classified in three groups, depending

on their functionality:

– Temporal procedures: Implement basic temporal op-

erations. Here, Between and Snapshot are defined.

– Coexisting paths procedures: Implement the contin-

uous and pairwise continuous path semantics.

– Consecutive paths procedures: Implement the con-

secutive path semantics.

The procedures above are packed in a library which

is stored in the Neo4j’s Plugin folder. The Coexisting

and Consecutive procedures extend a framework de-

fined to work on temporal graphs. This framework was

based on the neo4j-graph-algorithms library,7 which con-

tains implementations of classic graph algorithms, al-

though no algorithms for temporal graphs.

5.3.1 Temporal procedures

The Between and Snapshot procedures receive a Cypher

query, execute it, and filter the results depending on

the operation. Neo4j returns the results of a query as a

stream of records, analogously to relational databases.

The operations above are thus applied to all the rows in

the stream, filtering the results that do not satisfy the

temporal restrictions. In both cases, the procedure re-

ceives a string containing the query, and another string

representing the granularity that must be applied to the

operation. In addition, the Between operation receives

an interval, and keeps the records in the stream whose

7 https://github.com/neo4j-contrib/neo4j-graph-algorit

hms

intervals are inside the former one. The Snapshot oper-

ation also receives a string that contains a specific time

instant, and keeps the records whose intervals contain

that specific time instant.

5.3.2 Coexisting paths procedures

These procedures return the continuous paths of a given

length, either starting from a node, or between two

nodes. In addition, a Boolean alternative is implemented,

that can be used, for example, for checking whether or

not a continuous path exists between two nodes.

Algorithm 1 retrieves all of the coexisting paths be-

tween two nodes, receiving as input a graph G, a source

node x, the minimum path length Lmin, the maximum

path length, Lmax, a function f that returns an interval

depending on the algorithm, and optionally, a destina-

tion node y. The algorithm returns a set S with the

results. Given two intervals, the function f returns an-

other interval. When computing continuous paths, f is

defined as f(i1, i2) = i1 ∩ i2. This way, only the in-

tersection of the intervals is stored, and the algorithm

keeps iterating with them. For pairwise temporal paths,

f is defined as f(i1, i2) = i2, this way it only returns

the latter interval, and the algorithm iterates only with

the last interval in the path.

The algorithm takes the source node x and adds it

to a list, in a triplet containing an interval [−inf,+inf],

whose values are the minimum and maximum time in-

stants of the node, and the length of the path, initially

set to zero. This list represents a path that starts at

the source node, and is added to the queue. The algo-

rithm picks up the paths in the queue until the queue is

empty. The algorithm takes the last triplet of the path,

and looks up in the graph G for the edges associated

with the node in this triplet. Then, for each edge, it

checks if the node in the opposite end of the edge is in

the path, or the interval in the edge does not intersect

with the interval in the triplet. If that is the case, the

edge cannot continue the path. This prevents iterating

over the same nodes. For example, given an edge from

A to B with interval [1, 2], a path A-B-A-B would be

possible without this limitation, because the interval

between A and B always intersects with itself. In the

case that the edge can continue the path, a triple with

the new node is created, containing the result of the

execution of the function f , and the length of the path,

which is the length of the last triplet in the path, plus

1. The path is copied and the triplet is added to the

copy. If the copy of the path (which is also a path) has

a length between Lmin and Lmax and the node of the

last triplet is also the destination node (if such node is

defined as input), this path is added to the set of solu-

A Model and Query Language for Temporal Graph Databases 19

Algorithm 1 Computes Coexisting Paths (Continuous

and pairwise continuous paths).
Input: A graph G, a source node x, the minimum path length Lmin,
the maximum path length Lmax, a function f depending on the type
of path requested, and a destination node y (optional).
Output: A list of coexisting paths S.

Initialize a queue of paths Q and a list of solutions S.
Q.enqueue([(x, [−inf,+inf], 0)])
while not Q.isEmpty do

current = Q.dequeue()
z, interval, length = current.last()
for (z, otherInterval, dest) ∈ G.edgesFrom(z) do

if not current.containsNode(dest) and interval ∩
otherInterval 6= ∅ then

newTuple = (dest, f(interval, otherInterval), length +
1)
copy = current.copy()
copy.insert(newtuple)
if Lmin <= length + 1 <= Lmax and (y not exists or
dest == y) then

S.insert(copy)
end if
if length + 1 < Lmax then

Q.enqueue(copy)
end if

end if
end for

end while

Algorithm 2 Checks the existence of a Continuous

Path.
Input: A graph G, a source node x, the minimum path length Lmin,
the maximum path length Lmax, a function f which depends on the
type of path requested (continuous o pairwise), and a destination
node y (optional).
Output: True if a Continuous Path exists. False other-
wise.

Initialize a queue of paths Q.
Q.enqueue([(x, [−inf,+inf], 0)])
while not Q.isEmpty do

current = Q.dequeue()
z, interval, length = current.last()
for (z, otherInterval, dest) ∈ G.edgesFrom(z) do

if not current.containsNode(dest) and interval ∩
otherInterval 6= ∅ then

newTuple = (dest, f(interval, otherInterval), length +
1)
if Lmin <= length + 1 <= Lmax and (y not exists or
dest == y) then

return true
end if
if length + 1 < Lmax then

copy = current.copy()
copy.insert(newtuple)
Q.enqueue(copy)

end if
end if

end for
end while
return false

tions S. Otherwise, it is added to the queue. When this

queue is empty, the set of solutions S is returned.

Algorithm 2 is the Boolean version of the previous

one, since it computes if there exists a continuous path

between two nodes. That is, if a path is found, true is

returned, otherwise, it returns false.

5.3.3 Consecutive paths procedures

These procedures follow the graph transformation ap-

proach introduced by Wu et al. [54] for DLTGs, to com-

pute paths on ILTGs. However, unlike the approach

presented in [54], the algorithm presented here does not

create the whole graph to apply the path computation

algorithms, since this would be extremely expensive. In-

stead, the transformed graph is built as the iterations

proceed over the original temporal graph, call it G. The

transformation creates a new graph, denoted Gt, where

the nodes contain either the starting time or the ending

time of an interval of the temporal graph (explained be-

low), and the edges indicate the nodes that are reach-

able from that position, where reachable means that

both nodes are included in the same interval, or that

they start from the same node and the starting time

of the source node is prior to the one in the destina-

tion node. The weight of an edge is the duration of the

corresponding interval. This new graph does not con-

tain cycles, because it is not possible to go from a node

with a greater time to a node with a lesser time, and

all the weights of the edges are (or can be represented

as) positive numbers.

Algorithm 3 sketches the process. The algorithm re-

ceives, as arguments, a temporal graph G, the source

and destination nodes of the path (s and d, respec-

tively) to be computed, a function f to be used to sort

the nodes of the transformed graph in a priority queue

-in a way which depends on the algorithm (earliest, lat-

est, fastest, shortest paths), and returns a set of nodes

S. The following is assumed in the sequel for f :

x < y if f(x, y) < 0

x = y if f(x, y) = 0

x > y if f(x, y) > 0

The nodes of the transformed graph Gt have four at-

tributes: a reference to the node in the original graph, a

time instant, the length of a path that passes through

that node to iterate the graph in a DFS way, and a

reference to the previous node in Gt, in order to al-

low rebuilding the paths after running the algorithm.

These attributes are denoted (for a node n), n.noderef ,

n.time, n.length and n.previous in Algorithm 3.

After initializing the necessary structures, the algo-

rithm adds the initial transformed graph node to the

priority queue. This node is a quadruple that contains

the source node s, −∞ as the time instant, 0 as length,

and null as the reference to the previous node. An el-

ement e is picked up from the queue until the queue

is empty. There is a node vi in the temporal graph as-

sociated with e. For each edge outgoing from vi in G,

the node is expanded creating the nodes vout and vin in

the transformed graph. The node vout contains the cur-

rent node vi, the start time of the interval in the edge,

the length of e plus 1, and e as the previous node, that

means (vi, t.start, e.length+1, null). The node vin con-

20 Ariel Debrouvier et al.

Algorithm 3 Compute the minimum consecutive

paths.
Input: A graph G, a source node s, a destination node d. A
comparison function f(x, y) where x < y if f(x, y) < 0.
Output: A set with the optimal solutions
S.

Initialize the transformed graph Gt and Q (priority queue of Gt

nodes)
Q.enqueue((s,−∞, 0, null))
while not Q.isEmpty do

current = Q.dequeue()
for (current.node, interval, dest) ∈
G.edgesFrom(current.node) do

if current.time > interval.start then
continue

end if
vOut = (current.node, interval.start, current.length + 1, cur-
rent)
vIn = (dest, interval.end, current.length + 1, vOut)
if Gt.containsNode(vIn.node, vIn.time) then

othervIn = Gt.get(vIn.node, V In.time)
if f(othervIn, vIn) > 0 then

continue
end if

end if
if dest == d then

if S.isEmpty then
S.add(vIn)

else
s = S.getAny()
comp = f(vIn, s)
if comp > 0 then

S.empty()
S.add(vIn)

else if comp == 0 then
S.add(vIn)

end if
end if
continue

end if
Q.insert(vIn)

end for
end while
return S

tains the destination node of the edge, the end time of

the interval in the edge, the length of e plus 1, and vout
as the previous node, that is (vf , tend, e.length+1, vout).

If the start time of the interval is less than the time in-

stant of e, the path is not expanded, because it means

that this interval occurred prior to the interval asso-

ciated with the instant. For example, for the interval

[5, 8], if the time instant in e is 7, the node will not be

expanded, and it would not yield a consecutive path.

After creating vin and vout in the transformed graph

Gt, the algorithm checks if Gt already contains a node

vin′ such that the temporal graph node and the time

moment are the same as the ones in vin. If this is the

case, the two nodes are compared with the function f . If

f(vin, vin′) < 0, the path is discarded. If f(vin, vin′) > 0

the node is replaced. Otherwise, the node is kept in

the graph. The rationale behind discarding the paths

is that if two paths P1 and P2 in Gt that end at the

same node d, contain the same transformation node n,

if f(P1(n), P2(n)) > 0, then f(P1(d), P2(d)) > 0, since

the same nodes will be expanded, and the function f

depends on the nodes already traversed (e.g., for the

shortest-path, f depends on the path length, for the

earliest-path, it depends on the arrival time to each

node, and so on). Then, if vi, the temporal graph node

in vin is not the same as the one in the destination

node d, vin is added to the queue. If vi is the same as

in d, and S = ∅, vin is added to S. If S! = ∅, then

any s ∈ S is picked up. If f(s, vin) < 0, the whole

set S is discarded f(vin, s) == 0, vin is added to S,

and if f(vin, result) > 0, S is reset to {vin}. When

Q is emptied, the set of nodes in Gt is returned, and

the algorithm reconstructs the paths using the stored

references to previous nodes in the paths. That is, for

each node, the algorithm follows the link to the pre-

vious node until there is no previous node, like in the

implementation of the Dijkstra algorithms.

It is worth remarking again that the function f is

defined differently for each kind of consecutive path.

Given a function first that returns the first node of

the path defined by the reference to the previous node

in a node in Gt, f is defined as:

– Earliest-arrival path: f(x, y) = x.time− y.time.
– Latest-departure path: f(x, y) = first(x).time −
first(y).time

– Shortest path: f(x, y) = x.length− y.length
– Fastest path: f(x, y) = (x.time − first(x).time) −

(y.time− first(y).time)

The library that has been developed, also contains

aggregation functions. These functions iterate over the

results and then return some value associated with the

input. They are used to filter the results obtained by

executing the consecutive paths procedure. They iterate

over all the results received by the execution of these

procedures, and choose the fastest, earliest, shortest,

latest departure or latest arrival paths depending on

the function we called. These functions are useful when

the procedures are called more than once, for preventing

returning non-optimal values.

Example 4 (Consecutive Paths Computation) Figure 10

shows a graph over which the shortest path between

nodes A and B is computed with Algorithm 3. The

function f will thus be f(x, y) = x.length − y.length.

Figure 11 shows the transformed graph at the end of

the execution of the algorithm.

The first node created in Gt is (A,−∞, 0) (the refer-

ence to the previous node is omitted, for clarity), which

is added to the queue. Thus, Q = [(A,−∞, 0)] is the

initial state of the queue. The node is picked up from

the queue, and, since the edges outgoing from A in the

graph of Figure 10 have intervals [2, 4] and [1, 2], taking

[2, 4], the nodes vout = (A, 2, 0) and vin = (C, 4, 1) are

created in Gt. Then, vin is picked up, and the edges out-

going from C have intervals [5, 7], [1, 3] and [6, 8]. Here,

A Model and Query Language for Temporal Graph Databases 21

A
[1,2]

[2,4]

[5,7]

[6,8]

C

B

E

D

[5,6]

[1,3]

[3,4]

[4,6]

Fig. 10 An example for Algorithm 3.

(A,�1, 0)

(A, 2, 0)

(A, 1, 0)

(C, 4, 1)

(B, 2, 1)

(C, 5, 1)

(C, 6, 1)

(E, 7, 2)

(B, 8, 2)

(B, 3, 1) (D, 4, 2)

(B, 4, 1) (E, 6, 2)

Fig. 11 Result of the execution of Algorithm 3.

[1, 3] cannot be expanded, since it would not yield a

consecutive path. The new nodes vin are created. From

these nodes, and (E, 7, 2) is added to the result set, and

the new state of the queue is Q = [(B, 8, 2), (B, 2, 1)].

Since now a first solution is obtained, it is compared

against (B, 8, 2), and given that f((B, 8, 2), (E, 7, 2)) =

2 − 2 = 0, this path is discarded. Then, (B, 2, 1) is

expanded, and the process continues in the same way.

Finally, the two paths are: (A, 1, 0)− > (B, 2, 1)− >

(B, 4, 1)− > (E, 6, 2) and (A, 2, 0)− > (C, 4, 1)− >

(C, 5, 1)− > (E, 7, 2) which leads to the shortest paths

A,B,E and A,C,E.

5.4 Extending the system

At this point, the reader may be asking herself, whether

or not the ideas exposed in this section can be gener-

alized to other databases and query languages. Assume

for example, that Janusgraph is the database that the

user wants to use for storing the graph. The statements

below allow representing the fact that a person A was

a friend of B between 1999 and 2003, and between 2005

and 2015 (note that since edge is a reserved word in

Gremlin, the edge variable below is ended with ‘ ’).

First, the schema is created, as follows:

edge_ = mgmt.makeEdgeLabel('edge_').

multiplicity(SIMPLE).make()

livesin = mgmt.makeEdgeLabel('livesin').

multiplicity(SIMPLE).make()

friend = mgmt.makeEdgeLabel('friend').

multiplicity(SIMPLE).make()

object = mgmt.makeVertexLabel('Object').make()

Attribute = mgmt.makeVertexLabel('Attribute').

make()

Value_= mgmt.makeVertexLabel('Value_').make()

title = mgmt.makePropertyKey('title').

dataType(String.class).make();

val = mgmt.makePropertyKey('value').

dataType(String.class).make();

int = mgmt.makePropertyKey('interval').

dataType(String.class).

cardinality(Cardinality.set).make();

friend = mgmt.makeEdgeLabel('friend').

multiplicity(SIMPLE).make()

The edge labels are created first, followed by the

vertex labels, which support the object, attribute and

value nodes of the model. Finally, the property labels

are created. The multiplicity ‘simple’ tells that only one

edge type is allowed between the same two nodes. After

declaring the schema, vertex and edges can be created

as follows (attribute and value nodes are omitted for

brevity):

o1=g.addV('object').property('title_','Person')

o2=g.addV('object').property('title_','Person')

f1=o1.addEdge('friend',o2,'interval',

['1999-2003','2005-2015'])

It can be seen that the creation of the graph is

straightforward. Simple queries can also be easily gener-

alized. Consider the query “When was Pauline Boutlier

friend of Cathy Van Bourne?”. This query is expressed

in Gremlim as (the T-GQL query is omitted) follows,

yielding the answer: [1999− 2003, 2005− 2015].

g.V().hasLabel('Value').has('value','Pauline

Boutlier').in().in().outE('friend').

has('interval').as('f').inV().out().out().

has('value','Cathy Van Bourne').select('f').

by('interval').dedup()

However, generalizing the target language to ad-

dress temporal paths (continuous and consecutive) is

much more involved, since Gremlin must be non-trivially

extended to be used as a target language for T-GQL.

This can be inferred from the work by Byun at al. [9],

22 Ariel Debrouvier et al.

who show that the Gremlin’s path management scheme

must be modified, and new functions defined. This is

left for future work, as explained in Section 8.

6 Evaluation

This section reports and discusses the experiments car-

ried out in order to test the different algorithms de-

scribed and implemented in this work. These experi-

ments cover the two classes of path algorithms studied:

continuous paths and consecutive paths. Since the im-

plementation is a proof-of-concept, and Neo4j is not a

database oriented and handling very large graphs, this

evaluation is aimed at finding out the impact of the

factors that influence the performance, rather than to

measure performance itself. Future work will address

performance issues through indexing schemes.

6.1 Description of the experiments

The goals of the experiments, and the experimental

setup are detailed in this section, for each of the classes

of algorithms tested.

6.1.1 Continuous paths algorithms

The goal of these experiments is to test how does the

length of the paths and the size of the data set impact

on the performance of the algorithm. Therefore, differ-

ent tests are conducted, varying both variables. Typical

continuous path queries are run over the social network

temporal graph, asking for continuous paths of differ-

ent lengths between two specific persons, the latter in-

dicated by a property denoted id, generated during the

population of the data set. For example, the query be-

low asks for all the continuous paths of length 8 between

the Person nodes with id 10 and 30. This query is run

for different pairs of persons and different path lengths.

SELECT p

MATCH (n:Person), (m:Person),

p = cPath((n)-[:Friend*8]-(m))

WHERE n[id] = 10 AND m[id] = 30

The same type of query was ran to test the pairwise

continuous path algorithm:

SELECT p

MATCH (n:Person), (m:Person),

p = pairCPath((n)-[:Friend*8]-(m))

WHERE n[id] = 10 AND m[id] = 30

6.1.2 Consecutive paths algorithms

The goal of these experiments is to evaluate how do

the different paths behave for various graph sizes. The

tests are run over real-world flights data sets, taking a

subset of the airports in such data sets. The chosen air-

ports are of very different sizes, to cover a wide range

of connecting flights. The queries perform a consecu-

tive path search for two specific airports using their

IATA (International Air Transportation Association)

code, a three-letter code that uniquely identifies an air-

port. The queries address the four kinds of consecutive

path algorithms, and are of the following form:

SELECT path

MATCH (a1:Airport), (a2:Airport),

path = fastestPath((a1)-[:Flight*]->(a2))

WHERE a1.Code = 'BOS' and a2.Code = 'HOU'

SELECT path

MATCH (a1:Airport), (a2:Airport),

path = shortestPath((a1)-[:Flight*]->(a2))

WHERE a1.Code = 'BOS' and a2.Code = 'HOU'

SELECT path

MATCH (a1:Airport), (a2:Airport),

path = earliestPath((a1)-[:Flight*]->(a2))

WHERE a1.Code = 'BOS' and a2.Code = 'HOU'

SELECT path

MATCH (a1:Airport), (a2:Airport),

path = latestDeparturePath((a1)-[:Flight*]

->(a2))

WHERE a1.Code = 'BOS' and a2.Code = 'HOU'

6.1.3 Temporal model overhead

These experiments aim at evaluating the cost of in-

troducing temporal support to a non-temporal system.

That is, to measure the overhead in terms of memory

and performance, produced by the structure described

in Section 5. Two new social network graphs G1 and G2

are created: (a) a temporal one, called G1, similar to the

graph in Figure 2; and (b) a static graph G2, derived

from G1, but keeping only the nodes and edges valid at

a certain time (the current time), that is, a snapshot of

G1 at the instant ‘Now’. Over these graphs, two queries

are tested, both considering only the current instant.

– Query 1: Compute all the paths of length 5 between

every pair of persons.

– Query 2: Compute all the paths of length 5 starting

from a given person.

Both queries are run over the underlying Neo4j graph

and over the static graph. For example, Query 2 over

the underlying Neo4j graph reads:

A Model and Query Language for Temporal Graph Databases 23

MATCH p=(v1:Value)<--(a1:Attribute)<--

(o1:Object{title:'Person'})-[e1:Friend]->

(:Object{title:'Person'})-[e2:Friend]->

(:Object{title:'Person'})-[e3:Friend]

->(:Object{title:'Person'})-[e4:Friend]->

(:Object{title:'Person'})

-[e5:Friend]->(o2:Object {title:'Person'})

WHERE v1.value ='Vivian Medhurst Jr.'

AND a1.title="Name" AND right(e1.interval

[size(e1.interval)-1],3)='Now' AND

right(e2.interval[size(e2.interval)-1],3)

='Now' AND right(e3.interval[size

(e3.interval)-1],3)='Now' AND

right(e4.interval[size(e4.interval)-1],3)

='Now' AND right(e5.interval[size

(e5.interval)-1],3)='Now' AND

right(v1.interval[0],3)='Now'

RETURN p

The equivalent query over the static graph reads:

MATCH p=(o1:Object {title:'Person'})

-[e1:Friend]->(:Object{title:'Person'})

-[e2:Friend]->(:Object{title:'Person'})

-[e3:Friend]->(:Object{title:'Person'})

-[e4:Friend]->(:Object{title:'Person'})

-[e5:Friend]->(o2:Object{title:'Person'})

WHERE o1.name ="Vivian Medhurst Jr."

RETURN p

6.2 Data sets and setup

This section reports the characteristics of the data sets

used for evaluating the two kinds of algorithms. For

continuous paths algorithms, synthetic data were gen-

erated, resembling the social network running example

(Figure 2). For consecutive paths algorithms, real-world

flight data were used.

All experiments were run under the same environ-

ment, a Neo4j 3.5.17 server, ran on Ubuntu 16.04 64-

bits, with a 12-core CPU and 25 GB of RAM.

6.2.1 Continuous paths algorithms

A data set generator, based on the model described

in Definition 4 and represented in Figure 2, populates

the graph databases for these experiments. To generate

data for the social network graph, the following param-

eters are considered:

– N = Number of Person nodes.

– F = Maximum number of Friend relationships per

person.

– I = Maximum number of intervals per friendship.

N Nodes Edges Size

1000 3021 6833 747.95 MB
10000 30021 67676 776.02 MB
100000 300021 677278 1.06 GB

Table 1 Continuous paths experiments: Characteristics of
each social network data set.

– Number (C) and length (L) of the continuous paths.

First, the generator creates C continuous paths of

length L and then, randomly generates the friendship

relationships for the whole graph. The generator en-

sures a minimum of C continuous paths of length L.

Once the continuous paths are created, the id of the

persons involved in each continuous path are stored, to

be used in the queries as the start and end of the paths

of length L.

Three data sets were generated, with N = 1000,

10000 and 100000, and the other parameters are fixed,

with values F = 5 and I = 2. For each data set, at least

3 paths (i.e., C = 3) of each of the following lengths (L)

were generated: 4, 6, 8, 10 and 12. Table 1 details the

number of nodes, edges and sizes of the data sets. In-

dices were created on the Object, Value and Attribute

nodes for the id property.

The execution of a query for a specific N and L is

carried out C times varying the ids of the start and end

nodes of the path, to account for different number of

paths of length L that may exist in a graph, and for

the different starting and ending nodes.

6.2.2 Consecutive paths algorithms

Consecutive path algorithms were tested using a real-

world flight database, the Flight Delays and Cancella-

tions for US flights in 20158, using the original depar-

ture and arrival times for the flights. Five data sets were

generated from the former ones, filtering the flights with

different time intervals. The selected periods for the

data sets were the first week, first month, first three

months, first half year, and the entire year. The num-

ber of flights and airports are shown in Table 2. The

following airports were chosen:

1. ATL - Atlanta International Airport, Atlanta, GA.

2. CLD - Mc Clellan-Palomar Airport, Carlsbad, CA.

3. BOS - Logan International Airport, Boston, MA.

4. HOU - William P. Hobby Airport, Houston, Texas

5. SBN - South Bend Regional Airport, S. Bend, IN.

6. ISP - Long Island Mac Arthur Airport, Islip, NY.

The selected routes between these airports were:

8 https://www.kaggle.com/usdot/flight-delays?select=fl

ights.csv

24 Ariel Debrouvier et al.

data set Airports Flights Size

1 week 312 109911 1.92MB
1 month 312 469968 22.53 MB
3 months 315 1403471 64.52 MB
6 months 322 2889512 131.38 MB

1 year 629 5819079 413.23 MB

Table 2 Consecutive paths experiments: Number of airports,
flights and sizes of each data set.

data set Vout Vin Total

1 week 71455 84216 155661
1 month 308656 366301 674957
3 months 920257 1095713 2015970
6 months 1891583 2254938 4146521

1 year 3828264 4549494 8377758

Table 3 Total number of nodes in each data set.

1. ATL to CLD (A large airport to a small one)

2. BOS to HOU (A medium-size airport to a medium-

size one)

3. ATL to AUS (A large airport to a medium one)

4. SBN to ISP (A small airport to a small one)

Routes between two large airports were not chosen

because usually there are direct flights between them,

meaning that a path of length 1 normally exists, and

therefore the results would not be representative. The

number of incoming and outgoing flights are listed in

Table 8 in Appendix A. Note that for CLD airport,

the number of flights stops growing at the 6 months

as the airport closes. This airport was chosen since it

challenges the latest departure path algorithm, as it

will try to search for the latest departure path going to

the paths with the latest departure time, although the

arrivals are all in the first half of the year.

6.2.3 Temporal model overhead

It was mentioned that for assessing the overhead in-

troduced by the temporal graph model, two new social

network graphs G1 and G2 are created. The former has

52,000 nodes, 10,000 of them labeled as Object nodes

of type Person, 20,000 labeled as Attribute nodes, and

22,000 nodes labeled as Value nodes. Every Person node

has two attribute nodes: name and identifier, whereas

every attribute node has its corresponding value node.

G1 has 43,097 Friend relationships.

FromG1, a static graphG2 is obtained, keeping only

the nodes and edges valid at the current time, with no

reference to time at all, i.e., G2 is a snapshot of G1 at

time instant ‘Now’. The steps to take this snapshot are

(assume a copy of G1, denoted G2 is created):

1. Select nodes and edges whose interval end with ‘Now’.

2. Two properties, name and identifier, are added to

the Object nodes. Thus, so far, G1 has zero or one

value node per attribute node, because each differ-

ent value of the title property is collapsed as a prop-

erty name of the object node, and the values of these

properties correspond to the associated value node.

3. All attribute and value nodes are deleted from G2.

4. All time intervals are deleted from G2.

The resulting graph G2 has 8,000 Object nodes and

19,370 Friend relationships.

6.3 Results

This section reports the results of the experiments pre-

sented above. The algorithms’ execution times depend

on a number of factors, like, for example, the number of

continuous paths of a certain length that the algorithm

finds, which may vary for different pairs of starting and

ending nodes. Therefore, to ensure a fair comparison,

the following average definition is used.

T =
1

n

n∑
i=1

tn
cn

=
1

n
(
t1
c1

+ . . .+
tn
cn

)

In the expression above, n is the number of different

pairs of nodes (start and end of a continuous path) for

which the query was run, t the execution time and c

the number of paths found for each pair of nodes. For

example, for C = 3, a minimum of three continuous

paths of length L are generated between three pairs of

nodes, but more could be found.

Node pair Paths found Execution time

A1 → A2 3 12 s

A3 → A4 2 6 s

A5 → A6 9 45 s

The weighted average T is computed as:

T =
1

n
(
t1
c1

+
t2
c2

+
tn
cn

) =
1

3
(
12

3
+

6

2
+

45

9
) = 4

For consecutive paths, the usual definition of aver-

age is used, running the algorithms three times for each

path and data set.

Figure 12 displays the execution times for the con-

tinuous path and pairwise continuous path algorithms.

The x-axis represents the length of the continuous paths

in the queries. Figure 13 displays the execution times

with respect to the number of nodes visited by the con-

tinuous path algorithm, for N = 100, 000 and L = 12.

In this case, the execution time is the simple average

computed dividing the execution time by the number

of paths found for each pair of person nodes.

A Model and Query Language for Temporal Graph Databases 25

Figures 14 and 15 display the results for the tests

addressing latest departure, fastest, earliest, and short-

est paths algorithms. Execution times are represented

on the y-axis, and the number of flights on the x-axis.

Table 3 shows the number of Vout and Vin nodes of the

complete transformed graph, for each data set. Tables 4

through 7 show, for each route tested, the average time

and the number of paths in the result, for each time

partition of the data set.

Path data set Latest Departure Path
Avg. Time (ms) # Results

ATL → CLD

1 week 267 1
1 month 1318.33 1
3 months 4098 1
6 months 15622280.67 1

1 year 129165589.33 1

BOS → HOU

1 week 231 1
1 month 1224.33 3
3 months 3952.33 1
6 months 12072 1

1 year 33875.33 1

ATL → AUS

1 week 97.33 1
1 month 1807 2
3 months 7462.33 1
6 months 34883 1

1 year 118174.67 1

SBN → ISP

1 week 257 1
1 month 1263.67 9
3 months 3735.33 3
6 months 8829.67 3

1 year 18760.33 74

Table 4 Average time and number of results for the latest
departure path algorithm.

6.3.1 Temporal model overhead

Figure 16 shows the space required by the two graphs,

G1 and G2, the temporal and static ones, respectively.

It can be seen that, although there is a large overhead

produced by the structural information, most of the

space required by G1 is used to store actual tempo-

ral information, that is, the history of the graph. This

space overhead does not impact in the same way on

the performance results shown in Figure 17. This figure

shows the results of executing Queries 1 and 2 indicated

in Section 6.1.3. In both queries, the performance over-

head lies between 25 and 30%, which appears to be

reasonable given the space overhead introduced by the

structure needed to keep the historical information.

6.4 Discussion of Results

A discussion of the results reported in the previous sec-

tion is presented next.

Path data set Fastest Path
Avg. Time (ms) # Results

ATL → CLD

1 week 6755 3
1 month 140522.33 3
3 months 1427239.33 3
6 months 8172404 8

1 year 29744579 8

BOS → HOU

1 week 1969.33 7
1 month 51980.67 31
3 months 536338 31
6 months 2123572.67 2

1 year 8694658.33 11

ATL → AUS

1 week 973 3
1 month 17640.33 27
3 months 237272.33 45
6 months 671548 21

1 year 2938933 4

SBN → ISP

1 week 3925.33 1
1 month 72191.33 2
3 months 560382 4
6 months 3628807 21

1 year 13622908.67 1

Table 5 Average time and number of results for the fastest
path algorithm.

Path data set Earliest Path
Avg. Time (ms) # Results

ATL → CLD

1 week 412 1
1 month 1995.33 1
3 months 7349 1
6 months 18505 1

1 year 36813.67 1

BOS → HOU

1 week 360 1
1 month 1783.33 1
3 months 5699.67 1
6 months 14219.66 1

1 year 33812 1

ATL → AUS

1 week 98.33 1
1 month 414.33 1
3 months 1411.33 1
6 months 2758.33 1

1 year 6391.67 1

SBN → ISP

1 week 1992.67 9
1 month 10507 9
3 months 36670.33 9
6 months 102361.67 9

1 year 238015.67 9

Table 6 Average time and number of results for the earliest
path algorithm.

6.4.1 Continuous Paths

The left-hand side of Figure 12 shows the execution

time for each data set size, and different continuous

path lengths. For N = 10000 and 100000, the execu-

tion times increase as the path length increases, start-

ing with values around 50 ms for L = 4 and growing

up to 733 ms and 3279 ms, respectively for L = 12. On

the other hand, for N = 1000, execution times remain

low, and, starting with an execution time of 30 ms, de-

26 Ariel Debrouvier et al.

4 6 8 10 12
0

1,000

2,000

3,000

Path length (nodes)

T
im

e
(m

s)

(a) Continuous path algorithm

N = 1000

N = 10000

N = 100000

4 5 6 7 8

0

200

400

600

800

1,000

Path length (nodes)

T
im

e
(m

s)

(b) Pairwise continuous path algorithm

N = 1000

N = 10000

N = 100000

Fig. 12 (a) Execution time vs. Path length for continuous path algorithm; (b) Execution time vs. Path length for pairwise
continuous path algorithm.

0 2 4 6 8

·104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

·106

Visited nodes (nodes)

E
x
ec

u
ti

o
n

ti
m

e
(m

s)

Visited nodes vs Execution time

N = 100000, L = 12

Fig. 13 Visited nodes vs. Execution time for continuous path
algorithm on paths of L = 12.

creases for longer paths, without exceeding 80 ms in

any case. It can also be seen that, for N = 100000, exe-

cution times grow faster than for N = 10000. Figure 13

shows that the execution time is linear with respect to

the number of nodes visited by the algorithm. Results

for the pairwise continuous paths are depicted on the

right-hand side of Figure 12. Relative to each other,

results for the three data sets are similar to the ones

obtained for continuous paths: increasing the length of

the path searched implies higher execution times. How-

ever, it can be seen that execution times are lower in

this case.

6.4.2 Consecutive Paths

Figures 14 and 15 display the results for the tests ad-

dressing latest departure, fastest, earliest, and shortest

paths algorithms. All figures show a lineal behaviour in

most of the cases. The y-axis is displayed in logarithmic

scale, since the difference between the running times of

the algorithms is very large, depending on the paths.

Path data set Shortest Path
Avg. Time (ms) # Results

ATL → CLD

1 week 4031.67 1969
1 month 91449.67 39034
3 months 1060364.67 342124
6 months 4643210 391462

1 year Out of Memory

BOS → HOU

1 week 10.67 20
1 month 83.67 89
3 months 82 253
6 months 342.67 506

1 year 469.33 926

ATL → AUS

1 week 32.33 58
1 month 99 252
3 months 273 775
6 months 585.67 1667

1 year 1252.67 3154

SBN → ISP

1 week 8066 2783
1 month 270057.33 66464
3 months 3459141.33 699214
6 months Out of Memory

1 year Out of Memory

Table 7 Average time and number of results for the shortest
path algorithm.

As expected, the execution time of the algorithm grows

as the number of flights grows.

For the latest departure path (Figure 14 (a) and Ta-

ble 4), tests show a rather linear behaviour except the

one from ATL to CLD. This is because all the arrivals

to the airport are in the first half of the year, so it takes

a long time to prune the graph to find a path between

those airports. This is why the time grows exponen-

tially and then continues linearly, reflected in the fact

that the algorithm runs in 4098msec for the 3-months-

data set, and 15622280.67msec for the 6-months one,

that is, a growth of about 3800 times. For the other

airports, this ratio is between 3 and 5. However, note

that this is a very particular case.

A Model and Query Language for Temporal Graph Databases 27

0 1 2 3 4 5 6

102

103

104

105

106

107

108

of Flights in the data set (×106)

T
im

e
(m

s)

(a) Latest departure path algorithm

ATL - CLD

BOS - HOU

ATL - AUS

SBN - ISP

0 1 2 3 4 5 6

103

104

105

106

107

of Flights in the data set (×106)

T
im

e
(m

s)

(b) Fastest path algorithm

ATL - CLD

BOS - HOU

ATL - AUS

SBN - ISP

Fig. 14 (a) Execution time for each pair of airports for the latest departure path algorithm; (b) Execution time for each pair
of airports for the fastest path algorithm.

0 1 2 3 4 5 6

102

103

104

105

of Flights in the data set (×106)

T
im

e
(m

s)

(a) Earliest path algorithm

ATL - CLD

BOS - HOU

ATL - AUS

SBN - ISP

0 1 2 3 4 5 6

101

102

103

104

105

106

107

of Flights in the data set (×106)

T
im

e
(m

s)
(b) Shortest path algorithm

ATL - CLD

BOS - HOU

ATL - AUS

SBN - ISP

Fig. 15 (a) Execution time for each pair of airports for the earliest path algorithm; (b) Execution time for each pair of airports
for the shortest path algorithm.

Fig. 16 Performance results for the snapshot queries.

In the case of the shortest path algorithm (Fig-

ure 15(b) and Table 7), for the largest data set, and

routes including one small airport, the algorithm ran

out of memory, due to the large number of results ob-

tained. This was caused by the number of paths that

are stored in the memory. Another particular situation

Fig. 17 Space overhead results.

occurs when a path starts in the beginning of the year,

and ends at the end of the year.

For all algorithms, with the exception of the cases of

shortest and latest departure paths mentioned above,

the behaviour of the algorithms is rather linear, and,

in many cases, not dependent on the routes (it can be

seen that, in general, the curves are quite close to each

28 Ariel Debrouvier et al.

other). The fastest path algorithm (Figure 14(b) and

Table 5) is the one with the lowest performance (except

from the particular cases mentioned above). For exam-

ple, for the largest data set, for the paths from BOS

to HOU and ATL to AUS, the average execution times

were 8,694,658msec and 2,938,933msec respectively. On

the other hand, for the earliest path (Figure 15 and

Table 6), these times were 33,812ms and 6,391.67ms,

for the shortest path 469.33ms and 1252.67ms, and for

the latest departure 33,875ms and 118,174ms, respec-

tively. However, as the sizes of the data sets decrease,

the execution times also decrease in a significant way.

For example, in the case of the fastest path algorithm,

for the 1-month data set, for the paths from BOS to

HOU and ATL to AUS, the average execution times

were 51,980msec and 17,640msec respectively.

The intuition is that the results reported may be

caused by the nature of the paths. For the earliest de-

parture path algorithm, execution time depends on the

time of the last node in the path; for the latest depar-

ture path algorithm, the execution time strongly de-

pends on the time of the first node of the path, and the

shortest path on the length of the path. For example, in

the latest departure path algorithm, once a path reaches

a node that is part of a possible latest departure path,

no better path can be reached that contains that node,

because the time of the first node cannot change. On

the other hand, in the fastest path algorithm, a fastest

path could be found, depending on the first and last

nodes. The shortest path algorithm explores the same

node many times, increasing the execution time.

7 Indexing

This section studies how the performance of the queries

presented in this paper can be enhanced through the

use of indexing strategies. First, an indexing scheme

is proposed. Then, the impact of updates is studied.

Finally, a sketch of how the index could be used when

a query is submitted to the system, is given. It is worth

mentioning that these strategies are ongoing research

work, and they are included here to highlight the issues

that need to be addressed in future work.

7.1 Temporal Indices

Typically, indices on property graph databases are de-

fined over properties (in Neo4j, only properties in nodes

can be indexed). The research community has proposed

indexing schemes for paths (in particular, shortest paths)

in non-temporal (static) graphs. For example, Kusu and

Hatano [39] index the shortest path between every two

nodes in a subgraph of a given one. Hassan et al. [30]

propose a method to index paths usually mentioned in

queries (these paths are called recurrent). In another

proposal, Pokorny et al. [42] index graph patterns in

Neo4j, using a structure stored in the same database as

the graph.

To enhance the performance of the queries discussed

in this paper, the three kinds of paths studied (i.e., con-

tinuous, pairwise continuous, and consecutive) can be

indexed. Since these paths are temporal, indexing must

also be applied along the time dimension, for exam-

ple, to quickly find the continuous paths within a given

interval. A sketch of a possible solution for this prob-

lem is discussed next. The idea is based on the proposal

in [42], which can be combined with typical methods for

time indexing [18], to produce different kinds of indices,

one for each type of path addressed in the paper. This

way, as proposed in [43]), there is an entry in the index

for each path in a given interval. For continuous paths,

for example, the index is implemented as a collection of

Neo4j nodes containing, as properties, the start and end

nodes, the nodes in the path, and the time interval of

the continuous path. Figure 18 shows an example over

the social network graph. Here, all relationships other

than Friend are indicated in dashed lines, for clarity.

There is an index for the continuous paths over this re-

lationship. Two index entry nodes are shown (in black),

for paths of length 2 and 4. The former starts at the

Person node with id=22, and ends at node with id=20,

with interval [2010−2017]. The latter starts at the Per-
son node with id=22, and ends at node with id=20,

with interval [2015− 2017]. There is a pointer from the

index entry node, to each of the nodes in the indexed

paths. Of course, many issues must be considered in this

scheme, and are open research problems. For example,

indexing all possible paths would result in huge index

volumes, where probably a large portion of the index

would remain unused. Therefore, incremental indexing

based on the prediction of the queries mentioning a cer-

tain path can be applied. Another issue refers to updat-

ing the index as changes on the underlying graph occur.

This is discussed below.

7.2 Updating the index

The updates presented in Section 3.4, in general, impact

on the state of the indices discussed above. For example,

if an edge is added to the graph, it may produce an

update in one or more index entries. The paths related

to the inserted edge must be recomputed and the index

be updated if the new edge, for instance, produces a

new continuous path. Note that if a node is added to

the graph, this has no effect on the path index until an

A Model and Query Language for Temporal Graph Databases 29

id=22

Mary Smith
[1937-1959]

Friend[20
15-2018

]

id=23

New York

Name

Antwerp

Daniel
Yang

[1995-Now]

Name

id=21

London

Name

id=12 id=13

id=16

id=19

id=20

Mary Smith
-Taylor

[1960-Now]

Name

Peter
Burton

[1960-Now]

Friend[1993-Now]
Name Name

Name

Pauline
Boutler

[1978-Now]

Friend[2010-2018
]

Cathy Van
Bourne

[1960-Now]

Paris

id=15

Name

Name

id=18

Name

Sandra
Carter

[1967-Now]

id=14

Name

Brussels

id=24

id=25

Name

Name

LG
[1958-Now]

Samsung
[1938-Now]

Friend[1995-Now]

Friend[2005-Now]

Friend[2002-2017]

Length: 4
Source: 22

Destination:23
From: 2015

To: 2017
Int: [19,20,21]

Length: 2
Source: 22

Destination:20
From: 2010

To: 2017
Int: [19]

Fig. 18 Indexing paths in a temporal graph.

edge connects the new node with the existing graph.

The impact over the continuous path, of the insertion

and update of an edge, is studied next.

Insertion of an edge Given a graph G, assume that a

new edge enew from v1 to v2 is added to G, with time

interval [td−Now], where td is the current timestamp.
This change produces new paths if enew is connected

with paths valid at the current instant, Now. In this

case, the existing paths ending at v1 and starting at v2
are extended with enew. The time interval for the new

paths would be [td−Now], and they must be added to

the index, if it exists. Algorithm 4 describes the proce-

dure.

Updating an edge Assume there is an edge eold, whose

ending time is told 6= Now. The new edge interval

enew.interval would be {eold.interval, [td−Now]}. This

change may produce new paths if eold is connected

to paths valid at the Now time instant. In this case,

the paths ending at v1 and starting at v2 will be ex-

tended with enew. The time interval for the new paths

is [td −Now]. Algorithm 5 describes the procedure.

Deleting an edge This operation is only possible for an

edge eold whose ending time is tf = Now. The new

Algorithm 4 Index Update: Edge Insertion
Input: A temporal graph G, a temporal Index I, a new

edge enew with starting and ending nodes v1 and v2, respec-
tively.

Output: An updated Index I′.

Initialize a list Out with all indexed cPaths whose Source
node is v2, valid at Now time instant.
Initialize a list In with all indexed cPaths whose Destina-
tion nodes is v1, valid at Now time instant.
Initialize an empty list Ptemp

for all pathi ∈ Out do
path = {v1 + enew + pathi}
path.interval = [td −Now]
Add path to Ptemp

end for

Add the path v1+enew+v2 to Ptemp {This is a path of
length 1.}
Copy Ptemp to Pfinal

for all pathi ∈ Ptemp do
for all pathj ∈ In do

path = {pathj + pathi}
Add path to Pfinal

path.interval = [td −Now]
end for

end for
For every path in Pfinal create a new temporal index node.

ending time of edge, enew, becomes the current times-

tamp td. The algorithm looks for every path P valid at

Now, such that P includes eold. The ending time of all

30 Ariel Debrouvier et al.

Algorithm 5 Index Update: Edge Update
Input: A temporal graph G, a temporal Index I, an edge

eold with starting and ending nodes v1 and v2, respectively,
and the updated edge enew.

Output: An updated Index I′.

Initialize a list Out with all indexed cPaths starting at v2
valid at Now time instant.
Initialize a list In with all indexed cPaths ending at v1
valid at Now time instant.
Initialize an empty list Ptemp

for all pathi ∈ Out do
path = {v1 + enew + pathi}
path.interval = [td −Now]
Add path to Ptemp

end for

Add the path v1+enew+v2 to Ptemp. {This is a path of
length 1.}
Copy Ptemp to Pfinal

for all pathi ∈ Ptemp do
for all pathj ∈ In do

path = {pathj + pathi}
path.interval = [td −Now]
Add path to Pfinal

end for

end for
For every path in Pfinal create a temporal index node

Algorithm 6 Index Update: Edge Delete
Input: A temporal graph G, a temporal Index I, an edge

eold where the interval ends at Now, an edge enew where
the interval ends at the current time td, and its starting and
ending nodes v1 and v2.

Output: An updated Index I′.

Initialize a list Current with all indexed cPaths valid at
Now time, that include v1+eold+v2
for all pathi ∈ Current do

pinterval = pathi.interval

ts = pinterval.startT ime

pathi.interval = [ts − td]
end for
Update the index nodes associated with Current

those paths stored in the index, must be changed to td.

Algorithm 6 shows the process.

7.3 Using the index

To conclude this discussion, this section sketches how

the indices above can be used to enhance performance.

As usual, the idea is that if a T-GQL query asks for a

certain path, if possible, it will be redirected to an in-

dex. If, for example, the query mentions a source value

for the path, the object identifier associated with such

value must be looked for. Any path starting from that

object node, will have a relationship labeled start con-

necting it to the index node representing that path.

There can be as many index nodes connected to the ob-

ject node, as paths starting from it in the graph. Thus,

the answer to the query will be the index nodes that

match the parameters. An example is shown next. The

query below asks for the continuous paths of length 2

starting from the node corresponding to Mary Smith-

Taylor.

SELECT p2.interval

MATCH (p1:Person),(p2:Person),

paths = cPath((p1)-[:Friend*2]->(p2))

WHERE p1.Name = "Mary Smith-Taylor"

The query processor will find out that there is an

index for the relationship, like the one in Figure 18, and

will translate the query into Cypher as follows:

MATCH (v1:Value)<--()<--(o1:Object)

<-[:start]-(i:Index)

WHERE v1.value = "Mary Smith-Taylor"

AND o1.id=i.source AND i.length=2

RETURN [i.from,i.to]

8 Conclusions and Future Research Directions

The first part of this section summarizes the paper and

its results. In light of these results, the second part of

the section motivates and discusses future work.

8.1 Paper summary

This work introduces a temporal property graph data

model, and an associated high-level temporal query lan-

guage, denoted T-GQL, which supports two kinds of

temporal paths semantics: continuous paths (and the

particular case of pairwise continuous) and consecu-

tive paths. As relevant real-world application examples,

those semantics capture the dynamics of social network

evolution, and of travel scheduling, respectively. Algo-

rithms for path computation for both semantics are de-

vised and implemented. Finally, experiments are carried

out, and the results reported and discussed.

The experiments address the tree kinds of paths

mentioned above. For the continuous and pairwise con-

tinuous paths, the synthetic data sets simulating a so-

cial network are produced, with sizes up to 700,000

edges and 300,000 nodes. For consecutive paths, real-

world flight data are used, with sizes up to 6,000,000

flights. Since the database is not optimized, the ex-

periments are aimed at showing the plausibility of the

approach, and highlighting the main issues that need

to be addressed in future work. The results show exe-

cution times below 3.5 seconds for temporal paths up

to a length of 12. For the consecutive path algorithms

A Model and Query Language for Temporal Graph Databases 31

times are in the (1,60)-seconds range for the largest data

set, and below 1 second for the shortest-path algorithm,

except for particular cases in the data sets, which af-

fect the algorithms. All in all, the results suggest that

the proposal is a plausible step towards temporal graph

databases.

8.2 Open research directions

Although the current version of the T-GQL language

has powerful features, it can be extended in many ways.

Just as an example, the WHEN clause could be im-

proved so it can support a path function call (even more

than one such clauses can be supported). Further, the

MATCH clause could be enhanced to support more than

one path, as in the current version.

Performance is a key issue, particularly in tempo-

ral databases. Indexing is crucial to achieve an accept-

able performance for (temporal) path queries. The ideas

discussed in Section 7 for continuous paths, which bor-

row from existing research on indexing both, temporal

databases and paths in graphs, must further investi-

gated and extended to other kinds of paths.

Finally, although in this paper T-GQL is imple-

mented over Neo4j, for larger graphs other options need

to be investigated, as sketched in Section 5.4. This also

requires a generalization of the proposal, allowing tar-

get languages other than Cypher. The goal is, for ex-

ample, to allow using Janusgraph as the underlying

database, and Gremlin as target language. This is not

a trivial task, however, as shown in [9], where the au-

thors not only extend Gremlin with temporal functions

to support the computation of paths similar to the con-

secutive paths studied in this paper, but also define

their own path management scheme, adapting the one

used by Gremlin.

Acknowledgements Alejandro Vaisman and Valeria Soliani
were partially supported by Project PICT 2017-1054, from
the Argentinian Scientific Agency.

Conflict of interest

The authors declare no conflict of interest.

References

1. T. Amagasa, M. Yoshikawa, and S. Uemura. A temporal
data model for XML documents. In DEXA, pages 334–
344, 2000.

2. R. Angles. A Comparison of Current Graph Database
Models. In Proceedings of ICDE Workshops, pages 171–
177, Arlington, VA, USA, 2012.

3. R. Angles, M. Arenas, P. Barceló, A. Hogan, J. L.
Reutter, and D. Vrgoc. Foundations of modern query
languages for graph databases. ACM Comput. Surv.,
50(5):68:1–68:40, 2017.

4. Renzo Angles. The property graph database model.
In Proceedings of the 12th Alberto Mendelzon Interna-
tional Workshop on Foundations of Data Management,

Cali, Colombia, May 21-25, 2018, volume 2100 of CEUR

Workshop Proceedings. CEUR-WS.org, 2018.
5. Renzo Angles and Claudio Gutierrez. Survey of graph

database models. ACM Comput. Surv., 40(1):1:1–1:39,
2008.

6. Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk.
RDF and property graphs interoperability: Status and
issues. In Aidan Hogan and Tova Milo, editors, Proceed-
ings of the 13th Alberto Mendelzon International Workshop

on Foundations of Data Management, Asunción, Paraguay,

June 3-7, 2019, volume 2369 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2019.

7. Andrey Balmin, Thanos Papadimitriou, and Yannis Pa-
pakonstantinou. Hypothetical queries in an OLAP envi-
ronment. In VLDB 2000, Proceedings of 26th International

Conference on Very Large Data Bases, September 10-14,

2000, Cairo, Egypt, pages 220–231. Morgan Kaufmann,
2000.

8. Jaewook Byun. Enabling time-centric computation for
efficient temporal graph traversals from multiple sources.
IEEE Trans. Knowl. Data Eng., Accepted for publication,
2020.

9. Jaewook Byun, Sungpil Woo, and Daeyoung Kim.
ChronoGraph: Enabling temporal graph traversals for
efficient information diffusion analysis over time. IEEE
Trans. Knowl. Data Eng., 32(3):424–437, 2020.

10. Alexander Campos, Jorge Mozzino, and Alejandro A.
Vaisman. Towards temporal graph databases. In Rein-
hard Pichler and Altigran Soares da Silva, editors, Pro-

ceedings of the 10th Alberto Mendelzon International Work-

shop on Foundations of Data Management, Panama City,
Panama, May 8-10, 2016, volume 1644 of CEUR Workshop

Proceedings. CEUR-WS.org, 2016.
11. C. Cattuto, A. Panisson, and M. Quaggiotto. Represent-

ing time dependent graphs in Neo4j. https://github.com

/SocioPatterns/neo4j-dynagraph/wiki/Representing-tim

e-dependent-graphs-in-Neo4j, 2013.
12. Ciro Cattuto, Marco Quaggiotto, André Panisson, and

Alex Averbuch. Time-varying social networks in a graph
database: a neo4j use case. In First International Work-
shop on Graph Data Management Experiences and Systems,

GRADES 2013, co-loated with SIGMOD/PODS 2013, New

York, NY, USA, June 24, 2013, page 11, 2013.
13. C.X. Chen and C. Zaniolo. Universal temporal extesions

for database languages. In IEEE/ICDE, Sydney, Aus-
tralia, 1999.

14. S. Chien, V. Tsotras, and C. Zaniolo. Efficient manage-
ment of multiversion documents by object referencing. In
VLDB, pages 291–300, Rome, Italy, 2001.

15. James Clifford, Curtis E. Dyreson, Tomás Isakowitz,
Christian S. Jensen, and Richard T. Snodgrass. On the
semantics of ”now” in databases. ACM Trans. Database
Syst., 22(2):171–214, 1997.

16. Ankur Dave, Alekh Jindal, Li Erran Li, Reynold Xin,
Joseph Gonzalez, and Matei Zaharia. Graphframes: an
integrated API for mixing graph and relational queries.
In Proceedings of the Fourth International Workshop on

Graph Data Management Experiences and Systems, Red-
wood Shores, CA, USA, June 24 - 24, 2016, page 2, 2016.

32 Ariel Debrouvier et al.

17. Edsger W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1:269–271, 1959.

18. Ramez Elmasri, Yeong-Joon Kim, and Gene T. J. Wuu.
Efficient implementation techniques for the time index.
In Proceedings of the Seventh International Conference on

Data Engineering, April 8-12, 1991, Kobe, Japan, pages
102–111. IEEE Computer Society, 1991.

19. Opher Etzion, Sushil Jajodia, and Suryanarayana M. Sri-
pada, editors. Temporal Databases: Research and Prac-

tice. (the book grow out of a Dagstuhl Seminar, June 23-27,

1997), volume 1399 of Lecture Notes in Computer Science.
Springer, 1998.

20. Nadime Francis, Alastair Green, Paolo Guagliardo,
Leonid Libkin, Tobias Lindaaker, Victor Marsault, Ste-
fan Plantikow, Mats Rydberg, Martin Schuster, Petra
Selmer, and Andrés Taylor. Formal semantics of the lan-
guage cypher. CoRR, abs/1802.09984, 2018.

21. Nadime Francis, Alastair Green, Paolo Guagliardo,
Leonid Libkin, Tobias Lindaaker, Victor Marsault, Ste-
fan Plantikow, Mats Rydberg, Petra Selmer, and Andrés
Taylor. Cypher: An evolving query language for property
graphs. In Gautam Das, Christopher M. Jermaine, and
Philip A. Bernstein, editors, Proceedings of the 2018 In-

ternational Conference on Management of Data, SIGMOD
Conference 2018, Houston, TX, USA, June 10-15, 2018,
pages 1433–1445. ACM, 2018.

22. Matteo Golfarelli and Stefano Rizzi. What-if simulation
modeling in business intelligence. IJDWM, 5(4):24–43,
2009.

23. Fabio Grandi. T-SPARQL: A tsql2-like temporal query
language for RDF. In Mirjana Ivanovic, Bernhard Thal-
heim, Barbara Catania, and Zoran Budimac, editors, Lo-
cal Proceedings of the Fourteenth East-European Conference

on Advances in Databases and Information Systems, Novi

Sad, Serbia, September 20-24, 2010, volume 639 of CEUR
Workshop Proceedings, pages 21–30. CEUR-WS.org, 2010.

24. Alastair Green. Gql - initiating an industry standard
property graph query language, 2018.

25. Claudio Gutiérrez, Carlos A. Hurtado, and Alejandro A.
Vaisman. Temporal RDF. In Asunción Gómez-Pérez and
Jérôme Euzenat, editors, The Semantic Web: Research and

Applications, Second European Semantic Web Conference,
ESWC 2005, Heraklion, Crete, Greece, May 29 - June 1,

2005, Proceedings, volume 3532 of Lecture Notes in Com-

puter Science, pages 93–107. Springer, 2005.
26. Claudio Gutiérrez, Carlos A. Hurtado, and Alejandro A.

Vaisman. Introducing time into RDF. IEEE Trans.

Knowl. Data Eng., 19(2):207–218, 2007.
27. W. Han, Y. Miao, K.Li, M. Wu, F. Yang, L. Zhou,

V. Prabhakaran, W. Chen, and E. Chen. Chronos: A
Graph Engine por Temporal Graph Analysis. In Eurosys,
pages 1–14, 2014.

28. O. Hartig. Reconciliation of RDF* and property graphs.
CoRR, abs/1409.3288, 2014.

29. O. Hartig. Position statement: The rdf* and sparql* ap-
proach to annotate statements in rdf and to reconcile rdf
and property graphs, 2019.

30. Mohamed S. Hassan, Walid G. Aref, and Ahmed M. Aly.
Graph indexing for shortest-path finding over dynamic
sub-graphs. In Fatma Özcan, Georgia Koutrika, and
Sam Madden, editors, Proceedings of the 2016 Interna-
tional Conference on Management of Data, SIGMOD Con-

ference 2016, San Francisco, CA, USA, June 26 - July 01,
2016, pages 1183–1197. ACM, 2016.

31. Huahai He and AmbujK. Singh. Query language and
access methods for graph databases. In Managing and

Mining Graph Data, volume 40 of Advances in Database

Systems, pages 125–160. Springer US, 2010.
32. Silu Huang, James Cheng, and Huanhuan Wu. Tempo-

ral graph traversals: Definitions, algorithms, and appli-
cations. CoRR, abs/1401.1919, 2014.

33. Wenyu Huo and Vassilis J. Tsotras. Efficient temporal
shortest path queries on evolving social graphs. In Con-
ference on Scientific and Statistical Database Management,

SSDBM, Aalborg, Denmark, June 30 - July 02, 2014, pages
38:1–38:4, 2014.

34. Theodore Johnson, Yaron Kanza, Laks V. S. Laksh-
manan, and Vladislav Shkapenyuk. Nepal: a path query
language for communication networks. In Akhil Arora,
Shourya Roy, and Sameep Mehta, editors, Proceedings of

the 1st ACM SIGMOD Workshop on Network Data Analyt-
ics, NDA@SIGMOD 2016, San Francisco, California, USA,

July 1, 2016, pages 6:1–6:8. ACM, 2016.
35. U. Khurana and A. Deshpande. Efficient snapshot re-

trieval over historical graph data. CoRR, arxiv:1207.5777,
2012.

36. U. Khurana and A. Deshpande. HiNGE: Enabling Tem-
poral Analytics at Scale. In Proceedings of SIGMOD, NY,
USA, 2013.

37. V. Kostakos. Temporal graphs. CoRR, arxiv:0807.2357,
2008.

38. Krishna G. Kulkarni and Jan-Eike Michels. Temporal
features in SQL: 2011. SIGMOD Rec., 41(3):34–43, 2012.

39. Kazuma Kusu and Kenji Hatano. Recurrent path index
for efficient graph traversal. In 2019 IEEE International

Conference on Big Data (Big Data), Los Angeles, CA, USA,

December 9-12, 2019, pages 6107–6109. IEEE, 2019.
40. L.Lazarevic. Keeping track of graph changes using tem-

poral versioning. https://medium.com/neo4j/keeping-tra

ck-of-graph-changes-using-temporal-versioning-3b0f

854536fa, 2019.
41. Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik,

James C. Dehnert, Ilan Horn, Naty Leiser, and Grze-
gorz Czajkowski. Pregel: a system for large-scale graph
processing. In Ahmed K. Elmagarmid and Divyakant
Agrawal, editors, Proceedings of the ACM SIGMOD In-

ternational Conference on Management of Data, SIGMOD

2010, Indianapolis, Indiana, USA, June 6-10, 2010, pages
135–146. ACM, 2010.

42. Jaroslav Pokorný, Michal Valenta, and Martin Troup. In-
dexing patterns in graph databases. In Jorge Bernardino
and Christoph Quix, editors, Proceedings of the 7th Inter-
national Conference on Data Science, Technology and Ap-

plications, DATA 2018, Porto, Portugal, July 26-28, 2018,
pages 313–321. SciTePress, 2018.

43. F. Rizzolo and A. Vaisman. Temporal XML: Modeling,
indexing, and query processing. VLDB Journal, 1179–
1212(5):39–65, 2008.

44. I. Robinson, J. Webber, and Emil Eifrém. Graph

Databases. O’Reilly Media, 2013.
45. Marko A. Rodriguez. The gremlin graph traversal ma-

chine and language (invited talk). In James Cheney and
Thomas Neumann, editors, Proceedings of the 15th Sympo-

sium on Database Programming Languages, Pittsburgh, PA,

USA, October 25-30, 2015, pages 1–10. ACM, 2015.
46. Konstantinos Semertzidis and Evaggelia Pitoura. Top-k

durable graph pattern queries on temporal graphs. IEEE
Trans. Knowl. Data Eng., 31(1):181–194, 2019.

47. Richard T. Snodgrass, editor. The TSQL2 Temporal Query

Language. Kluwer, 1995.
48. A. Tansel, J. Clifford, and S. Gadia (eds.). Tempo-

ral Databases: Theory, Design and Implementation. Ben-
jamin/Cummings, 1993.

A Model and Query Language for Temporal Graph Databases 33

49. Jonas Tappolet and Abraham Bernstein. Applied tempo-
ral RDF: efficient temporal querying of RDF data with
SPARQL. In The Semantic Web: Research and Appli-

cations, 6th European Semantic Web Conference, ESWC
2009, Heraklion, Crete, Greece, May 31-June 4, 2009, Pro-

ceedings, volume 5554 of Lecture Notes in Computer Sci-
ence, pages 308–322. Springer, 2009.

50. Paolo Terenziani and Richard T. Snodgrass. Reconcil-
ing point-based and interval-based semantics in temporal
relational databases: A treatment of the telic/atelic dis-
tinction. IEEE Trans. Knowl. Data Eng., 16(5):540–551,
2004.

51. Harsh Thakkar, Renzo Angles, Dominik Tomaszuk, and
Jens Lehmann. Direct mappings between RDF and prop-
erty graph databases. CoRR, abs/1912.02127, 2019.

52. Huanhuan Wu, James Cheng, Silu Huang, Yiping Ke,
Yi Lu, and Yanyan Xu. Path problems in temporal
graphs. PVLDB, 7(9):721–732, 2014.

53. Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang,
Yuzhen Huang, and Hejun Wu. Efficient algorithms for
temporal path computation. IEEE Trans. Knowl. Data

Eng., 28(11):2927–2942, 2016.
54. Huanhuan Wu, James Cheng, Yi Lu, Yiping Ke, Yuzhen

Huang, Da Yan, and Hejun Wu. Core decomposition in
large temporal graphs. In 2015 IEEE International Con-

ference on Big Data, Big Data 2015, Santa Clara, CA, USA,
October 29 - November 1, 2015, pages 649–658, 2015.

55. Huanhuan Wu, Yuzhen Huang, James Cheng, Jinfeng Li,
and Yiping Ke. Reachability and time-based path queries
in temporal graphs. In 32nd IEEE International Confer-

ence on Data Engineering, ICDE 2016, Helsinki, Finland,

May 16-20, 2016, pages 145–156, 2016.
56. Yi Yang, Da Yan, Huanhuan Wu, James Cheng, Shuigeng

Zhou, and John C. S. Lui. Diversified temporal sub-
graph pattern mining. In Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery

and Data Mining, San Francisco, CA, USA, August 13-17,
2016, pages 1965–1974, 2016.

A Appendix A

Characteristics of the data sets

Airport data set Departing Flights Arriving Flights

ATL

1 week 6707 6678
1 month 29512 29492
3 months 89632 89633
6 months 186135 186180

1 year 346836 346904

CLD

1 week 44 44
1 month 204 204
3 months 601 601
6 months 641 640

1 year 641 640

BOS

1 week 1943 1953
1 month 8837 8841
3 months 27188 27204
6 months 57973 57996

1 year 107847 107851

HOU

1 week 1105 1106
1 month 4650 4651
3 months 13628 13628
6 months 27972 27972

1 year 52042 52041

AUS

1 week 796 797
1 month 3376 3372
3 months 10182 10186
6 months 21941 21950

1 year 42067 42078

SBN

1 week 79 80
1 month 384 386
3 months 1246 1248
6 months 2452 2455

1 year 4454 4452

ISP

1 week 88 89
1 month 377 378
3 months 1162 1163
6 months 2462 2463

1 year 4392 4392

Table 8 Number of incoming and outgoing flights for each
airport.

B Appendix B

Summary of main concepts

34 Ariel Debrouvier et al.

Symbol Name Meaning
G(No, Na, Nv , E) Temporal property graph A graph where nodes and edges are labelled

with their interval of validity, and the his-
tory of node properties and values is kept.
The properties of the edges is are static.

No, Na, Nv Sets of object, attribute, value nodes Object nodes in No represent entities, at-
tribute nodes in Na represent time-varying
properties of an object node, and value
nodes in Nv represent time-varying property
values.

n.interval, e.interval Time interval associated with a node n or
an edge e.

CP = (n1, . . . , nk, r, T) Continuous path between n1and nk, with
interval T and edge type r.

(n1, . . . , nk, r, T) of k nodes and an interval
T Sequence of consecutive edges between
n1and nk valid during an interval that is
the intersection of all the intervals in the
path.

PCP = (n1, . . . , nk, r) Pairwise continuous path between n1 and
nk and edge type r.

Sequence of edges such that there is an in-
tersection in the interval of two consecutive
ones.

Pc = (n1, n2, r, [t1, t2]) Consecutive path A sequence of edges such that the end time
of an edge interval is less or equal than the
starting time of the immediately consecu-
tive one.

EAP Earliest-arrival path Path that can be completed in a given in-
terval such that the ending time of the path
is minimum.

LDP Latest-departure path Path that can be completed in a given inter-
val such that the starting time of the path
is maximum.

SP Shortest path The path that is shortest from x to y in
terms of overall traversal time along the
edges.

FP Fastest path A path that can be completed in a given
interval such that its duration is minimum.

Table 9 Continuous paths experiments: Characteristics of each social network data set.

