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Abstract: Structural modifications of DNA and RNA molecules play a pivotal role in epigenetic and
posttranscriptional regulation. To characterise these modifications, more and more MS and MS/MS-
based tools for the analysis of nucleic acids are being developed. To identify an oligonucleotide in
a mass spectrum, it is useful to compare the obtained isotope pattern of the molecule of interest
to the one that is theoretically expected based on its elemental composition. However, this is not
straightforward when the identity of the molecule under investigation is unknown. Here, we present
a modelling approach for the prediction of the aggregated isotope distribution of an average DNA or
RNA molecule when a particular (monoisotopic) mass is available. For this purpose, a theoretical
database of all possible DNA/RNA oligonucleotides up to a mass of 25 kDa is created, and the
aggregated isotope distribution for the entire database of oligonucleotides is generated using the
BRAIN algorithm. Since this isotope information is compositional in nature, the modelling method is
based on the additive log-ratio analysis of Aitchison. As a result, a univariate weighted polynomial
regression model of order 10 is fitted to predict the first 20 isotope peaks for DNA and RNA molecules.
The performance of the prediction model is assessed by using a mean squared error approach and
a modified Pearson’s χ2 goodness-of-fit measure on experimental data. Our analysis has indicated
that the variability in spectral accuracy contributed more to the errors than the approximation of the
theoretical isotope distribution by our proposed average DNA/RNA model. The prediction model
is implemented as an online tool. An R function can be downloaded to incorporate the method in
custom analysis workflows to process mass spectral data.

Keywords: DNA; RNA; oligonucleotide; prediction; isotope distribution; mass spectrometry;
software

1. Introduction

Nucleic acids play a pivotal role in the regulation of numerous cellular processes
and act as carriers in the storage and processing of genetic information. Therefore, they
probably are the most intensively studied biopolymers. Ever since the introduction of
‘soft’ ionisation techniques like electrospray ionisation (ESI) and matrix-assisted laser
desorption ionisation (MALDI), the mass spectrometry (MS)-based analysis of nucleic acids
and oligonucleotides has received a considerable amount of attention. Several reviews
have described the progress in this field over the years [1–3]. Despite this progress, the
field has matured slowly compared to that of MS-based proteomics. One particular reason
for this might be the lack of dedicated and suitable bioinformatics solutions, which has
hampered analysis of large amounts of complex data [4–6].
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The qualitative and quantitative analysis of structurally modified DNA [7] and
RNA [8] has become an important application in MS-based analysis of nucleic acids due
to its importance in epigenetic and posttranscriptional regulation and for the detection of
chemical DNA damage in the form of DNA adducts [9]. As there is an increased interest in
how these DNA/RNA modifications impact and regulate the epitranscriptome, more MS
and MS/MS-based tools are being developed to characterise these modifications [10–12].

Further, synthetic oligonucleotides are an emerging class of therapeutic modalities
that might be capable of targeting many proteins (through their expression) that are consid-
ered ‘undruggable’ via classical small molecule therapeutics. These oligonucleotide-based
therapeutics encompass a diverse group including single stranded antisense oligonu-
cleotides (ASOs), micro-RNAs, aptamers, CRISPR (clustered Regularly Interspaced Short
Palindromic Repeats) guide RNAs and double stranded small interfering RNAs (siRNAs).
These compounds are generally produced via a solid-phase chemical synthesis approach
and vary in size from ~20–30-mers ASOs and siRNAs to ~100-mers for CRISPR guide
RNAs. A recent and comprehensive overview on the applications of MS in the field of
therapeutic oligonucleotides was published by Pourshaian [13]. It is important to note
that, due to their high molecular weight and chemical complexity, intact mass analysis
by high-resolution (HR) MS is often a pivotal technique in the identity testing package of
therapeutic oligonucleotides for clinical/commercial release of drug substance and drug
product [14].

Another class of nucleic acid-based molecules that recently gained momentum in the
pharmaceutical industry, mostly as a consequence of the COVID-19 pandemic and subse-
quent rapid vaccine development, are mRNAs. As mRNA-based therapeutics/vaccines are
much larger in size (~1000-mers and more), they are more difficult to characterise by intact
mass spectrometry. While a recent review by Sharma and colleagues notes the expanding
role of mass spectrometry in the development of vaccines in general [15], others do not
list MS as a potential technique for mRNA vaccine biochemical and biophysical product
characterisation [16]. Nevertheless, Jiang and colleagues recently showed that mapping
of the sequence of therapeutic mRNAs (~3000 nucleotides long) through LC-MS/MS is a
viable option [17]. To accomplish this, they used parallel ribonuclease digestions, resulting
in shorter oligonucleotides of different lengths, depending on the enzyme used. These
techniques can be considered orthogonal to next generation sequencing (NGS) approaches
and are able to detect single nucleotide polymorphisms (SNP) with a sensitivity of more
than 99%.

In order to obtain or confirm the identity of an oligonucleotide, and by extension for all
molecules, it is useful to compare the experimentally obtained isotope pattern of the molecule
to the one that is theoretically expected based on its elemental composition [18–20]. While
this is feasible when the identity of the molecule under investigation is known, it is hard to
automate and becomes impossible if one wants to use the experimentally obtained isotope
pattern to strengthen the identification of an unknown oligonucleotide. In peptide-centric
MS-based proteomics, several algorithms have been developed that accurately predict iso-
tope distributions based on observed mass values only, without the need for its elemental
composition [21–23]. To our knowledge, comparable algorithms are not available for nu-
cleic acid-based molecules, including (therapeutic) oligonucleotides. As mass spectrometry
technology becomes more adopted for the analysis of nucleic acids, we foresee that bioin-
formatics tools that can forecast the expected isotope patterns generated by unknown DNA
and RNA molecules will be of use for processing mass spectral data in order to reduce the
dimensionality of the data and to help elucidate the elemental composition.

The current work describes a compositional data model that uses all possible in
silico generated oligonucleotides up to a pre-specified length. The theoretical aggregated
isotope distribution is then computed by the BRAIN algorithm [21,22] using the most
recent NIST [24] definition for the elemental isotopes. The so-obtained molecular isotope
distributions, which are compositional in nature, i.e., the isotope probabilities sum to
one, are modelled with a statistically sound yet simple linear regression model for each
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isotope separately. The performance of the model is validated on a small set of DNA
and RNA molecules that are repeatedly recorded on a Time-of-Flight instrument. We can
already announce that our model’s approximation of the theoretical isotope distribution
is justified because the error introduced by the average model is negligible in light of the
error introduced by the instrument variability on the isotope intensities.

Because the modelling approach is kept simple, the prediction model is available
as an online tool at https://valkenborg-lab.shinyapps.io/pointless4dna/ (version 1.00,
accessed on 16 June 2021). The online tool provides the predicted isotope distribution
for an average DNA or RNA molecule of a particular mass. The web interface presents
the isotope information as a table and graphical representation. A batch version of the
software is available as well. A user can upload a monoisotopic mass list as a text, csv or
excel file, and the predicted isotope distributions can be downloaded as a formatted csv file.
Furthermore, to facilitate the take up of this tool in a user’s workflow, an R-function that
incorporates the parameter values of the polynomial model can also be downloaded from
the website. In fact, users can implement these parameters in their favourite workflow
manager or use a simple matrix multiplication and transformation to predict the average
isotope distribution.

2. Material and Methods
2.1. Experimental Procedures

Oligonucleotides were synthesised via solid phase chemical synthesis at Janssen
Pharmaceuticals (Beerse, Belgium) or obtained from Integrated DNA Technologies (Leuven,
Belgium). More information about the DNA and RNA molecules can be found in Table 1.

Table 1. Four strands measured for the proof-of-concept study of isotopic distribution prediction.

Name DNA_SHORT1 DNA_SHORT2

Type DNA DNA

Sequence GCC ACA TAT GAG AGT GGA
TTT GTC ATT

GGT GCC CCA GAA TCT CTC
AGC CT

Elemental formula C266H334N100O162P26 C221H282N82O137P22

Monoisotopic mass 8325.41493 6957.184784

Charge states 6 to 12 5 to 9

Elution ranges 10.95 min–11.05 min (10 scans) 10.32 min–10.45 min (14 scans)

Replicates 7 × 10 = 70 5 × 14 = 70

Name RNA-like DNA_long

Type RNA DNA

Sequence

As-Afs-Cs-Af-U-Uf-G-A-G-Cf-G-
Af-U-Af-U-Cf-C-As-C

[N = 2′OMe, Nf = 2′F, s or PS,
phosphorothioate. PO,

phosphodiester]

GAG ATC TCT GCT TCT GAT
GGC TCT CTG GTT ACT GCC

AGT TGA ATC TG

Elemental formula C192H239O117N73P18S4F8 C459H582N162O290P46

Monoisotopic mass 6275.90281 14,426.37043

Charge states 5 to 8 15 to 18

Elution ranges 13.75 min–13.85 min (12 scans) 12.1 min–12.3 min (23 scans)

Replicates 4 × 12 = 48 4 × 23 = 92

The oligonucleotides for the proof-of-concept study were analysed via LC-MS by
injecting 10 µL of a ca. 0.1 mg/mL aqueous solution on an H-Class UPLC (Waters Inc.,
Antwerp, Belgium) coupled to a Synapt G2 HDMS QTOF mass spectrometer (Waters Inc.).

https://valkenborg-lab.shinyapps.io/pointless4dna/
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Chromatographic separations were performed using an Acquity BEH 300 C18 column
(150 × 2.1 mm, 1.7 µm particle size) (Waters Inc.). The column heater was kept at 75 ◦C
and the flow rate was 0.25 mL/min. mobile phase A consisting of 7 mM triethylamine
and 60 mM 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) in water, and mobile phase B was
a methanol–acetonitrile mixture (50/50, v/v). The gradient elution consisted of a linear
gradient of 0% to 70% of eluent B in 30 min. followed by a washing step of 5 min at 70%
mobile phase B.

High resolution accurate mass data were acquired in negative ion mode using an
electrospray ionisation source using a mass range of m/z 50 to m/z 2000 at a resolving
power of approximately 12,000 (sensitivity mode, measured at m/z 1000). The following
source conditions were applied: capillary voltage 2 kV, cone voltage 30 V, Extractor voltage
4 V, source temperature 120 ◦C, desolvation temperature 350 ◦C, cone gas flow 20 L/h.

The raw data was first converted to mzXML format using MSConvert GUI [25].
Converted LC-MS data files were read into R (v4.0.2) to be visualised and processed by the
MSnbase package [26,27]. Chromatograms of each oligonucleotide strand were manually
evaluated to determine their elution range (retention time range of the chromatogram peak)
and detected charge states (Table 1). To generate isotopic envelope traces, mass scans in the
retention time range were extracted and centroided, and mass peaks below the baseline
intensity level of 50 counts were filtered. Isotopic envelope traces (two columns: mass,
intensity) were extracted from selected mass scans according to predicted mass ranges.
These mass ranges were calculated based on detected charge states and the monoisotopic
molecular weight (MMW) of the oligonucleotide strand (between MMW and MMW +
15 Da). For instance, the m/z range extracted for charge state 6 of the DNA_SHORT1
strand is between 1386.6 (corresponding to MMW) and 1388.9 (MMW + 15 Da). For model
validation, isotopic envelope traces of charge state 6 were evaluated in 10 LC-MS scans (in
the elution range 10.95–11.05 min). Combining seven charge states, we obtained in total
70 replicates of isotopic envelop traces for evaluating isotopic distribution prediction of
DNA_SHORT1.

2.2. Theoretical Data

A theoretical database of DNA oligonucleotides was created by generating all possible
combinations of length 5 to 92, composed of the 4 DNA bases, Adenine, Cytosine, Guanine
and Thymine with a 2′ deoxyribose phosphodiester backbone. Similarly, a database of
RNA oligonucleotides was created containing all possible combinations of nucleotides
Adenine, Cytosine, Guanine and Uracil with a ribose phosphodiester backbone from length
5 to 90 for RNA molecules. The elemental composition of the theoretical oligonucleotides is
calculated using the information on the basis structures for nucleotides in Supplementary
Tables S1 and S2, further taking into account that for each added nucleotide, a molecule of
water is lost. Consequently, for an oligo of length l, (l-1) water molecules are subtracted.

There are various bioinformatics tools that can calculate the theoretical isotope dis-
tribution, as described by Valkenborg et al. [19], but we prefer the BRAIN method to
rapidly compute the aggregated isotope distribution, which also provides us with an exact
computation of the centroid mass for each isotope variant. The elemental compositions
are used as input for the BRAIN algorithm to determine the theoretical aggregated isotope
distribution for each of the oligonucleotides. The first 20 aggregated isotope variants of
the DNA and RNA compounds are computed using the most recent NIST definition for
the elemental isotopes. Note that the choice of 20 isotopic variants is arbitrary, but as we
discuss later in the manuscript, it covers up to 95% of the aggregated isotope distribution
for the highest molecular weight DNA/RNA molecules. The goal of this work is to predict
the expected isotope distribution of an average DNA/RNA molecule based on its monoiso-
topic mass using a simple regression modelling approach, which requires the data to be
real-valued. However, the mathematical function used to calculate the theoretical isotope
distribution is based on a multinomial expansion [28]. The probabilities of a multinomial
distribution always sum to one, which can be referred to as compositional data. The
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isotope distribution that denotes the probability to observe a certain isotope variant of
a molecule can, in theory, be viewed as compositional data; however, it does not follow
a classical multinomial distribution. The number of isotopes and the distribution of the
probabilities vary in function of the mass. For the low mass compounds in our database,
the first eight aggregated isotopes cover 100% of the isotope probabilities, whereas for
some high mass compounds the entire isotope distribution is not covered by the first
20 isotopic variants. Since we aim to produce a model that is applicable for the entire mass
range for oligonucleotides of length 5 to 92 and length 5 to 90 for DNA and RNA molecules,
respectively, we need to manipulate our data to become truly compositional. One solution
is to include more isotope variants in the model such that the isotope probabilities always
sum to one. However, this would lead to many isotope components with almost zero prob-
ability in the lower mass range, which compromises the regression modelling approach.
Instead, it is solved by introducing a sink-hole that contracts the leftover probabilities into
one isotope variant, called the pseudo-isotope, or, more correctly, in compositional data
jargon the closure term. By introducing this pseudo-isotope, we ensure that 100% of the
isotope information is captured by the first 20 isotopic components and the additional
closure component.

2.3. Compositional Data Transformation

The elements of our composition, i.e., the isotope probabilities, are nonnegative
and constrained to sum to one by the creation of the pseudo-isotope. From the work
of Aitchison [29–32] it is known that compositional data such as the calculated isotope
distribution can be represented on a high-dimensional simplex. Consider the vector
x = (x1, x2, . . . , xD) to be a D-part composition of proportions xi (i = 1, . . . , D). The
composition satisfies the unit-sum constraint x1 + x2 + . . . + xD = 1, thus the effective
dimension of the D-part composition is reduced to d = D− 1, where:

xD = 1−
d

∑
i=1

xi (1)

Therefore, the compositional sample space can be accurately represented by the d-
dimensional unit simplex:

Sd = {(x1, . . . , xD) ε RD |xi ≥ 0 f or (i = 1, . . . , D) and
D

∑
i=1

xi = 1} (2)

The compositional data structure imposes constraints on a regression modelling
approach since the sample space for our data is restricted to the unit simplex Sd , as
opposed to the entire real space RD. To remediate these constraints and facilitate regression,
the compositional data is transformed before analysis. A composition only provides
information on relative and not absolute values, so any relevant function of the components
must be expressible in terms of ratios of the components. Therefore, the Aitchison simplex
can be transformed into real space via some well-characterised isomorphisms [32]. These
include the following transformations: the additive log-ratio transformation (ALR), the
center log-ratio transformation (CLR) and the isometric log-ratio transformation (ILR). In
case of the CLR transformation, a notion of a geometric mean is needed, which is not trivial
in our case. Moreover, the CLR transformation forces the component covariance matrix
to be singular. To apply the ILR transformation, a notion of central tendency is needed as
well as complex calculations. Therefore, we have opted for the ALR transformation which
can easily be applied even if the isotope distribution is only partially observed, provided
that the reference probability is detected. Its simplicity allows us to make easy predictions
using the regression coefficients, and the presence of a clear reference component allows
us to represent the observed spectrum in reduced ALR space as further discussed in the
goodness-of-fit section. Furthermore, it should be remarked that the ALR transformation is
not an isometry; therefore, distances in the ALR space are not retained. This could be solved
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by employing the ILR transformation rather than the ALR. However, another disadvantage
of the CLR and ILR transformations is that they both require the entire isotope distribution
to be seen that span further than the first 20 peaks in our case. The ALR transformation is
the only transformation that can handle incomplete observations of the isotopic envelope
and can handle a partial distribution to perform the back-transformation from real space to
the Aitchison compositional unit simplex, provided that the reference peak is observed.

Let x = (x1, x2, . . . , x21) denote the vector representing the first 20 aggregated isotope
probabilities and the pseudo-isotope, so 21 elements in total. Then, the ALR transformation
is given by:

Sd → Rd : (x1, x2, . . . , x21) →
(

ln
(

x2

x1

)
, ln

(
x3

x1

)
, . . . , ln

(
x21

x1

))
= (z1, z2, . . . , z20) (3)

With d = 20. Note that the monoisotopic peak (x1) is chosen as the reference component.
Since standard multivariate statistical methods are invariant to the choice of reference
category, the choice of divisor in the transformation in principle does not influence the
results or the interpretation [30,33]. Note that, in this manuscript, it is convenient to fix the
reference for the entire mass range to obtain a general model for the envisioned mass range.
We opt for the monoisotopic variant as a reference because this variant is dominantly
present for low molecular weight oligonucleotides. However, a user should be aware that
the probability of the monoisotopic variant is a function of the molecular weight of the DNA
or RNA molecule; therefore, the detection or signal-to-noise ratio of that monoisotopic
variant is not uniform over the mass range. To remediate this drawback, a different
approach can be considered that divides the envisioned mass range in distinct regions and
constructs a separate polynomial model with the optimal choice for the reference for each
region. In every region, the optimal choice would be the variant that is most likely above
the detection limit and with the maximum signal-to-noise ratio.

2.4. Modelling Approach

We adopt a machine learning approach where a univariate polynomial regression
model is trained to model the underlying relation between the monoisotopic mass of
a DNA or RNA molecule and its corresponding isotopic envelope (containing the first
20 isotopes and pseudo-isotope), transformed into ALR space. Before performing the
regression analysis, a randomly selected test set containing 5% of the observations is left
out. A univariate weighted least squares polynomial regression model, using the squared
residuals of the ordinary least squares model as weights, is fitted by minimising the sum of
squared errors on each ALR transformed isotope separately. Forward model selection to
determine the optimal order of the polynomial is performed using the mean squared error
(MSE) on the test set to assess model performance. The final model is then trained on the
entire dataset (training and test set combined). Let the monoisotopic mass of a DNA/RNA
molecule be denoted by m, then the resulting polynomial models of order k are given by

z1,i = β1,0 + β1,1 mi + β1,2 mi
2 + . . . + β1,k mi

k + ε1,i
z2,i = β2,0 + β2,1 mi + β2,2 mi

2 + . . . + β2,k mi
k + ε2,i

. . .
z20,i = β20,0 + β20,1 mi + β20,2 mi

2 + . . . + β20,k mi
k + ε20,i

with ε j,i ∼ N
(

0, σ2
j

)
f or j ∈ (1, . . . , 20)

(4)

Apart from a model to predict the probabilities, a method is provided to predict the
centroid mass for the corresponding isotope variants. This method simply computes the
average mass differences between the aggregated isotope variants and the monoisotopic
variant for all the molecules in the DNA and RNA database separately. The result of this
calculation is a simple vector of mass differences to which a monoisotopic mass is added.
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2.5. Prediction of the Isotopic Envelope

The result of the fitting procedure yields a 20× (k + 1) matrix containing the esti-
mated parameters for the intercept and k polynomial coefficients, for each of the 20 ALR
transformed isotopes. As such, the obtained model can be used to predict the expected
ALR-transformed isotopes (z1, . . . , z20) based on the monoisotopic mass m via simple
matrix multiplication.

z1
z2
...

z20

 =


β1,0
β2,0

...
β20,0

β1,1
β2,1

...
β20,1

· · ·
· · ·

...
· · ·

β1,k
β2,k

...
β20,k

·


1
m
...

mk

 (5)

To obtain the isotopic probabilities, these ratios need to be back-transformed to the
original simplex space. This is accomplished by using a modified softmax transformation,
which is a well-known transformation in the field of artificial neural networks. By adding
an extra column of ones before employing the softmax transformation, we control the
probabilities predicted by the unconstrained linear polynomial regression model to produce
estimates that sum back to one.

Rd → Sd : (z1, z2, . . . , z20)→ (x1, x2, . . . , x21) =
(

1
g(z) , ez1

g(z) , . . . , ez20
g(z)

)
with g(z) = 1 + ez1 + . . . + ez20

(6)

with d = 20 or giving D = 21 predictions for the first 20 isotopic variants and the closure
term, or, equivalently, the pseudo-isotope.

2.6. The Goodness-of-Fit Statistic

The performance of the theoretical model is tested on the benchmark dataset described
in the experimental procedures section. The theoretical model predicts the first 20 iso-
topes both as ALR transformed isotopes and as probabilities back-transformed via the
modified softmax function. We consider a goodness-of-fit statistic in the ALR space that is
inspired by the metric used to fit the univariate model and a metric in the simplex space
(i.e., probabilities) that is inspired by the multinomial test. In a real-life dataset, not all
20 isotopic variants are always seen. Moreover, in our validation dataset, the MMW to
MMW +15 Da range was extracted, thus we expect approximately 15 isotopes. Note that
on some occasions, the monoisotopic variant could not be retrieved from the data. Since
we know the underlying compound, we know exactly which peaks have been detected.
Therefore, we opt to work with metrics that are applicable on an only partially observed
isotope cluster.

Let (o1, . . . , ok) be the observed isotope pattern, with o1 representing the monoiso-
topic peak and ok the last observed isotope variant. To calculate the ALR goodness-of-fit
metric, the observed spectrum is first transformed to ALR space by applying the log-ratio
transformation using the monoisotopic peak as reference, such that:

(t1, . . . , tk−1) =

(
ln
(

o2

o1

)
, . . . , ln

(
ok
o1

))
(7)

The predicted ALR ratios (z1, . . . , zk−1) are computed using the separate univariate
linear regression models described in the previous section. Consequently, the transformed
observed isotope ratios are compared directly with the predicted ratios in Aitchison ALR
space by computing the squared errors. Finally, we calculate the mean squared error across
isotopes for each molecule to assess the fit of the model and thus:

MSEALR =
1

k− 1

k−1

∑
i=1

(ti − zi)
2 (8)
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Comparing ratios directly in the ALR space is very convenient since it does not call
for scaling the intensities. However, the requirement for this metric to work is that the
monoisotopic variant is observed since it serves as a reference in our modelling approach.

Let (ol , . . . , ok) be the observed isotope pattern, with ol and ok representing the first
and last observed isotopic peak variant, respectively. To calculate the goodness-of-fit in the
simplex (i.e., probabilities) space, we adopt an error statistic that is inspired by (but by no
means equal to) the multinomial test introduced by Pearson [34]. The error is computed as:

χ2
simplex =

1
k− l + 1

k

∑
i=l

(Oi − Ei)
2

Ei
(9)

where Ei = Nxi is the expected peak intensity, with N being the total peak intensity and
xi the predicted probabilities using the theoretical models, back-transformed using the
modified softmax transformation. The theoretical model is built using the aggregated
isotope distribution with probabilities that sum to one. Since N is unknown when not all
isotopes are detected in the spectrum, N is calculated as the ratio of the sum of observed
intensities and the sum of the probabilities of the expected peaks.

N =
∑k

i=l Oi

∑k
i=l xi

(10)

Note that the values l and k change with each compound and, therefore, the degrees
of freedom change with each spectrum. For this metric, while it is essential to know which
peaks have been observed in the spectrum, it is not necessarily required to observe the
monoisotopic variant. However, knowledge of the monoisotopic mass is necessary to use
the prediction model.

3. Results
3.1. Generation of the Data Sets

The DNA and RNA datasets span a length from 5 to 92 nucleotides and 5 to
90 nucleotides, respectively, spanning a mass range from 1463.2424 Da to 30,290.8424
Da and 1543.2170 Da to 31,072.2797 Da. A total of 3,321,890 and 3,049,431 possible nu-
cleotide combinations (not permutations) are considered for DNA and RNA. The lightest
oligo is composed out of 5 times dCMP or 5 times CMP, and the heaviest oligo is composed
out of 92 times dGMP or 90 times GMP for DNA and RNA, respectively. It is worthwhile
to mention that the DNA and RNA nucleotide combinations all have a unique elemental
composition and, consequently, a unique mass. Such behaviour cannot be observed for
amino acids, where different amino acid combinations can boil down to exactly the same
elemental composition and mass.

The histogram in Figure 1 displays the abundance of the different oligonucleotides
over the mass range. Two observations can be made from this plot. Firstly, note that the
density of the data increases exponentially as a function of the mass Secondly, it should
be noted that the dataset is no longer representative at the high mass range, indicated by
the sharp drop in density at the end of that mass range. This artefact is caused by how
the theoretical oligonucleotide database is created. Our approach enumerates all possible
nucleotide combinations up to a pre-specified length. Thus, the lightest possible DNA
oligo of length 93, that is not a part of the database, would be purely composed out of
93 dCMPs, which yields a mass of 26,899.3232 Da. This mass is indicated by a vertical red line
in Figure 1. Starting from this mass, the data is not representative as some nucleotide variants
of larger length are depleted from the data. In case of the RNA database, this limit would be a
molecule that contains 91 CMPs with a mass of 27,776.7677 Da. For this reason, we argue to
restrict the prediction model to the highest mass in the database just below the aforementioned
limits, or, equivalently, to the range [1463.2424–26,899.3222] Da containing 2,631,058 DNA
molecules and [1543.2170–27,776.7667] Da containing 2,557,189 RNA molecules. A restriction
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for the lower mass is not needed as the highest mass molecule of length four remains far away
from this lower limit.

Figure 1. Histogram of the calculated mass of DNA oligonucleotides. The DNA molecules span a
sequence length from 5 to 92. The number of possible nucleotide combinations (not permutations)
grows exponentially with the mass of the DNA molecule. Only a few thousand oligonucleotides are
situated at the lower mass range, while tens of thousands of oligonucleotides can be found in the
higher mass ranges. The vertical red line indicates the lightest DNA sequence of length 93 composed
out of dCMP only. From that mass on the data set is not representative anymore since longer DNA
molecules are depleted from the dataset.

The scatter plot in Figure 2 displays the first 20 isotopes of all possible DNA molecules
within the restricted mass range. The x-axis indicates the monoisotopic mass of the oligonu-
cleotides. Every aggregated isotope variant is denoted with a different colour, and their
probability is provided on the y-axis. The fast declining isotope in blue on the left-hand
side of the plot is the monoisotopic variant. It can be observed that the probability of
this variant is decreasing fast, which makes this variant often fall below the instrument’s
detection limits for DNA molecules of a molecular weight larger than 10,000 Da. The
black line on the top of the figure is the coverage which sums the probabilities of the first
20 isotopes. For low mass DNA molecules, a coverage of 100% is reached, but this is not
the case for high mass molecules, where coverage drops towards approximately 95%. This
coverage is used to compute the closure term (i.e., the pseudo-isotope) by subtracting the
coverage from 100%.

The flexibility of the prediction model, i.e., the order of the polynomial, is chosen by
minimising the MSE on a test data set. As the objective is to obtain an optimal prediction
within the operational mass range of our model, a random selection of oligonucleotides
is taken from the restricted mass region mentioned before. We choose a test set of ap-
proximately 5% of the oligonucleotides in the data base, resulting in 166,095 and 152,472
instances with a mass range of [1493.2418–26,899.3048] Da and [1545.1850–27,776.7557] Da
for DNA and RNA molecules, respectively. We argue that such a validation set approach
(opposed to k-fold or leave-one-out-cross validation) is sufficient and representative given
the large data volumes. As training data, we use the remaining molecules present in our
database that span the entire mass range. The motive for this counterintuitive choice is
to remediate potential disadvantageous effects at the high-mass boundary caused by the
polynomial model.
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Figure 2. Scatterplot of the first 20 isotopes of all possible DNA molecules within the restricted
mass range between 1463.2424 and 26,899.3222 Da. Every isotope variant is denoted by a different
colour coding. Given the limited availability of colours in the plot functionality, the coding scheme is
repeated, but the context should make it clear which isotopes are being discussed. The plot illustrates
how the probability (y-axis) for a particular aggregated isotope variant evolves in function of the
monoisotopic mass (x-axis). The black line on the top of the figure is the coverage that sums the
probabilities of the first 20 isotopes per DNA molecule.

3.2. Model Selection and Training of the Model

This section describes the selection of the polynomial order of our prediction model
and the final model fit. The description is confined to the DNA data as the procedure
for the RNA model is exactly the same. The graphics for the RNA model performance
can be found in the online Supplementary Materials. Figure 3 shows the scatterplot that
depicts the relation between the ALR transformed isotopes, using the monoisotopic variant
as reference, and the monoisotopic mass. The ratio derived based on the closure term is
denoted by the ALR20 isotope.

Figure 3. Scatterplot of the ALR transformed isotopes. The monoisotopic variant is taken as the
reference isotope for this transformation. ALR20 is the additive log-ratio transformation of the
pseudo-isotope derived from the coverage term in Figure 2.
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Every ALR transformed isotope is modelled separately by a univariate polynomial
model. We consider polynomials of order 1 to 15. To keep the polynomial regression
well-conditioned, we standardise the monoisotopic mass covariate in our model by sub-
tracting the mean (mu = 22,746.1953) of all the mass values in our database and dividing
the difference by the standard deviation (sigma = 4788.8776). Figure S1 and Table S3 in the
Supplementary Materials illustrate how the test MSE of each model evolves as a function
of the order of the polynomial. From the sixth order onwards, the test MSE improves
only very slightly. The majority of the models reach their minimum value at a polynomial
order of 10, while for higher orders the MSE slightly increases and becomes unstable.
For this reason, we select a polynomial of order 10 as our final model and retrain the
model on the complete, unrestricted dataset. This results in a 20 × 11 matrix containing
the estimated parameters for the intercept and 10 polynomial coefficients, for each of the
20 ALR transformed isotopes. The model parameters can be downloaded from the on-
line tool as an R function. The white line in Figure 3 plots the predicted values of the
ALR-transformed isotopes. After back-transforming the ALR isotopes via the modified
softmax function, the predicted isotope probabilities are obtained. These predicted proba-
bilities for the first 20 aggregated isotopes of our DNA and the coverage term are indicated
in Figure 2 by a white line. For both figures it is clear that the predicted values are at
the centre of the data cloud. A proper fit can also be witnessed by the residual plot in
Supplementary Figure S2. For the majority of the isotopes the residuals remain within an
error interval between 0.004 and −0.006. These numbers demonstrate that the approxi-
mation of the theoretical isotope distribution by an average model is justified as it only
introduces a small deviation.

In order to better understand the errors introduced in the next section, we provide the
mean squared errors between the theoretical ALR transformed isotopes and the predictions
from the model on one hand, and the mean Pearson’s chi-squared error between the
theoretical probability values and the softmax transformed predicted probabilities on the
other in Figure 4.

Figure 4. Panel (a) provides the mean squared error in the ALR space for the DNA molecules in the restricted mass range.
For each of the first 20 isotopes, the squared error is computed between the theoretical ALR transformed isotope and
the predicted ALR isotope from the final model. Next, the mean squared error for every DNA molecule is computed by
taking the mean of the error over the first 20 isotopes. Panel (b) provides a similar graphic, except the error is computed as
Pearson’s chi-squared error in the simplex (i.e., probabilities) space.

From Figure 4a, it can be observed that the low mass region has the highest error.
There are two explanations for this behaviour. Firstly, the boundary effect of the polynomial
could play a role. However, a second, more probable explanation is that the data in this
low mass region is too sparsely distributed in contrast to the high mass region such that an
imprecise model fit is less penalised. This effect is also the reason for choosing the weighted
regression approach, where weights are chosen as the residuals of the ordinary least square
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fit. In general, the error is small when contrasted to experimental data as shown in the
next section. The pattern in Figure 4b contrasts this observation. As the mass increases,
the probabilities are spread over more peaks, which leads to a larger error, reflecting the
increase in degrees of freedom of the multinomial distribution. The decline of the Pearson’s
chi-squared error from 20 kDa is caused by an increase of the pseudo-isotope probability,
which is not part of the error calculation as presented in Equation (9). Note that although
the mean value is taken, all DNA molecules in the theoretical database have the first
20 aggregated isotope variants returned, even if they are near zero values. Nevertheless,
Figure 4 provides an informative visual interpretation of the variability that we can expect
for the errors across the mass range. Figure S7 in the Supplementary Materials presents
a similar plot for the RNA prediction model. Similar conclusions can be drawn from the
RNA model, with the addition that a slight bias is introduced at the low masses starting
at 1545 Da and around a mass of 4000 Da. It seems that the polynomial model of order
10 lacks flexibility to correctly capture the isotope trends as seen in Figure S4.

Besides the probabilities, the model also provides a prediction for the centroid mass
of the aggregated isotope variants. This prediction is simply taken as the average value of
the mass differences between the isotope variant and the monoisotopic variant across the
molecules in the DNA and RNA database. The results of these average mass differences are
listed in Table 2. There is only a minor difference between the DNA and RNA molecules.
Nevertheless, we use these values to compute the centroid masses of the predicted isotope
probabilities by simply adding these values to the observed mass of the monoisotopic
variant. Although there is a relation between the residual error of the mass model and the
actual centroid mass of the molecule, as illustrated in Figure S3, we will neglect this trend
as the maximum absolute error is below 6 mDa.

Table 2. Average mass difference between the centroid masses of the aggregated isotope variants and the monoisotopic
variant across the restricted mass range. Isotope 1 is the monoisotopic variant. A mass dependency of the residual can be
observed in Figure S3.

DNA RNA

Isotope Mass Difference
(Da) Isotope Mass Difference

(Da) Isotope Mass Difference
(Da) Isotope Mass Difference

(Da)

1 0 11 10.02608399 1 0 11 10.02587038

2 1.002707 12 11.02860871 2 1.002698922 12 11.02836784

3 2.005384 13 12.03112309 3 2.005361437 13 12.03085481

4 3.008035 14 13.03362787 4 3.007994300 14 13.03333209

5 4.010663 15 14.03612367 5 4.010602048 15 14.03580039

6 5.013272 16 15.03861108 6 5.013188104 16 15.03826032

7 6.015864 17 16.0410906 7 6.015755128 17 16.04071244

8 7.018439 18 17.0435627 8 7.018305257 18 17.04315722

9 8.021000 19 18.0460278 9 8.020840240 19 18.04559513

10 9.023548 20 19.04848627 10 9.023361538 20 19.04802655

The same methodology is followed to model the data from the RNA database of
oligonucleotides. A polynomial order of 10 is found to be optimal in terms of minimising
the test MSE. The Supplementary Materials display all the data (Table S4) and plots
(Figure S4–S7) for RNA that also have been discussed in the context of the DNA model.

3.3. Exploration of the Proposed Error Metrics

The final polynomial model is tested on the experimental spectral data of DNA and
RNA oligonucleotides described in the material and methods section. As the nucleotide
composition of these compounds is known, we first compare the experimental data with
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the theoretical isotope distribution computed by BRAIN. In this analysis, we investigate
whether our proposed metrics depend on the intensity or charge state and evaluate whether
the assumption on the elemental isotope definition provided by NIST is compatible with
laboratory-grade synthesised DNA/RNA strands. Next, we move the discussion to the
comparison of the theoretical data with the predictions from the DNA and the RNA model,
to investigate whether the error introduced by the average model is acceptable compared to
the error introduced by the instrument variability. In this discussion, we limit ourselves to
only two of the four DNA strands, namely, DNA_short1 around 8325.41 Da with high quality
isotope patterns, and DNA_long around 14,426.37 Da with lower quality isotope patterns.
The results for the other two strands are presented in the Supplementary Materials.

We start our investigation with compound DNA_short1 that is found in the spectral
data at charge states 6 up to 12. Around the apex of the chromatographic elution profile,
10 spectra are selected for investigation. As a result, we have 70 observed isotope patterns
for this DNA molecule originating from different charge states, with varying intensities,
and consequently with a varying number of detected isotope peaks. Two isotope clusters
were discarded from this dataset because the monoisotopic peak could not be retrieved.
Figure 5a displays the boxplots of the error in the ALR space across the different charge
states. Figures S8 and S9 in the Supplementary Materials showcase the distribution of
the number of isotope peaks and the sum intensity of the observed isotope cluster as a
function of the same charge states. It can be seen that the intensity and the number of
detected peaks increase with charge state, suggesting that charge 12 is the dominant isotope
cluster in the spectrum. Although the number of observed peaks and the intensity values
severely fluctuate within and across the charge states, the MSE in the ALR space is stable
and comparable across the different charges. Such an intensity and peak number invariant
score is especially convenient when a global threshold is applied to remove low quality
fits, as this threshold can be uniformly applied for all DNA and RNA oligonucleotides,
disregarding the ion statistics. On the other hand, when looking at the boxplots in Figure 5b,
we see that the mean Pearson’s chi-squared error (MPCSE) increases with increasing charge
state. However, from Supplementary Figures S8 and S9 it becomes clear that the number of
detected isotope peaks increases with charge state, and consequently, the sum intensity
increases as well. The calculation of the MPCSE as presented in Equations (9) and (10)
takes into account the total sum intensity of the observed isotope distribution in the
spectrum. Therefore, the underlying pattern in Figure 5 can be explained by the intensity
dependency of the error metric. This property is convenient when quality thresholding
needs to take into consideration the ion statistics of the isotope pattern. For example, a
high total ion count, which means that there is sufficient sampling of the multinomial
isotope distribution, should yield a small relative error, i.e., proportional to the height of
the isotope peak. The opposite is true for low abundant spectra, where we expect a larger
relative error because of the low number of ions sampling the distribution. The MPCSE
will compensate for this effect by the term in the denominator that normalises the mean
squared error by the expected intensity. This property, however, ignores some important
nuisance effects that can come into play with time-of-flight mass spectrometry, one of
which is the detector saturation for high intense signals. Saturation causes flattening out
of the high peak intensities leading to a larger error between the observed and theoretical
isotope distributions, an error that cannot be tolerated given the high ion statistics.
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Figure 5. The error distributions for compound DNA_short1 are provided as Tukey’s box and whisker plots across the
different charge states. Each box composes 10 repeated measurements of the compound over the liquid chromatography-
dimension of the experiment. Panel (a) gives the distribution of the mean squared ALR error. Panel (b) gives the distribution
of the mean Pearson’s chi-squared error.

In order to combine the benefits of both types of scores, a new graph is proposed,
shown in Figure 6. Each point represents one isotope pattern of compound DNA_short1
and its corresponding scores: the MSE in the ALR space on the x-axis and the MPCSE in
the intensity space on the y-axis. The log10 of the sum intensity is coded as a third colour
dimension. Some interesting conclusions can be drawn from this new visualisation. An
isotope cluster, indicated by circle (a) in Figure 6 and the theoretical and observed isotope
pattern in Figure 7a, illustrates that the observed and the theoretical isotope distributions
are in agreement in the ALR space because of the low MSE of 0.2827. However, the MPCSE
is very large with a value of 229.85. This is caused by the high total intensity of this isotope
cluster as is illustrated by the yellow colour in Figure 6 and the sum intensity in the title of
the Figure 7a. A possible explanation could be very mild saturation of the detector leading
to a deviation that is not tolerable in view of the high ion statistics. The opposite can be
observed for another isotope cluster denoted by circle (b) in Figure 6 for which the isotope
patterns are visualized in Figure 7b. The ALR score is worse in this case, reaching a value
of 1.3, but it can be seen that the MPCSE is lower than in Figure 7a whilst the fit is visually
less consistent. This behaviour can be explained by the lower summed intensity value of
25,635 that better tolerates a discrepancy in the goodness-of-fit. Data points (c) and (d) are
presented in Figure S10 of the Supplementary Materials and denote spectra with low ion
statistics. We recommend the users of this model to always conduct an experiment of a
DNA/RNA standard to benchmark and calibrate the method for your laboratory set-up.
By doing so, you will understand the normal range of the proposed error statistic and can
argue on a thresholding criterion that is tailored for your purposes.



Metabolites 2021, 11, 400 15 of 22

Figure 6. Scatterplot of the MSE in the ALR space (x-axis) and the mean Pearson’s chi-squared error on the observed isotopes
(y-axis). The plot contains 68 points, where each point corresponds to an observed isotope cluster of compound DNA_short1
for which the monoisotopic variant was above the detection limit. The colour coding expresses a third dimension that
indicates the log10 of the summed intensities of the isotope cluster. Blue means low intense signal, whilst yellow means high
intense signal. The theoretical and observed isotope intensities for the encircled points (a,b) can be observed in Figure 7a,b
respectively. The data for encircled points (c,d) are provided in Figure S10 of the Supplementary Materials.

Figure 7. Stem plot illustrating the observed isotope distribution (blue) and theoretical isotope distribution computed by
BRAIN using the elemental composition (red). The red lines are the same for both panels. Panel (a) is case (a) in Figure 6,
whilst panel (b) is case (b). An important remark should be made here with respect to the scaling. In order to keep the
y-axis comparable across different intensity values, we transform the observed intensities to probabilities. Since the identity
of the compound is known, we can also compute/predict the theoretical/predicted probabilities and sum these for the
observed aggregated isotope variants. Next, the intensities are scaled to that sum probability. In a sense, this calculation is
the reciprocal of the operation specified in Equation (10).
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3.4. Model Validation

Next, we investigate whether the prediction from the average isotope model con-
tributes substantially to the goodness-of-fit error compared to the error between the ob-
served and the theoretical isotope distribution. Figure 8 presents three boxplots that
showcase the distribution of the MSE in the ALR space for the 68 observed isotope patterns
of compound DNA_short1. Interestingly, the MSE in the ALR space for the predicted
isotope distribution via the DNA model (middle boxplot) is similar, though slightly higher
than for the theoretical model (left boxplot). This result is logical as the DNA model will
predict the isotope distribution for an average DNA oligonucleotide of that particular mass.
Compared to the theoretical model, this introduces a bias, but from Figure 8 it can be seen
that this bias only has a minor contribution with regard to the total error. The third box in
Figure 8 is the error when using the RNA prediction model. Note that the errors here are
severely inflated due to the use of a misspecified model, i.e., comparing a predicted RNA
isotope distribution with the observed isotope distribution from a DNA oligonucleotide.
A valuable conclusion here is that one can discern a DNA oligonucleotide from an RNA
oligonucleotide in a label-free manner just by investigating the resulting isotope profile in
a mass spectrum.

Figure 8. Boxplot of the mean squared ALR error computed with the theoretical model (based on the
elemental composition using BRAIN algorithm), predicted with the correct average DNA model and
predicted using the misspecified average RNA model. Note that in this visualisation, all the error scores
are lumped together disregarding the charge, intensity or the number of peaks in the isotope cluster.

Another valuable remark here is that the boxplots presented in Figure 8 might be
slightly misleading. The boxplot representation obscures the fact that the scores between
the boxes are correlated since the computed errors in each box are based on the same
68 observed isotope distributions. A plot that makes this point more clear is displayed
in Figure S11 in the Supplementary Materials. This spaghetti plot represents each of the
68 molecules by a line. The lines between the errors from the theoretical and DNA predic-
tion model are near horizontal, indicating that it does not matter substantially whether
you would have the exact theoretical isotope distribution or the predicted average isotope
distribution for pattern recognition and spectral processing. In contrast, the lines between
the errors for the DNA and RNA prediction model illustrate a clear incline, indicating
that model misspecification does matter. Another way of quantifying the effect of model
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misspecification is to use the Wilcoxon signed-rank test (i.e., non-parametric paired t-test)
in order to assess whether the error differences between the three models are significant.
The result of this test for theoretical versus average DNA gives a p-value of 4.4844 ×10−7

with an effect size of 0.0136, whereas the comparison of the DNA model with RNA results
in a p-value of 2.0060 × 10−10 that is even more significant and has a higher effect size
of 0.1221. The latter principle can be adapted for the inclusion in automated processing
workflow as label-free DNA/RNA classifier. Further, it is worthwhile to emphasise here
that although the error between the theoretical and DNA prediction model is statistically
significant, it is not relevant for our application given the small effect size that falls within
the variability of the instrument. This can be seen in Figure 4a, where the effect size of
0.0136 falls within the expected error range, whereas the RNA model is out of specification
with an error of 0.1221.

Next, we discuss the results of the second compound DNA_long. Since this compound
has produced lower quality spectra with many peaks missing, we have opted to compute
an average observed isotope distribution across the 23 scans for each of the four charge
states. Figure 9 provides the averaged observed isotope distribution rescaled towards
probabilities (blue stems), along with the predicted isotope distributions from the average
DNA model (red stems) for the charge states ranging from z = 15 (panel a) up to z = 18
(panel d). The MSE and MPCSE in the titles of the figures indicate that this goodness-of-fit
is in range with previous observations, proving that the prediction model is also suited for
larger DNA molecules.

Figure 9. Stem plot illustrating the observed isotope distribution (blue) and predicted isotope distribution from the average
DNA model. The red lines are the same for all panels. Panel (a–d) represent the different charge states of this DNA molecule
ranging from z = 15 up to z = 18. The goodness-of-fit statistics in the titles of the subpanels indicate an accurate fit that is in
range with previous observations on the smaller DNA molecules.
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Lastly, Figure S21 in the Supplementary Materials contains the boxplot of the ALR
error of the RNA-like molecule. There is a large difference in error when comparing the
observed isotope pattern with the theoretical one or with the predicted isotope distribution
from the DNA model. Such a discrepancy is expected due to the model misspecification.
However, the error for the predicted RNA model is even larger. This observation warrants
further investigation, but we argue that the large error here is also caused by model
misspecification since the molecule under scrutiny is composed of modified RNA that
contains sulphur and fluorine and our DNA/RNA model is not capable of accommodating
these elements. Having said that, we can also conclude that, even for a misspecified
model, the ALR error is mostly below one, which is acceptable when compared to the other
compounds in the dataset.

3.5. Software

The modelling approach described in Materials and Methods, with the polynomial
order set to 10, has been implemented in Shiny (a package in R programming language) and
deployed at https://valkenborg-lab.shinyapps.io/pointless4dna/ (version 1.00, accessed
on 16 June 2021). The user interface is presented in the screenshot in Figure S22 in the
Supplementary Materials.

Firstly, the user has to choose the input type (single or multiple masses) and provide
the corresponding input data accordingly in the text field right there in the app or by
loading a text, csv or excel file with multiple masses for batch processing. The input file
for batch processing should contain only one column (without any column header) with
numerical values (dot as a decimal separator) representing the masses of interest. Note
that for any specified mass value that exceeds the mass range used in the model fitting, the
isotope distribution will not be computed and warning messages will be shown. In the
following step, the molecule type has to be selected between DNA or RNA.

Once the input and molecule type is specified, the ‘Calculate’ button, which triggers
the prediction of the isotopic envelope, appears in the user interface. After clicking the
button, a zip file that contains csv tables with masses and predicted probabilities of isotopic
peaks is offered for download via the ‘Download isotope distribution table’ button. In
addition, if the user decides on the single mass input type, the predicted probabilities will
be directly displayed in the app as a table and graph.

Lastly, the ‘Download R function’ button is available throughout the entire user
session allowing the download of a zip file. This zip file includes the underlying R function
to predict the isotope distribution and two. Rds files (one for DNA and one for RNA)
storing information on the estimated polynomial coefficients in a 11 × 20 table, the mass
range used in the model fitting, and the mean and standard deviation values applied
when standardizing the mass covariate. This effortless access to the app’s components
presents the user with the opportunity to quickly reuse our modelling approach in their
own analytical pipeline.

4. Discussion

Since there is already much discussion in the results section, we limit the discussion
to a bulleted list of additional remarks and reiterate some important characteristics of the
prediction model and the associated goodness-of-fit statistics:

• Model fit: A polynomial model of order 10, which minimises the MSE on our test
set, is acceptable given the vast amount of data points, making the risk of overfitting
minimal. However, a few remarks are worth considering. Figure 2 illustrates that
the density of data points increases with molecular weight. Since it is beneficial for a
regression model to spend its flexibility in the dense data regions to minimise the MSE
over the entire dataset, less flexibility remains for modelling the lower mass region.
This effect is partly remediated by using a weighted least square regression approach
that employs squared residuals as the weight. However, even these weighted errors
do not contribute much to the overall MSE, leading to a biased model fit for the RNA

https://valkenborg-lab.shinyapps.io/pointless4dna/
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model, as can be seen in panel (b) of the Supplementary Figure S7. Furthermore,
polynomial models with a high order are known to have irregular behaviour at the
boundaries. In order to rectify this effect, we have used the full range dataset but
restricted the prediction model to the range specified earlier. In future work, we will
propose a model that is capable of handling these boundary effects and that can spread
its flexibility more evenly over the data range even though the data is distributed in
an unbalanced manner.

• Transformation of the simplex: The additive log-ratio transformation is the obvious
choice for our modelling exercise since it can handle partially observed data. Here we
opted for the monoisotopic variant as a reference. From Figure 2 it can be observed
that the probability of this variant decreases rapidly with increasing molecular weight.
For the current mass range, the division by small numbers remains within machine
precision, but it can be argued that, for higher molecular weights above 30 kDa, a
different reference has to be used to keep the transformation well-conditioned.

• Transformation of the observed isotope distribution: The benefit of the ALR trans-
formation is that we can transform the partially observed data into ALR space and
execute the goodness-of-fit comparison directly with the predicted ALR transformed
isotopes. This strategy is only possible if the monoisotopic variant has a quantifiable
intensity in an observed spectrum. Two remarks are worth considering. Firstly, as
mentioned in the previous bullet point, the monoisotopic variant falls below the
limit of detection for large molecules, obstructing the transformation of the observed
isotope distribution in the ALR space. Secondly, a large error on the monoisotopic
intensity will propagate severely in the ALR error as this reference is used to transform
all the isotopes. To remediate this effect, we could argue to divide the mass range into
distinct bins for which an optimal reference is chosen.

• Multinomial test: In order to relax the dependency of the goodness-of-fit statistic
on the monoisotopic variant, we proposed a score that uses the back-transformed
probabilities. This score can be computed on a partially observed isotope distribution,
provided that the monoisotopic mass is known and the user has knowledge of which
isotopes are observed. Another remark is that the multinomial test is approximated by
the Pearson’s chi-squared test. However, our implementation does not rely on formal
statistics. Furthermore, instead of the actual number of ions, the intensity values are
used as a proxy. Therefore, the proposed mean Pearson’s chi-squared error just tries
to quantify the goodness-of-fit. As discussed earlier, this metric is able to tolerate
larger error deviations when intensities are low (i.e., low ion statistics) or can be more
stringent for high intensities (i.e., high ion statistics). The latter states that a one-to-one
relation between intensity and ion statistics exists, but the kind of relation depends
on the instrument type. Hence, without this formal testing framework, the MPCSE is
not interoperable between platforms. Therefore, we suggest calibrating this metric on
every instrument using a benchmark dataset for optimal thresh old selection.

• Choice of the model covariate: The monoisotopic mass is used as the predictor variable
in our model (x-axis in Figures 2 and 3). Hence, to forecast the isotope distribution we
need to have the monoisotopic mass as an input. From earlier discussion, we know that
the monoisotopic variant is not observed for high molecular weight molecules. Three
procedures can be proposed to solve this conundrum. Firstly, the same model can be
devised but with a different covariate, for example, the average or most abundant
mass of the molecules. Secondly, a model similar in spirit as MIND by Lermyte
et al. [35] can be proposed for DNA that predicts the monoisotopic mass based on the
partially observed isotope distribution. Thirdly, we can use the model in combination
with the fitting procedure of Senko et al. [36] that scales the elemental composition of
an average amino acid, denoted as averagine. However, for the use case in nucleic
acids, this would require the counterpart of the averagine model for DNA and RNA.

• Univariate approach: From the residual plot on the predicted probabilities and our
ad hoc method to compute the centroid masses, we can observe different types of
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correlation in the data. It is worthwhile to investigate whether this correlation can
be exploited in a multivariate analysis in order to obtain a better prediction model.
On the other hand, we have demonstrated that current predictions of probability and
mass are very close to the actual values, and that the errors are ignorable given current
instrument precision and mass accuracy.

5. Concluding Remark

In this manuscript, we have proposed a model that predicts the aggregated isotope
distribution of an average DNA or RNA molecule given the monoisotopic mass as an
input variable. The prediction model can be used to detect and deconvolute nucleic acid
isotope patterns in a mass spectrum for which the elemental composition is unknown.
To compare the predicted and observed isotope pattern, we have proposed two different
goodness-of-fit statistics. The first statistic operates directly in the Aitchison geometry and
is invariant for the observed intensities, but only works for smaller molecules for which
the monoisotopic peak is observed in a spectrum. The second statistic is based on the
multinomial test and is able to operate on a partially observed isotope distribution where
the monoisotopic variant is not observed. This statistic is influenced by the intensity values
and therefore needs proper calibration on a benchmark dataset.

The prediction model is evaluated on a dataset containing repeated measurements of
four different DNA/RNA molecules. It can be concluded that the predictions made by the
model are very close to the actual probabilities and mass values, and that the error can be
ignored given the instrument variability.

The prediction model is not demanding in computational resources as it only requires
matrix multiplication and simple back-transformation. The model is implemented as an
online tool and can be downloaded from the website as an R function.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11060400/s1, Table S1: Basis components of the nucleotides. Table S2: Abbreviation
and construction of the nucelotides. Figure S1: Evolution of the DNA test MSE in function of the
polynomial order. Table S3: DNA test MSE for polynomial order 8 to 11. Figure S2: DNA probability
residuals. Figure S3: DNA mass residuals. Table S4: Standardisation values for the RNA database.
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23. Łącki, M.K.; Startek, M.; Valkenborg, D.; Gambin, A. IsoSpec: Hyperfast Fine Structure Calculator. Anal. Chem. 2017, 89,
3272–3277. [CrossRef]

24. Coursey, J.S.; Schwab, D.J.; Tsai, J.J.; Dragoset, R.A. Atomic Weights and Isotopic Compositions (Version 4.1); National Institute of
Standards and Technology: Gaithersburg, MD, USA, 2015.

25. Chambers, M.C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D.L.; Neumann, S.; Gatto, L.; Fischer, B.; Pratt, B.; Egertson, J.;
et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012, 30, 918–920. [CrossRef]

26. Gatto, L.; Gibb, S.; Rainer, J. MSnbase, Efficient and Elegant R-Based Processing and Visualization of Raw Mass Spectrometry
Data. J. Proteome Res. 2021, 20, 1063–1069. [CrossRef]

27. Gatto, L.; Lilley, K.S. MSnbase-an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing
and quantitation. Bioinformatics 2011, 28, 288–289. [CrossRef]

28. Yergey, J.A. A general approach to calculating isotopic distributions for mass spectrometry. Int. J. Mass Spectrom. Ion Phys. 1983,
52, 337–349. [CrossRef]

29. Aitchison, J. The Statistical Analysis of Compositional Data. J. R. Stat. Soc. Ser. B 1982, 44, 139–177. [CrossRef]
30. Aitchison, J. The Statistical Analysis of Compositional Data; Chapman and Hall: London, UK, 1986.
31. Aitchison, J. Principles of compositional data analysis. Inst. Math. Stat. Collect. 1994, 24, 73–81.
32. Aitchison, J.; Shen, S.M. Logistic-Normal Distributions: Some Properties and Uses. Biometrika 1980, 67, 261–272. [CrossRef]
33. Aitchison, J.; Barceló-Vidal, C.; Martín-Fernández, J.A.; Pawlowsky-Glahn, V. Logratio Analysis and Compositional Distance.

Math. Geol. 2000, 32, 271–275. [CrossRef]
34. Pearson, K.X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables

is such that it can be reasonably supposed to have arisen from random sampling. London Edinb. Dublin Philos. Mag. J. Sci. 1900,
50, 157–175. [CrossRef]

35. Lermyte, F.; Dittwald, P.; Claesen, J.; Baggerman, G.; Sobott, F.; O’Connor, P.B.; Laukens, K.; Hooyberghs, J.; Gambin, A.;
Valkenborg, D. MIND: A Double-Linear Model to Accurately Determine Monoisotopic Precursor Mass in High-Resolution
Top-Down Proteomics. Anal. Chem. 2019, 91, 10310–10319. [CrossRef] [PubMed]

36. Senko, M.W.; Beu, S.C.; McLaffertycor, F.W. Determination of monoisotopic masses and ion populations for large biomolecules
from resolved isotopic distributions. J. Am. Soc. Mass Spectrom. 1995, 6, 229–233. [CrossRef]

http://doi.org/10.1007/s13361-013-0796-5
http://www.ncbi.nlm.nih.gov/pubmed/24519333
http://doi.org/10.1021/acs.analchem.6b01459
http://doi.org/10.1038/nbt.2377
http://doi.org/10.1021/acs.jproteome.0c00313
http://doi.org/10.1093/bioinformatics/btr645
http://doi.org/10.1016/0020-7381(83)85053-0
http://doi.org/10.1111/j.2517-6161.1982.tb01195.x
http://doi.org/10.2307/2335470
http://doi.org/10.1023/A:1007529726302
http://doi.org/10.1080/14786440009463897
http://doi.org/10.1021/acs.analchem.9b02682
http://www.ncbi.nlm.nih.gov/pubmed/31283196
http://doi.org/10.1016/1044-0305(95)00017-8

	Introduction 
	Material and Methods 
	Experimental Procedures 
	Theoretical Data 
	Compositional Data Transformation 
	Modelling Approach 
	Prediction of the Isotopic Envelope 
	The Goodness-of-Fit Statistic 

	Results 
	Generation of the Data Sets 
	Model Selection and Training of the Model 
	Exploration of the Proposed Error Metrics 
	Model Validation 
	Software 

	Discussion 
	Concluding Remark 
	References

